MRF1518T1 [MOTOROLA]

RF Power Field Effect Transistor; 射频功率场效应晶体管
MRF1518T1
型号: MRF1518T1
厂家: MOTOROLA    MOTOROLA
描述:

RF Power Field Effect Transistor
射频功率场效应晶体管

晶体 射频场效应晶体管 功率场效应晶体管 放大器
文件: 总20页 (文件大小:754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MRF1518  
Rev. 6, 3/2005  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistor  
N-Channel Enhancement-Mode Lateral MOSFET  
MRF1518NT1  
MRF1518T1  
Designed for broadband commercial and industrial applications with frequen-  
cies to 520 MHz. The high gain and broadband performance of this device  
make it ideal for large-signal, common source amplifier applications in 12.5 volt  
mobile FM equipment.  
Specified Performance @ 520 MHz, 12.5 Volts  
Output Power — 8 Watts  
D
520 MHz, 8 W, 12.5 V  
LATERAL N-CHANNEL  
BROADBAND  
Power Gain — 11 dB  
Efficiency — 55%  
Capable of Handling 20:1 VSWR, @ 15.5 Vdc,  
RF POWER MOSFET  
520 MHz, 2 dB Overdrive  
Excellent Thermal Stability  
Characterized with Series Equivalent Large-Signal  
Impedance Parameters  
RF Power Plastic Surface Mount Package  
G
Broadband UHF/VHF Demonstration Amplifier  
Information Available Upon Request  
N Suffix Indicates Lead-Free Terminations  
S
CASE 466-03, STYLE 1  
PLD-1.5  
Available in Tape and Reel. T1 Suffix = 1,000 Units per 12 mm,  
7 Inch Reel.  
PLASTIC  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
-0.5, +40  
20  
Unit  
Vdc  
Vdc  
Adc  
Drain-Source Voltage  
Gate-Source Voltage  
V
DSS  
V
GS  
Drain Current — Continuous  
I
D
4
(1)  
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
62.5  
0.50  
W
W/°C  
C
Storage Temperature Range  
Operating Junction Temperature  
Table 2. Thermal Characteristics  
T
- 65 to +150  
150  
°C  
°C  
stg  
T
J
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Table 3. Moisture Sensitivity Level  
Test Methodology  
R
2
°C/W  
θ
JC  
Rating  
Package Peak Temperature  
Unit  
Per JESD 22-A113, IPC/JEDEC J-STD-020  
1
260  
°C  
T
T
C
J –  
1. Calculated based on the formula P  
=
D
R
θJC  
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
Freescale Semiconductor, Inc., 2005. All rights reserved.  
 
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Zero Gate Voltage Drain Current  
I
1
1
µAdc  
µAdc  
DSS  
(V = 40 Vdc, V = 0 Vdc)  
DS  
GS  
Gate-Source Leakage Current  
I
GSS  
(V = 10 Vdc, V = 0 Vdc)  
GS  
DS  
On Characteristics  
Gate Threshold Voltage  
(V = 12.5 Vdc, I = 100 µA)  
V
1.0  
1.6  
0.4  
2.1  
Vdc  
Vdc  
GS(th)  
DS  
D
Drain-Source On-Voltage  
(V = 10 Vdc, I = 1 Adc)  
V
DS(on)  
GS  
D
Dynamic Characteristics  
Input Capacitance  
(V = 12.5 Vdc, V = 0, f = 1 MHz)  
DS  
C
66  
33  
pF  
pF  
pF  
iss  
GS  
Output Capacitance  
(V = 12.5 Vdc, V = 0, f = 1 MHz)  
DS  
C
oss  
GS  
Reverse Transfer Capacitance  
(V = 12.5 Vdc, V = 0, f = 1 MHz)  
C
4.5  
rss  
DS  
GS  
Functional Tests (In Freescale Test Fixture)  
Common-Source Amplifier Power Gain  
G
10  
50  
11  
55  
dB  
%
ps  
(V = 12.5 Vdc, P = 8 Watts, I = 150 mA, f = 520 MHz)  
DD  
out  
DQ  
Drain Efficiency  
η
(V = 12.5 Vdc, P = 8 Watts, I = 150 mA, f = 520 MHz)  
DD  
out  
DQ  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
2
B2  
V
GG  
+
V
DD  
B1  
+
C8  
C7  
C6  
R4  
C15  
C14  
C13  
N2  
C16  
R3  
R2  
L1  
C5  
Z6  
Z7  
Z8  
Z9  
Z10  
RF  
OUTPUT  
R1  
C4  
DUT  
N1  
C12  
Z1  
Z2  
Z3  
Z4  
Z5  
RF  
INPUT  
C10  
C11  
C9  
C1  
C2  
C3  
B1, B2  
Short Ferrite Beads, Fair Rite Products  
(2743021446)  
R4  
Z1  
Z2  
Z3  
Z4  
Z5, Z6  
Z7  
Z8  
Z9  
33 k, 1/8 W Resistor  
0.451x 0.080Microstrip  
1.005x 0.080Microstrip  
0.020x 0.080Microstrip  
0.155x 0.080Microstrip  
0.260x 0.223Microstrip  
0.065x 0.080Microstrip  
0.266x 0.080Microstrip  
1.113x 0.080Microstrip  
C1, C12  
C2, C3, C10, C11  
C4  
C5, C16  
C6, C13  
C7, C14  
C8, C15  
C9  
240 pF, 100 mil Chip Capacitors  
0 to 20 pF Trimmer Capacitors  
82 pF, 100 mil Chip Capacitor  
120 pF, 100 mil Chip Capacitors  
10 µF, 50 V Electrolytic Capacitors  
1,200 pF, 100 mil Chip Capacitors  
0.1 mF, 100 mil Chip Capacitors  
30 pF, 100 mil Chip Capacitor  
55.5 nH, 5 Turn, Coilcraft  
Z10  
Board  
0.433x 0.080Microstrip  
L1  
Glass Teflon , 31 mils, 2 oz. Copper  
N1, N2  
R1  
R2  
Type N Flange Mounts  
15 Chip Resistor (0805)  
51 , 1/2 W Resistor  
R3  
10 Chip Resistor (0805)  
Figure 1. 450 - 520 MHz Broadband Test Circuit  
TYPICAL CHARACTERISTICS, 450 - 520 MHz  
12  
0
V
DD  
= 12.5 Vdc  
10  
8
450 MHz  
−5  
470 MHz  
500 MHz  
470 MHz  
500 MHz  
−10  
6
520 MHz  
450 MHz  
4
−15  
−20  
520 MHz  
9
2
0
V
DD  
= 12.5 Vdc  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.6  
0
1
2
3
4
5
6
7
8
10 11  
P , INPUT POWER (WATTS)  
in  
P , OUTPUT POWER (WATTS)  
out  
Figure 2. Output Power versus Input Power  
Figure 3. Input Return Loss  
versus Output Power  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
3
 
TYPICAL CHARACTERISTICS, 450 - 520 MHz  
17  
15  
13  
11  
80  
70  
60  
50  
40  
30  
20  
10  
470 MHz  
500 MHz  
450 MHz  
520 MHz  
470 MHz  
450 MHz  
520 MHz  
500 MHz  
9
V
DD  
= 12.5 Vdc  
7
5
V
DD  
= 12.5 Vdc  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10 11 12  
P , OUTPUT POWER (WATTS)  
out  
P , OUTPUT POWER (WATTS)  
out  
Figure 4. Gain versus Output Power  
Figure 5. Drain Efficiency versus Output Power  
70  
65  
60  
55  
50  
45  
40  
12  
10  
8
470 MHz  
470 MHz  
450 MHz  
450 MHz  
500 MHz  
520 MHz  
520 MHz  
500 MHz  
6
4
V
= 12.5 Vdc  
P = 26.2 dBm  
DD  
V
= 12.5 Vdc  
P = 26.2 dBm  
2
0
DD  
35  
30  
in  
in  
0
200  
400  
600  
800  
1000  
0
200  
400  
I , BIASING CURRENT (mA)  
DQ  
600  
800  
1000  
I
, BIASING CURRENT (mA)  
DQ  
Figure 6. Output Power versus Biasing Current  
Figure 7. Drain Efficiency versus  
Biasing Current  
12  
80  
75  
70  
65  
60  
55  
50  
45  
40  
470 MHz  
450 MHz  
11  
10  
9
470 MHz  
450 MHz  
8
520 MHz  
500 MHz  
7
6
520 MHz  
500 MHz  
5
4
I
= 150 mA  
P = 26.2 dBm  
I
= 150 mA  
P = 26.2 dBm  
DQ  
DQ  
in  
in  
3
2
35  
30  
8
9
10  
11  
12  
13  
14  
15  
16  
8
9
10  
11  
, SUPPLY VOLTAGE (VOLTS)  
DD  
12  
13  
14  
15  
16  
V
DD  
, SUPPLY VOLTAGE (VOLTS)  
V
Figure 8. Output Power versus Supply Voltage  
Figure 9. Drain Efficiency versus Supply Voltage  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
4
B1  
B2  
V
GG  
V
DD  
+
+
C15  
C8  
C7  
C6  
C5  
C12  
C13  
C14  
L1  
R1  
DUT  
N1  
N2  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
RF  
INPUT  
RF  
OUTPUT  
C1  
C11  
L2  
C2  
C3  
C4  
C9  
C10  
B1, B2  
C1, C9  
C2  
C3, C4  
C5  
C6, C13  
C7, C14  
C8  
Long Ferrite Beads, Fair Rite Products  
12 pF, 100 mil Chip Capacitors  
6.8 pF, 100 mil Chip Capacitor  
20 pF, 100 mil Chip Capacitors  
51 pF, 100 mil Chip Capacitor  
1000 pF, 100 mil Chip Capacitors  
0.039 µF, 100 mil Chip Capacitors  
1 µF, 20 V Tantalum Chip Capacitor  
3 pF, 100 mil Chip Capacitor  
N1, N2  
R1  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Type N Flange Mounts  
47 Chip Resistor (0805)  
1.145x 0.080Microstrip  
0.786x 0.080Microstrip  
0.115x 0.223Microstrip  
0.145x 0.223Microstrip  
0.260x 0.223Microstrip  
0.081x 0.080Microstrip  
0.104x 0.080Microstrip  
C10  
C11, C12  
C15  
L1, L2  
51 pF, 100 mil Chip Capacitors  
22 µF, 35 V Tantalum Chip Capacitor  
18.5 nH, 5 Turn, Coilcraft  
Z8  
Board  
1.759x 0.080Microstrip  
Glass Teflon , 31 mils, 2 oz. Copper  
Figure 10. 820 - 850 MHz Broadband Test Circuit  
TYPICAL CHARACTERISTICS, 820 - 850 MHz  
12  
0
V
DD  
= 12.5 Vdc  
840 MHz  
10  
8
840 MHz  
830 MHz  
−10  
850 MHz  
850 MHz  
820 MHz  
6
−20  
820 MHz  
4
−30  
−40  
2
0
830 MHz  
7
V
DD  
= 12.5 Vdc  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
1
2
3
4
5
6
8
9
10  
11 12  
P , INPUT POWER (WATTS)  
in  
P , OUTPUT POWER (WATTS)  
out  
Figure 11. Output Power versus Input Power  
Figure 12. Input Return Loss  
versus Output Power  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS, 820 - 850 MHz  
17  
15  
13  
11  
9
80  
850 MHz  
850 MHz  
840 MHz  
70  
60  
50  
40  
30  
20  
840 MHz  
820 MHz  
830 MHz  
820 MHz  
830 MHz  
7
5
10  
0
V
DD  
= 12.5 Vdc  
V
DD  
= 12.5 Vdc  
1
2
3
4
5
6
7
8
9
10 11  
12  
1
2
3
4
5
P , OUTPUT POWER (WATTS)  
out  
6
7
8
9
10 11 12  
P
, OUTPUT POWER (WATTS)  
out  
Figure 13. Gain versus Output Power  
Figure 14. Drain Efficiency versus Output  
Power  
70  
60  
12  
10  
850 MHz  
820 MHz  
830 MHz  
840 MHz  
820 MHz  
850 MHz  
50  
40  
30  
8
6
830 MHz  
840 MHz  
4
20  
10  
0
2
0
V
DD  
= 12.5 Vdc  
800  
V
DD  
= 12.5 Vdc  
800  
1000  
0
200  
400  
600  
1000  
0
200  
400  
I , BIASING CURRENT (mA)  
DQ  
600  
I , BIASING CURRENT (mA)  
DQ  
Figure 15. Output Power versus  
Biasing Current  
Figure 16. Drain Efficiency versus  
Biasing Current  
12  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
11  
10  
9
840 MHz  
840 MHz  
830 MHz  
850 MHz  
8
7
820 MHz  
830 MHz  
6
5
4
3
850 MHz  
820 MHz  
V
DD  
= 12.5 Vdc  
V
= 12.5 Vdc  
15 16  
DD  
2
8
9
10  
11  
12  
13  
14  
15  
16  
8
9
10  
11  
V , SUPPLY VOLTAGE (VOLTS)  
DD  
12  
13  
14  
V
DD  
, SUPPLY VOLTAGE (VOLTS)  
Figure 17. Output Power versus  
Supply Voltage  
Figure 18. Drain Efficiency versus  
Supply Voltage  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
6
B2  
V
GG  
+
V
DD  
B1  
+
C10  
C9  
C8  
R4  
C18  
C17  
C16  
C15  
R3  
R2  
L1  
C7  
N2  
Z7  
Z8  
Z9  
Z10  
Z11  
RF  
OUTPUT  
R1  
C6  
DUT  
N1  
C14  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
RF  
INPUT  
C12  
C13  
C11  
C1  
C3  
C2  
C4 C5  
B1, B2  
C1, C14  
C2, C3, C4, C11,  
C12, C13  
C5  
Short Ferrite Beads, Fair Rite Products  
(2743021446)  
240 pF, 100 mil Chip Capacitors  
R3  
R4  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6, Z7  
Z8  
Z9  
10 Chip Resistor (0805)  
33 k, 1/8 W Resistor  
0.476x 0.080Microstrip  
0.724x 0.080Microstrip  
0.348x 0.080Microstrip  
0.048x 0.080Microstrip  
0.175x 0.080Microstrip  
0.260x 0.223Microstrip  
0.239x 0.080Microstrip  
0.286x 0.080Microstrip  
0.806x 0.080Microstrip  
0 to 20 pF Trimmer Capacitors  
30 pF, 100 mil Chip Capacitor  
47 pF, 100 mil Chip Capacitor  
120 pF, 100 mil Chip Capacitors  
10 µF, 50 V Electrolytic Capacitors  
1,200 pF, 100 mil Chip Capacitors  
0.1 µF, 100 mil Chip Capacitors  
55.5 nH, 5 Turn, Coilcraft  
C6  
C7, C18  
C8, C15  
C9, C16  
C10, C17  
L1  
N1, N2  
R1  
R2  
Z10  
Z11  
Board  
0.553x 0.080Microstrip  
Type N Flange Mounts  
15 Chip Resistor (0805)  
51 , 1/2 W Resistor  
Glass Teflon , 31 mils, 2 oz. Copper  
Figure 19. 400 - 470 MHz Broadband Test Circuit  
TYPICAL CHARACTERISTICS, 400 - 470 MHz  
12  
0
440 MHz  
V
DD  
= 12.5 Vdc  
10  
8
400 MHz  
−5  
470 MHz  
440 MHz  
400 MHz  
−10  
6
4
V
DD  
= 12.5 Vdc  
−15  
−20  
2
0
470 MHz  
7
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
1
2
3
4
5
6
8
9
10 11 12  
P , INPUT POWER (WATTS)  
in  
P , OUTPUT POWER (WATTS)  
out  
Figure 20. Output Power versus Input Power  
Figure 21. Input Return Loss  
versus Output Power  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
7
 
TYPICAL CHARACTERISTICS, 400 - 470 MHz  
17  
15  
13  
11  
9
80  
70  
60  
50  
40  
30  
440 MHz  
470 MHz  
440 MHz  
400 MHz  
400 MHz  
470 MHz  
V
DD  
= 12.5 Vdc  
20  
V
DD  
= 12.5 Vdc  
7
5
10  
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
, OUTPUT POWER (WATTS)  
out  
8
9
10 11 12  
P
out  
, OUTPUT POWER (WATTS)  
P
Figure 22. Gain versus Output Power  
Figure 23. Drain Efficiency versus Output  
Power  
70  
65  
60  
55  
50  
45  
40  
12  
10  
8
440 MHz  
470 MHz  
440 MHz  
400 MHz  
470 MHz  
400 MHz  
6
4
V
= 12.5 Vdc  
P = 26.8 dBm  
DD  
in  
V
= 12.5 Vdc  
P = 26.8 dBm  
2
0
DD  
35  
30  
in  
0
200  
400  
600  
800  
1000  
0
200  
400  
I , BIASING CURRENT (mA)  
DQ  
600  
800  
1000  
I
, BIASING CURRENT (mA)  
DQ  
Figure 24. Output Power versus  
Biasing Current  
Figure 25. Drain Efficiency versus  
Biasing Current  
12  
11  
10  
9
80  
75  
70  
65  
60  
55  
50  
45  
40  
440 MHz  
400 MHz  
470 MHz  
8
7
440 MHz  
400 MHz  
6
470 MHz  
5
4
I
= 150 mA  
P = 26.8 dBm  
DQ  
I
= 150 mA  
DQ  
in  
P = 26.8 dBm  
in  
3
2
35  
30  
8
9
10  
11  
12  
13  
14  
15  
16  
8
9
10  
11  
V , SUPPLY VOLTAGE (VOLTS)  
DD  
12  
13  
14  
15  
16  
V
DD  
, SUPPLY VOLTAGE (VOLTS)  
Figure 26. Output Power versus  
Supply Voltage  
Figure 27. Drain Efficiency versus  
Supply Voltage  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
8
B2  
V
GG  
+
V
DD  
B1  
+
C9  
C8  
C7  
R4  
C16  
C15  
C14  
C17  
R3  
R2  
L4  
C6  
RF  
OUTPUT  
L2  
L3  
C13  
Z10  
Z6  
Z7  
Z8  
Z9  
RF  
INPUT  
R1  
DUT  
N2  
L1  
Z1  
Z2  
Z3  
Z4  
Z5  
C12  
C10  
C1  
N1  
C11  
C4  
C3  
C5  
C2  
B1, B2  
Short Ferrite Beads, Fair Rite Products  
(2743021446)  
L4  
N1, N2  
R1  
R2  
R3  
R4  
Z1  
Z2  
Z3  
Z4  
Z5, Z6  
Z7  
Z8  
Z9  
55.5 nH, 5 Turn, Coilcraft  
Type N Flange Mounts  
15 W Chip Resistor (0805)  
56 W, 1/4 W Carbon Resistor  
100 W Chip Resistor (0805)  
33 kW, 1/8 W Carbon Resistor  
0.115x 0.080Microstrip  
0.255x 0.080Microstrip  
1.037x 0.080Microstrip  
0.192x 0.080Microstrip  
0.260x 0.223Microstrip  
0.125x 0.080Microstrip  
0.962x 0.080Microstrip  
0.305x 0.080Microstrip  
C1, C13  
C2, C4, C11  
C3  
330 pF, 100 mil Chip Capacitors  
0 to 20 pF Trimmer Capacitors  
12 pF, 100 mil Chip Capacitor  
43 pF, 100 mil Chip Capacitor  
75 pF, 100 mil Chip Capacitors  
10 µF, 50 V Electrolytic Capacitors  
1,200 pF, 100 mil Chip Capacitors  
0.1 µF, 100 mil Chip Capacitors  
75 pF, 100 mil Chip Capacitor  
13 pF, 100 mil Chip Capacitor  
26 nH, 4 Turn, Coilcraft  
C5  
C6, C17  
C7, C14  
C8, C15  
C9, C16  
C10  
C12  
L1  
L2  
L3  
5 nH, 2 Turn, Coilcraft  
33 nH, 5 Turn, Coilcraft  
Z10  
Board  
0.155x 0.080Microstrip  
Glass Teflon , 31 mils, 2 oz. Copper  
Figure 28. 135 - 175 MHz Broadband Test Circuit  
TYPICAL CHARACTERISTICS, 135 - 175 MHz  
12  
0
V
DD  
= 12.5 Vdc  
10  
8
−5  
−10  
−15  
155 MHz  
155 MHz  
6
175 MHz  
135 MHz  
135 MHz  
175 MHz  
4
2
0
V
= 12.5 Vdc  
0.3  
DD  
−20  
0
0.1  
0.2  
P , INPUT POWER (WATTS)  
0.4  
0
1
2
3
4
5
6
7
8
9
10 11 12  
P , OUTPUT POWER (WATTS)  
out  
in  
Figure 29. Output Power versus Input Power  
Figure 30. Input Return Loss  
versus Output Power  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
9
TYPICAL CHARACTERISTICS, 135 - 175 MHz  
19  
17  
15  
13  
11  
80  
70  
60  
135 MHz  
175 MHz  
155 MHz  
135 MHz  
50  
155 MHz  
175 MHz  
40  
30  
20  
10  
V
DD  
= 12.5 Vdc  
9
7
V
DD  
= 12.5 Vdc  
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
P , OUTPUT POWER (WATTS)  
out  
P , OUTPUT POWER (WATTS)  
out  
Figure 31. Gain versus Output Power  
Figure 32. Drain Efficiency versus Output  
Power  
12  
10  
70  
65  
60  
55  
50  
45  
40  
175 MHz  
155 MHz  
135 MHz  
135 MHz  
155 MHz  
175 MHz  
8
6
4
V
= 12.5 Vdc  
P = 24.5 dBm  
DD  
V
= 12.5 Vdc  
P = 24.5 dBm  
2
0
DD  
35  
30  
in  
in  
0
200  
400  
600  
800  
1000  
0
200  
400  
I , BIASING CURRENT (mA)  
DQ  
600  
800  
1000  
I
, BIASING CURRENT (mA)  
DQ  
Figure 33. Output Power versus  
Biasing Current  
Figure 34. Drain Efficiency versus  
Biasing Current  
12  
11  
10  
9
80  
75  
70  
65  
60  
55  
50  
45  
40  
135 MHz  
155 MHz  
155 MHz  
135 MHz  
175 MHz  
8
175 MHz  
7
6
5
I
= 150 mA  
P = 24.5 dBm  
DQ  
I
= 150 mA  
P = 24.5 dBm  
4
DQ  
in  
in  
3
2
35  
30  
8
9
10  
11  
12  
13  
14  
15  
16  
8
9
10  
11  
V , SUPPLY VOLTAGE (VOLTS)  
DD  
12  
13  
14  
15  
16  
V
DD  
, SUPPLY VOLTAGE (VOLTS)  
Figure 35. Output Power versus  
Supply Voltage  
Figure 36. Drain Efficiency versus  
Supply Voltage  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
10  
Z = 10 Ω  
o
Z = 10 Ω  
o
Z
in  
520  
520  
f = 850 MHz  
f = 450 MHz  
Z
*
OL  
f = 850 MHz  
f = 450 MHz  
Z
*
OL  
f = 820 MHz  
f = 820 MHz  
Z
in  
V
DD  
= 12.5 V, I = 150 mA, P = 8 W  
DQ out  
V = 12.5 V, I = 150 mA, P = 8 W  
DD DQ out  
f
Z
in  
Z
OL  
*
f
Z
in  
Z
OL  
*
MHz  
450  
470  
MHz  
820  
830  
4.9 +j2.85  
6.42 +j3.23  
1.42 -j0.32 2.34 +j0.23  
1.39 -j0.21 2.36 +j0.47  
4.85 +j3.71 4.59 +j3.61  
4.63 +j3.84 4.72 +j3.12  
3.52 +j3.92 3.81 +j3.27  
500  
520  
840  
850  
1.32 -j0.16 2.40 +j0.69  
1.23 -j0.13 2.37 +j0.79  
Z
Z
= Complex conjugate of source  
impedance with parallel 15 Ω  
resistor and 82 pF capacitor in  
series with gate. (See Figure 1).  
Z
Z
= Complex conjugate of source  
impedance.  
in  
in  
* = Complex conjugate of the load  
impedance at given output power,  
OL  
* = Complex conjugate of the load  
impedance at given output power,  
voltage, frequency, and η > 50 %.  
OL  
D
voltage, frequency, and η > 50 %.  
D
Note: Z * was chosen based on tradeoffs between gain, drain efficiency, and device stability.  
OL  
Output  
Matching  
Network  
Input  
Matching  
Network  
Device  
Under Test  
Z
Z
*
in  
OL  
Figure 37. Series Equivalent Input and Output Impedance  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
11  
f = 470 MHz  
Z
in  
Z
*
OL  
f = 470 MHz  
135  
400  
175  
Z = 10 Ω  
o
Z
in  
Z
*
OL  
400  
f = 175 MHz  
f = 135 MHz  
V
DD  
= 12.5 V, I = 150 mA, P = 8 W  
DQ out  
V = 12.5 V, I = 150 mA, P = 8 W  
DD DQ out  
f
Z
in  
Z
OL  
*
f
Z
in  
Z
OL  
*
MHz  
400  
440  
MHz  
135  
155  
4.28 +j2.36 4.41 +j0.67  
6.45 +j5.13 4.14 +j2.53  
18.31 -j0.76 8.97 +j2.62  
17.72 +j1.85 9.69 +j2.81  
470  
5.91 +j3.34 3.92 +j4.02  
175  
18.06 +j5.23 7.94 +j1.14  
Z
Z
= Complex conjugate of source  
impedance with parallel 15 Ω  
resistor and 47 pF capacitor in  
series with gate. (See Figure 19).  
Z
Z
= Complex conjugate of source  
impedance with parallel 15 Ω  
resistor and 43 pF capacitor in  
series with gate. (See Figure 28).  
in  
in  
* = Complex conjugate of the load  
impedance at given output power,  
* = Complex conjugate of the load  
impedance at given output power,  
OL  
OL  
voltage, frequency, and η > 50 %.  
voltage, frequency, and η > 50 %.  
D
D
Note: Z * was chosen based on tradeoffs between gain, drain efficiency, and device stability.  
OL  
Output  
Matching  
Network  
Input  
Matching  
Network  
Device  
Under Test  
Z
Z
*
in  
OL  
Figure 37. Series Equivalent Input and Output Impedance (continued)  
MRF1518NT1 MRF1518T1  
12  
RF Device Data  
Freescale Semiconductor  
Table 5. Common Source Scattering Parameters (VDD = 12.5 Vdc)  
IDQ = 150 mA  
S
11  
S
21  
S
12  
S
22  
f
|S  
11  
|
∠φ  
|S  
21  
|
∠φ  
|S  
12  
|
∠φ  
|S |  
22  
∠φ  
MHz  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
0.88  
0.85  
0.85  
0.87  
0.88  
0.90  
0.92  
0.93  
0.94  
0.94  
0.96  
-148  
-163  
-170  
-171  
-172  
-173  
-173  
-174  
-175  
-175  
-176  
18.91  
9.40  
4.47  
2.72  
1.85  
1.35  
1.04  
0.83  
0.68  
0.55  
0.46  
99  
86  
73  
64  
56  
52  
47  
44  
39  
36  
30  
0.033  
0.033  
0.026  
0.025  
0.021  
0.019  
0.014  
0.015  
0.014  
0.010  
0.011  
11  
0.67  
0.66  
0.69  
0.74  
0.79  
0.83  
0.85  
0.88  
0.90  
0.91  
0.95  
-144  
-158  
-162  
-163  
-164  
-165  
-167  
-168  
-169  
-170  
-170  
-6  
-17  
-28  
-21  
-30  
-26  
-39  
-31  
-41  
-38  
IDQ = 800 mA  
S
11  
S
21  
S
12  
S
22  
f
|S  
|
∠φ  
|S  
|
∠φ  
97  
88  
79  
73  
67  
63  
59  
55  
50  
46  
41  
|S  
|
∠φ  
14  
|S |  
22  
∠φ  
MHz  
11  
21  
12  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
0.90  
0.88  
0.88  
0.89  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.94  
-159  
-169  
-174  
-175  
-175  
-176  
-176  
-176  
-176  
-177  
-177  
20.80  
10.35  
5.09  
3.23  
2.30  
1.74  
1.39  
1.16  
0.96  
0.80  
0.67  
0.020  
0.018  
0.017  
0.015  
0.015  
0.014  
0.014  
0.009  
0.011  
0.007  
0.010  
0.73  
0.74  
0.75  
0.77  
0.80  
0.82  
0.83  
0.85  
0.87  
0.88  
0.89  
-162  
-169  
-171  
-171  
-171  
-170  
-171  
-171  
-172  
-173  
-173  
1
-9  
-18  
-17  
-22  
-19  
-23  
-14  
4
-15  
IDQ = 1.5 A  
S
11  
S
21  
S
12  
S
22  
f
|S  
|
∠φ  
|S  
|
∠φ  
97  
89  
80  
73  
67  
64  
59  
55  
50  
46  
41  
|S  
|
∠φ  
11  
|S |  
22  
∠φ  
MHz  
11  
21  
12  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
0.91  
0.89  
0.88  
0.89  
0.89  
0.90  
0.92  
0.92  
0.93  
0.94  
0.94  
-159  
-169  
-174  
-175  
-176  
-176  
-176  
-176  
-177  
-177  
-178  
20.18  
10.05  
4.93  
3.14  
2.24  
1.70  
1.36  
1.13  
0.94  
0.78  
0.65  
0.015  
0.016  
0.015  
0.014  
0.014  
0.014  
0.010  
0.013  
0.008  
0.013  
0.007  
0.73  
0.74  
0.75  
0.78  
0.80  
0.82  
0.84  
0.85  
0.87  
0.87  
0.87  
-165  
-171  
-172  
-172  
-171  
-170  
-171  
-171  
-172  
-173  
-172  
-5  
-3  
-14  
-20  
-22  
-16  
-10  
-13  
-26  
8
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
13  
APPLICATIONS INFORMATION  
DESIGN CONSIDERATIONS  
This device is a common-source, RF power, N-Channel  
enhancement mode, Lateral Metal-Oxide Semiconductor  
Field-Effect Transistor (MOSFET). Freescale Application  
Note AN211A, “FETs in Theory and Practice”, is suggested  
reading for those not familiar with the construction and char-  
acteristics of FETs.  
This surface mount packaged device was designed pri-  
marily for VHF and UHF portable power amplifier applica-  
tions. Manufacturability is improved by utilizing the tape and  
reel capability for fully automated pick and placement of  
parts. However, care should be taken in the design process  
to insure proper heat sinking of the device.  
drain-source voltage under these conditions is termed  
DS(on). For MOSFETs, VDS(on) has a positive temperature  
coefficient at high temperatures because it contributes to the  
V
power dissipation within the device.  
BVDSS values for this device are higher than normally re-  
quired for typical applications. Measurement of BVDSS is not  
recommended and may result in possible damage to the de-  
vice.  
GATE CHARACTERISTICS  
The gate of the RF MOSFET is a polysilicon material, and  
is electrically isolated from the source by a layer of oxide.  
The DC input resistance is very high - on the order of 109 Ω  
— resulting in a leakage current of a few nanoamperes.  
Gate control is achieved by applying a positive voltage to  
the gate greater than the gate-to-source threshold voltage,  
The major advantages of Lateral RF power MOSFETs in-  
clude high gain, simple bias systems, relative immunity from  
thermal runaway, and the ability to withstand severely mis-  
matched loads without suffering damage.  
VGS(th)  
.
Gate Voltage Rating — Never exceed the gate voltage  
rating. Exceeding the rated VGS can result in permanent  
damage to the oxide layer in the gate region.  
MOSFET CAPACITANCES  
The physical structure of a MOSFET results in capacitors  
between all three terminals. The metal oxide gate structure  
determines the capacitors from gate-to-drain (Cgd), and  
gate-to-source (Cgs). The PN junction formed during fab-  
rication of the RF MOSFET results in a junction capacitance  
from drain-to-source (Cds). These capacitances are charac-  
terized as input (Ciss), output (Coss) and reverse transfer  
(Crss) capacitances on data sheets. The relationships be-  
tween the inter-terminal capacitances and those given on  
data sheets are shown below. The Ciss can be specified in  
two ways:  
Gate Termination — The gates of these devices are es-  
sentially capacitors. Circuits that leave the gate open-cir-  
cuited or floating should be avoided. These conditions can  
result in turn-on of the devices due to voltage build-up on  
the input capacitor due to leakage currents or pickup.  
Gate Protection — These devices do not have an internal  
monolithic zener diode from gate-to-source. If gate protec-  
tion is required, an external zener diode is recommended.  
Using a resistor to keep the gate-to-source impedance low  
also helps dampen transients and serves another important  
function. Voltage transients on the drain can be coupled to  
the gate through the parasitic gate-drain capacitance. If the  
gate-to-source impedance and the rate of voltage change  
on the drain are both high, then the signal coupled to the gate  
may be large enough to exceed the gate-threshold voltage  
and turn the device on.  
1. Drain shorted to source and positive voltage at the gate.  
2. Positive voltage of the drain in respect to source and zero  
volts at the gate.  
In the latter case, the numbers are lower. However, neither  
method represents the actual operating conditions in RF ap-  
plications.  
DC BIAS  
Since this device is an enhancement mode FET, drain cur-  
rent flows only when the gate is at a higher potential than the  
source. RF power FETs operate optimally with a quiescent  
drain current (IDQ), whose value is application dependent.  
This device was characterized at IDQ = 150 mA, which is the  
suggested value of bias current for typical applications. For  
special applications such as linear amplification, IDQ may  
have to be selected to optimize the critical parameters.  
The gate is a dc open circuit and draws no current. There-  
fore, the gate bias circuit may generally be just a simple re-  
sistive divider network. Some special applications may  
require a more elaborate bias system.  
Drain  
C
gd  
C
C
C
= C + C  
gd gs  
Gate  
iss  
= C + C  
ds  
C
ds  
oss  
rss  
gd  
= C  
gd  
C
gs  
Source  
GAIN CONTROL  
DRAIN CHARACTERISTICS  
Power output of this device may be controlled to some de-  
gree with a low power dc control signal applied to the gate,  
thus facilitating applications such as manual gain control,  
ALC/AGC and modulation systems. This characteristic is  
very dependent on frequency and load line.  
One critical figure of merit for a FET is its static resistance  
in the full-on condition. This on-resistance, RDS(on), occurs  
in the linear region of the output characteristic and is speci-  
fied at a specific gate-source voltage and drain current. The  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
14  
MOUNTING  
The specified maximum thermal resistance of 2°C/W as-  
sumes a majority of the 0.065x 0.180source contact on  
the back side of the package is in good contact with an ap-  
propriate heat sink. As with all RF power devices, the goal of  
the thermal design should be to minimize the temperature at  
the back side of the package. Refer to Freescale Application  
Note AN4005/D, “Thermal Management and Mounting Meth-  
od for the PLD-1.5 RF Power Surface Mount Package,” and  
Engineering Bulletin EB209/D, “Mounting Method for RF  
Power Leadless Surface Mount Transistor” for additional in-  
formation.  
Large-signal impedances are provided, and will yield a good  
first pass approximation.  
Since RF power MOSFETs are triode devices, they are not  
unilateral. This coupled with the very high gain of this device  
yields a device capable of self oscillation. Stability may be  
achieved by techniques such as drain loading, input shunt  
resistive loading, or output to input feedback. The RF test fix-  
ture implements a parallel resistor and capacitor in series  
with the gate, and has a load line selected for a higher effi-  
ciency, lower gain, and more stable operating region.  
Two - port stability analysis with this device’s  
S-parameters provides a useful tool for selection of loading  
or feedback circuitry to assure stable operation. See Free-  
scale Application Note AN215A, “RF Small-Signal Design  
Using Two-Port Parameters” for a discussion of two port  
network theory and stability.  
AMPLIFIER DESIGN  
Impedance matching networks similar to those used with  
bipolar transistors are suitable for this device. For examples  
see Freescale Application Note AN721, “Impedance  
Matching Networks Applied to RF Power Transistors.”  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
15  
NOTES  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
16  
NOTES  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
17  
NOTES  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
18  
PACKAGE DIMENSIONS  
0.146  
3.71  
A
F
0.095  
2.41  
3
0.115  
2.92  
0.115  
2.92  
1
2
R
D
L
B
0.020  
0.51  
4
_
"
0.35 (0.89) X 45  
_
inches  
mm  
5
N
K
10 DRAFT  
_
SOLDER FOOTPRINT  
Q
P
U
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
E
MAX  
0.265  
0.235  
0.072  
0.150  
0.026  
0.044  
0.070  
0.063  
0.180  
0.285  
0.255  
0.240  
0.008  
0.063  
0.210  
0.012  
0.012  
0.021  
0.010  
0.010  
MIN  
6.48  
5.72  
1.65  
3.30  
0.53  
0.66  
1.27  
1.14  
4.06  
6.93  
6.22  
5.84  
0.00  
1.40  
5.08  
0.15  
0.15  
0.00  
0.00  
0.00  
MAX  
6.73  
5.97  
1.83  
3.81  
0.66  
1.12  
1.78  
1.60  
4.57  
7.24  
6.48  
6.10  
0.20  
1.60  
5.33  
0.31  
0.31  
0.53  
0.25  
0.25  
H
ZONE V  
ZONE W  
C
0.255  
0.225  
0.065  
0.130  
0.021  
0.026  
0.050  
0.045  
0.160  
0.273  
0.245  
0.230  
0.000  
0.055  
0.200  
0.006  
0.006  
E
Y
Y
4
NOTES:  
1. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1984.  
2. CONTROLLING DIMENSION: INCH  
3. RESIN BLEED/FLASH ALLOWABLE IN ZONE V, W,  
AND X.  
F
G
H
J
2
1
K
L
STYLE 1:  
PIN 1. DRAIN  
2. GATE  
N
P
3
3. SOURCE  
4. SOURCE  
Q
R
S
S
G
ZONE X  
U
ZONE V 0.000  
ZONE W 0.000  
ZONE X 0.000  
VIEW Y-Y  
CASE 466-03  
ISSUE C  
PLD-1.5  
PLASTIC  
MRF1518NT1 MRF1518T1  
RF Device Data  
Freescale Semiconductor  
19  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2005. All rights reserved.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number:  
Rev. 6, 3/2005  
MRF1518  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY