MCM69R536ZP4.4 [MOTOROLA]

Late-Write SRAM, 32KX36, 2.2ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119;
MCM69R536ZP4.4
型号: MCM69R536ZP4.4
厂家: MOTOROLA    MOTOROLA
描述:

Late-Write SRAM, 32KX36, 2.2ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119

信息通信管理 静态存储器
文件: 总20页 (文件大小:141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
Order this document  
by MCM69R536/D  
MCM69R536  
MCM69R618  
1M Late Write HSTL  
The MCM69R536/618 is a 1M–bit synchronous late write fast static RAM  
designed to provide high performance in secondary cache, ATM switch,  
Telecom, and other high speed memory applications. The MCM69R618  
(organized as 64K words by 18 bits) and the MCM69R536 (organized as 32K  
words by 36 bits wide) are fabricated in Motorola’s high performance silicon gate  
BiCMOS technology.  
The differential clock (CK) inputs control the timing of read/write operations of  
theRAM. AttherisingedgeofCK, alladdresses, writeenables, andsynchronous  
selects are registered. An internal buffer and special logic enable the memory to  
accept write data on the rising edge of CK, a cycle after address and control  
signals. Read data is driven on the rising edge of CK.  
ZP PACKAGE  
PBGA  
CASE 999–02  
The RAM uses HSTL inputs and outputs. The adjustable input trip–point (V  
)
ref  
and output voltage (V  
) gives the system designer greater flexibility in  
DDQ  
optimizing system performance.  
The synchronous write and byte enables allow writing to individual bytes or the  
entire word.  
The impedance of the output buffers is programmable allowing the outputs to  
match the impedance of the circuit traces which reduces signal reflections.  
Byte Write Control  
Single 3.3 V +10%, –5% Operation  
HSTL — I/O (JEDEC Standard JESD8–6 Class 1 Compatible)  
HSTL — User Selectable Input Trip–Point  
HSTL — Compatible Programmable Impedance Output Drivers  
Register to Register Synchronous Operation  
Asynchronous Output Enable  
Boundary Scan (JTAG) IEEE 1149.1 Compatible  
Differential Clock Inputs  
Optional x18 or x36 Organization  
MCM69R536/618–4.4 = 4.4 ns  
MCM69R536/618–5 = 5 ns  
MCM69R536/618–6 = 6 ns  
MCM69R536/618–7 = 7 ns  
119–Bump, 50 mil (1.27 mm) Pitch, 14 mm x 22 mm Plastic Ball Grid Array  
(PBGA) Package  
REV 2  
2/24/00  
Motorola, Inc. 2000  
FUNCTIONAL BLOCK DIAGRAM  
DATA IN  
REGISTER  
ADDRESS  
REGISTERS  
MEMORY  
ARRAY  
SA  
DQ  
DATA OUT  
REGISTER  
SW  
SW  
REGISTERS  
CONTROL  
LOGIC  
SBx  
CK  
G
SS  
SS  
REGISTERS  
PIN ASSIGNMENTS  
TOP VIEW  
MCM69R536  
MCM69R618  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
A
B
C
D
E
A
B
C
D
E
V
SA  
NC  
SA  
NC  
SA  
NC  
NC  
SA  
NC  
SA  
SA  
NC  
SA  
V
V
SA  
NC  
SA  
SA  
NC  
SA  
NC  
NC  
SA  
NC  
SA  
SA  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
NC  
SA  
V
NC  
NC  
V
SA  
NC  
NC  
DD  
DD  
DQc  
DQc  
DQc  
DQc  
DQc  
V
ZQ  
V
DQb DQb  
DQb DQb  
DQb  
NC  
NC  
DQb  
NC  
V
ZQ  
SS  
G
V
DQa  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
SS  
G
V
V
V
V
V
V
V
V
DQa  
F
F
V
DQb  
V
V
DQa  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
G
G
DQc  
DQc SBc  
NF  
NF  
SBb  
DQb DQb  
DQb DQb  
NC  
DQb SBb  
NF  
NF  
DQa  
H
H
DQc  
DQc  
V
V
DQb  
NC  
V
DQa  
NC  
SS  
SS  
SS  
J
K
L
J
K
L
V
V
V
V
V
V
V
DDQ  
DD  
ref  
DD  
ref  
DD DDQ  
V
V
V
V
V
V V  
DD DDQ  
DDQ  
DD  
ref  
DD  
ref  
DQd  
DQd  
V
CK  
V
DQa DQa  
DQa DQa  
NC  
DQb  
V
V
CK  
CK  
V
NC  
DQa  
NC  
SS  
SS  
SS  
SS  
SS  
DQb  
NC  
SBa  
DQa  
DQd  
DQd SBd  
CK  
SW  
SA  
SA  
SBa  
M
N
P
M
N
P
V
DQd  
DQd  
DQd  
V
V
V
V
V
V
DQa  
V
V
DQb  
NC  
V
V
V
SW  
SA  
SA  
V
V
V
NC  
DQa  
NC  
V
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQd  
DQa DQa  
DQa DQa  
DQb  
NC  
DQd  
NC  
NC  
NC  
DQb  
DQa  
NC  
ZZ  
R
T
R
T
NC  
NC  
SA  
NC  
V
V
V
SA  
NC  
NC  
NC  
ZZ  
SA  
SA  
V
V
V
SA  
SA  
NC  
SS  
DD  
DD  
SS  
DD  
NC  
TCK  
DD  
SA  
TDO  
SA  
SA  
SA  
SA  
U
U
V
TMS  
TDI  
TCK  
TDO  
V
V
TMS  
TDI  
V
DDQ  
DDQ  
DDQ  
DDQ  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
2
MCM69R536 PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
CK  
Type  
Input  
Input  
I/O  
Description  
4K  
4L  
Address, data in and control input register clock. Active high.  
Address, data in and control input register clock. Active low.  
Synchronous Data I/O.  
CK  
(a) 6K, 7K, 6L, 7L, 6M, 6N, 7N, 6P, 7P  
(b) 6D, 7D, 6E, 7E, 6F, 6G, 7G, 6H, 7H  
(c) 1D, 2D, 1E, 2E, 2F, 1G, 2G, 1H, 2H  
(d) 1K, 2K, 1L, 2L, 2M, 1N, 2N, 1P, 2P  
DQx  
4F  
G
Input  
Input  
Output Enable: Asynchronous pin, active low.  
2A, 3A, 5A, 6A, 2C, 3C, 5C, 6C, 4N, 4P,  
2R, 6R, 3T, 4T, 5T  
SA  
Synchronous Address Inputs: Registered on the rising clock edge.  
5L, 5G, 3G, 3L  
(a), (b), (c), (d)  
SBx  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
SS  
Input  
Input  
Synchronous Chip Enable: Registered on the rising clock edge,  
active low.  
4M  
SW  
Synchronous Write: Registered on the rising clock edge, active low.  
Writes all enabled bytes.  
4U  
TCK  
TDI  
Input  
Input  
Test Clock (JTAG).  
3U  
Test Data In (JTAG).  
5U  
TDO  
TMS  
Output  
Input  
Test Data Out (JTAG).  
2U  
Test Mode Select (JTAG).  
3J, 5J  
V
Supply  
Input  
Input Reference: Provides reference voltage for input buffers.  
Programmable Output Impedance: Programming pin.  
Reserved for future use. Must be grounded.  
Core Power Supply.  
ref  
4D  
7T  
ZQ  
ZZ  
Input  
4C, 2J, 4J, 6J, 4R, 5R  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
V
DD  
Supply  
Supply  
Supply  
V
DDQ  
Output Power Supply: Provides operating power for output buffers.  
Ground.  
3D, 5D, 3E, 5E, 3F, 5F, 3H, 5H, 3K, 5K,  
3M, 5M, 3N, 5N, 3P, 5P, 3R  
V
SS  
4A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 1C, 7C,  
1R, 7R, 1T, 2T, 6T, 6U  
NC  
No Connection: There is no connection to the chip.  
4G, 4H  
NF  
No Function: There is an internal connection to the chip, but the pin  
has no function on this device.  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
3
MCM69R618 PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
CK  
Type  
Input  
Input  
I/O  
Description  
4K  
4L  
Address, data in and control input register clock. Active high.  
Address, data in and control input register clock. Active low.  
Synchronous Data I/O.  
CK  
(a) 6D, 7E, 6F, 7G, 6H, 7K, 6L, 6N, 7P  
(b) 1D, 2E, 2G, 1H, 2K, 1L, 2M, 1N, 2P  
DQx  
4F  
G
Input  
Input  
Output Enable: Asynchronous pin, active low.  
2A, 3A, 5A, 6A, 2C, 3C, 5C, 6C, 4N, 4P,  
2R, 6R, 2T, 3T, 5T, 6T  
SA  
Synchronous Address Inputs: Registered on the rising clock edge.  
5L, 3G  
(a), (b)  
SBx  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
SS  
Input  
Input  
Synchronous Chip Enable: Registered on the rising clock edge,  
active low.  
4M  
SW  
Synchronous Write: Registered on the rising clock edge, active low.  
Writes all enabled bytes.  
4U  
TCK  
TDI  
Input  
Input  
Test Clock (JTAG).  
3U  
Test Data In (JTAG).  
5U  
TDO  
TMS  
Output  
Input  
Test Data Out (JTAG).  
2U  
Test Mode Select (JTAG).  
3J, 5J  
V
Supply  
Input  
Input Reference: Provides reference voltage for input buffers.  
Programmable Output Impedance: Programming pin.  
Reserved for future use. Must be grounded.  
Core Power Supply.  
ref  
4D  
7T  
ZQ  
ZZ  
Input  
4C, 2J, 4J, 6J, 4R, 5R  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
V
DD  
Supply  
Supply  
Supply  
V
DDQ  
Output Power Supply: Provides operating power for output buffers.  
Ground.  
3D, 5D, 3E, 5E, 3F, 5F, 5G, 3H, 5H, 3K,  
5K, 3L, 3M, 5M, 3N, 5N, 3P, 5P, 3R  
V
SS  
4A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 1C, 7C,  
2D, 7D, 1E, 6E, 2F, 1G, 6G, 2H, 7H, 1K,  
6K, 2L, 7L, 6M, 2N, 7N, 1P, 6P, 1R,  
7R, 1T, 4T, 6U  
NC  
No Connection: There is no connection to the chip.  
4G, 4H  
NF  
No Function: There is an internal connection to the chip, but the pin  
has no function on this device.  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
4
ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V , See Note)  
SS  
This device contains circuitry to protect the  
inputs against damage due to high static volt-  
ages or electric fields; however, it is advised  
that normal precautions be taken to avoid  
application of any voltage higher than maxi-  
mum rated voltages to this high–impedance  
circuit.  
This CMOS memory circuit has been  
designed to meet the dc and ac specifications  
shown in the tables, after thermal equilibrium  
has been established.  
Rating  
Core Supply Voltage  
Symbol  
Value  
Unit  
V
V
DD  
–0.5 to 4.6  
Output Supply Voltage  
Voltage On Any Pin  
V
DDQ  
–0.5 to V  
+ 0.5  
V
DD  
V
in  
–0.5 to V  
+ 0.5  
V
DD  
Input Current (per I/O)  
Output Current (per I/O)  
Operating Temperature  
Temperature Under Bias  
Storage Temperature  
I
in  
±50  
mA  
mA  
°C  
°C  
°C  
I
±70  
out  
T
A
0 to 70  
This device contains circuitry that will ensure  
the output devices are in High–Z at power up.  
T
bias  
–10 to 85  
T
stg  
–55 to 125  
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are  
exceeded. Functional operation should be restricted to RECOMMENDED OPER-  
ATING CONDITIONS. Exposure to higher than recommended voltages for  
extended periods of time could affect device reliability.  
PBGA PACKAGE THERMAL CHARACTERISTICS  
Rating  
Symbol  
Max  
59  
44  
28  
18  
9
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
1, 2  
Junction to Ambient (Still Air)  
R
θJA  
R
θJA  
R
θJA  
R
θJB  
R
θJC  
Junction to Ambient (@200 ft/min)  
Junction to Ambient (@200 ft/min)  
Junction to Board (Bottom)  
Junction to Case (Top)  
Single Layer Board  
Four Layer Board  
1, 2  
3
4
NOTES:  
1. Junction temperature is a function of on–chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per SEMI G38–87.  
3. Indicates the average thermal resistance between the die and the printed circuit board.  
4. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC–883  
Method 1012.1).  
CLOCK TRUTH TABLE  
K
SS  
L
SW  
H
L
SBa  
X
SBb  
X
SBc  
X
SBd  
X
DQ (n)  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
DQ (n+1)  
Mode  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
D
0–35  
0–8  
Read Cycle All Bytes  
Write Cycle 1st Byte  
Write Cycle 2nd Byte  
Write Cycle 3rd Byte  
Write Cycle 4th Byte  
Write Cycle All Bytes  
Abort Write Cycle  
Deselect Cycle  
out  
L
L
H
H
H
D
in  
L
L
H
L
H
H
D
9–17  
in  
L
L
H
H
L
H
D
1826  
2735  
0–35  
in  
in  
L
L
H
H
H
L
D
L
L
L
L
L
L
D
in  
L
L
H
H
H
H
High–Z  
High–Z  
High–Z  
H
H
H
L
X
X
X
X
X
X
X
X
Deselect Cycle  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
5
DC OPERATING CONDITIONS AND CHARACTERISTICS  
(V  
= 3.3 V +10%, –5%, 0°C T 70°C, Unless Otherwise Noted)  
DD  
A
RECOMMENDED OPERATING CONDITIONS (See Notes 1 through 4)  
Parameter Symbol  
Core Power Supply Voltage  
Min  
3.15  
1.4  
Max  
3.6  
Unit  
V
Notes  
V
DD  
Output Driver Supply Voltage  
Active Power Supply Current  
Active Standby Power Supply Current  
Input Reference DC Voltage  
V
1.6  
V
DDQ  
I
540  
380  
1.1  
mA  
mA  
V
5
6
7
DD  
I
SB  
V
ref  
(dc)  
0.6  
NOTES:  
1. AlldatasheetparametersspecifiedtofullrangeofV  
unlessotherwisenoted. AllvoltagesarereferencedtovoltageappliedtoV  
bumps.  
SS  
DD  
2. Supply voltage applied to V  
3. Supply voltage applied to V  
connections.  
DD  
connections.  
DDQ  
4. All power supply currents measured with outputs open or deselected.  
5. V  
6. V  
= V  
= V  
(max), t  
(max), t  
= t  
(min), SS registered active, 50% read cycles.  
(min), SS registered inactive.  
DD  
DD  
DD  
DD  
KHKH KHKH  
= t  
KHKH KHKH  
7. Although considerable latitude in the selection of the nominal dc value (i.e., rms value) of V is supported, the peak–to–peak ac component  
superimposed on V may not exceed 5% of the dc component of V  
ref  
ref  
.
ref  
DC INPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
+ 0.1  
Max  
+ 0.3  
DD  
Unit  
V
Notes  
DC Input Logic High  
V
(dc)  
(dc)  
V
ref  
V
IH  
DC Input Logic Low (See Figure 2)  
Input Leakage Current  
V
–0.3  
V
ref  
– 0.1  
V
1
2
IL  
I
±5  
µA  
V
lkg  
Clock Input Signal Voltage  
V
in  
–0.3  
0.2  
V
V
+ 0.3  
+ 0.6  
DD  
Clock Input Differential Voltage  
V
DIF  
V
CM  
(dc)  
(dc)  
V
3
4
DD  
Clock Input Common Mode Voltage Range (See Figure 3)  
Clock Input Crossing Point Voltage Range (See Figure 3)  
0.68  
0.68  
1.1  
1.1  
V
V
X
V
NOTES:  
1. Inputs may undershoot to –1.5 V (peak) for up to 35% t  
(e.g., 1.5 ns at a clock cycle time of 4.4 ns).  
KHKH  
2. 0 V V for all pins.  
V
in DD  
3. Minimum differential input voltage required for differential input clock operation.  
4. Maximum rejectable common mode input voltage variation.  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
6
DC OUTPUT BUFFER CHARACTERISTICS – PROGRAMMABLE IMPEDANCE PUSH–PULL OUTPUT BUFFER MODE  
(V  
DD  
= 3.3 V, V  
= 1.5 V, T = 70°C, See Notes 1 and 2)  
DDQ  
A
Parameter  
Symbol  
Min  
/2) /  
Max  
/2) /  
Unit  
Notes  
Output Logic Low  
Output Logic High  
I
(V  
DDQ  
(V  
DDQ  
V
3
OL  
[(RQ/5) + 30%]  
[(RQ/5) – 15%]  
I
(V /2) /  
DDQ  
[(RQ/5) + 30%]  
(V /2) /  
[(RQ/5) – 15%]  
V
4
OH  
DDQ  
Light Load Output Logic Low  
Light Load Output Logic High  
NOTES:  
V
1
V
0.2  
V
V
5
6
OL  
SS  
V
OH  
1
V
– 0.2  
V
DDQ  
DDQ  
1. The impedance controlled mode is expected to be used in point–to–point applications, driving high–impedance inputs.  
2. The ZQ pin is connected through RQ to V for the controlled impedance mode.  
SS  
3. V  
4. V  
5. I  
OL  
6. | I  
= V  
/2.  
/2.  
DDQ  
OL  
OH  
DDQ  
= V  
100 µA.  
| 100 µA.  
OH  
DC OUTPUT BUFFER CHARACTERISTICS – MINIMUM IMPEDANCE PUSH–PULL OUTPUT BUFFER MODE  
(V  
DD  
= 3.3 V +10%, –5%, 0_C T 70_C, ZQ = V , See Notes 1 and 2)  
A
DD  
Parameter  
Symbol  
Min  
Max  
Unit  
V
Notes  
Output Logic Low  
Output Logic High  
V
2
V
SS  
0.4  
3
4
5
6
OL  
V
OH  
2
V
V
– 0.4  
V
DDQ  
V
DDQ  
Light Load Output Logic Low  
Light Load Output Logic High  
V
OL  
3
V
SS  
0.2  
V
V
OH  
3
– 0.2  
V
DDQ  
V
DDQ  
NOTES:  
1. The push–pull output mode is expected to be used in bussed applications and may be series or parallel terminated. Conforms to the JEDEC  
Standard JESD8–6 Class I.  
2. The ZQ pin is connected to V  
to enable the minimum impedance mode.  
DD  
3. I  
OL  
8 mA.  
| 8 mA.  
4. | I  
OH  
100 µA.  
5. I  
OL  
6. | I  
|100 µA.  
OH  
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, V  
Characteristic  
= 3.3 V +10%, –5%, 0_C T 70_C, Periodically Sampled Rather Than 100% Tested)  
DD  
A
Symbol  
Typ  
Max  
Unit  
Input Capacitance  
C
4
5
8
5
pF  
in  
Input/Output Capacitance  
CK, CK Capacitance  
C
7
pF  
I/O  
CK  
C
4
pF  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
7
AC OPERATING CONDITIONS AND CHARACTERISTICS  
(V  
= 3.3 V +10%, –5%, 0°C T 70°C, Unless Otherwise Noted)  
DD  
A
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25 to 1.25 V  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . 0.75 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . 0.75 V  
Clock Input Timing Reference Level . . . . . . Differential Cross–Point  
ZQ for 50 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Ω  
READ/WRITE CYCLE TIMING (See Note 1)  
69R536–4.4  
69R618–4.4  
69R536–5  
69R618–5  
69R536–6  
69R618–6  
69R536–7  
69R618–7  
Parameter  
Cycle Time  
Symbol  
Min  
4.4  
2
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
ns  
Notes  
t
5
2
2
1
6
7
KHKH  
Clock High Pulse Width  
Clock Low Pulse Width  
t
2.4  
2.4  
1
2.8  
2.8  
1
ns  
KHKL  
KLKH  
t
2
ns  
Clock High to Output  
Low–Z  
t
1
ns  
2, 3  
KHQX1  
Clock High to Output Valid  
Clock High to Output Hold  
t
t
1
2.2  
1
2.5  
1
3
3
1
3.5  
ns  
ns  
ns  
KHQV  
2
KHQX  
Clock High to Output  
High–Z  
t
t
t
2.2  
2.5  
3.5  
2, 3  
KHQZ  
GLQX  
GLQV  
Output Enable Low to  
Output Low–Z  
0.5  
2.2  
0.5  
2.5  
0.5  
3
0.5  
3.5  
ns  
ns  
ns  
ns  
ns  
Output Enable Low to  
Output Valid  
Output Enable to Output  
Hold  
t
0.5  
0.5  
0.5  
3
0.5  
GHQX  
Output Enable High to  
Output High–Z  
t
2.2  
2.5  
3.5  
2, 3  
GHQZ  
Setup Times:  
Hold Times:  
NOTES:  
Address  
Data In  
Chip Select  
Write Enable  
t
t
0.5  
0.5  
0.5  
0.5  
AVKH  
DVKH  
t
SVKH  
t
WVKH  
Address  
Data In  
Chip Select  
Write Enable  
t
t
1
1
1
1
ns  
KHAX  
KHDX  
t
KHSX  
t
KHWX  
1. In no case may control input signals (e.g., SS) be operated with pulse widths less than the minimum clock input pulse width specifications  
(e.g., t ) or at frequencies that exceed the applied K clock frequency.  
KHKL  
2. This parameter is sampled and not 100% tested.  
3. Measured at ±200 mV from steady state.  
AC INPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
Max  
Note  
AC Input Logic High (See Figure 4)  
AC Input Logic Low (See Figure 2 and 4)  
Input Reference Peak–to–Peak AC Voltage  
Clock Input Differential Voltage  
V
(ac)  
(ac)  
(ac)  
(ac)  
V
ref  
+ 200 mV  
IH  
V
V
– 200 mV  
1
2
3
IL  
ref  
V
ref  
5% V (dc)  
ref  
V
dif  
400 mV  
V
DDQ  
+ 600 mV  
NOTES:  
1. Inputs may undershoot to –1.5 V (peak) for up to 35% t  
2. Although considerable latitude in the selection of the nominal dc value (i.e., rms value) of V is supported, the peak–to–peak ac compo-  
(e.g., 1.5 ns at a clock cycle time of 4.4 ns).  
KHKH  
ref  
nent superimposed on V may not exceed 5% of the dc component of V  
.
ref  
ref  
3. Minimum differential input voltage required for differential input clock operation.  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
8
TIMING LIMITS  
The table of timing values shows either a mini-  
mum or a maximum limit for each parameter. Input  
requirementsare specified from the external system  
point of view. Thus, address setup time is shown as  
a minimum since the system must supply at least  
that much time. On the other hand, responses from  
the memory are specified from the device point of  
view. Thus, the access time is shown as a maximum  
since the device never provides data later than that  
time.  
0.75 V  
V
/2  
DDQ  
V
ref  
50  
DEVICE  
UNDER  
TEST  
50  
250  
ZQ  
Figure 1. AC Test Load  
V
IH  
V
SS  
–1.0 V  
–1.5 V  
35% t  
KHKH  
Figure 2. Undershoot Voltage  
V
DDQ  
V
TR  
CROSSING POINT  
V
DIF  
V
*
V
CM  
CP  
V
SS  
* V , the Common Mode Input Voltage, equalsV  
CM  
– [(V  
TR  
– V )/2].  
CP  
TR  
Figure 3. Differential Inputs/Common Mode Input Voltage  
V
DDQ  
(ac)  
V
IH  
V
ref  
V
(ac)  
IL  
V
SS  
Figure 4. AC Input Conditions  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
9
REGISTER/REGISTER READ–WRITE–READ CYCLES  
t
t
KHKL  
KHKH  
CK  
SA  
t
t
AVKH  
KLKH  
t
KHAX  
A0  
A1  
A2  
A3  
A4  
t
SVKH  
t
KHSX  
SS  
t
WVKH  
t
KHWX  
SW  
SBx  
G
V
t
t
KHQX1  
t
IL  
KHQV  
KHQZ  
t
t
KHQX  
t
KHDX  
DVKH  
t
KHQX  
Q1  
DQx  
Q–1  
Q0  
D2  
Q3  
REGISTER/REGISTER READ–WRITE–READ  
(G Controlled)  
t
t
KHKL  
KHKH  
CK  
SA  
t
t
AVKH  
KLKH  
t
KHAX  
A0  
A1  
A2  
A3  
A4  
SS  
V
IL  
SW  
SBx  
G
t
t
GLQV  
GLQX  
t
t
GHQX  
GHQZ  
DQx  
Q–1  
Q0  
Q1  
D2  
Q3  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
10  
ther a read or a write. No write will occur, but the outputs will  
be deselected as in a normal write cycle.  
FUNCTIONAL OPERATION  
READ AND WRITE OPERATIONS  
LATE WRITE  
All control signals except G are registered on the rising  
edge of the CK clock. These signals must meet the setup  
and hold times shown in the AC Characteristics table. On the  
rising edge of the following clock, read data is clocked into  
The write address is sampled on the first rising edge of  
clock, and write data is sampled on the following rising edge.  
The late write feature is implemented with single stage  
write buffering. Write buffering is transparent to the user. A  
comparator monitors the address bus and, when necessary,  
routes buffer contents to the outputs to assure coherent  
operation. This occurs in all cases, whether there is a byte  
write or a full word is written.  
the output register and available at the outputs at t  
. Dur-  
KHQV  
ing this same cycle a new read address can be applied to the  
address pins.  
A deselect cycle (dead cycle) must occur prior to a write  
cycle. Read cycles may follow write cycles immediately.  
G, SS, and SW control output drive. Chip deselect via a  
high on SS at the rising edge of the CK clock has its effect on  
the output drivers after the next rising edge of the CK clock.  
SW low deselects the output drivers immediately (as regis-  
tered by CK). Output drive is also controlled directly by out-  
put enable, G. No clock edges are required to generate  
output disable with G. G asynchronously enables the output  
drivers.  
PROGRAMMABLE IMPEDANCE OPERATION  
The designer can program the RAMs output buffer imped-  
ance by terminating the ZQ pin to V  
through a precision  
SS  
resistor (RQ). The value of RQ is five times the output imped-  
ance desired. For example, 250 resistor will give an output  
impedance of 50 .  
Impedance updates occur continuously and the frequency  
of the update is based on the subdivided CK clock. Note that  
if the CK clock stops, so does the impedance update.  
The actual change in the impedance occurs in small incre-  
ments and is monotonic. There are no significant distur-  
bances that occur on the output because of this smooth  
update method.  
Output data will be valid the latter of t  
and t  
.
GLQV  
. Outputs will hold pre-  
KHQV  
Outputs will begin driving at t  
KHQX1  
vious data until t  
or t  
.
KHQX  
GHQX  
WRITE AND BYTE WRITE FUNCTIONS  
The impedance update is not related to any particular type  
of cycle because the impedance is updated continuously and  
is based on the CK clock. Updates occur regardless of  
whether the the device is performing a read, write, or a de-  
select cycle and does not depend on the state of G.  
At power up, the output impedance defaults to approx-  
imately 50 . It will take 4,000 to 16,000 cycles for the im-  
pedance to be completely updated if the programmed  
impedance is much higher or lower than 50 .  
Note that in the following discussion the term “byte” refers  
to nine bits of the RAM I/O bus. In all cases, the timing  
parameters described for synchronous write input (SW)  
apply to each of the byte write enable inputs (SBa, SBb,  
etc.).  
Byte write enable inputs have no effect on read cycles.  
This allows the system designer not interested in performing  
byte writes to connect the byte enable inputs to active low  
(V ). Reads of all bytes proceed normally and write cycles,  
SS  
The output buffers can also be programmed in a minimum  
activated via a low on SW, and the rising edge of the CK  
clock, write the entire RAM I/O width. This way the designer  
is spared having to drive multiple write input buffer loads.  
Byte writes are performed using the byte write enable in-  
puts in conjunction with the SW. It is important to note that  
writing any one byte will inhibit a read of all bytes at the cur-  
rent address. The RAM can not simultaneously read one  
byte and write another at the same address. A write cycle ini-  
tiated with none of the byte write enable inputs active is nei-  
impedance configuration by connecting ZQ to V  
.
DD  
POWER UP AND INITIALIZATION  
Once supplies have reached specification levels, a mini-  
mum dwell of 1.0 ms with CK clock inputs cycling is required  
before beginning normal operations. At power up the output  
impedance will be set at approximately 50 as stated  
above.  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
11  
SERIAL BOUNDARY SCAN TEST ACCESS PORT OPERATION  
OVERVIEW  
Standard 1149.1 compliant TAPs. The TAP operates using  
conventional JEDEC Standard 8–1B Low Voltage (3.3 V)  
TTL/CMOS logic level signaling.  
The serial boundary scan test access port (TAP) on this  
RAM is designed to operate in a manner consistent with  
IEEE Standard 1149.1–1990 (commonly referred to as  
JTAG), but does not implement all of the functions required  
for IEEE1149.1 compliance. Certain functions have been  
modified or eliminated because their implementation places  
extra delays in the RAMs critical speed path. Nevertheless,  
the RAM supports the standard TAP controller architecture.  
The TAP controller is the state machine that controls the  
TAPs operation and can be expected to function in a manner  
that does not conflict with the operation of devices with IEEE  
DISABLING THE TEST ACCESS PORT  
It is possible to use this device without utilizing the TAP. To  
disable the TAP controller without interfering with normal  
operation of the device, TCK must be tied to V  
to preclude  
SS  
mid–level inputs. TDI and TMS are designed so an undriven  
input will produce a response identical to the application of a  
logic 1, and may be left unconnected. But they may also be  
tied to V  
DD  
unconnected.  
through a 1 k resistor. TDO should be left  
TAP DC OPERATING CHARACTERISTICS  
(V  
= 3.3 V +10%, –5%, 0°C T 70°C, Unless Otherwise Noted)  
DD  
A
Parameter  
Symbol  
Min  
2.0  
–0.3  
Max  
V + 0.3  
DD  
Unit  
V
Note  
Logic Input Logic High  
Logic Input Logic Low  
Logic Input Leakage Current  
Output Logic Low  
V
1
1
IH  
V
0.8  
±5  
V
IL  
I
µA  
V
1
2
3
4
5
lkg  
V 1  
OL  
0.2  
Output Logic High  
V
1
2
V
– 0.2  
V
OH  
DD  
Output Logic Low  
V
0.4  
V
OL  
Output Logic High  
V
OH  
2
2.4  
V
NOTES:  
1. 0 V V V  
for all logic input pins.  
= 0.2 V. Sampled, not 100% tested.  
1| 100 µA @ V – 0.2 V. Sampled, not 100% tested.  
in  
DD  
2. I 1 100 µA @ V  
OL OL  
3. |I  
OH  
DDQ  
= 0.4 V.  
4. I 2 8 mA @ V  
OL  
5. |I  
OL  
2| 8 mA @ V  
= 2.4 V.  
OH  
OH  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
12  
TAP AC OPERATING CONDITIONS AND CHARACTERISTICS  
(V  
= 3.3 V +10%, –5%, 0°C T 70°C, Unless Otherwise Noted)  
DD  
A
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 3.0 V  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . . 1.5 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 V  
Output Test Load . . . . . 50 Parallel Terminated T–Line with 20 pF  
Receiver Input Capacitance  
Test Load Termination Supply Voltage (V ) . . . . . . . . . . . . . . . 1.5 V  
T
TAP CONTROLLER TIMING  
Parameter  
Cycle Time  
Symbol  
Min  
100  
40  
40  
10  
10  
10  
10  
10  
10  
0
Max  
20  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
t
THTH  
Clock High Time  
t
THTL  
Clock Low Time  
t
TLTH  
TMS Setup  
t
t
MVTH  
THMX  
TMS Hold  
TDI Valid to TCK High  
TCK High to TDI Don’t Care  
Capture Setup  
t
DVTH  
THDX  
t
t
1
1
CS  
Capture Hold  
t
CH  
TCK Low to TDO Unknown  
TCK Low to TDO Valid  
NOTE:  
t
t
TLQX  
TLOV  
1. t + t  
CS CH  
defines the minimum pause in RAM I/O pad transitions to assure accurate pad data capture.  
AC TEST LOAD  
1.5 V  
50  
DEVICE  
UNDER  
TEST  
50  
20 pF  
TAP CONTROLLER TIMING DIAGRAM  
t
THTH  
t
TLTH  
TEST CLOCK  
(TCK)  
t
THTL  
t
THMX  
t
MVTH  
TEST MODE SELECT  
(TMS)  
t
THDX  
t
DVTH  
TEST DATA IN  
(TDI)  
t
t
TLQV  
TLQX  
TEST DATA OUT  
(TDO)  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
13  
BOUNDARY SCAN REGISTER  
TEST ACCESS PORT PINS  
The boundary scan register is identical in length to the  
number of active input and I/O connections on the RAM (not  
counting the TAP pins). This also includes a number of place  
holder locations (always set to a logic 1) reserved for density  
upgrade address pins. There are a total of 70 bits in the case  
of the x36 device and 51 bits in the case of the x18 device.  
The boundary scan register, under the control of the TAP  
controller, is loaded with the contents of the RAMs I/O ring  
when the controller is in capture–DR state and then is placed  
between the TDI and TDO pins when the controller is moved  
to shift–DR state. Several TAP instructions can be used to  
activate the boundary scan register.  
TCK — TEST CLOCK (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
TMS — TEST MODE SELECT (INPUT)  
The TMS input is sampled on the rising edge of TCK. This  
is the command input for the TAP controller state machine.  
An undriven TMS input will produce the same result as a  
logic 1 input level.  
TDI — TEST DATA IN (INPUT)  
The Bump/Bit Scan Order tables describe which device  
bump connects to each boundary scan register location. The  
first column defines the bit’s position in the boundary scan  
register. The shift register bit nearest TDO (i.e., first to be  
shifted out) is defined as bit 1. The second column is the  
name of the input or I/O at the bump and the third column is  
the bump number.  
The TDI input is sampled on the rising edge of TCK. This is  
the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is deter-  
mined by the state of the TAP controller state machine and  
the instruction that is currently loaded in the TAP instruction  
register (refer to Figure 6). An undriven TDI pin will produce  
the same result as a logic 1 input level.  
IDENTIFICATION (ID) REGISTER  
The ID register is a 32–bit register that is loaded with a  
device and vendor specific 32–bit code when the controller is  
put in capture–DR state with the IDCODE command loaded  
in the instruction register. The code is loaded from a 32–bit  
on–chip ROM. It describes various attributes of the RAM as  
indicated below. The register is then placed between the TDI  
and TDO pins when the controller is moved into shift–DR  
state. Bit 0 in the register is the LSB and the first to reach  
TDO when shifting begins.  
TDO — TEST DATA OUT (OUTPUT)  
Output that is active depending on the state of the TAP  
state machine (refer to Figure 6). Output changes in re-  
sponse to the falling edge of TCK. This is the output side of  
the serial registers placed between TDI and TDO.  
TRST — TAP RESET  
This device does not have a TRST pin. TRST is optional in  
IEEE 1149.1. The test–logic–reset state is entered while  
TMS is held high for five rising edges of TCK. Power–on re-  
set circuitry is included internally. This type of reset does not  
affect the operation of the system logic. The reset affects test  
logic only.  
ID Register Presence Indicator  
Bit No.  
Value  
0
1
Motorola JEDEC ID Code (Compressed Format, per  
IEEE Standard 1149.1 – 1990  
TEST ACCESS PORT REGISTERS  
OVERVIEW  
Bit No. 11  
Value  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
1
0
The various TAP registers are selected (one at a time) via  
the sequences of 1s and 0s input to the TMS pin as the TCK  
is strobed. Each of the TAPs registers are serial shift regis-  
ters that capture serial input data on the rising edge of TCK  
and push serial data out on subsequent falling edge of TCK.  
When a register is selected, it is “placed” between the TDI  
and TDO pins.  
Reserved For Future Use  
Bit No.  
Value  
17  
16  
15  
14  
13  
12  
x
x
x
x
x
x
Device Width  
Configuration  
32K x 36  
Bit #  
Value  
Value  
22  
0
21  
20  
1
19  
0
18  
0
INSTRUCTION REGISTER  
0
0
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are 3 bits long. The register can be loaded when it is placed  
between the TDI and TDO pins. The instruction register is  
automatically preloaded with the IDCODE instruction at  
power up or whenever the controller is placed in  
test–logic–reset state.  
64K x 18  
0
0
1
1
Device Depth  
Configuration  
32K x 36  
Bit #  
Value  
Value  
27  
0
26  
0
25  
0
24  
1
23  
1
64K x 18  
0
0
1
0
0
Revision Number  
BYPASS REGISTER  
Bit No.  
Value  
31  
30  
29  
28  
The bypass register is a single bit register that can be  
placed between TDI and TDO. It allows serial test data to be  
passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible.  
x
x
x
x
Figure 5. ID Register Bit Meanings  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
14  
MCM69R536 Bump/Bit Scan Order  
MCM69R618 Bump/Bit Scan Order  
BIT  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
1
M2  
SA  
5R  
4P  
4T  
6R  
5T  
7T  
6P  
7P  
6N  
7N  
6M  
6L  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
NC  
NC  
3B  
2B  
3A  
3C  
2C  
2A  
2D  
1D  
2E  
1E  
2F  
2G  
1G  
2H  
1H  
3G  
4D  
4E  
4G  
4H  
4M  
3L  
1
2
3
4
M2  
SA  
SA  
SA  
5R  
6T  
4P  
6R  
36  
37  
38  
39  
SBb  
ZQ  
SS  
3G  
4D  
4E  
4G  
2
3
SA  
SA  
NF  
4
SA  
SA  
5
SA  
ZZ  
5T  
7T  
7P  
6N  
6L  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
NF  
SW  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
4H  
4M  
2K  
1L  
5
SA  
SA  
6
6
ZZ  
SA  
7
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
7
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
SBc  
ZQ  
8
8
9
2M  
1N  
2P  
3T  
2R  
4N  
2T  
3R  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
7K  
5L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
4L  
CK  
4K  
4F  
6H  
7G  
6F  
7E  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
3B  
2B  
3A  
3C  
2C  
2A  
1D  
2E  
2G  
1H  
SA  
G
SA  
7L  
DQa  
DQa  
DQa  
DQa  
DQa  
SA  
SA  
6K  
7K  
5L  
M1  
4L  
CK  
4K  
4F  
5G  
7H  
6H  
7G  
6G  
6F  
7E  
6E  
7D  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
SS  
G
NF  
SA  
SBb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
NF  
SA  
SW  
SBd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
SA  
SA  
NC  
NC  
1K  
2K  
1L  
NC  
NC  
SA  
2L  
SA  
2M  
1N  
2N  
1P  
2P  
3T  
2R  
4N  
3R  
SA  
SA  
DQb  
DQb  
DQb  
DQb  
SA  
SA  
SA  
SA  
NC  
SA  
35  
NC  
M1  
NOTES:  
1. TheNC pads listed in this table are indeed no connects, but are represented in the boundary scan register by a “place holder” bit that is forced  
to logic 1. These pads are reserved for use as address inputs on higher density RAMs that follow this pad out and scan order standard.  
2. In scan mode, differential inputs CK and CK are referenced to each other and must be at opposite logic levels for reliable operation.  
3. ZQ, M1, and M2 are not ordinary inputs and may not respond to standard I/O logic levels. ZQ, M1, and M2 must be driven to within 100 mV  
of a V  
or V  
supply rail to ensure consistent results.  
SS  
DD  
4. ZZ must remain at V during boundary scan to ensure consistent results.  
IL  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
15  
repeatable results can not be expected. RAM input signals  
must be stabilized for long enough to meet the TAPs input  
TAP CONTROLLER INSTRUCTION SET  
OVERVIEW  
data capture setup plus hold time (t  
plus t ). The RAMs  
CS  
CH  
clock inputs need not be paused for any other TAP operation  
except capturing the I/O ring contents into the boundary scan  
register.  
There are two classes of instructions defined in the IEEE  
Standard 1149.1–1990; the standard (public) instructions,  
and device specific (private) instructions. Some public  
instructions, are mandatory for IEEE 1149.1 compliance. Op-  
tional public instructions must be implemented in prescribed  
ways.  
Although the TAP controller in this device follows the IEEE  
1149.1 conventions, it is not 1149.1 compliant because some  
of the mandatory instructions are not fully implemented. The  
TAP on this device may be used to monitor all input and I/O  
pads, but can not be used to load address, data or control  
signals into the RAM or to preload the I/O buffers. In other  
words, the device will not perform Standard 1149.1 EXTEST,  
INTEST or the preload portion of the SAMPLE/PRELOAD  
command.  
When the TAP controller is placed in capture–IR state the  
two least significant bits of the instruction register are loaded  
with 01. When the controller is moved to the shift–IR state,  
the instruction register is placed between TDI and TDO. In  
this state, the desired instruction is serially loaded through  
the TDI input (while the previous contents are shifted out at  
TDO). For all instructions, the TAP executes newly loaded  
instructions only when the controller is moved to update–IR  
state. The TAP instruction sets for this device are listed in the  
following tables.  
Moving the controller to shift–DR state then places the  
boundary scan register between the TDI and TDO pins.  
Because the PRELOAD portion of the command is not  
implemented in this device, moving the controller to the  
update–DR state with the SAMPLE/PRELOAD instruction  
loaded in the instruction register has the same effect as the  
pause–DR command. This functionality is not IEEE Standard  
1149.1 compliant.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It  
is to be executed whenever the instruction register, whatever  
length it may be in the device, is loaded with all logic 0s.  
EXTEST is not implemented in this device. Therefore this  
device is not IEEE 1149.1 compliant. Nevertheless, this  
RAMs TAP does respond to an all 0s instruction, as follows.  
With the EXTEST (000) instruction loaded in the instruction  
register the RAM responds just as it does in response to the  
SAMPLE/PRELOAD instruction described above, except the  
DQ pins are forced to High–Z any time the instruction is  
loaded.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded  
into the ID register when the controller is in capture–DR  
mode and places the ID register between the TDI and TDO  
pins in shift–DR mode. The IDCODE instruction is the default  
instruction loaded in at power up and any time the controller  
is placed in the test–logic–reset state.  
STANDARD (PUBLIC) INSTRUCTIONS  
BYPASS  
The BYPASS instruction is loaded in the instruction regis-  
ter when the bypass register is placed between TDI and  
TDO. This occurs when the TAP controller is moved to the  
shift–DR state. This allows the board level scan path to be  
shortened to facilitate testing of other devices in the scan  
path.  
THE DEVICE SPECIFIC (PUBLIC) INSTRUCTION  
SAMPLE–Z  
SAMPLE/PRELOAD  
If the SAMPLE–Z instruction is loaded in the instruction  
register, all DQ pins are forced to an inactive drive state  
(High–Z) and the boundary scan register is connected be-  
tween TDI and TDO when the TAP controller is moved to the  
shift–DR state.  
SAMPLE/PRELOAD is a Standard IEEE 1149.1  
mandatory public instruction. When the SAMPLE/PRELOAD  
instruction is loaded in the instruction register, moving the  
TAP controller into the capture–DR state loads the data in the  
RAMs input and I/O buffers into the boundary scan register.  
Because the RAM clock(s) are independent from the TAP  
clock (TCK) it is possible for the TAP to attempt to capture  
the I/O ring contents while the input buffers are in transition  
(i.e., in a metastable state). Although allowing the TAP to  
sample metastable inputs will not harm the device,  
THE DEVICE SPECIFIC (PRIVATE) INSTRUCTION  
NO OP  
Do not use these instructions; they are reserved for future  
use.  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
16  
STANDARD (PUBLIC) INSTRUCTION CODES  
Instruction  
EXTEST  
Code*  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
DQ pins to High–Z state. NOT IEEE 1149.1 COMPLIANT.  
IDCODE  
001**  
100  
Preloads ID register and places it between TDI and TDO. Does not affect RAM operation.  
SAMPLE / PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not  
affect RAM operation. Does not implement IEEE 1149.1 PRELOAD function. NOT IEEE 1149.1  
COMPLIANT.  
BYPASS  
111  
010  
Places bypass register between TDI and TDO. Does not affect RAM operation.  
SAMPLE–Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
DQ pins to High–Z.  
*Instruction codes expressed in binary, MSB on left, LSB on right.  
**Default instruction automatically loaded at power up and in test–logic–reset state.  
STANDARD (PRIVATE) INSTRUCTION CODES  
Instruction  
NO OP  
Code*  
011  
Description  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
NO OP  
NO OP  
101  
110  
*Instruction codes expressed in binary, MSB on left, LSB on right.  
TEST–LOGIC  
RESET  
1
0
1
RUN–TEST/  
IDLE  
SELECT  
DR–SCAN  
SELECT  
IR–SCAN  
1
1
0
0
0
1
1
CAPTURE–DR  
CAPTURE–IR  
0
0
SHIFT–DR  
1
SHIFT–IR  
1
0
0
1
1
EXIT1–DR  
0
EXIT1–IR  
0
PAUSE–DR  
1
PAUSE–IR  
1
0
0
0
0
EXIT2–DR  
1
EXIT2–IR  
1
UPDATE–DR  
UPDATE–IR  
1
0
1
0
NOTE: The value adjacent to each state transition represents the signal present at TMS at the rising edge of TCK.  
Figure 6. TAP Controller State Diagram  
MCM69R536MCM69R618  
17  
MOTOROLA FAST SRAM  
ORDERING INFORMATION  
(Order by Full Part Number)  
69R536  
69R618  
MCM  
XX  
X
X
Motorola Memory Prefix  
Part Number  
R = Tape and Reel, Blank = Tray  
Speed (4.4 = 4.4 ns, 5 = 5 ns, 6 = 6 ns,  
7 = 7 ns)  
Package (ZP = PBGA)  
Full Part Numbers — MCM69R536ZP4.4  
MCM69R618ZP4.4  
MCM69R536ZP5  
MCM69R618ZP5  
MCM69R536ZP6  
MCM69R618ZP6  
MCM69R536ZP7  
MCM69R618ZP7  
MCM69R536ZP4.4R MCM69R536ZP5R MCM69R536ZP6R MCM69R536ZP7R  
MCM69R618ZP4.4R MCM69R618ZP5R MCM69R618ZP6R MCM69R618ZP7R  
PACKAGE DIMENSIONS  
ZP PACKAGE  
7 X 17 BUMP PBGA  
CASE 999–02  
0.20  
4X  
119X  
b
B
M
0.3  
A
A
B C  
E
C
NOTES:  
M
0.15  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
7
6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
2. ALL DIMENSIONS IN MILLIMETERS.  
3. DIMENSION b IS THE MAXIMUM SOLDER BALL  
DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE, IS DEFINED BY  
THE SPHERICAL CROWNS OF THE SOLDER  
BALLS.  
D
D1  
D2  
MILLIMETERS  
K
L
DIM  
A
A1  
A2  
A3  
D
D1  
D2  
E
E1  
E2  
b
MIN  
–––  
0.50  
1.30  
0.80  
MAX  
2.40  
0.70  
1.70  
1.00  
M
N
P
R
T
16X e  
U
22.00 BSC  
20.32 BSC  
19.40 19.60  
14.00 BSC  
7.62 BSC  
6X  
e
E2  
E1  
BOTTOM VIEW  
TOP VIEW  
11.90  
0.60  
1.27 BSC  
12.10  
0.90  
e
0.25  
A
A
A3  
A2  
0.35  
0.20  
A
A
SEATING  
PLANE  
SIDE VIEW  
A1  
A
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
18  
NOTES  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
19  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
– US & Canada ONLY 1-800-774-1848 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T., Hong Kong.  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center,  
Motorola Fax Back System  
– http://sps.motorola.com/mfax/  
852-26668334  
HOME PAGE: http://motorola.com/sps/  
CUSTOMER FOCUS CENTER: 1-800-521-6274  
MCM69R536/D  

相关型号:

MCM69R536ZP5

32KX36 LATE-WRITE SRAM, 2.5ns, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
NXP

MCM69R536ZP5R

Late-Write SRAM, 32KX36, 2.5ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R536ZP6R

32KX36 LATE-WRITE SRAM, 3ns, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R536ZP7R

Late-Write SRAM, 32KX36, 3.5ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP5

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP5R

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP6

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP6R

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP7

Cache SRAM, 32KX36, 3.5ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP7R

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP8

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP8R

Cache SRAM, 32KX36, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA