MPC860ED [MOTOROLA]

Family Hardware Specifications; 系列硬件规格
MPC860ED
型号: MPC860ED
厂家: MOTOROLA    MOTOROLA
描述:

Family Hardware Specifications
系列硬件规格

文件: 总76页 (文件大小:805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hardware Specification  
MPC860EC/D  
Rev. 6.1, 11/2002  
MPC860 Family  
Hardware Specications  
This document contains detailed information on power considerations, DC/AC  
electrical characteristics, and AC timing specifications for the MPC860 family.  
This document contains the following topics:  
Topic  
Page  
Part I, “Overview”  
1
Part II, “Features”  
2
Part III, “Maximum Tolerated Ratings”  
Part IV, Thermal Characteristics”  
Part V, Power Dissipation”  
6
7
8
Part VI, “DC Characteristics”  
9
Part VII, “Thermal Calculation and Measurement”  
Part VIII, “Layout Practices”  
10  
13  
13  
41  
43  
65  
66  
70  
74  
Part IX, “Bus Signal Timing”  
Part X, “IEEE 1149.1 Electrical Specifications”  
Part XI, “CPM Electrical Characteristics”  
Part XII, “UTOPIA AC Electrical Specifications”  
Part XIII, “FEC Electrical Characteristics”  
Part XIV, Mechanical Data and Ordering Information”  
Part XV, Document Revision History”  
Part I Overview  
The MPC860 Quad Integrated Communications Controller (PowerQUICC™)  
is a versatile one-chip integrated microprocessor and peripheral combination  
designed for a variety of controller applications. It particularly excels in both  
communications and networking systems. The PowerQUICC unit is referred to  
as the MPC860 in this manual.  
The MPC860 is a derivative of Motorola’s MC68360 Quad Integrated  
Communications Controller (QUICC), referred to here as the QUICC, that  
implements the PowerPC architecture. The CPU on the MPC860 is a 32-bit  
Features  
MPC8xx core that incorporates memory management units (MMUs) and instruction and  
data caches and that implements the PowePC instruction set. The communications  
processor module (CPM) from the MC68360 QUICC has been enhanced by the addition of  
the inter-integrated controller (I2C) channel. The memory controller has been enhanced,  
enabling the MPC860 to support any type of memory, including high-performance  
memories and new types of DRAMs. A PCMCIA socket controller supports up to two  
sockets. A real-time clock has also been integrated.  
Table 1 shows the functionality supported by the members of the MPC860 family.  
Table 1. MPC860 Family Functionality  
Cache (Kbytes)  
Ethernet  
1
Part  
ATM  
SCC  
Ref.  
Instruction  
Cache  
Data Cache  
10T  
10/100  
MPC860DE  
MPC860DT  
MPC860DP  
MPC860EN  
MPC860SR  
MPC860T  
4
4
4
4
8
4
4
4
8
4
Up to 2  
Up to 2  
Up to 2  
Up to 4  
Up to 4  
Up to 4  
Up to 4  
1
1
2
2
2
4
4
4
4
1
1
yes  
yes  
1,2,3  
1,2,3  
1
16  
4
1
1
4
yes  
yes  
yes  
yes  
1,2  
4
1,2,3  
1,2,3  
4
MPC860P  
MPC855T  
16  
4
1
1
1
Supporting documentation for these devices refers to the following:  
1. MPC860 PowerQUICC User’s Manual (MPC860UM/D, Rev. 1).  
2. MPC8XX ATM Supplement (MPC860SARUM/AD).  
3. MPC860T (Rev. D), Fast Ethernet Controller Supplement (MPC860TREVDSUPP).  
4. MPC855T User’s Manual (MPC855TUM/D, Rev. 1).  
Part II Features  
The following list summarizes the key MPC860 features:  
• Embedded single-issue, 32-bit MPC8xx core (implementing the PowerPC  
architecture) with thirty-two 32-bit general-purpose registers (GPRs)  
— The core performs branch prediction with conditional prefetch, without  
conditional execution  
— 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)  
– 16-Kbyte instruction caches are four-way, set-associative with 256 sets;  
4-Kbyte instruction caches are two-way, set-associative with 128 sets.  
– 8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data  
caches are two-way, set-associative with 128 sets.  
– Cache coherency for both instruction and data caches is maintained on 128-bit  
(4-word) cache blocks.  
2
MPC860 Family Hardware Specifications  
MOTOROLA  
Features  
– Caches are physically addressed, implement a least recently used (LRU)  
replacement algorithm, and are lockable on a cache block basis.  
— Instruction and data caches are two-way, set-associative, physically addressed,  
LRU replacement, and lockable on-line granularity.  
— MMUs with 32-entry TLB, fully associative instruction, and data TLBs  
— MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16  
virtual address spaces and 16 protection groups  
— Advanced on-chip-emulation debug mode  
• Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)  
• 32 address lines  
• Operates at up to 80 MHz  
• Memory controller (eight banks)  
— Contains complete dynamic RAM (DRAM) controller  
— Each bank can be a chip select or RAS to support a DRAM bank  
— Up to 15 wait states programmable per memory bank  
— Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and  
other memory devices.  
— DRAM controller programmable to support most size and speed memory  
interfaces  
— Four CAS lines, four WE lines, one OE line  
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)  
Variable block sizes (32 Kbyte to 256 Mbyte)  
— Selectable write protection  
— On-chip bus arbitration logic  
• General-purpose timers  
— Four 16-bit timers or two 32-bit timers  
— Gate mode can enable/disable counting  
— Interrupt can be masked on reference match and event capture  
• System integration unit (SIU)  
— Bus monitor  
— Software watchdog  
— Periodic interrupt timer (PIT)  
— Low-power stop mode  
— Clock synthesizer  
MOTOROLA  
MPC860 Family Hardware Specifications  
3
Features  
— Decrementer, time base, and real-time clock (RTC) from the PowerPC  
architecture  
— Reset controller  
— IEEE 1149.1 test access port (JTAG)  
• Interrupts  
— Seven external interrupt request (IRQ) lines  
— 12 port pins with interrupt capability  
— 23 internal interrupt sources  
— Programmable priority between SCCs  
— Programmable highest priority request  
• 10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u Standard (not  
available when using ATM over UTOPIA interface)  
ATM support compliant with ATM forum UNI 4.0 specification  
— Cell processing up to 50–70 Mbps at 50-MHz system clock  
— Cell multiplexing/demultiplexing  
— Support ofAAL5 andAAL0 protocols on a per-VC basis. AAL0 support enables  
OAM and software implementation of other protocols).  
ATM pace control (APC) scheduler, providing direct support for constant bit rate  
(CBR) and unspecified bit rate (UBR) and providing control mechanisms  
enabling software support of available bit rate (ABR)  
— Physical interface support for UTOPIA (10/100-Mbps is not supported with this  
interface) and byte-aligned serial (for example, T1/E1/ADSL)  
— UTOPIA-mode ATM supports level-1 master with cell-level handshake,  
multi-PHY (up to 4 physical layer devices), connection to 25-, 51-, or 155-Mbps  
framers, and UTOPIA/system clock ratios of 1/2 or 1/3.  
— Serial-mode ATM connection supports transmission convergence (TC) function  
for T1/E1/ADSL lines; cell delineation; cell payload scrambling/descrambling;  
automatic idle/unassigned cell insertion/stripping; header error control (HEC)  
generation, checking, and statistics.  
• Communications processor module (CPM)  
— RISC communications processor (CP)  
— Communication-specific commands (for example, GRACEFUL STOP TRANSMIT,  
ENTER HUNT MODE, and RESTART TRANSMIT)  
— Supports continuous mode transmission and reception on all serial channels  
— Up to 8Kbytes of dual-port RAM  
— 16 serial DMA (SDMA) channels  
4
MPC860 Family Hardware Specifications  
MOTOROLA  
Features  
— Three parallel I/O registers with open-drain capability  
• Four baud-rate generators (BRGs)  
— Independent (can be connected to any SCC or SMC)  
— Allow changes during operation  
— Autobaud support option  
• Four serial communications controllers (SCCs)  
— Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation  
(available only on specially programmed devices).  
— HDLC/SDLC (all channels supported at 2 Mbps)  
— HDLC bus (implements an HDLC-based local area network (LAN))  
— Asynchronous HDLC to support PPP (point-to-point protocol)  
— AppleTalk  
— Universal asynchronous receiver transmitter (UART)  
— Synchronous UART  
— Serial infrared (IrDA)  
— Binary synchronous communication (BISYNC)  
— Totally transparent (bit streams)  
— Totally transparent (frame based with optional cyclic redundancy check (CRC))  
• Two SMCs (serial management channels)  
— UART  
— Transparent  
— General circuit interface (GCI) controller  
— Can be connected to the time-division multiplexed (TDM) channels  
• One SPI (serial peripheral interface)  
— Supports master and slave modes  
— Supports multimaster operation on the same bus  
• One I2C (inter-integrated circuit) port  
— Supports master and slave modes  
— Multiple-master environment support  
• Time-slot assigner (TSA)  
— Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation  
— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user  
defined  
— 1- or 8-bit resolution  
MOTOROLA  
MPC860 Family Hardware Specifications  
5
Maximum Tolerated Ratings  
— Allows independent transmit and receive routing, frame synchronization,  
clocking  
— Allows dynamic changes  
— Can be internally connected to six serial channels (four SCCs and two SMCs)  
• Parallel interface port (PIP)  
— Centronics interface support  
— Supports fast connection between compatible ports on the MPC860 or the  
MC68360  
• PCMCIA interface  
— Master (socket) interface, release 2.1 compliant  
— Supports two independent PCMCIA sockets  
— Eight memory or I/O windows supported  
• Low power support  
— Full on—all units fully powered  
— Doze—core functional units disabled, except time base decrementer, PLL,  
memory controller, RTC, and CPM in low-power standby  
— Sleep—all units disabled, except RTC and PIT, PLL active for fast wake up  
— Deep sleep—all units disabled including PLL, except RTC and PIT  
— Power down mode— all units powered down, except PLL, RTC, PIT, time base,  
and decrementer  
• Debug interface  
— Eight comparators: four operate on instruction address, two operate on data  
address, and two operate on data  
— Supports conditions: = < >  
— Each watchpoint can generate a break-point internally  
• 3.3 V operation with 5-V TTL compatibility except EXTAL and EXTCLK  
• 357-pin ball grid array (BGA) package  
Part III Maximum Tolerated Ratings  
This section provides the maximum tolerated voltage and temperature ranges for the  
MPC860. Table 3-2 provides the maximum ratings.  
This device contains circuitry protecting against damage due to high-static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid application  
of any voltages higher than maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced, if unused inputs are tied to an appropriate logic voltage  
level (for example, either GND or Vdd).  
6
MPC860 Family Hardware Specifications  
MOTOROLA  
Thermal Characteristics  
Table 3-2. Maximum Tolerated Ratings  
(GND = 0 V)  
Rating  
Symbol  
Value  
Unit  
1
Supply Voltage  
V
–0.3 to 4.0  
V
V
DDH  
V
–0.3 to 4.0  
DDL  
KAPWR  
–0.3 to 4.0  
V
VDDSYN  
–0.3 to 4.0  
V
2
Input Voltage  
V
GND – 0.3 to VDDH  
V
in  
3
Temperature (Standard)  
T
0
95  
˚C  
˚C  
˚C  
˚C  
˚C  
A(min)  
T
j(max)  
3
Temperature (Extended)  
T
–40  
A(min)  
T
95  
j(max)  
Storage Temperature Range  
T
–55 to 150  
stg  
1
The power supply of the device must start its ramp from 0.0 V.  
2
Functional operating conditions are provided with the DC electrical specifications in Table 6-5. Absolute maximum  
ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may  
affect device reliability or cause permanent damage to the device.  
Caution:All inputs that tolerate 5V cannot be more than 2.5V greater than the supply voltage.This restriction applies  
to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be  
applied to its inputs).  
3
Minimum temperatures are guaranteed as ambient temperature, T . Maximum temperatures are guaranteed as  
A
junction temperature, T .  
j
Part IV Thermal Characteristics  
Table 4-3 shows the thermal characteristics for the MPC860.  
Table 4-3. MPC860 Thermal Resistance Data  
Rev  
B, C, D  
Rating  
Environment  
Symbol Rev A  
Unit  
1
2
Junction to Ambient  
Natural Convection  
Single layer board (1s)  
Four layer board (2s2p)  
R
31  
20  
26  
16  
8
40  
25  
32  
21  
15  
7
°C/W  
θJA  
3
R
θJMA  
3
Air Flow (200 ft/min) Single layer board (1s)  
Four layer board (2s2p)  
R
θJMA  
θJMA  
3
R
4
Junction to Board  
R
θJB  
θJC  
5
Junction to Case  
R
5
Junction to PackageTop Natural Convection  
Ψ
1
2
JT  
6
Air Flow (200 ft/min)  
2
3
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
MOTOROLA  
MPC860 Family Hardware Specifications  
7
Power Dissipation  
2
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3
Per JEDEC JESD51-6 with the board horizontal.  
4
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate  
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed  
pad packages where the pad would be expected to be soldered, junction to case thermal resistance is a simulated  
value from the junction to the exposed pad without contact resistance.  
6
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
Part V Power Dissipation  
Table 5-4 provides power dissipation information. The modes are 1:1, where CPU and bus  
speeds are equal, and 2:1 mode, where CPU frequency is twice bus speed.  
Table 5-4. Power Dissipation (P )  
D
1
2
Die Revision  
Frequency (MHz)  
Typical  
Maximum  
Unit  
A.3 and Previous  
25  
40  
50  
33  
50  
66  
50  
66  
66  
80  
450  
700  
870  
375  
575  
750  
656  
TBD  
722  
851  
550  
850  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
1050  
TBD  
TBD  
TBD  
735  
B.1 and C.1  
D.3 and D.4  
(1:1 Mode)  
TBD  
762  
D.3 and D.4  
(2:1 Mode)  
909  
1
Typical power dissipation is measured at 3.3 V.  
Maximum power dissipation is measured at 3.5 V.  
2
NOTE  
Values in Table 5-4” represent VDDL-based power dissipation  
and do not include I/O power dissipation overVDDH. I/O power  
dissipation varies widely by application due to buffer current,  
depending on external circuitry.  
8
MPC860 Family Hardware Specifications  
MOTOROLA  
DC Characteristics  
Part VI DC Characteristics  
Table 6-5 provides the DC electrical characteristics for the MPC860.  
Table 6-5. DC Electrical Specifications  
Characteristic  
Symbol  
, V , VDDSYN  
Min  
Max  
Unit  
Operating Voltage at 40 MHz or Less  
V
3.0  
2.0  
3.6  
3.6  
V
V
DDH DDL  
KAPWR  
(power-down mode)  
KAPWR  
(all other operating modes)  
V
V
– 0.4  
V
V
V
V
V
V
DDH  
DDH  
Operating Voltage Greater than 40 MHz  
V
, V  
, KAPWR,  
3.135  
2.0  
3.465  
DDH DDL  
VDDSYN  
KAPWR  
(power-down mode)  
3.6  
KAPWR  
(all other operating modes)  
– 0.4  
V
DDH  
DDH  
Input High Voltage (All Inputs Except EXTAL  
and EXTCLK)  
V
2.0  
5.5  
0.8  
IH  
Input Low Voltage  
V
GND  
V
V
IL  
EXTAL, EXTCLK Input High Voltage  
V
0.7 × (V  
)
V
+ 0.3  
IHC  
DDH  
DDH  
Input Leakage Current, V = 5.5 V (Except  
TMS, TRST, DSCK, and DSDI Pins)  
I
100  
10  
µA  
in  
in  
In  
In  
Input Leakage Current, V = 3.6 V (Except  
I
µA  
µA  
in  
TMS, TRST, DSCK, and DSDI Pins)  
Input Leakage Current, V = 0 V (Except  
I
10  
in  
TMS, TRST, DSCK, and DSDI Pins)  
1
Input Capacitance  
C
20  
pF  
V
in  
Output High Voltage, I = –2.0 mA,  
V
2.4  
OH  
OH  
V
= 3.0 V (Except XTAL, XFC, and Open  
DDH  
Drain Pins)  
Output Low Voltage  
V
0.5  
V
OL  
IOL = 2.0 mA, CLKOUT  
2
IOL = 3.2 mA  
IOL = 5.3 mA  
3
IOL = 7.0 mA, TXD1/PA14, TXD2/PA12  
IOL = 8.9 mA, TS, TA, TEA, BI, BB,  
HRESET, SRESET  
1
Input capacitance is periodically sampled.  
MOTOROLA  
MPC860 Family Hardware Specifications  
9
Thermal Calculation and Measurement  
2
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/  
VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0,  
IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8,  
TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5,  
TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/  
PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29,  
BRGO4/SPIMISO/  
PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/  
PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19,  
L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/  
DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11,  
TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, L1RSYNCB/PC6, SDACK1/  
L1TSYNCA/PC5, L1RSYNCA/PC4, PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PD5, PD6, PD7, PD4,  
PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].  
3
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD,  
WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/  
GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A,  
CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).  
Part VII Thermal Calculation and Measurement  
For the following discussions, PD = (VDD × IDD) + PI/O, where PI/O is the power  
dissipation of the I/O drivers.  
7.1 Estimation with Junction-to-Ambient Thermal  
Resistance  
An estimation of the chip junction temperature, TJ, in °C can be obtained from the equation:  
TJ = TA + (RθJA × PD)  
where:  
TA = ambient temperature (ºC)  
RθJA = package junction-to-ambient thermal resistance (ºC/W)  
PD = power dissipation in package  
The junction-to-ambient thermal resistance is an industry standard value which provides a  
quick and easy estimation of thermal performance. However, the answer is only an  
estimate; test cases have demonstrated that errors of a factor of two (in the quantity TJ TA)  
are possible.  
7.2 Estimation with Junction-to-Case Thermal  
Resistance  
Historically, the thermal resistance has frequently been expressed as the sum of a  
junction-to-case thermal resistance and a case-to-ambient thermal resistance:  
RθJA = RθJC + RθCA  
10  
MPC860 Family Hardware Specifications  
MOTOROLA  
Estimation with Junction-to-Board Thermal Resistance  
where:  
RθJA = junction-to-ambient thermal resistance (ºC/W)  
RθJC = junction-to-case thermal resistance (ºC/W)  
RθCA = case-to-ambient thermal resistance (ºC/W)  
RθJC is device related and cannot be influenced by the user. The user adjusts the thermal  
environment to affect the case-to-ambient thermal resistance, RθCA. For instance, the user  
can change the air flow around the device, add a heat sink, change the mounting  
arrangement on the printed circuit board, or change the thermal dissipation on the printed  
circuit board surrounding the device. This thermal model is most useful for ceramic  
packages with heat sinks where some 90% of the heat flows through the case and the heat  
sink to the ambient environment. For most packages, a better model is required.  
7.3 Estimation with Junction-to-Board Thermal  
Resistance  
A simple package thermal model which has demonstrated reasonable accuracy (about 20%)  
is a two resistor model consisting of a junction-to-board and a junction-to-case thermal  
resistance. The junction-to-case covers the situation where a heat sink is used or where a  
substantial amount of heat is dissipated from the top of the package. The junction-to-board  
thermal resistance describes the thermal performance when most of the heat is conducted  
to the printed circuit board. It has been observed that the thermal performance of most  
plastic packages and especially PBGA packages is strongly dependent on the board  
temperature; see Figure 7-1.  
100  
9 0  
8 0  
7 0  
6 0  
5 0  
4 0  
3 0  
2 0  
1 0  
0
0
2 0  
4 0  
6 0  
8 0  
Board Temperature Rise Above Ambient Divided by Package Power  
Figure 7-1. Effect of Board Temperature Rise on Thermal Behavior  
MOTOROLA  
MPC860 Family Hardware Specifications  
11  
Estimation Using Simulation  
If the board temperature is known, an estimate of the junction temperature in the  
environment can be made using the following equation:  
TJ = TB + (RθJB × PD)  
where:  
RθJB = junction-to-board thermal resistance (ºC/W)  
TB = board temperature (ºC)  
PD = power dissipation in package  
If the board temperature is known and the heat loss from the package case to the air can be  
ignored, acceptable predictions of junction temperature can be made. For this method to  
work, the board and board mounting must be similar to the test board used to determine the  
junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground  
plane) and vias attaching the thermal balls to the ground plane.  
7.4 Estimation Using Simulation  
When the board temperature is not known, a thermal simulation of the application is  
needed. The simple two resistor model can be used with the thermal simulation of the  
application [2], or a more accurate and complex model of the package can be used in the  
thermal simulation.  
7.5 Experimental Determination  
To determine the junction temperature of the device in the application after prototypes are  
available, the thermal characterization parameter (ΨJT) can be used to determine the  
junction temperature with a measurement of the temperature at the top center of the  
package case using the following equation:  
TJ = TT + (ΨJT × PD)  
where:  
ΨJT = thermal characterization parameter  
TT = thermocouple temperature on top of package  
PD = power dissipation in package  
The thermal characterization parameter is measured per JEDEC JESD51-2 specification  
using a 40 gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the package.  
A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of  
wire extending from the junction. The thermocouple wire is placed flat against the package  
case to avoid measurement errors caused by cooling effects of the thermocouple wire.  
12  
MPC860 Family Hardware Specifications  
MOTOROLA  
References  
7.6 References  
Semiconductor Equipment and Materials International  
805 East Middlefield Rd  
(415) 964-5111  
Mountain View, CA 94043  
MIL-SPEC and EIA/JESD (JEDEC) specifications  
(Available from Global Engineering Documents)  
800-854-7179 or  
303-397-7956  
JEDEC Specifications  
http://www.jedec.org  
1. 1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA  
Within anAutomotive Engine Controller Module,” Proceedings of SemiTherm, San  
Diego, 1998, pp. 4754.  
2. 2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board  
Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of  
SemiTherm, San Diego, 1999, pp. 212220.  
Part VIII Layout Practices  
Each VDD pin on the MPC860 should be provided with a low-impedance path to the board’s  
supply. Each GND pin should likewise be provided with a low-impedance path to ground.  
The power supply pins drive distinct groups of logic on chip. The VDD power supply should  
be bypassed to ground using at least four 0.1 µF-bypass capacitors located as close as  
possible to the four sides of the package. The capacitor leads and associated printed circuit  
traces connecting to chip VDD and GND should be kept to less than half an inch per  
capacitor lead. A four-layer board is recommended, employing two inner layers as VCC and  
GND planes.  
All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace  
interconnection length should be minimized in order to minimize undershoot and  
reflections caused by these fast output switching times. This recommendation particularly  
applies to the address and data busses. Maximum PC trace lengths of 6 inches are  
recommended. Capacitance calculations should consider all device loads as well as  
parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing  
becomes especially critical in systems with higher capacitive loads because these loads  
create higher transient currents in the VCC and GND circuits. Pull up all unused inputs or  
signals that will be inputs during reset. Special care should be taken to minimize the noise  
levels on the PLL supply pins.  
Part IX Bus Signal Timing  
Table 9-6 provides the bus operation timing for the MPC860 at 33, 40, 50, and 66 MHz.  
The maximum bus speed supported by the MPC860 is 66 MHz. Higher-speed parts must  
be operated in half-speed bus mode (for example, an MPC860 used at 80 MHz must be  
configured for a 40 MHz bus).  
MOTOROLA  
MPC860 Family Hardware Specifications  
13  
Bus Signal Timing  
The timing for the MPC860 bus shown assumes a 50-pF load for maximum delays and a  
0-pF load for minimum delays.  
Table 9-6. Bus Operation Timings  
33 MHz  
Min Max  
30.30 30.30 25.00 30.30 20.00 30.30 15.15 30.30 ns  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min Max  
Min Max  
Min Max  
B1 CLKOUT period  
B1a EXTCLK to CLKOUT phase skew  
(EXTCLK > 15 MHz and MF <= 2)  
–0.90 0.90 –0.90 0.90 –0.90 0.90 –0.90 0.90  
–2.30 2.30 –2.30 2.30 –2.30 2.30 –2.30 2.30  
–0.60 0.60 –0.60 0.60 –0.60 0.60 –0.60 0.60  
–2.00 2.00 –2.00 2.00 –2.00 2.00 –2.00 2.00  
ns  
ns  
ns  
B1b EXTCLK to CLKOUT phase skew  
(EXTCLK > 10 MHz and MF < 10)  
B1c CLKOUT phase jitter (EXTCLK >  
1
15 MHz and MF <= 2)  
1
B1d CLKOUT phase jitter  
ns  
%
%
1
B1e CLKOUT frequency jitter (MF < 10)  
B1f CLKOUT frequency jitter (10 < MF  
0.50  
2.00  
0.50  
2.00  
0.50  
2.00  
0.50  
2.00  
1
< 500)  
1
B1g CLKOUT frequency jitter (MF > 500)  
3.00  
0.50  
3.00  
0.50  
3.00  
0.50  
3.00  
0.50  
%
%
2
B1h Frequency jitter on EXTCLK  
B2 CLKOUT pulse width low  
B3 CLKOUT width high  
12.12  
12.12  
10.00  
10.00  
8.00  
8.00  
6.06  
6.06  
ns  
ns  
ns  
ns  
ns  
3
B4 CLKOUT rise time  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
33  
3
B5  
CLKOUT fall time  
B7 CLKOUT to A(0:31), BADDR(28:30), 7.58  
RD/WR, BURST, D(0:31), DP(0:3)  
invalid  
6.25  
5.00  
3.80  
B7a CLKOUT to TSIZ(0:1), REG, RSV,  
AT(0:3), BDIP, PTR invalid  
7.58  
6.25  
6.25  
5.00  
5.00  
3.80  
3.80  
ns  
ns  
B7b CLKOUT to BR, BG, FRZ,VFLS(0:1), 7.58  
VF(0:2) IWP(0:2), LWP(0:1), STS  
4
invalid  
B8 CLKOUT to A(0:31), BADDR(28:30)  
RD/WR, BURST, D(0:31), DP(0:3)  
valid  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
B8a CLKOUT to TSIZ(0:1), REG, RSV,  
AT(0:3) BDIP, PTR valid  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
B8b CLKOUT to BR, BG, VFLS(0:1),  
VF(0:2), IWP(0:2), FRZ, LWP(0:1),  
4
STS valid  
B9 CLKOUT to A(0:31), BADDR(28:30), 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
RD/WR, BURST, D(0:31), DP(0:3),  
TSIZ(0:1), REG, RSV, AT(0:3), PTR  
High-Z  
14  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
Table 9-6. Bus Operation Timings (continued)  
33 MHz  
Min Max  
7.58 13.58 6.25 12.25 5.00 11.00 3.80 11.29 ns  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min Max  
Min Max  
Min  
Max  
B11 CLKOUT to TS, BB assertion  
B11a CLKOUT to TA, BI assertion (when  
driven by the memory controller or  
PCMCIA interface)  
2.50  
9.25  
2.50  
9.25  
2.50  
9.25  
2.50  
9.75  
ns  
B12 CLKOUT to TS, BB negation  
7.58 14.33 6.25 13.00 5.00 11.75 3.80  
2.50 11.00 2.50 11.00 2.50 11.00 2.50  
8.54  
9.00  
ns  
ns  
B12a CLKOUT to TA, BI negation (when  
driven by the memory controller or  
PCMCIA interface)  
B13 CLKOUT to TS, BB High-Z  
7.58 21.58 6.25 20.25 5.00 19.00 3.80 14.04 ns  
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
B13a CLKOUT to TA, BI High-Z (when  
driven by the memory controller or  
PCMCIA interface)  
B14 CLKOUT to TEA assertion  
B15 CLKOUT to TEA High-Z  
2.50 10.00 2.50 10.00 2.50 10.00 2.50  
9.00  
ns  
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
B16 TA, BI valid to CLKOUT (setup time) 9.75  
9.75  
9.75  
6.00  
4.50  
ns  
ns  
B16a TEA, KR, RETRY, CR valid to  
CLKOUT (setup time)  
10.00  
10.00  
10.00  
B16b BB, BG, BR, valid to CLKOUT (setup 8.50  
8.50  
1.00  
2.00  
6.00  
1.00  
4.00  
2.00  
8.50  
1.00  
2.00  
6.00  
1.00  
4.00  
2.00  
4.00  
2.00  
2.00  
6.00  
2.00  
4.00  
2.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
time)  
B17 CLKOUT to TA, TEA, BI, BB, BG, BR 1.00  
valid (hold time)  
B17a CLKOUT to KR, RETRY, CR valid  
(hold time)  
2.00  
6.00  
1.00  
4.00  
2.00  
B18 D(0:31), DP(0:3) valid to CLKOUT  
6
rising edge (setup time)  
B19 CLKOUT rising edge to D(0:31),  
6
DP(0:3) valid (hold time)  
B20 D(0:31), DP(0:3) valid to CLKOUT  
7
falling edge (setup time)  
B21 CLKOUT falling edge to D(0:31),  
7
DP(0:3) valid (hold time)  
B22 CLKOUT rising edge to CS asserted 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
GPCM ACS = 00  
B22a CLKOUT falling edge to CS asserted  
GPCM ACS = 10, TRLX = 0  
8.00  
8.00  
8.00  
8.00  
ns  
B22b CLKOUT falling edge to CS asserted 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
GPCM ACS = 11, TRLX = 0,  
EBDF = 0  
MOTOROLA  
MPC860 Family Hardware Specifications  
15  
Bus Signal Timing  
Table 9-6. Bus Operation Timings (continued)  
33 MHz  
Min Max  
40 MHz  
Min Max  
50 MHz  
Min Max  
66 MHz  
Min Max  
Num  
Characteristic  
Unit  
B22c CLKOUT falling edge to CS asserted 10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns  
GPCM ACS = 11, TRLX = 0,  
EBDF = 1  
B23 CLKOUT rising edge to CS negated  
GPCM read access, GPCM write  
access ACS = 00, TRLX = 0, and  
CSNT = 0  
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
ns  
B24 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10, TRLX = 0  
5.58  
13.15  
4.25  
10.50  
3.00  
8.00  
1.79  
5.58  
ns  
ns  
ns  
B24a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11, TRLX = 0  
B25 CLKOUT rising edge to OE, WE(0:3)  
asserted  
9.00  
9.00  
9.00  
9.00  
B26 CLKOUT rising edge to OE negated 2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
ns  
ns  
B27 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10, TRLX = 1  
35.88  
43.45  
29.25  
23.00  
16.94  
B27a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11, TRLX = 1  
35.50  
28.00  
20.73  
ns  
ns  
B28 CLKOUT rising edge to WE(0:3)  
negated GPCM write access  
CSNT = 0  
9.00  
9.00  
9.00  
9.00  
B28a CLKOUT falling edge to WE(0:3)  
negated GPCM write access  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
TRLX = 0, CSNT = 1, EBDF = 0  
B28b CLKOUT falling edge to CS negated  
GPCM write accessTRLX = 0, CSNT  
= 1, ACS = 10, or ACS = 11, EBDF =  
0
14.33  
13.00  
11.75  
10.54 ns  
B28c CLKOUT falling edge to WE(0:3)  
negated GPCM write access  
10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns  
TRLX = 0, CSNT = 1 write access  
TRLX = 0, CSNT = 1, EBDF = 1  
B28d CLKOUT falling edge to CS negated  
GPCM write accessTRLX = 0, CSNT  
= 1, ACS = 10, or ACS = 11, EBDF =  
1
17.99  
16.00  
14.13  
12.31 ns  
B29 WE(0:3) negated to D(0:31), DP(0:3) 5.58  
High-Z GPCM write access  
4.25  
10.5  
3.00  
8.00  
1.79  
5.58  
ns  
ns  
CSNT = 0, EBDF = 0  
B29a WE(0:3) negated to D(0:31), DP(0:3) 13.15  
High-Z GPCM write access,  
TRLX = 0, CSNT = 1, EBDF = 0  
16  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
Table 9-6. Bus Operation Timings (continued)  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B29b CS negated to D(0:31), DP(0:3),  
High-Z GPCM write access,  
5.58  
4.25  
3.00  
1.79  
ns  
ns  
ACS = 00, TRLX = 0, and CSNT = 0  
B29c CS negated to D(0:31), DP(0:3)  
High-Z GPCM write access,  
TRLX = 0, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 0  
13.15  
10.5  
8.00  
5.58  
B29d WE(0:3) negated to D(0:31), DP(0:3) 43.45  
High-Z GPCM write access,  
35.5  
35.5  
28.00  
28.00  
20.73  
29.73  
ns  
ns  
TRLX = 1, CSNT = 1, EBDF = 0  
B29e CS negated to D(0:31), DP(0:3)  
High-Z GPCM write access,  
TRLX = 1, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 0  
43.45  
B29f WE(0:3) negated to D(0:31), DP(0:3) 8.86  
High-Z GPCM write access,  
6.88  
6.88  
5.00  
5.00  
3.18  
3.18  
ns  
ns  
TRLX = 0, CSNT = 1, EBDF = 1  
B29g CS negated to D(0:31), DP(0:3)  
High-Z GPCM write access,  
TRLX = 0, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 1  
8.86  
B29h WE(0:3) negated to D(0:31), DP(0:3) 38.67  
High-Z GPCM write access,  
31.38  
31.38  
24.50  
24.50  
17.83  
17.83  
ns  
ns  
TRLX = 1, CSNT = 1, EBDF = 1  
B29i CS negated to D(0:31), DP(0:3)  
High-Z GPCM write access,  
TRLX = 1, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 1  
38.67  
B30 CS, WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
5.58  
4.25  
3.00  
8.00  
1.79  
5.58  
ns  
ns  
8
access  
B30a WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM, write  
access, TRLX = 0, CSNT = 1,  
13.15  
10.50  
CS negated to A(0:31) invalid GPCM  
write access, TRLX = 0, CSNT =1  
ACS = 10, or ACS = 11, EBDF = 0  
B30b WE(0:3) negated to A(0:31),  
invalid GPCM BADDR(28:30) invalid  
GPCM write access, TRLX = 1,  
CSNT = 1. CS negated to A(0:31),  
Invalid GPCM, write access,  
43.45  
35.50  
28.00  
20.73  
ns  
TRLX = 1, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 0  
MOTOROLA  
MPC860 Family Hardware Specifications  
17  
Bus Signal Timing  
Table 9-6. Bus Operation Timings (continued)  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B30c WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
access, TRLX = 0, CSNT = 1.  
8.36  
6.38  
31.38  
1.50  
4.50  
24.50  
1.50  
2.68  
17.83  
1.50  
ns  
CS negated to A(0:31) invalid GPCM  
write access, TRLX = 0, CSNT = 1,  
ACS = 10, ACS = 11, EBDF = 1  
B30d WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
access, TRLX = 1, CSNT =1.  
38.67  
ns  
CS negated to A(0:31) invalid GPCM  
write access TRLX = 1, CSNT = 1,  
ACS = 10, or ACS = 11, EBDF = 1  
B31 CLKOUT falling edge to CS valid—as 1.50  
requested by control bit CST4 in the  
corresponding word in UPM  
6.00  
6.00  
6.00  
6.00  
ns  
B31a CLKOUT falling edge to CS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
requested by control bit CST1 in the  
corresponding word in UPM  
B31b CLKOUT rising edge to CS valid—as 1.50  
requested by control bit CST2 in the  
corresponding word in UPM  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
ns  
B31c CLKOUT rising edge to CS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
requested by control bit CST3 in the  
corresponding word in UPM  
B31d CLKOUT falling edge to CS valid—as 13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns  
requested by control bit CST1 in the  
corresponding word in UPM, EBDF =  
1
B32 CLKOUT falling edge to BS valid—as 1.50  
requested by control bit BST4 in the  
corresponding word in UPM  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
B32a CLKOUT falling edge to BS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
requested by control bit BST1 in the  
corresponding word in UPM, EBDF =  
0
B32b CLKOUT rising edge to BS valid—as 1.50  
requested by control bit BST2 in the  
corresponding word in UPM  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
ns  
B32c CLKOUT rising edge to BS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
requested by control bit BST3 in the  
corresponding word in UPM  
B32d CLKOUT falling edge to BS valid—as 13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns  
requested by control bit BST1 in the  
corresponding word in UPM, EBDF =  
1
18  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
Table 9-6. Bus Operation Timings (continued)  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Unit  
Num  
Characteristic  
Min  
1.50  
Max  
Min  
1.50  
Max  
Min  
1.50  
Max  
Min  
Max  
B33 CLKOUT falling edge to GPL  
valid—as requested by control bit  
GxT4 in the corresponding word in  
UPM  
6.00  
6.00  
6.00  
1.50  
6.00  
ns  
B33a CLKOUT rising edge to GPL  
valid—as requested by control bit  
GxT3 in the corresponding word in  
UPM  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
B34 A(0:31), BADDR(28:30), and D(0:31) 5.58  
to CS valid—as requested by control  
bit CST4 in the corresponding word in  
UPM  
4.25  
10.50  
16.75  
4.25  
3.00  
8.00  
1.79  
5.58  
9.36  
1.79  
5.58  
9.36  
1.79  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B34a A(0:31), BADDR(28:30), and D(0:31) 13.15  
to CS valid—as requested by control  
bit CST1 in the corresponding word in  
UPM  
B34b A(0:31), BADDR(28:30), and D(0:31) 20.73  
to CS valid—as requested by control  
bit CST2 in the corresponding word in  
UPM  
13.00  
3.00  
B35 A(0:31), BADDR(28:30) to CS  
valid—as requested by control bit  
BST4 in the corresponding word in  
UPM  
5.58  
B35a A(0:31), BADDR(28:30), and D(0:31) 13.15  
to BS valid—as requested by control  
bit BST1 in the corresponding word in  
UPM  
10.50  
16.75  
4.25  
8.00  
B35b A(0:31), BADDR(28:30), and D(0:31) 20.73  
to BS valid—as requested by control  
bit BST2 in the corresponding word in  
UPM  
13.00  
3.00  
B36 A(0:31), BADDR(28:30), and D(0:31) 5.58  
to GPL valid—as requested by  
control bit GxT4 in the corresponding  
word in UPM  
B37 UPWAIT valid to CLKOUT falling  
6.00  
1.00  
7.00  
6.00  
1.00  
6.00  
1.00  
6.00  
1.00  
ns  
ns  
9
edge  
B38 CLKOUT falling edge to UPWAIT  
9
valid  
10  
B39 AS valid to CLKOUT rising edge  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
ns  
ns  
B40 A(0:31), TSIZ(0:1), RD/WR, BURST, 7.00  
valid to CLKOUT rising edge  
MOTOROLA  
MPC860 Family Hardware Specifications  
19  
Bus Signal Timing  
Table 9-6. Bus Operation Timings (continued)  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
7.00  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B41 TS valid to CLKOUT rising edge  
(setup time)  
7.00  
2.00  
7.00  
2.00  
7.00  
2.00  
ns  
ns  
ns  
B42 CLKOUT rising edge toTS valid (hold 2.00  
time)  
B43 AS negation to memory controller  
signals negation  
TBD  
TBD  
TBD  
TBD  
1
2
Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.  
If the rate of change of the frequency of EXTAL is slow (i.e., it does not jump between the minimum and maximum  
values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time) then  
the maximum allowed jitter on EXTAL can be up to 2%.  
3
4
The timings specified in B4 and B5 are based on full strength clock.  
The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter.The timing for BG  
output is relevant when the MPC860 is selected to work with internal bus arbiter.  
5
6
7
The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter.The timing  
for BG input is relevant when the MPC860 is selected to work with external bus arbiter.  
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input  
signal is asserted.  
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT.This timing is valid only  
for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where  
DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
8
9
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.  
The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified  
in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 9-17.  
10  
The AS signal is considered asynchronous to the CLKOUT.The timing B39 is specified in order to allow the behavior  
specified in Figure 9-20.  
Figure 9-2 is the control timing diagram.  
20  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
2.0 V  
2.0 V  
CLKOUT  
Outputs  
Outputs  
Inputs  
0.8 V  
0.8 V  
A
B
2.0 V  
0.8 V  
2.0 V  
0.8 V  
A
B
2.0 V  
2.0 V  
0.8 V  
0.8 V  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
Inputs  
A
B
C
D
Maximum output delay specification.  
Minimum output hold time.  
Minimum input setup time specification.  
Minimum input hold time specification.  
Figure 9-2. Control Timing  
Figure 9-3 provides the timing for the external clock.  
CLKOUT  
B1  
B1  
B3  
B2  
B4  
B5  
Figure 9-3. External Clock Timing  
MOTOROLA  
MPC860 Family Hardware Specifications  
21  
Bus Signal Timing  
Figure 9-4 provides the timing for the synchronous output signals.  
CLKOUT  
B8  
B7  
B9  
B9  
Output  
Signals  
B8a  
B8b  
B7a  
B7b  
Output  
Signals  
Output  
Signals  
Figure 9-4. Synchronous Output Signals Timing  
Figure 9-5 provides the timing for the synchronous active pull-up and open-drain output  
signals.  
CLKOUT  
B13  
B11  
B12  
B12a  
B15  
TS, BB  
TA, BI  
TEA  
B13a  
B11a  
B14  
Figure 9-5. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals  
Timing  
22  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
Figure 9-6 provides the timing for the synchronous input signals.  
CLKOUT  
B16  
B17  
TA, BI  
B16a  
B17a  
TEA, KR,  
RETRY, CR  
B16b  
B17  
BB, BG, BR  
Figure 9-6. Synchronous Input Signals Timing  
Figure 9-7 provides normal case timing for input data. It also applies to normal read  
accesses under the control of the UPM in the memory controller.  
CLKOUT  
B16  
B17  
TA  
B18  
B19  
D[0:31],  
DP[0:3]  
Figure 9-7. Input Data Timing in Normal Case  
Figure 9-8 provides the timing for the input data controlled by the UPM for data beats  
where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on  
the falling edge of CLKOUT.)  
MOTOROLA  
MPC860 Family Hardware Specifications  
23  
Bus Signal Timing  
CLKOUT  
TA  
B20  
B21  
D[0:31],  
DP[0:3]  
Figure 9-8. Input Data Timing when Controlled by UPM in the Memory Controller  
and DLT3 = 1  
Figure 9-9 through Figure 9-12 provide the timing for the external bus read controlled by  
various GPCM factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22  
B23  
B25  
B26  
B19  
OE  
B28  
WE[0:3]  
B18  
D[0:31],  
DP[0:3]  
Figure 9-9. External Bus Read Timing (GPCM Controlled—ACS = 00)  
24  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
A[0:31]  
CSx  
B22a  
B24  
B23  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 9-10. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22b  
B22c  
B23  
B24a  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 9-11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)  
MOTOROLA  
MPC860 Family Hardware Specifications  
25  
Bus Signal Timing  
CLKOUT  
B11  
B12  
TS  
A[0:31]  
CSx  
B8  
B22a  
B23  
B27  
B26  
B19  
OE  
B27a  
B22bB22c  
B18  
D[0:31],  
DP[0:3]  
Figure 9-12. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10,  
ACS = 11)  
Figure 9-13 through Figure 9-15 provide the timing for the external bus write controlled by  
various GPCM factors.  
26  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
B30  
A[0:31]  
CSx  
B22  
B23  
B25  
B28  
WE[0:3]  
OE  
B29b  
B29  
B26  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 9-13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)  
MOTOROLA  
MPC860 Family Hardware Specifications  
27  
Bus Signal Timing  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B30aB30c  
B28bB28d  
B25  
B22  
B23  
B29c B29g  
WE[0:3]  
OE  
B29a  
B26  
B29f  
B28aB28c  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 9-14. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)  
28  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B12  
B30b B30d  
B8  
A[0:31]  
CSx  
B28b B28d  
B22  
B23  
B29e B29i  
B29dB29h  
B25  
WE[0:3]  
OE  
B26  
B29b  
B28a B28c  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 9-15. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)  
Figure 9-16 provides the timing for the external bus controlled by the UPM.  
MOTOROLA  
MPC860 Family Hardware Specifications  
29  
Bus Signal Timing  
CLKOUT  
B8  
A[0:31]  
B31a  
B31d  
B31c  
B31b  
B31  
CSx  
B34  
B34a  
B34b  
B32aB32d  
B32c  
B32b  
B32  
BS_A[0:3],  
BS_B[0:3]  
B35 B36  
B35b  
B35a  
B33a  
B33  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 9-16. External Bus Timing (UPM Controlled Signals)  
Figure 9-17 provides the timing for the asynchronous asserted UPWAIT signal controlled  
by the UPM.  
30  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
CLKOUT  
UPWAIT  
CSx  
B37  
B38  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 9-17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles  
Timing  
Figure 9-18 provides the timing for the asynchronous negated UPWAIT signal controlled  
by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 9-18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles  
Timing  
Figure 9-19 provides the timing for the synchronous external master access controlled by  
the GPCM.  
MOTOROLA  
MPC860 Family Hardware Specifications  
31  
Bus Signal Timing  
CLKOUT  
TS  
B41  
B40  
B42  
A[0:31],  
TSIZ[0:1],  
R/W, BURST  
B22  
CSx  
Figure 9-19. Synchronous External Master Access Timing (GPCM Handled ACS =  
00)  
Figure 9-20 provides the timing for the asynchronous external master memory access  
controlled by the GPCM.  
CLKOUT  
B39  
AS  
B40  
A[0:31],  
TSIZ[0:1],  
R/W  
B22  
CSx  
Figure 9-20. Asynchronous External Master Memory Access Timing  
(GPCM Controlled—ACS = 00)  
Figure 9-21 provides the timing for the asynchronous external master control signals  
negation.  
32  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
AS  
B43  
CSx, WE[0:3],  
OE, GPLx,  
BS[0:3]  
Figure 9-21. Asynchronous External Master—Control Signals Negation Timing  
Table 9-7 provides interrupt timing for the MPC860.  
Table 9-7. Interrupt Timing  
All Frequencies  
1
Num  
Characteristic  
Unit  
Min  
Max  
I39  
I40  
I41  
I42  
I43  
IRQx valid to CLKOUT rising edge (setup time)  
IRQx hold time after CLKOUT  
IRQx pulse width low  
6.00  
2.00  
3.00  
3.00  
ns  
ns  
ns  
ns  
IRQx pulse width high  
IRQx edge-to-edge time  
4 × T  
CLOCKOUT  
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as  
level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference  
to the CLKOUT.  
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has  
no direct relation with the total system interrupt latency that the MPC860 is able to support.  
Figure 9-22 provides the interrupt detection timing for the external level-sensitive lines.  
CLKOUT  
I39  
I40  
IRQx  
Figure 9-22. Interrupt Detection Timing for External Level Sensitive Lines  
Figure 9-23 provides the interrupt detection timing for the external edge-sensitive lines.  
MOTOROLA  
MPC860 Family Hardware Specifications  
33  
Bus Signal Timing  
CLKOUT  
I41  
I42  
IRQx  
I43  
I43  
Figure 9-23. Interrupt Detection Timing for External Edge Sensitive Lines  
Table 9-8 shows the PCMCIA timing for the MPC860.  
Table 9-8. PCMCIA Timing  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
20.73  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
P44 A(0:31), REG valid to PCMCIA  
16.75  
13.00  
9.36  
ns  
1
Strobe asserted  
1
P45 A(0:31), REG valid to ALE negation 28.30  
23.00  
18.00  
13.15  
ns  
ns  
ns  
ns  
ns  
ns  
P46 CLKOUT to REG valid  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84  
8.58 7.25 6.00 4.84  
P47 CLKOUT to REG invalid  
P48 CLKOUT to CE1, CE2 asserted  
P49 CLKOUT to CE1, CE2 negated  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84  
P50 CLKOUT to PCOE, IORD, PCWE,  
IOWR assert time  
11.00  
11.00  
11.00  
11.00  
P51 CLKOUT to PCOE, IORD, PCWE,  
IOWR negate time  
2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 10.04  
ns  
P52 CLKOUT to ALE assert time  
P53 CLKOUT to ALE negate time  
P54 PCWE, IOWR negated to D(0:31)  
ns  
ns  
ns  
15.58  
14.25  
13.00  
11.84  
5.58  
4.25  
8.00  
2.00  
3.00  
1.79  
1
invalid  
P55 WAITA and WAITB valid to CLKOUT 8.00  
8.00  
2.00  
8.00  
2.00  
ns  
ns  
1
rising edge  
P56 CLKOUT rising edge to WAITA and  
2.00  
1
WAITB invalid  
34  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
1
PSST = 1. Otherwise add PSST times cycle time.  
PSHT = 0. Otherwise add PSHT times cycle time.  
These synchronous timings define when the WAITx signals are detected in order to freeze  
(or relieve) the PCMCIA current cycle. The WAITx assertion will be effective only if it is  
detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC860  
PowerQUICC User s Manual.  
Figure 9-24 provides the PCMCIA access cycle timing for the external bus read.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
REG  
CE1/CE2  
PCOE, IORD  
ALE  
P50  
P53  
P52  
B18  
B19  
D[0:31]  
Figure 9-24. PCMCIA Access Cycles Timing External Bus Read  
Figure 9-25 provides the PCMCIA access cycle timing for the external bus write.  
MOTOROLA  
MPC860 Family Hardware Specifications  
35  
Bus Signal Timing  
CLKOUT  
TS  
P44  
P45  
A[0:31]  
P46  
P48  
P47  
P49  
P51  
P52  
B9  
REG  
CE1/CE2  
CWE, IOWR  
ALE  
P50  
P53  
B8  
P54  
P52  
D[0:31]  
Figure 9-25. PCMCIA Access Cycles Timing External Bus Write  
Figure 9-26 provides the PCMCIA WAIT signals detection timing.  
CLKOUT  
P55  
P56  
WAITx  
Figure 9-26. PCMCIA WAIT Signals Detection Timing  
Table 9-9 shows the PCMCIA port timing for the MPC860.  
36  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
Table 9-9. PCMCIA Port Timing  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
P57 CLKOUT to OPx valid  
19.00  
19.00  
19.00  
19.00  
ns  
ns  
ns  
ns  
1
P58 HRESET negated to OPx drive  
25.73  
21.75  
5.00  
1.00  
18.00  
5.00  
1.00  
14.36  
5.00  
1.00  
P59 IP_Xx valid to CLKOUT rising edge 5.00  
P60 CLKOUT rising edge to IP_Xx  
invalid  
1.00  
1
OP2 and OP3 only.  
Figure 9-27 provides the PCMCIA output port timing for the MPC860.  
CLKOUT  
P57  
Output  
Signals  
HRESET  
P58  
OP2, OP3  
Figure 9-27. PCMCIA Output Port Timing  
Figure 9-28 provides the PCMCIA output port timing for the MPC860.  
CLKOUT  
P59  
P60  
Input  
Signals  
Figure 9-28. PCMCIA Input Port Timing  
Table 9-10 shows the debug port timing for the MPC860.  
MOTOROLA  
MPC860 Family Hardware Specifications  
37  
Bus Signal Timing  
Table 9-10. Debug Port Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
P61 DSCK cycle time  
3 × T  
ns  
ns  
ns  
ns  
ns  
CLOCKOUT  
P62 DSCK clock pulse width  
P63 DSCK rise and fall times  
P64 DSDI input data setup time  
P65 DSDI data hold time  
1.25 × T  
CLOCKOUT  
0.00  
3.00  
8.00  
5.00  
0.00  
0.00  
P66 DSCK low to DSDO data valid  
P67 DSCK low to DSDO invalid  
15.00  
2.00  
Figure 9-29 provides the input timing for the debug port clock.  
DSCK  
D61  
D62  
D61  
D62  
D63  
D63  
Figure 9-29. Debug Port Clock Input Timing  
Figure 9-30 provides the timing for the debug port.  
DSCK  
D64  
D65  
DSDI  
D66  
D67  
DSDO  
Figure 9-30. Debug Port Timings  
38  
MPC860 Family Hardware Specifications  
MOTOROLA  
Bus Signal Timing  
Table 9-11 shows the reset timing for the MPC860.  
Table 9-11. Reset Timing  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
R69 CLKOUT to HRESET high  
impedance  
20.00  
20.00  
20.00  
20.00  
ns  
ns  
ns  
R70 CLKOUT to SRESET high  
impedance  
20.00  
20.00  
20.00  
20.00  
R71 RSTCONF pulse width  
515.15  
425.00  
340.00  
257.58  
R72  
R73 Configuration data to HRESET rising 504.55  
edge setup time  
425.00  
350.00  
277.27  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
R74 Configuration data to RSTCONF  
rising edge setup time  
350.00  
0.00  
0.00  
350.00  
0.00  
350.00  
0.00  
0.00  
350.00  
0.00  
0.00  
R75 Configuration data hold time after  
RSTCONF negation  
R76 Configuration data hold time after  
HRESET negation  
0.00  
R77 HRESET and RSTCONF asserted to  
data out drive  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
R78 RSTCONF negated to data out high  
impedance  
R79 CLKOUT of last rising edge before  
chip three-state HRESET to data out  
high impedance  
R80 DSDI, DSCK setup  
90.91  
0.00  
75.00  
0.00  
60.00  
0.00  
45.45  
0.00  
ns  
ns  
ns  
R81 DSDI, DSCK hold time  
R82 SRESET negated to CLKOUT rising 242.42  
edge for DSDI and DSCK sample  
200.00  
160.00  
121.21  
Figure 9-31 shows the reset timing for the data bus configuration.  
MOTOROLA  
MPC860 Family Hardware Specifications  
39  
Bus Signal Timing  
HRESET  
R71  
R76  
RSTCONF  
D[0:31] (IN)  
R73  
R74  
R75  
Figure 9-31. Reset Timing—Configuration from Data Bus  
Figure 9-32 provides the reset timing for the data bus weak drive during configuration.  
CLKOUT  
R69  
HRESET  
R79  
RSTCONF  
R77  
R78  
D[0:31] (OUT)  
(Weak)  
Figure 9-32. Reset Timing—Data Bus Weak Drive During Configuration  
Figure 9-33 provides the reset timing for the debug port configuration.  
40  
MPC860 Family Hardware Specifications  
MOTOROLA  
IEEE 1149.1 Electrical Specifications  
CLKOUT  
SRESET  
R70  
R81  
R82  
R80  
R80  
R81  
DSCK, DSDI  
Figure 9-33. Reset Timing—Debug Port Configuration  
Part X IEEE 1149.1 Electrical Specifications  
Table 10-12 provides the JTAG timings for the MPC860 shown in Figure 10-34 through  
Figure 10-37.  
Table 10-12. JTAG Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
J82 TCK cycle time  
100.00  
40.00  
0.00  
5.00  
25.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
J83 TCK clock pulse width measured at 1.5 V  
J84 TCK rise and fall times  
10.00  
J85 TMS, TDI data setup time  
J86 TMS, TDI data hold time  
J87 TCK low to TDO data valid  
27.00  
J88 TCK low to TDO data invalid  
0.00  
J89 TCK low to TDO high impedance  
J90 TRST assert time  
20.00  
100.00  
40.00  
J91 TRST setup time to TCK low  
J92 TCK falling edge to output valid  
J93 TCK falling edge to output valid out of high impedance  
J94 TCK falling edge to output high impedance  
J95 Boundary scan input valid to TCK rising edge  
J96 TCK rising edge to boundary scan input invalid  
50.00  
50.00  
50.00  
50.00  
50.00  
MOTOROLA  
MPC860 Family Hardware Specifications  
41  
IEEE 1149.1 Electrical Specifications  
TCK  
J82  
J83  
J82  
J83  
J84  
J84  
Figure 10-34. JTAG Test Clock Input Timing  
TCK  
TMS, TDI  
TDO  
J85  
J86  
J87  
J88  
J89  
Figure 10-35. JTAG Test Access Port Timing Diagram  
TCK  
J91  
J90  
TRST  
Figure 10-36. JTAG TRST Timing Diagram  
42  
MPC860 Family Hardware Specifications  
MOTOROLA  
CPM Electrical Characteristics  
TCK  
J92  
J93  
J94  
Output  
Signals  
Output  
Signals  
J95  
J96  
Output  
Signals  
Figure 10-37. Boundary Scan (JTAG) Timing Diagram  
Part XI CPM Electrical Characteristics  
This section provides the AC and DC electrical specifications for the communications  
processor module (CPM) of the MPC860.  
11.1 PIP/PIO AC Electrical Specifications  
Table 11-13 provides the PIP/PIO AC timings as shown in Figure 11-38 through  
Figure 11-42.  
Table 11-13. PIP/PIO Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Data-in setup time to STBI low  
0
2.5 – t3  
1.5  
2
ns  
CLK  
CLK  
ns  
1
Data-In hold time to STBI high  
STBI pulse width  
STBO pulse width  
1 CLK – 5 ns  
Data-out setup time to STBO low  
Data-out hold time from STBO high  
STBI low to STBO low (Rx interlock)  
STBI low to STBO high (Tx interlock)  
Data-in setup time to clock high  
Data-in hold time from clock high  
Clock low to data-out valid (CPU writes data, control, or direction)  
2
5
CLK  
CLK  
CLK  
CLK  
ns  
2
25  
15  
7.5  
ns  
ns  
1
t3 = Specification 23.  
MOTOROLA  
MPC860 Family Hardware Specifications  
43  
PIP/PIO AC Electrical Specifications  
DATA-IN  
21  
22  
23  
STBI  
27  
24  
STBO  
Figure 11-38. PIP Rx (Interlock Mode) Timing Diagram  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
28  
23  
STBI  
(Input)  
Figure 11-39. PIP Tx (Interlock Mode) Timing Diagram  
DATA-IN  
21  
22  
23  
24  
STBI  
(Input)  
STBO  
(Output)  
Figure 11-40. PIP Rx (Pulse Mode) Timing Diagram  
44  
MPC860 Family Hardware Specifications  
MOTOROLA  
IDMA Controller AC Electrical Specifications  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
23  
STBI  
(Input)  
Figure 11-41. PIP TX (Pulse Mode) Timing Diagram  
CLKO  
DATA-IN  
29  
30  
31  
DATA-OUT  
Figure 11-42. Parallel I/O Data-In/Data-Out Timing Diagram  
11.2 IDMA Controller AC Electrical Specifications  
Table 11-14 provides the IDMA controller timings as shown in Figure 11-43 through  
Figure 11-46.  
Table 11-14. IDMA Controller Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
40  
41  
42  
DREQ setup time to clock high  
7
3
12  
ns  
ns  
ns  
DREQ hold time from clock high  
SDACK assertion delay from clock high  
MOTOROLA  
MPC860 Family Hardware Specifications  
45  
IDMA Controller AC Electrical Specifications  
Table 11-14. IDMA Controller Timing (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
43  
44  
45  
46  
SDACK negation delay from clock low  
SDACK negation delay from TA low  
SDACK negation delay from clock high  
7
12  
20  
15  
ns  
ns  
ns  
ns  
TA assertion to falling edge of the clock setup time (applies to  
external TA)  
CLKO  
(Output)  
41  
40  
DREQ  
(Input)  
Figure 11-43. IDMA External Requests Timing Diagram  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
43  
DATA  
46  
TA  
(Input)  
SDACK  
Figure 11-44. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA  
46  
MPC860 Family Hardware Specifications  
MOTOROLA  
IDMA Controller AC Electrical Specifications  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
44  
DATA  
TA  
(Output)  
SDACK  
Figure 11-45. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
45  
DATA  
TA  
(Output)  
SDACK  
Figure 11-46. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA  
MOTOROLA  
MPC860 Family Hardware Specifications  
47  
Baud Rate Generator AC Electrical Specifications  
11.3 Baud Rate Generator AC Electrical Specifications  
Table 11-15 provides the baud rate generator timings as shown in Figure 11-47.  
Table 11-15. Baud Rate Generator Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
50  
51  
52  
BRGO rise and fall time  
BRGO duty cycle  
BRGO cycle  
40  
40  
10  
60  
ns  
%
ns  
50  
50  
BRGOX  
51  
51  
52  
Figure 11-47. Baud Rate Generator Timing Diagram  
11.4 Timer AC Electrical Specifications  
Table 11-16 provides the general-purpose timer timings as shown in Figure 11-48.  
Table 11-16. Timer Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
61  
62  
63  
64  
65  
TIN/TGATE rise and fall time  
10  
1
25  
ns  
TIN/TGATE low time  
TIN/TGATE high time  
TIN/TGATE cycle time  
CLKO low to TOUT valid  
CLK  
CLK  
CLK  
ns  
2
3
3
48  
MPC860 Family Hardware Specifications  
MOTOROLA  
Serial Interface AC Electrical Specifications  
CLKO  
60  
61  
63  
62  
TIN/TGATE  
(Input)  
61  
64  
65  
TOUT  
(Output)  
Figure 11-48. CPM General-Purpose Timers Timing Diagram  
11.5 Serial Interface AC Electrical Specifications  
Table 11-17 provides the serial interface timings as shown in Figure 11-49 through  
Figure 11-53.  
Table 11-17. SI Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1, 2  
70  
71  
L1RCLK, L1TCLK frequency (DSC = 0)  
L1RCLK, L1TCLK width low (DSC = 0)  
SYNCCLK/2.5 MHz  
2
P + 10  
P + 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
3
71a L1RCLK, L1TCLK width high (DSC = 0)  
72  
73  
74  
75  
76  
77  
78  
L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time  
L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)  
L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)  
L1RSYNC, L1TSYNC rise/fall time  
15.00  
20.00  
35.00  
15.00  
L1RXD valid to L1CLK edge (L1RXD setup time)  
L1CLK edge to L1RXD invalid (L1RXD hold time)  
17.00  
13.00  
10.00  
10.00  
10.00  
10.00  
10.00  
0.00  
4
L1CLK edge to L1ST(1–4) valid  
45.00  
45.00  
45.00  
55.00  
55.00  
42.00  
78A L1SYNC valid to L1ST(1–4) valid  
79  
80  
L1CLK edge to L1ST(1–4) invalid  
L1CLK edge to L1TXD valid  
4
80A L1TSYNC valid to L1TXD valid  
81  
82  
L1CLK edge to L1TXD high impedance  
L1RCLK, L1TCLK frequency (DSC =1)  
16.00 or  
SYNCCLK/2  
MOTOROLA  
MPC860 Family Hardware Specifications  
49  
Serial Interface AC Electrical Specifications  
Table 11-17. SI Timing (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
83  
L1RCLK, L1TCLK width low (DSC =1)  
P + 10  
P + 10  
ns  
ns  
ns  
3
83a L1RCLK, L1TCLK width high (DSC = 1)  
84  
85  
L1CLK edge to L1CLKO valid (DSC = 1)  
30.00  
4
L1RQ valid before falling edge of L1TSYNC  
1.00  
L1TCL  
K
2
86  
87  
88  
L1GR setup time  
42.00  
42.00  
ns  
ns  
ns  
L1GR hold time  
L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0,  
DSC = 0)  
0.00  
1
2
3
4
The ratio SYNCCLK/L1RCLK must be greater than 2.5/1.  
These specs are valid for IDL mode only.  
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.  
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.  
L1RCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
71a  
72  
L1RCLK  
(FE=1, CE=1)  
(Input)  
RFSD=1  
75  
74  
L1RSYNC  
(Input)  
73  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
Figure 11-49. SI Receive Timing Diagram with Normal Clocking (DSC = 0)  
50  
MPC860 Family Hardware Specifications  
MOTOROLA  
Serial Interface AC Electrical Specifications  
L1RCLK  
(FE=1, CE=1)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=0, CE=0)  
(Input)  
RFSD=1  
75  
L1RSYNC  
(Input)  
73  
74  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
84  
L1CLKO  
(Output)  
Figure 11-50. SI Receive Timing with Double-Speed Clocking (DSC = 1)  
MOTOROLA  
MPC860 Family Hardware Specifications  
51  
Serial Interface AC Electrical Specifications  
L1TCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
72  
L1TCLK  
(FE=1, CE=1)  
(Input)  
73  
TFSD=0  
75  
74  
L1TSYNC  
(Input)  
80a  
BIT0  
80  
81  
L1TXD  
(Output)  
79  
78  
L1ST(4-1)  
(Output)  
Figure 11-51. SI Transmit Timing Diagram (DSC = 0)  
52  
MPC860 Family Hardware Specifications  
MOTOROLA  
Serial Interface AC Electrical Specifications  
L1RCLK  
(FE=0, CE=0)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=1, CE=1)  
(Input)  
TFSD=0  
75  
L1RSYNC  
(Input)  
73  
74  
81  
L1TXD  
(Output)  
BIT0  
80  
78a  
79  
L1ST(4-1)  
(Output)  
78  
84  
L1CLKO  
(Output)  
Figure 11-52. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
MOTOROLA  
MPC860 Family Hardware Specifications  
53  
Serial Interface AC Electrical Specifications  
Figure 11-53. IDL Timing  
54  
MPC860 Family Hardware Specifications  
MOTOROLA  
SCC in NMSI Mode Electrical Specifications  
11.6 SCC in NMSI Mode Electrical Specifications  
Table 11-18 provides the NMSI external clock timing.  
Table 11-18. NMSI External Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100 RCLK1 and TCLK1 width high  
1/SYNCCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
101 RCLK1 and TCLK1 width low  
1/SYNCCLK + 5  
102 RCLK1 and TCLK1 rise/fall time  
15.00  
50.00  
50.00  
103 TXD1 active delay (from TCLK1 falling edge)  
104 RTS1 active/inactive delay (from TCLK1 falling edge)  
105 CTS1 setup time to TCLK1 rising edge  
106 RXD1 setup time to RCLK1 rising edge  
0.00  
0.00  
5.00  
5.00  
5.00  
5.00  
2
107 RXD1 hold time from RCLK1 rising edge  
108 CD1 setup Time to RCLK1 rising edge  
1
2
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.  
Also applies to CD and CTS hold time when they are used as an external sync signal.  
Table 11-19 provides the NMSI internal clock timing.  
Table 11-19. NMSI Internal Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100 RCLK1 and TCLK1 frequency  
0.00  
SYNCCLK/3  
MHz  
ns  
102 RCLK1 and TCLK1 rise/fall time  
30.00  
30.00  
103 TXD1 active delay (from TCLK1 falling edge)  
104 RTS1 active/inactive delay (from TCLK1 falling edge)  
105 CTS1 setup time to TCLK1 rising edge  
106 RXD1 setup time to RCLK1 rising edge  
0.00  
0.00  
40.00  
40.00  
0.00  
40.00  
ns  
ns  
ns  
ns  
2
107 RXD1 hold time from RCLK1 rising edge  
ns  
108 CD1 setup time to RCLK1 rising edge  
ns  
1
2
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater or equal to 3/1.  
Also applies to CD and CTS hold time when they are used as an external sync signals.  
Figure 11-54 through Figure 11-56 show the NMSI timings.  
MOTOROLA  
MPC860 Family Hardware Specifications  
55  
SCC in NMSI Mode Electrical Specifications  
RCLK1  
102  
102  
101  
106  
100  
RxD1  
(Input)  
107  
108  
CD1  
(Input)  
107  
CD1  
(SYNC Input)  
Figure 11-54. SCC NMSI Receive Timing Diagram  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
105  
RTS1  
(Output)  
104  
104  
CTS1  
(Input)  
107  
CTS1  
(SYNC Input)  
Figure 11-55. SCC NMSI Transmit Timing Diagram  
56  
MPC860 Family Hardware Specifications  
MOTOROLA  
Ethernet Electrical Specifications  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
RTS1  
(Output)  
104  
107  
104  
105  
CTS1  
(Echo Input)  
Figure 11-56. HDLC Bus Timing Diagram  
11.7 Ethernet Electrical Specifications  
Table 11-20 provides the Ethernet timings as shown in Figure 11-57 through Figure 11-61.  
Table 11-20. Ethernet Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
120 CLSN width high  
121 RCLK1 rise/fall time  
122 RCLK1 width low  
123 RCLK1 clock period  
124 RXD1 setup time  
125 RXD1 hold time  
40  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
80  
20  
5
1
120  
126 RENA active delay (from RCLK1 rising edge of the last data bit)  
127 RENA width low  
10  
100  
128 TCLK1 rise/fall time  
15  
129 TCLK1 width low  
40  
99  
10  
10  
10  
1
130 TCLK1 clock period  
101  
50  
50  
50  
131 TXD1 active delay (from TCLK1 rising edge)  
132 TXD1 inactive delay (from TCLK1 rising edge)  
133 TENA active delay (from TCLK1 rising edge)  
MOTOROLA  
MPC860 Family Hardware Specifications  
57  
Ethernet Electrical Specifications  
Table 11-20. Ethernet Timing (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
134 TENA inactive delay (from TCLK1 rising edge)  
135 RSTRT active delay (from TCLK1 falling edge)  
136 RSTRT inactive delay (from TCLK1 falling edge)  
137 REJECT width low  
10  
10  
10  
1
50  
50  
50  
20  
20  
ns  
ns  
ns  
CLK  
ns  
2
138 CLKO1 low to SDACK asserted  
2
139 CLKO1 low to SDACK negated  
ns  
1
2
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater or equal to 2/1.  
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
CLSN(CTS1)  
(Input)  
120  
Figure 11-57. Ethernet Collision Timing Diagram  
RCLK1  
121  
121  
124  
123  
Last Bit  
RxD1  
(Input)  
125  
126  
127  
RENA(CD1)  
(Input)  
Figure 11-58. Ethernet Receive Timing Diagram  
58  
MPC860 Family Hardware Specifications  
MOTOROLA  
Ethernet Electrical Specifications  
TCLK1  
128  
128  
129  
131  
121  
TxD1  
(Output)  
132  
133  
134  
TENA(RTS1)  
(Input)  
RENA(CD1)  
(Input)  
(NOTE 2)  
NOTES:  
1. Transmit clock invert (TCI) bit in GSMR is set.  
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the  
CSL bit is set in the buffer descriptor at the end of the frame transmission.  
Figure 11-59. Ethernet Transmit Timing Diagram  
RCLK1  
RxD1  
(Input)  
0
1
1
BIT1  
125  
BIT2  
136  
Start Frame  
RSTRT  
(Output)  
Figure 11-60. CAM Interface Receive Start Timing Diagram  
REJECT  
137  
Figure 11-61. CAM Interface REJECT Timing Diagram  
MOTOROLA  
MPC860 Family Hardware Specifications  
59  
SMC Transparent AC Electrical Specifications  
11.8 SMC Transparent AC Electrical Specifications  
Table 11-21 provides the SMC transparent timings as shown in Figure 11-62.  
Table 11-21. SMC Transparent Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
150 SMCLK clock period  
151 SMCLK width low  
151A SMCLK width high  
152 SMCLK rise/fall time  
100  
50  
50  
10  
20  
5
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
153 SMTXD active delay (from SMCLK falling edge)  
154 SMRXD/SMSYNC setup time  
155 RXD1/SMSYNC hold time  
1
SYNCCLK must be at least twice as fast as SMCLK.  
SMCLK  
152  
152  
151  
151  
150  
SMTXD  
(Output)  
NOTE  
154  
153  
155  
SMSYNC  
154  
155  
SMRXD  
(Input)  
NOTE:  
1. This delay is equal to an integer number of character-length clocks.  
Figure 11-62. SMC Transparent Timing Diagram  
11.9 SPI Master AC Electrical Specifications  
Table 11-22 provides the SPI master timings as shown in Figure 11-63 and Figure 11-64.  
60  
MPC860 Family Hardware Specifications  
MOTOROLA  
SPI Master AC Electrical Specifications  
Table 11-22. SPI Master Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
160 MASTER cycle time  
4
2
1024  
512  
t
t
cyc  
161 MASTER clock (SCK) high or low time  
162 MASTER data setup time (inputs)  
163 Master data hold time (inputs)  
164 Master data valid (after SCK edge)  
165 Master data hold time (outputs)  
166 Rise time output  
cyc  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
0
20  
15  
167 Fall time output  
15  
SPICLK  
(CI=0)  
(Output)  
161  
163  
167  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
162  
166  
Data  
165  
SPIMISO  
(Input)  
msb  
167  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 11-63. SPI Master (CP = 0) Timing Diagram  
MOTOROLA  
MPC860 Family Hardware Specifications  
61  
SPI Slave AC Electrical Specifications  
SPICLK  
(CI=0)  
(Output)  
161  
167  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
163  
162  
166  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 11-64. SPI Master (CP = 1) Timing Diagram  
11.10SPI Slave AC Electrical Specifications  
Table 11-23 provides the SPI slave timings as shown in Figure 11-65 and Figure 11-66.  
Table 11-23. SPI Slave Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
170 Slave cycle time  
2
50  
t
cyc  
171 Slave enable lead time  
172 Slave enable lag time  
15  
15  
1
ns  
ns  
173 Slave clock (SPICLK) high or low time  
174 Slave sequential transfer delay (does not require deselect)  
175 Slave data setup time (inputs)  
t
cyc  
cyc  
1
t
20  
20  
ns  
ns  
ns  
176 Slave data hold time (inputs)  
177 Slave access time  
62  
MPC860 Family Hardware Specifications  
MOTOROLA  
SPI Slave AC Electrical Specifications  
SPISEL  
(Input)  
172  
171  
174  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
173  
170  
SPICLK  
(CI=1)  
(Input)  
177  
181  
182  
180  
178  
SPIMISO  
(Output)  
msb  
175  
Data  
lsb  
Undef  
msb  
msb  
179  
176  
181 182  
lsb  
SPIMOSI  
(Input)  
msb  
Data  
Figure 11-65. SPI Slave (CP = 0) Timing Diagram  
SPISEL  
(Input)  
172  
174  
171  
170  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
182  
173  
181  
SPICLK  
(CI=1)  
(Input)  
177  
180  
178  
SPIMISO  
(Output)  
msb  
msb  
msb  
Undef  
175  
Data  
lsb  
179  
176  
msb  
181 182  
Data  
SPIMOSI  
(Input)  
lsb  
Figure 11-66. SPI Slave (CP = 1) Timing Diagram  
MOTOROLA  
MPC860 Family Hardware Specifications  
63  
I2C AC Electrical Specifications  
2
11.11I C AC Electrical Specifications  
Table 11-24 provides the I2C (SCL < 100 kHz) timings.  
2
Table 11-24. I C Timing (SCL < 100 kHZ)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
200 SCL clock frequency (slave)  
200 SCL clock frequency (master)  
0
100  
100  
kHz  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
1
1.5  
4.7  
4.7  
4.0  
4.7  
4.0  
0
202 Bus free time between transmissions  
203 Low period of SCL  
204 High period of SCL  
205 Start condition setup time  
206 Start condition hold time  
207 Data hold time  
208 Data setup time  
250  
209 SDL/SCL rise time  
1
µs  
ns  
210 SDL/SCL fall time  
300  
211 Stop condition setup time  
4.7  
µs  
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3 × pre_scaler × 2).  
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater or equal to 4/1.  
Table 11-25 provides the I2C (SCL > 100 kHz) timings.  
2
Table 11-25. . I C Timing (SCL > 100 kHZ)  
All Frequencies  
Num  
Characteristic  
Expression  
Unit  
Min  
Max  
200 SCL clock frequency (slave)  
200 SCL clock frequency (master)  
fSCL  
fSCL  
0
BRGCLK/48  
Hz  
Hz  
s
1
BRGCLK/16512  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
0
BRGCLK/48  
202 Bus free time between transmissions  
203 Low period of SCL  
s
204 High period of SCL  
205 Start condition setup time  
206 Start condition hold time  
207 Data hold time  
s
s
s
s
208 Data setup time  
1/(40 * fSCL)  
s
209 SDL/SCL rise time  
1/(10 * fSCL)  
1/(33 * fSCL)  
s
210 SDL/SCL fall time  
s
211 Stop condition setup time  
1/2(2.2 * fSCL)  
s
64  
MPC860 Family Hardware Specifications  
MOTOROLA  
UTOPIA AC Electrical Specifications  
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) × pre_scaler × 2).  
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater or equal to 4/1.  
Figure 11-67 shows the I2C bus timing.  
SDA  
202  
203  
204  
208  
205  
207  
SCL  
206  
209  
210  
211  
2
Figure 11-67. I C Bus Timing Diagram  
Part XII UTOPIA AC Electrical Specifications  
Table 12-26 shows the AC electrical specifications for the UTOPIA interface.  
Table 12-26. UTOPIA AC Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (Internal clock option)  
Output  
50  
40  
2
3.5  
50  
50  
3.5  
60  
50  
16  
ns  
%
Duty cycle  
Frequency  
MHz  
ns  
U1a UtpClk rise/fall time (external clock option)  
Input  
Duty cycle  
Frequency  
%
MHz  
ns  
U2  
U3  
U4  
U5  
RxEnb and TxEnb active delay  
Output  
Input  
UTPB, SOC, Rxclav and Txclav setup time  
UTPB, SOC, Rxclav and Txclav hold time  
8
ns  
Input  
1
ns  
UTPB, SOC active delay (and PHREQ and PHSEL active delay  
in MPHY mode)  
Output  
2
16  
ns  
Figure 12-68 shows signal timings during UTOPIA receive operations.  
MOTOROLA  
MPC860 Family Hardware Specifications  
65  
FEC Electrical Characteristics  
U1  
U1  
UtpClk  
U5  
PHREQn  
U3  
U4  
RxClav  
HighZ at MPHY  
U2  
RxEnb  
UTPB  
SOC  
U3  
U4  
Figure 12-68. UTOPIA Receive Timing  
Figure 12-69 shows signal timings during UTOPIA transmit operations.  
U1  
U1  
UtpClk  
U5  
PHSELn  
U3  
U4  
TxClav  
Y  
HighZ at MPHY  
U2  
TxEnb  
UTPB  
SOC  
U5  
Figure 12-69. UTOPIA Transmit Timing  
Part XIII FEC Electrical Characteristics  
This section provides theAC electrical specifications for the Fast Ethernet controller (FEC).  
Note that the timing specifications for the MII signals are independent of system clock  
frequency (part speed designation). Also, MII signals use TTL signal levels compatible  
with devices operating at either 5.0 V or 3.3 V.  
66  
MPC860 Family Hardware Specifications  
MOTOROLA  
MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)  
13.1 MII Receive Signal Timing (MII_RXD[3:0],  
MII_RX_DV, MII_RX_ER, MII_RX_CLK)  
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz  
+1%. There is no minimum frequency requirement. In addition, the processor clock  
frequency must exceed the MII_RX_CLK frequency – 1%.  
Table 13-27 provides information on the MII receive signal timing.  
Table 13-27. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup  
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold  
MII_RX_CLK pulse width high  
5
5
ns  
ns  
35%  
65%  
MII_RX_CLK  
period  
M4  
MII_RX_CLK pulse width low  
35%  
65%  
MII_RX_CLK  
period  
Figure 13-70 shows MII receive signal timing.  
M3  
MII_RX_CLK (Input)  
M4  
MII_RXD[3:0] (Inputs)  
MII_RX_DV  
MII_RX_ER  
M1  
M2  
Figure 13-70. MII Receive Signal Timing Diagram  
13.2 MII Transmit Signal Timing (MII_TXD[3:0],  
MII_TX_EN, MII_TX_ER, MII_TX_CLK)  
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of  
25 MHz +1%. There is no minimum frequency requirement. In addition, the processor  
clock frequency must exceed the MII_TX_CLK frequency – 1%.  
Table 13-28 provides information on the MII transmit signal timing.  
MOTOROLA  
MPC860 Family Hardware Specifications  
67  
MII Async Inputs Signal Timing (MII_CRS, MII_COL)  
Table 13-28. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid  
MII_TX_CLK pulse width high  
5
25  
ns  
35  
65%  
MII_TX_CLK  
period  
M8  
MII_TX_CLK pulse width low  
35%  
65%  
MII_TX_CLK  
period  
Figure 13-71 shows the MII transmit signal timing diagram.  
M7  
MII_TX_CLK (Input)  
M5  
M8  
MII_TXD[3:0] (Outputs)  
MII_TX_EN  
MII_TX_ER  
M6  
Figure 13-71. MII Transmit Signal Timing Diagram  
13.3 MII Async Inputs Signal Timing (MII_CRS,  
MII_COL)  
Table 13-29 provides information on the MII async inputs signal timing.  
Table 13-29. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
MII_CRS, MII_COL minimum pulse width  
1.5  
MII_TX_CLK  
period  
Figure 13-72 shows the MII asynchronous inputs signal timing diagram.  
MII_CRS, MII_COL  
M9  
Figure 13-72. MII Async Inputs Timing Diagram  
68  
MPC860 Family Hardware Specifications  
MOTOROLA  
MII Serial Management Channel Timing (MII_MDIO, MII_MDC)  
13.4 MII Serial Management Channel Timing  
(MII_MDIO, MII_MDC)  
Table 13-30 provides information on the MII serial management channel signal timing. The  
FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact  
upper bound is under investigation.  
Table 13-30. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10 MII_MDC falling edge to MII_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11 MII_MDC falling edge to MII_MDIO output valid (max prop delay)  
M12 MII_MDIO (input) to MII_MDC rising edge setup  
M13 MII_MDIO (input) to MII_MDC rising edge hold  
M14 MII_MDC pulse width high  
10  
25  
ns  
ns  
ns  
0
40%  
60%  
MII_MDC  
period  
M15 MII_MDC pulse width low  
40%  
60%  
MII_MDC  
period  
Figure 13-73 shows the MII serial management channel timing diagram.  
M14  
MM15  
MII_MDC (Output)  
M10  
MII_MDIO (Output)  
M11  
MII_MDIO (Input)  
M12  
M13  
Figure 13-73. MII Serial Management Channel Timing Diagram  
MOTOROLA  
MPC860 Family Hardware Specifications  
69  
Mechanical Data and Ordering Information  
Part XIV Mechanical Data and Ordering  
Information  
Table 14-31 provides information on the MPC860 revision D.3 and D.4 derivative devices.  
Table 14-31. MPC860 Family Revision D.3 and D.4 Derivatives  
2
Number of Ethernet Support  
Multi-Channel  
HDLC Support  
ATM  
Support  
Device  
1
SCCs  
(Mbps)  
MPC855T  
MPC860DE  
MPC860DT  
MPC860DP  
MPC860EN  
MPC860SR  
MPC860T  
1
2
10/100  
10  
yes  
N/A  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
yes  
N/A  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
10/100  
10/100  
10  
4
10  
10/100  
10/100  
MPC860P  
1
2
Serial communications controller (SCC).  
Up to 4 channels at 40 MHz or 2 channels at 25 MHz.  
Table 14-32 identifies the packages and operating frequencies available for the MPC860.  
Table 14-32. MPC860 Family Package/Frequency Availability  
Frequency  
(MHz)  
Temperature  
(Tj)  
Package Type  
Order Number  
70  
MPC860 Family Hardware Specifications  
MOTOROLA  
Mechanical Data and Ordering Information  
Table 14-32. MPC860 Family Package/Frequency Availability (continued)  
1
Ball grid array  
(ZP suffix)  
50  
66  
80  
50  
66  
0° to 95°C  
0° to 95°C  
0° to 95°C  
XPC860DEZP50nn  
XPC860DTZP50nn  
XPC860ENZP50nn  
XPC860SRZP50nn  
XPC860TZP50nn  
XPC855TZP50D4  
XPC860DEZP66nn  
XPC860DTZP66nn  
XPC860ENZP66nn  
XPC860SRZP66nn  
XPC860TZP66nn  
XPC855TZP66D4  
XPC860DEZP80nn  
XPC860DTZP80nn  
XPC860ENZP80nn  
XPC860SRZP80nn  
XPC860TZP80nn  
XPC855TZP80D4  
Ball grid array  
(CZP suffix)  
–40° to 95°C XPC860DECZP50nn  
XPC860DTCZP50nn  
XPC860ENCZP50nn  
XPC860SRCZP50nn  
XPC860TCZP50nn  
XPC855TCZP50D4  
–40° to 95°C XPC860DECZP66nn  
XPC860DTCZP66nn  
XPC860ENCZP66nn  
XPC860SRCZP66nn  
XPC860TCZP66nn  
XPC855TCZP66D4  
1
Where nn specifies version D.3 (as D3) or D.4 (as D4).  
Table 14-33 identifies the packages and operating frequencies available for the MPC860P.  
Table 14-33. MPC860P Package/Frequency Availability  
Frequency  
(MHz)  
Temperature  
(Tj)  
Package Type  
Order Number  
1
Ball grid array  
(ZP suffix)  
50  
66  
80  
50  
66  
0° to 95°C  
0° to 95°C  
0° to 95°C  
XPC860DPZP50nn  
XPC860PZP50nn  
XPC860DPZP66nn  
XPC860PZP66nn  
XPC860DPZP80nn  
XPC860PZP80nn  
Ball grid array  
(CZP suffix)  
–40° to 95°C XPC860DPCZP50nn  
XPC860PCZP50nn  
–40° to 95°C XPC860DPCZP66nn  
XPC860PCZP66nn  
1
Where nn specifies version D.3 (as D3) or D.4 (as D4).  
MOTOROLA  
MPC860 Family Hardware Specifications  
71  
Pin Assignments  
14.1 Pin Assignments  
Figure 14-74 shows the top view pinout of the PBGA package. For additional information,  
see the MPC860 PowerQUICC User’s Manual, or the MPC855T User’s Manual.  
NOTE:This is the top view of the device.  
W
PD10 PD8  
PD14 PD13 PD9  
PA0 PB14 PD15  
PD3  
IRQ7 D0  
D4  
D1  
D2  
D3  
D5  
VDDL  
D20  
D6  
D7  
D29  
DP1  
DP2 CLKOUT IPA3  
V
U
T
VSSSYN1  
N/C  
PD6 M_Tx_EN IRQ0 D13  
D27  
D10  
D14  
D18  
D24  
D28  
DP3  
DP0  
PD4  
PD5 IRQ1  
D8  
D23  
D17  
D11  
D9  
D16  
D15  
D19  
D22  
D21  
D25  
D26  
D31  
D30 IPA5 IPA4 IPA2  
IPA6 IPA0 IPA1 IPA7  
N/C VSSSYN  
XFC VDDSYN  
PA1  
PC6  
PC5 PC4 PD11  
PA2 PB15 PD12  
PD7 VDDH D12  
VDDH  
R
P
N
M
L
VDDH  
WAIT_B WAIT_A  
VDDL RSTCONF  
KAPWR  
PORESET  
SRESET  
PA4 PB17 PA3 VDDL  
PB19 PA5 PB18 PB16  
GND  
GND  
XTAL  
TEXP  
HRESET  
EXTCLK EXTAL  
PA7  
PC8  
PA6  
PC7  
BADDR28  
AS  
MODCK2  
OP0  
BADDR29  
VDDL  
PB22 PC9  
PA8 PB20  
OP1 MODCK1  
K
J
PC10 PA9 PB23 PB21  
PC11 PB24 PA10 PB25  
GND  
BADDR30 IPB6 ALEA IRQ4  
IPB5 IPB1 IPB2 ALEB  
M_COL IRQ2 IPB0 IPB7  
H
G
F
VDDL M_MDIO TDI  
TCK  
TRST TMS TDO PA11  
PB26 PC12 PA12 VDDL  
PB27 PC13 PA13 PB29  
PB28 PC14 PA14 PC15  
BR  
VDDL  
CS3  
IRQ6 IPB4 IPB3  
GND  
GND  
TS  
BI  
IRQ3 BURST  
VDDH  
VDDH  
CS6  
E
D
C
B
A
BG  
BB  
A8  
A9  
N/C  
A12  
A13  
N/C  
A16  
A17  
A15  
A20  
A21  
A19  
A24  
A23  
A25  
A18 BSA0 GPLA0 N/C  
CS2 GPLA5 BDIP TEA  
PB30 PA15 PB31  
A3  
A6  
A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS7  
CS0  
TA GPLA4  
A0  
19  
A1  
A4  
A10  
A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CS5 CE1A WR GPLB4  
A2  
18  
A5  
17  
A7  
16  
A11  
15  
A14  
14  
A27  
13  
A29  
12  
A30  
11  
A28  
10  
A31 VDDL BSA2 WE1 WE3 CS4 CE2A CS1  
9
8
7
6
5
4
3
2
1
Figure 14-74. Pinout of the PBGA Package  
72  
MPC860 Family Hardware Specifications  
MOTOROLA  
Mechanical Dimensions of the PBGA Package  
14.2 Mechanical Dimensions of the PBGA Package  
For more information on the printed circuit board layout of the PBGA package, including  
thermal via design and suggested pad layout, please refer to Motorola Application Note,  
Plastic Ball Grid Array (order number: AN1231/D), available from your local Motorola  
sales office. Figure 14-75 shows the mechanical dimensions of the PBGA package.  
C
0.2  
4X  
0.2 C  
0.25 C  
0.35 C  
D
A
E2  
E
D2  
B
TOP VIEW  
A2  
A3  
A1  
A
D1  
SIDE VIEW  
18X e  
NOTES:  
1. Dimensions and tolerancing per ASME Y14.5M, 1994.  
2. Dimensions in millimeters.  
W
V
U
T
3. Dimension b is the maximum solder ball diameter  
measured parallel to datum C.  
R
P
N
M
L
K
J
E1  
H
G
F
MILLIMETERS  
E
D
C
B
A
DIM MIN  
MAX  
2.05  
0.70  
1.35  
0.90  
0.90  
A
A1  
A2  
A3  
b
---  
0.50  
0.95  
0.70  
0.60  
1
3
5
7
9
11 13 15 17 19  
2
4 6 8 10 12 14 16 18  
357X  
b
BOTTOM VIEW  
M
0.3  
C A B  
C
D
25.00 BSC  
22.86 BSC  
M
0.15  
D1  
D2  
e
22.40  
22.60  
1.27 BSC  
25.00 BSC  
22.86 BSC  
E
E1  
E2  
22.40  
22.60  
Case No. 1103-01  
Figure 14-75. Mechanical Dimensions and Bottom Surface Nomenclature  
of the PBGA Package  
MOTOROLA  
MPC860 Family Hardware Specifications  
73  
Document Revision History  
Part XV Document Revision History  
Table 15-34 lists significant changes between revisions of this document.  
Table 15-34. Document Revision History  
Revision  
5.1  
Date  
Change  
11/2001  
Revised template format, removed references to MAC functionality, changed Table 9-6  
B23 max value @ 66 Mhz from 2ns to 8ns, added this revision history table  
6
10/2002  
11/2002  
Added the MPC855T. Corrected Figure 9-25 on page 36.  
6.1  
Corrected UTOPIA RXenb* and TXenb* timing values. Changed incorrect usage of Vcc  
to Vdd. Corrected dual port RAM to 8Kbytes.  
74  
MPC860 Family Hardware Specifications  
MOTOROLA  
Document Revision History  
THIS PAGE INTENTIONALLY LEFT BLANK  
MOTOROLA  
MPC860 Family Hardware Specifications  
75  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu Minato-ku  
Tokyo 106-8573 Japan  
81-3-3440-3569  
Information in this document is provided solely to enable system and software implementers to use  
Motorola products.There are no express or implied copyright licenses granted hereunder to design  
or fabricate any integrated circuits or integrated circuits based on the information in this document.  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.  
Silicon Harbour Centre, 2 Dai King Street  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
Motorola reserves the right to make changes without further notice to any products herein.  
Motorola makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does Motorola assume any liability arising out of the application or  
use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be provided in  
Motorola data sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be validated  
for each customer application by customer’s technical experts. Motorola does not convey any  
license under its patent rights nor the rights of others. Motorola products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant into the  
body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or death may  
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was  
negligent regarding the design or manufacture of the part.  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
HOME PAGE:  
http://www.motorola.com/semiconductors  
DOCUMENT COMMENTS:  
FAX (512) 933-2625  
Attn: RISC Applications Engineering  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.  
digital dna is a trademark of Motorola, Inc. All other product or service names are the property of  
their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2002  
MPC860EC/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY