MCM69L820AZP8.5R [MOTOROLA]

4M Late Write 2.5 V I/O; 4M晚写2.5 V的I / O
MCM69L820AZP8.5R
型号: MCM69L820AZP8.5R
厂家: MOTOROLA    MOTOROLA
描述:

4M Late Write 2.5 V I/O
4M晚写2.5 V的I / O

存储 静态存储器
文件: 总20页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MCM69L738A/D  
SEMICONDUCTOR TECHNICAL DATA  
MCM69L738A  
MCM69L820A  
Advance Information  
4M Late Write 2.5 V I/O  
The MCM69L738A/820A is a 4 megabit synchronous late write fast static RAM  
designed to provide high performance in secondary cache and ATM switch,  
Telecom, and other high speed memory applications. The MCM69L820A  
organized as 256K words by 18 bits, and the MCM69L738A organized as 128K  
words by 36 bits wide are fabricated in Motorola’s high performance silicon gate  
BiCMOS technology.  
The differential CK clock inputs control the timing of read/write operations of  
the RAM. At the rising edge of the CK clock all addresses, write enables, and  
synchronous selects are registered. An internal buffer and special logic enable  
the memory to accept write data on the rising edge of the CK clock a cycle after  
address and control signals. Read data is available at the falling edge of the CK  
clock.  
ZP PACKAGE  
PBGA  
CASE 999–01  
The RAM uses 2.5 V inputs and outputs.  
The synchronous write and byte enables allow writing to individual bytes or the  
entire word.  
Byte Write Control  
Single 3.3 V + 10%, – 5% Operation  
2.5 V I/O (V  
)
DDQ  
Register to Latch Synchronous Operation  
Asynchronous Output Enable  
Boundary Scan (JTAG) IEEE 1149.1 Compatible  
Differential Clock Inputs  
Optional x18 or x36 organization  
MCM69L738A/820A–8.5 = 8.5 ns  
MCM69L738A/820A–9 = 9 ns  
MCM69L738A/820A–9.5 = 9.5 ns  
Sleep Mode Operation (ZZ Pin)  
119 Bump, 50 mil (1.27 mm) Pitch, 14 mm x 22 mm Plastic Ball Grid Array  
(PBGA) Package  
This document contains information on a new product. Specifications and information herein are subject to change without notice.  
REV 1  
8/13/97  
Motorola, Inc. 1997  
FUNCTIONAL BLOCK DIAGRAM  
DATA IN  
REGISTER  
ADDRESS  
REGISTERS  
MEMORY  
ARRAY  
SA  
DQ  
DATA OUT  
LATCH  
SW  
SW  
REGISTERS  
CONTROL  
LOGIC  
SBx  
CK  
G
SS  
SS  
REGISTERS  
PIN ASSIGNMENTS  
TOP VIEW  
MCM69L738A  
MCM69L820A  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
A
B
C
D
E
A
B
C
D
E
V
SA  
NC  
SA  
SA  
SA  
NC  
NC  
SA  
SA  
SA  
SA  
NC  
SA  
V
V
SA  
NC  
SA  
SA  
SA  
SA  
NC  
NC  
SA  
SA  
SA  
SA  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
NC  
SA  
V
NC  
NC  
V
SA  
NC  
NC  
DD  
DD  
DQc  
DQc  
DQc  
DQc  
DQc  
V
NC  
V
DQb DQb  
DQb DQb  
DQb  
NC  
NC  
DQb  
NC  
V
NC  
SS  
G
V
DQa  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
SS  
G
V
V
V
V
V
V
V
V
DQa  
F
F
V
DQb  
V
V
DQa  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
G
G
DQc  
DQc SBc  
DQc  
NC  
NC  
SBb  
DQb DQb  
DQb DQb  
NC  
DQb SBb  
NC  
NC  
NC  
DQa  
H
H
DQc  
V
V
DQb  
V
DQa  
NC  
SS  
NC  
SS  
SS  
J
K
L
J
K
L
V
V
V
V
V
DDQ  
DD  
DQd  
DQd SBd  
DD  
NC  
DD DDQ  
V
V
V
V
V
NC  
NC  
DDQ  
DD  
DD  
DD DDQ  
DQd  
V
CK  
V
DQa DQa  
DQa DQa  
NC  
DQb  
V
CK  
CK  
V
NC  
DQa  
NC  
SS  
SS  
SS  
SS  
DQb  
NC  
V
SBa  
DQa  
DQd  
CK  
SW  
SA  
SA  
SBa  
SS  
M
N
P
M
N
P
V
DQd  
DQd  
DQd  
V
V
V
V
V
V
DQa  
V
V
DQb  
NC  
V
V
V
SW  
SA  
SA  
V
V
V
NC  
DQa  
NC  
V
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQd  
DQa DQa  
DQa DQa  
DQb  
NC  
DQd  
NC  
DQb  
DQa  
NC  
ZZ  
R
T
R
T
NC  
NC  
SA  
NC  
V
V
V
SA  
NC  
NC  
NC  
ZZ  
NC  
NC  
SA  
SA  
V
V
V
SA  
SA  
NC  
DD  
DD  
SS  
DD  
SA  
TDI  
DD  
NC  
TCK  
SS  
SA  
TDO  
SA  
SA  
SA  
U
U
V
TMS  
TDI  
TCK  
TDO  
V
V
TMS  
V
DDQ  
DDQ  
DDQ  
DDQ  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
2
MCM69L738A PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
CK  
Type  
Input  
Input  
I/O  
Description  
4K  
4L  
Address, data in and control input register clock. Active high.  
Address, data in and control input register clock. Active low.  
Synchronous Data I/O.  
CK  
(a) 6K, 7K, 6L, 7L, 6M, 6N, 7N, 6P, 7P  
(b) 6D, 7D, 6E, 7E, 6F, 6G, 7G, 6H, 7H  
(c) 1D, 2D, 1E, 2E, 2F, 1G, 2G, 1H, 2H  
(d) 1K, 2K, 1L, 2L, 2M, 1N, 2N, 1P, 2P  
DQx  
4F  
G
Input  
Input  
Output Enable: Asynchronous pin, active low.  
2A, 3A, 5A, 6A, 3B, 5B, 2C, 3C,  
5C, 6C, 4N, 4P, 2R, 6R, 3T, 4T, 5T  
SA  
Synchronous Address Inputs: Registered on the rising clock edge.  
5L, 5G, 3G, 3L  
(a), (b), (c), (d)  
SBx  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
SS  
Input  
Input  
Synchronous Chip Enable: Registered on the rising clock edge, active  
low.  
4M  
SW  
Synchronous Write: Registered on the rising clock edge, active low.  
Writes all enabled bytes.  
4U  
TCK  
TDI  
Input  
Input  
Test Clock (JTAG).  
Test Data In (JTAG).  
3U  
5U  
TDO  
TMS  
ZZ  
Output Test Data Out (JTAG).  
2U  
7T  
Input  
Input  
Test Mode Select (JTAG).  
Enables sleep mode, active high.  
4C, 2J, 4J, 6J, 4R, 3R  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
V
Supply Core Power Supply.  
DD  
V
DDQ  
Supply Output Power Supply: provides operating power for output buffers.  
Supply Ground.  
3D, 5D, 3E, 5E, 3F, 5F, 3H, 5H,  
3K, 5K, 3M, 5M, 3N, 5N, 3P, 5P, 5R  
V
SS  
4A, 1B, 2B, 4B, 6B, 7B, 1C, 7C, 4D,  
4G, 4H, 3J, 5J, 1R, 7R, 1T, 2T, 6T, 6U  
NC  
No Connection: There is no connection to the chip.  
Note: 3J and 5J are tied common.  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
3
MCM69L820A PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
CK  
Type  
Input  
Input  
I/O  
Description  
4K  
4L  
Address, data in and control input register clock. Active high.  
Address, data in and control input register clock. Active low.  
Synchronous Data I/O.  
CK  
(a) 6D, 7E, 6F, 7G, 6H, 7K, 6L, 6N, 7P  
(b) 1D, 2E, 2G, 1H, 2K, 1L, 2M, 1N, 2P  
DQx  
4F  
G
Input  
Input  
Output Enable: Asynchronous pin, active low.  
2A, 3A, 5A, 6A, 3B, 5B, 2C, 3C, 5C,  
6C, 4N, 4P, 2R, 6R, 2T, 3T, 5T, 6T  
SA  
Synchronous Address Inputs: Registered on the rising clock edge.  
5L, 3G  
(a), (b)  
SBx  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
SS  
Input  
Input  
Synchronous Chip Enable: Registered on the rising clock edge, active  
low.  
4M  
SW  
Synchronous Write: Registered on the rising clock edge, active low.  
Writes all enabled bytes.  
4U  
TCK  
TDI  
Input  
Input  
Test Clock (JTAG).  
Test Data In (JTAG).  
3U  
5U  
TDO  
TMS  
ZZ  
Output Test Data Out (JTAG).  
2U  
7T  
Input  
Input  
Test Mode Select (JTAG).  
Enables sleep mode, active high.  
4C, 2J, 4J, 6J, 4R, 3R  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
V
Supply Core Power Supply.  
DD  
V
DDQ  
Supply Output Power Supply: provides operating power for output buffers.  
Supply Ground.  
3D, 5D, 3E, 5E, 3F, 5F, 5G, 3H, 5H,  
3K, 5K, 3L, 3M, 5M, 3N, 5N, 3P, 5P, 5R  
V
SS  
4A, 1B, 2B, 4B, 6B, 7B, 1C, 7C,  
2D, 4D, 7D, 1E, 6E, 2F, 1G, 4G, 6G,  
2H, 4H, 7H, 3J, 5J, 1K, 6K, 2L, 7L, 6M, 2N,  
7N, 1P, 6P, 1R, 7R, 1T, 4T, 6U  
NC  
No Connection: There is no connection to the chip.  
Note: 3J and 5J are tied common.  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
4
ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V , See Note 1)  
SS  
This device contains circuitry to protect the  
inputs against damage due to high static volt-  
ages or electric fields; however, it is advised  
that normal precautions be taken to avoid  
application of any voltage higher than maxi-  
mum rated voltages to this high–impedance  
circuit.  
This BiCMOS memory circuit has been  
designed to meet the dc and ac specifications  
shown in the tables, after thermal equilibrium  
has been established.  
Rating  
Core Supply Voltage  
Symbol  
Value  
Unit  
V
DD  
– 0.5 to + 4.6  
V
Output Supply Voltage  
Voltage On Any Pin  
V
– 0.5 to V  
+ 0.5  
V
V
DDQ  
DD  
V
– 0.5 to V  
+ 0.5  
in  
in  
DD  
Input Current (per I/O)  
Output Current (per I/O)  
Power Dissipation (See Note 2)  
Operating Temperature  
Temperature Under Bias  
I
± 50  
mA  
mA  
W
I
± 70  
out  
P
D
This device contains circuitry that will ensure  
the output devices are in High–Z at power up.  
T
A
0 to + 70  
°C  
°C  
°C  
T
– 10 to + 85  
bias  
Storage Temperature  
NOTES:  
T
stg  
– 55 to + 125  
1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are  
exceeded. Functional operation should be restricted to RECOMMENDED OPER-  
ATING CONDITIONS. Exposuretohigherthanrecommendedvoltagesforextended  
periods of time could affect device reliability.  
2. Powerdissipationcapabilitywillbedependentuponpackagecharacteristicsanduse  
environment. See enclosed thermal impedance data.  
PBGA PACKAGE THERMAL CHARACTERISTICS  
Rating  
Symbol  
Max  
53  
38  
22  
14  
5
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
1, 2  
Junction to Ambient (Still Air)  
Junction to Ambient (@200 ft/min)  
Junction to Ambient (@200 ft/min)  
Junction to Board (Bottom)  
Junction to Case (Top)  
R
θJA  
R
θJA  
R
θJA  
R
θJB  
R
θJC  
Single Layer Board  
Four Layer Board  
1, 2  
3
4
NOTES:  
1. Junction temperature is a function of on–chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per SEMI G38–87.  
3. Indicates the average thermal resistance between the die and the printed circuit board.  
4. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC–883  
Method 1012.1).  
CLOCK TRUTH TABLE  
K CLK  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
X
ZZ  
L
SS  
L
SW  
H
L
SBa  
X
SBb  
X
SBc  
X
SBd  
X
DQ (n)  
DQ (n+1)  
Mode  
D
0–35  
X
Read Cycle All Bytes  
Write Cycle 1st Byte  
Write Cycle 2nd Byte  
Write Cycle 3rd Byte  
Write Cycle 4th Byte  
Write Cycle All Bytes  
Abort Write Cycle  
Deselect Cycle  
out  
L
L
L
H
H
H
High–Z  
D
0–8  
in  
L
L
L
H
L
H
H
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
D
9–17  
in  
L
L
L
H
H
L
H
D
18–26  
27–35  
0–35  
in  
in  
L
L
L
H
H
H
L
D
L
L
L
L
L
L
L
D
in  
L
L
L
H
H
H
H
High–Z  
X
L
H
X
X
X
X
X
X
X
H
X
X
X
X
High–Z  
Sleep Mode  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
5
DC OPERATING CONDITIONS AND CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
RECOMMENDED OPERATING CONDITIONS (See Notes 1 through 4)  
Typical Typical Typical  
–8.5  
–9  
–9.5  
Parameter  
Core Power Supply Voltage  
Symbol  
Min  
3.15  
2.3  
Max  
3.6  
Unit  
V
Notes  
V
DD  
Output Driver Supply Voltage  
Active Power Supply Current  
V
DDQ  
2.7  
V
(x18)  
(x36)  
I
320  
370  
320  
370  
300  
350  
480  
550  
mA  
5
DD1  
Quiescent Active Power Supply Current  
Active Standby Power Supply Current  
Quiescent Standby Power Supply Current  
I
180  
170  
150  
30  
180  
170  
150  
30  
180  
170  
150  
30  
250  
250  
230  
50  
mA  
mA  
mA  
mA  
6, 10  
7
DD2  
I
I
I
SB1  
SB2  
SB3  
8, 10  
9, 10  
Sleep Mode Power Supply Current  
NOTES:  
1. AlldatasheetparametersspecifiedtofullrangeofV  
unlessotherwisenoted. AllvoltagesarereferencedtovoltageappliedtoV bumps.  
SS  
DD  
2. Supply voltage applied to V  
3. Supply voltage applied to V  
connections.  
DD  
connections.  
DDQ  
4. All power supply currents measured with outputs open or deselected.  
5. V  
6. V  
7. V  
8. V  
9. V  
= V  
= V  
= V  
= V  
= V  
(max), t  
(max), t  
(max), t  
(max), t  
(max), t  
= t  
KHKH KHKH  
(min), SS registered active, 50% read cycles.  
= dc, SS registered active.  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
KHKH  
KHKH KHKH  
= t  
(min), SS registered inactive.  
= dc, SS registered inactive. ZZ low.  
= dc, SS registered inactive, ZZ high.  
– 200 mV.  
KHKH  
KHKH  
10. 200 mV V V  
in  
DDQ  
DC INPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
1.7  
Max  
+ 0.3  
DD  
Unit  
V
Notes  
DC Input Logic High  
V
(dc)  
(dc)  
V
IH  
DC Input Logic Low  
V
– 0.3  
0.7  
± 5  
± 8  
V
1
2
2
IL  
Input Leakage Current  
I
µA  
µA  
V
lkg  
Clock Input Leakage Current  
Clock Input Signal Voltage  
Clock Input Differential Voltage  
Clock Input Common Mode Voltage Range (See Figure 3)  
I
clkg  
V
in  
– 0.3  
0.2  
V
V
+ 0.3  
DD  
V
V
(dc)  
+ 0.6  
V
3
4
DIF  
DD  
(dc)  
1.1  
2.1  
V
CM  
NOTES:  
1. Inputs may undershoot to – 0.5 V (peak) for up to 20% t  
(e.g., 2 ns at a clock cycle time of 10 ns).  
KHKH  
2. 0 V V V  
in  
for all pins.  
DD  
3. Minimum instantaneous differential input voltage required for differential input clock operation.  
4. Maximum rejectable common mode input voltage variation.  
DC OUTPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
– 1.0  
Max  
1.0  
0.7  
Unit  
µA  
V
Notes  
Output Leakage Current  
Output Low Voltage  
I
lkg  
V
OL  
1
2
Output High Voltage  
NOTES:  
V
OH  
1.7  
V
1. I  
2. I  
= 8.0 mA.  
= – 8.0 mA.  
OL  
OH  
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, 0°C T 70°C, Periodically Sampled Rather Than 100% Tested)  
A
Characteristic  
Symbol  
Typ  
5
Max  
Unit  
pF  
Input Capacitance  
C
5
8
7
in  
Input/Output Capacitance  
CK, CK Capacitance  
C
6
pF  
I/O  
CK  
C
6
pF  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
6
AC OPERATING CONDITIONS AND CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 2.5 V  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . 1.25 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . 1.25 V  
Clock Input Timing Reference Level . . . . . . Differential Cross–Point  
Clock Input Pulse Level . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 V to 2.1 V  
READ/WRITE CYCLE TIMING (See Note 1)  
MCM69L738A–8.5  
MCM69L820A–8.5  
MCM69L738A–9  
MCM69L820A–9  
MCM69L738A–9.5  
MCM69L820A–9.5  
Min  
8
Max  
Min  
8
Max  
Min  
9
Max  
9.5  
4
Parameter  
Symbol  
Unit Notes  
Cycle Time  
t
ns  
ns  
ns  
ns  
ns  
KHKH  
Clock High Pulse Width  
t
3.2  
3.2  
3.2  
3.2  
3.6  
3.6  
KHKL  
KLKH  
KHQV  
Clock Low Pulse Width  
t
Clock High to Output Valid  
Clock Low to Output Valid  
Clock Low to Output Hold  
Clock Low to Output Low–Z  
Clock High to Output High–Z  
Output Enable Low to Output Low–Z  
Output Enable Low to Output Valid  
Output Enable to Output Hold  
Output Enable High to Output High–Z  
Setup Times:  
t
8.5  
3.5  
9
t
3.5  
KLQV  
KLQX  
t
0.5  
1
0.5  
1
0.5  
1
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
t
2, 3  
2, 3  
KLQX1  
t
t
t
1
3.5  
1
3.5  
1
KHQZ  
GLQX  
GLQV  
0.5  
0.5  
0.5  
4
3.5  
3.5  
t
0.5  
0.5  
0.5  
4
GHQX  
t
3.5  
3.5  
2, 3  
GHQZ  
Address  
Data In  
Chip Select  
t
t
0.5  
0.5  
0.5  
AVKH  
DVKH  
t
SVKH  
Write Enable  
t
WVKH  
Hold Times:  
NOTES:  
Address  
Data In  
Chip Select  
Write Enable  
t
t
1
1
1
ns  
KHAX  
KHDX  
t
KHSX  
t
KHWX  
1. In no case may control input signals (e.g., SS) be operated with pulse widths less than the minimum clock input pulse width specifications  
(e.g., t ) or at frequencies that exceed the applied K clock frequency.  
KHKL  
2. This parameter is sampled and not 100% tested.  
3. Measured at ± 200 mV from steady state.  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
7
TIMING LIMITS  
V
/2  
DDQ  
The table of timing values shows either a mini-  
mum or a maximum limit for each parameter. Input  
requirementsarespecifiedfromtheexternalsystem  
point of view. Thus, address setup time is shown as  
a minimum since the system must supply at least  
that much time. On the other hand, responses from  
the memory are specified from the device point of  
view. Thus, the access time is shown as amaximum  
since the device never provides data later than that  
time.  
50  
DEVICE  
UNDER  
TEST  
50  
Figure 1. AC Test Load  
V
OH  
V
SS  
50%  
100%  
20% t  
KHKH  
Figure 2. Undershoot Voltage  
V
DDQ  
V
TR  
CROSSING POINT  
V
DIF  
V
*
CM  
V
CP  
V
SS  
*V  
, the Common Mode Input Voltage, equals V  
CM  
– ((V  
– V )/2).  
CP  
TR  
TR  
Figure 3. Differential Inputs/Common Mode Input Voltage  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
8
REGISTER LATCH READ–WRITE–READ CYCLES  
t
t
KHKL  
KHKH  
CK  
t
t
AVKH  
KLKH  
t
KHAX  
A1  
A0  
A2  
A3  
A4  
SA  
SS  
t
SVKH  
t
KHSX  
t
WVKH  
t
KHWX  
SW  
SBx  
G
t
KLQX  
Q1  
t
t
KHQV  
KHQZ  
t
t
DVKH  
t
t
KLQV  
t
KHQZ  
KLQX1  
Q4  
t
KHDX  
KLQX1  
DQ  
Q0  
READ  
D2  
WRITE  
Q3  
READ  
READ  
READ  
DESELECT (HIGH–Z)  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
9
REGISTER LATCH READ–WRITE–READ CYCLES  
(G Controlled)  
CK  
A0  
A1  
A2  
A3  
A4  
SA  
SS  
SW  
SBx  
G
t
GLQV  
t
t
GHQX  
GLQX  
DQ  
Q0  
READ  
Q1  
READ  
D2  
Q3  
READ DESELECT (HIGH–Z)  
Q4  
READ  
WRITE  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
10  
Byte write enable inputs have no effect on read cycles.  
This allows the system designer not interested in performing  
byte writes to connect the byte enable inputs to active low  
FUNCTIONAL OPERATION  
READ AND WRITE OPERATIONS  
All control signals except G are registered on the rising  
edge of the CK clock. These signals must meet the setup  
and hold times shown in the AC Characteristics table. On the  
falling edge of the current cycle, the output latch becomes  
transparent and data is available. The output data is latched  
on the rising edge of the next clock. The output data is  
(V ). Reads of all bytes proceed normally and write cycles,  
SS  
activated via a low on SW, and the rising edge of the CK  
clock, write the entire RAM I/O width. This way the designer  
is spared having to drive multiple write input buffer loads.  
Byte writes are performed using the byte write enable  
inputs in conjunction with the synchronous write input (SW).  
It is important to note that writing any one byte will inhibit a  
read of all bytes at the current address. The RAM can not  
simultaneously read one byte and write another at the same  
address. A write cycle initiated with none of the byte write en-  
able inputs active is neither a read or a write. No write will  
occur, but the outputs will be deselected as in a normal write  
cycle.  
available at the output at t  
or t  
, whichever is  
KLQV  
is the internal latency of the device. During this  
KHQV  
later. t  
KHQV  
same cycle a new read address can be applied to the  
address pins.  
A write cycle can occur on the next cycle as long as t  
KLQX  
are met. Read cycles may follow write cycles  
and t  
DVKH  
immediately.  
G, SS, and SW control output drive. Chip deselect via a  
high on SS at the rising edge of the CK clock has its effect on  
the output drivers immediately. SW low deselects the output  
drivers immediately (on the same cycle). Output selecting via  
a low on SS and high on SW at a rising CK clock has its ef-  
LATE WRITE  
The write address is sampled on the first rising edge of  
clock and write data is sampled on the following rising edge.  
The late write feature is implemented with single stage  
write buffering. Write buffering is transparent to the user. A  
comparator monitors the address bus and, when necessary,  
routes buffer contents to the outputs to assure coherent op-  
eration. This occurs in all cases whether there is a byte write  
or a full word is written.  
fect on the output drivers at t  
. Output drive is also con-  
KLQX  
trolled directly by output enable, G. G is an asynchronous  
input. No clock edges are required to enable or disable the  
output with G.  
Output data will be valid the later of t  
, t  
, or  
GLQV KHQV  
t
. Outputs will begin driving at t  
. Outputs will  
KLQV  
KLQX1  
POWER UP AND INITIALIZATION  
hold previous data until t  
or t  
.
GHQX  
KLQX  
Please note, per the Absolute Maximum Ratings table,  
WRITE AND BYTE WRITE FUNCTIONS  
V
is not to exceed V  
+ 0.5 V, whatever the  
DDQ  
DD  
Note that in the following discussion the term “byte” refers  
to nine bits of the RAM I/O bus. In all cases, the timing pa-  
rameters described for synchronous write input (SW) apply  
to each of the byte write enable inputs (SBa, SBb, etc.).  
instantaneous value of V . Once supplies have reached  
DD  
specification levels, a minimum dwell of 1.0 µs with CK clock  
inputs cycling is required before beginning normal  
operations.  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
11  
SERIAL BOUNDARY SCAN TEST ACCESS PORT OPERATION  
OVERVIEW  
1149.1 compliant TAPs. The TAP operates using conven-  
tional JEDEC Standard 8–1B Low Voltage (3.3 V) TTL/  
CMOS logic level signaling.  
The serial boundary scan test access port (TAP) on this  
RAM is designed to operate in a manner consistent with  
IEEE Standard 1149.1–1990 (commonly referred to as  
JTAG), but does not implement all of the functions required  
for 1149.1 compliance. Certain functions have been modified  
or eliminated because their implementation places extra de-  
lays in the RAMs critical speed path. Nevertheless, the RAM  
supports the standard TAP controller architecture. (The TAP  
controller is the state machine that controls the TAPs opera-  
tion) and can be expected to function in a manner that does  
not conflict with the operation of devices with Standard  
DISABLING THE TEST ACCESS PORT  
It is possible to use this device without utilizing the TAP. To  
disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to V  
to preclude  
SS  
mid level inputs. TDI and TMS are designed so an undriven  
input will produce a response identical to the application of a  
logic 1, and may be left unconnected. But they may also be  
tied to V  
nected.  
through a 1 k resistor. TDO should be left uncon-  
DD  
TAP DC OPERATING CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
Parameter  
Symbol  
Min  
2.0  
– 0.3  
Max  
V + 0.3  
DD  
Unit  
V
Note  
Logic Input Logic High  
Logic Input Logic Low  
Logic Input Leakage Current  
CMOS Output Logic Low  
CMOS Output Logic High  
TTL Output Logic Low  
TTL Output Logic High  
NOTES:  
V
IH  
1
V 1  
IL  
0.8  
± 5  
0.2  
V
I
µA  
V
1
2
3
4
5
lkg  
V 1  
OL  
V
1
2
V
– 0.2  
V
OH  
DD  
V
0.4  
V
OL  
V 2  
OH  
2.4  
V
1. 0 V V V  
for all logic input pins.  
in  
DDQ  
2. I 1 100 µA @ V  
= 0.2 V. Sampled, not 100% tested.  
– 0.2 V. Sampled, not 100% tested.  
= 0.4 V.  
OL OL  
3.  
I
1
100 µA @ V  
DDQ  
OH  
OL  
4. I 2 8 mA @ V  
OL  
8 mA @ V  
5.  
I
2
= 2.4 V.  
OH  
OH  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
12  
TAP AC OPERATING CONDITIONS AND CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 3.0 V  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . . 1.5 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 V  
Output Test Load . . . . . . 50 Parallel Terminated T–line with 20 pF  
Receiver Input Capacitance  
Test Load Termination Supply Voltage (V ) . . . . . . . . . . . . . . . 1.5 V  
T
TAP CONTROLLER TIMING  
Parameter  
Symbol  
Min  
100  
40  
40  
10  
10  
10  
10  
10  
10  
0
Max  
20  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Cycle Time  
t
THTH  
Clock High Time  
Clock Low Time  
TMS Setup  
t
THTL  
t
TLTH  
t
t
MVTH  
TMS Hold  
THMX  
TDI Valid to TCK High  
TCK High to TDI Don’t Care  
Capture Setup  
t
t
DVTH  
THDX  
t
1
1
CS  
Capture Hold  
t
CH  
TCK Low to TDO Unknown  
TCK Low to TDO Valid  
NOTES:  
t
t
TLQX  
TLOV  
1. t + t  
CS CH  
defines the minimum pause in RAM I/O pad transitions to assure accurate pad data capture.  
AC TEST LOAD  
1.5 V  
50  
DEVICE  
UNDER  
TEST  
50  
20 pF  
TAP CONTROLLER TIMING DIAGRAM  
t
THTH  
t
TLTH  
TEST CLOCK  
(TCK)  
t
THTL  
t
THMX  
t
MVTH  
TEST MODE SELECT  
(TMS)  
t
THDX  
t
DVTH  
TEST DATA IN  
(TDI)  
t
t
TLQV  
TLQX  
TEST DATA OUT  
(TDO)  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
13  
BOUNDARY SCAN REGISTER  
TEST ACCESS PORT PINS  
The boundary scan register is identical in length to the  
number of active input and I/O connections on the RAM (not  
counting the TAP pins). This also includes a number of place  
holder locations (always set to a logic 1) reserved for density  
upgrade address pins. There are a total of 70 bits in the case  
of the x36 device and 51 bits in the case of the x18 device.  
The boundary scan register, under the control of the TAP  
controller, is loaded with the contents of the RAMs I/O ring  
when the controller is in capture–DR state and then is placed  
between the TDI and TDO pins when the controller is moved  
to shift–DR state. Several TAP instructions can be used to  
activate the boundary scan register.  
TCK — TEST CLOCK (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
TMS — TEST MODE SELECT (INPUT)  
The TMS input is sampled on the rising edge of TCK. This  
is the command input for the TAP controller state machine.  
An undriven TMS input will produce the same result as a log-  
ic one input level.  
TDI — TEST DATA IN (INPUT)  
The Bump/Bit Scan Order tables describe which device  
bump connects to each boundary scan register location. The  
first column defines the bit’s position in the boundary scan  
register. The shift register bit nearest TDO (i.e., first to be  
shifted out) is defined as bit 1. The second column is the  
name of the input or I/O at the bump and the third column is  
the bump number.  
The TDI input is sampled on the rising edge of TCK. This is  
the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is deter-  
mined by the state of the TAP controller state machine and  
the instruction that is currently loaded in the TAP instruction  
register (refer to Figure 5, TAP Controller State Diagram). An  
undriven TDI pin will produce the same result as a logic one  
input level.  
IDENTIFICATION (ID) REGISTER  
TDO — TEST DATA OUT (OUTPUT)  
The ID Register is a 32–bit register that is loaded with a  
device and vendor specific 32–bit code when the controller is  
put in capture–DR state with the IDCODE command loaded  
in the instruction register. The code is loaded from a 32–bit  
on–chip ROM. It describes various attributes of the RAM as  
indicated below. The register is then placed between the TDI  
and TDO pins when the controller is moved into shift–DR  
state. Bit 0 in the register is the LSB and the first to reach  
TDO when shifting begins.  
Output that is active depending on the state of the TAP  
state machine (refer to Figure 5, TAP Controller State Dia-  
gram). Output changes in response to the falling edge of  
TCK. This is the output side of the serial registers placed be-  
tween TDI and TDO.  
TRST — TAP RESET  
This device does not have a TRST pin. TRST is optional in  
IEEE 1149.1. The test–logic reset state is entered while TMS  
is held high for five rising edges of TCK. Power on reset cir-  
cuitry is included internally. This type of reset does not affect  
the operation of the system logic. The reset affects test logic  
only.  
ID Register Presence Indicator  
Bit No.  
Value  
0
1
Motorola JEDEC ID Code (Compressed Format, per  
IEEE Standard 1149.1 – 1990  
TEST ACCESS PORT REGISTERS  
OVERVIEW  
Bit No. 11  
Value  
10  
9
8
7
6
5
4
3
2
1
The various TAP registers are selected (one at a time) via  
the sequences of ones and zeros input to the TMS pin as the  
TCK is strobed. Each of the TAPs registers are serial shift  
registers that capture serial input data on the rising edge of  
TCK and push serial data out on subsequent falling edge of  
TCK. When a register is selected it is “placed” between the  
TDI and TDO pins.  
0
0
0
0
0
0
0
1
1
1
0
Reserved For Future Use  
Bit No.  
Value  
17  
16  
15  
14  
13  
12  
x
x
x
x
x
x
Device Width  
Configuration  
128K x 36  
Bit No.  
Value  
Value  
22  
0
21  
20  
1
19  
0
18  
0
INSTRUCTION REGISTER  
0
0
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are three bits long. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction regis-  
ter is automatically preloaded with the IDCODE instruction at  
power–up or whenever the controller is placed in test–logic–  
reset state.  
256K x 18  
0
0
1
1
Device Depth  
Configuration  
Bit No.  
Value  
Value  
27  
0
26  
0
25  
1
24  
0
23  
1
128K x 36  
256K x 18  
0
0
1
1
0
Revision Number  
BYPASS REGISTER  
Bit No.  
Value  
31  
30  
29  
28  
The bypass register is a single bit register that can be  
placed between TDI and TDO. It allows serial test data to be  
passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible.  
x
x
x
x
Figure 4. ID Register Bit Meanings  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
14  
MCM69L738A Bump/Bit Scan Order  
MCM69L820A Bump/Bit Scan Order  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
1
M2  
SA  
5R  
4P  
4T  
6R  
5T  
7T  
6P  
7P  
6N  
7N  
6M  
6L  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
SA  
NC  
3B  
2B  
3A  
3C  
2C  
2A  
2D  
1D  
2E  
1E  
2F  
2G  
1G  
2H  
1H  
3G  
4D  
4E  
4G  
4H  
4M  
3L  
1
M2  
SA  
5R  
6T  
4P  
6R  
5T  
7T  
7P  
6N  
6L  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
SBb  
NC  
3G  
4D  
4E  
4G  
4H  
4M  
2K  
1L  
2
2
3
SA  
SA  
3
SA  
SS  
4
SA  
SA  
4
SA  
NC  
5
SA  
SA  
5
SA  
NC  
6
ZZ  
SA  
6
ZZ  
SW  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
7
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
SBc  
NC  
7
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
8
8
9
9
2M  
1N  
2P  
3T  
2R  
4N  
2T  
3R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
7K  
5L  
4L  
7L  
CK  
4K  
4F  
6H  
7G  
6F  
7E  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
3B  
2B  
3A  
3C  
2C  
2A  
1D  
2E  
2G  
1H  
SA  
6K  
7K  
5L  
G
SA  
DQa  
DQa  
DQa  
DQa  
DQa  
SA  
SA  
M1  
4L  
CK  
4K  
4F  
5G  
7H  
6H  
7G  
6G  
6F  
7E  
6E  
7D  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
SS  
G
NC  
SBb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
NC  
SW  
SBd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
SA  
SA  
SA  
1K  
2K  
1L  
SA  
NC  
SA  
2L  
SA  
2M  
1N  
2N  
1P  
2P  
3T  
2R  
4N  
3R  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
DQb  
DQb  
DQb  
DQb  
SA  
SA  
NC  
SA  
35  
SA  
M1  
NOTES:  
1. TheNC pads listed in this table are indeed no connects, but are represented in the boundary scan register by a “place holder” bit that is forced  
to logic 1. These pads are reserved for use as address inputs on higher density RAMs that follow this pad out and scan order standard.  
2. In scan mode, differential inputs CK and CK are referenced to each other and must be at opposite logic levels for reliable operation.  
3. M1 and M2 are not ordinary inputs and may not respond to standard I/O logic levels. M1 and M2 must be driven to within 100 mV of a V  
DD  
or V  
supply rail to ensure consistent results.  
SS  
4. ZZ must remain at V during boundary scan to ensure consistent results.  
IL  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
15  
expected. RAM input signals must be stabilized for long  
enough to meet the TAPs input data capture setup plus hold  
TAP CONTROLLER INSTRUCTION SET  
OVERVIEW  
time (t  
plus t ). The RAMs clock inputs need not be  
CS  
CH  
There are two classes of instructions defined in Standard  
1149.1–1990; the standard (public) instructions, and device  
specific (private) instructions. Some public instructions, are  
mandatory for IEEE 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
Although the TAP controller in this device follows the IEEE  
1149.1 conventions, it is not IEEE 1149.1 compliant because  
some of the mandatory instructions are not fully implement-  
ed. The TAP on this device may be used to monitor all input  
and I/O pads, but can not be used to load address, data, or  
control signals into the RAM or to preload the I/O buffers. In  
other words, the device will not perform IEEE 1149.1  
EXTEST, INTEST, or the preload portion of the SAMPLE/  
PRELOAD command.  
When the TAP controller is placed in capture–IR state, the  
two least significant bits of the instruction register are loaded  
with 01. When the controller is moved to the shift–IR state,  
the instruction register is placed between TDI and TDO. In  
this state, the desired instruction is serially loaded through  
the TDI input (while the previous contents are shifted out at  
TDO). For all instructions, the TAP executes newly loaded  
instructions only when the controller is moved to update–IR  
state. The TAP instruction sets for this device are listed in the  
following tables.  
paused for any other TAP operation except capturing the I/O  
ring contents into the boundary scan register.  
Moving the controller to shift–DR state then places the  
boundary scan register between the TDI and TDO pins.  
Because the PRELOAD portion of the command is not im-  
plemented in this device, moving the controller to the  
update–DR state with the SAMPLE/PRELOAD instruction  
loaded in the instruction register has the same effect as the  
pause–DR command. This functionality is not IEEE 1149.1  
compliant.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It  
is to be executed whenever the instruction register, whatever  
length it may be in the device, is loaded with all logic 0s.  
EXTEST is not implemented in this device. Therefore, this  
device is not IEEE 1149.1 compliant. Nevertheless, this  
RAMs TAP does respond to an all zeros instruction, as  
follows. With the EXTEST (000) instruction loaded in the  
instruction register the RAM responds just as it does in  
response to the SAMPLE/PRELOAD instruction described  
above, except the RAM outputs are forced to High–Z any  
time the instruction is loaded.  
IDCODE  
STANDARD (PUBLIC) INSTRUCTIONS  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded  
into the ID register when the controller is in capture–DR  
mode and places the ID register between the TDI and TDO  
pins in shift–DR mode. The IDCODE instruction is the default  
instruction loaded in at power up and any time the controller  
is placed in the test–logic–reset state.  
The BYPASS instruction is loaded in the instruction regis-  
ter when the bypass register is placed between TDI and  
TDO. This occurs when the TAP controller is moved to the  
shift–DR state. This allows the board level scan path to be  
shortened to facilitate testing of other devices in the scan  
path.  
DEVICE SPECIFIC (PUBLIC) INSTRUCTION  
SAMPLE–Z  
SAMPLE/PRELOAD  
If the SAMPLE–Z instruction is loaded in the instruction  
register, all RAM outputs are forced to an inactive drive state  
(High–Z) and the boundary scan register is connected be-  
tween TDI and TDO when the TAP controller is moved to the  
shift–DR state.  
SAMPLE/PRELOAD is an IEEE 1149.1 mandatory public  
instruction. When the SAMPLE/PRELOAD instruction is  
loaded in the Instruction register, moving the TAP controller  
into the capture–DR state loads the data in the RAMs input  
and I/O buffers into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK), it is  
possible for the TAP to attempt to capture the I/O ring con-  
tents while the input buffers are in transition (i.e., in a metast-  
able state). Although allowing the TAP to sample metastable  
inputs will not harm the device, repeatable results can not be  
DEVICE SPECIFIC (PRIVATE) INSTRUCTION  
NOOP  
Do not use these instructions; they are reserved for future  
use.  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
16  
STANDARD (PUBLIC) INSTRUCTION CODES  
Instruction  
EXTEST  
Code*  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
RAM outputs to High–Z state. NOT IEEE 1149.1 COMPLIANT.  
IDCODE  
001**  
100  
Preloads ID register and places it between TDI and TDO. Does not affect RAM operation.  
SAMPLE / PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not  
affect RAM operation. Does not implement IEEE 1149.1 PRELOAD function. NOT IEEE 1149.1  
COMPLIANT.  
BYPASS  
111  
010  
Places bypass register between TDI and TDO. Does not affect RAM operation.  
SAMPLE–Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
RAM output drivers to High–Z state.  
*Instruction codes expressed in binary, MSB on left, LSB on right.  
**Default instruction automatically loaded at power–up and in test–logic–reset state.  
STANDARD (PRIVATE) INSTRUCTION CODES  
Instruction  
NO OP  
Code*  
011  
Description  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
NO OP  
NO OP  
101  
110  
* Instruction codes expressed in binary, MSB on left, LSB on right.  
TEST–LOGIC  
RESET  
1
0
1
RUN–TEST/  
IDLE  
SELECT  
DR–SCAN  
SELECT  
IR–SCAN  
1
1
0
0
0
1
1
CAPTURE–DR  
CAPTURE–IR  
0
0
SHIFT–DR  
1
SHIFT–IR  
1
0
0
1
1
EXIT1–DR  
0
EXIT1–IR  
0
PAUSE–DR  
1
PAUSE–IR  
1
0
0
0
0
EXIT2–DR  
1
EXIT2–IR  
1
UPDATE–DR  
UPDATE–IR  
1
0
1
0
NOTE: The value adjacent to each state transition represents the signal present at TMS at the rising edge of TCK.  
Figure 5. TAP Controller State Diagram  
MCM69L738AMCM69L820A  
17  
MOTOROLA FAST SRAM  
ORDERING INFORMATION  
(Order by Full Part Number)  
69L738A  
MCM  
69L820A XX  
X
X
R = Tape and Reel, Blank = Tray  
Motorola Memory Prefix  
Part Number  
Speed (8.5 = 8.5 ns,  
9 = 9 ns, 9.5 = 9.5 ns)  
Package (ZP = PBGA)  
Full Part Numbers — MCM69L738AZP8.5  
MCM69L820AZP8.5  
MCM69L738AZP9  
MCM69L820AZP9  
MCM69L738AZP9.5  
MCM69L820AZP9.5  
MCM69L738AZP9.5R  
MCM69L820AZP9.5R  
MCM69L738AZP8.5R MCM69L738AZP9R  
MCM69L820AZP8.5R MCM69L820AZP9R  
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
18  
PACKAGE DIMENSIONS  
ZP PACKAGE  
7 X 17 BUMP PBGA  
CASE 999–01  
NOTES:  
0.20 (0.008)  
4X  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
–W–  
2. CONTROLLING DIMENSION: MILLIMETER.  
PIN 1A  
IDENTIFIER  
7
6
5
4
3 2 1  
MILLIMETERS  
MIN MAX  
14.00 BSC  
22.00 BSC  
INCHES  
MIN MAX  
0.551 BSC  
0.866 BSC  
A
B
C
D
E
F
G
H
J
DIM  
A
B
C
D
E
–––  
0.60  
0.50  
1.30  
2.40  
–––  
0.024  
0.020  
0.051  
0.094  
0.90  
0.70  
1.70  
0.035  
0.028  
0.067  
B
–L–  
S
P
F
K
L
G
K
N
P
1.27 BSC  
0.050 BSC  
M
N
P
R
T
0.80  
11.90  
19.40  
1.00  
12.10  
19.60  
0.031  
0.469  
0.764  
0.039  
0.476  
0.772  
16X G  
R
S
7.62 BSC  
20.32 BSC  
0.300 BSC  
0.800 BSC  
U
119X  
D
N
6X  
G
S
S
S
S
0.30 (0.012)  
0.10 (0.004)  
T
T
W
L
R
TOP VIEW  
BOTTOM VIEW  
0.25 (0.010)  
T
F
0.35 (0.014)  
T
0.15 (0.006)  
T
C
–T–  
K
SIDE VIEW  
E
MCM69L738AMCM69L820A  
MOTOROLA FAST SRAM  
19  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
MCM69L738A/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY