MRFIC1817R2 [MOTOROLA]

Narrow Band Medium Power Amplifier, 1710MHz Min, 1900MHz Max, GAAS, PLASTIC, CASE 978-03, PFP, 16 PIN;
MRFIC1817R2
型号: MRFIC1817R2
厂家: MOTOROLA    MOTOROLA
描述:

Narrow Band Medium Power Amplifier, 1710MHz Min, 1900MHz Max, GAAS, PLASTIC, CASE 978-03, PFP, 16 PIN

射频 微波
文件: 总8页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MRFIC1817/D  
SEMICONDUCTOR TECHNICAL DATA  
The MRFIC Line  
Designed specifically for application in Pan European digital 1.0 watt  
DCS1800/PCS1900 handheld radios, the MRFIC1817 is specified for 32 dBm  
output power with power gain over 27 dB from a 3.6 volt supply. To achieve this  
superior performance, Motorola’s planar GaAs MESFET process is employed.  
The device is packaged in the PFP–16 Power Flat Package which gives  
excellent thermal and electrical performance through a solderable backside  
contact while allowing the convenience and cost benefits of reflow soldering.  
1700–1900 MHz MMIC  
DCS1800/PCS1900  
INTEGRATED POWER AMPLIFIER  
GaAs MONOLITHIC  
INTEGRATED CIRCUIT  
Minimum Output Power Capabilities  
32 dBm @ 3.6 Volts  
30 dBm @ 3.0 Volts  
Typical Volt Characteristics  
RF Input Power = 5.0 dBm  
RF Output Power = 33.5 dBm  
Typical PAE = 42%  
Low Current required from Negative Supply – 2 mA max  
Guaranteed Stability and Ruggedness  
CASE 978–02  
(PFP–16)  
Order MRFIC1817R2 for Tape and Reel.  
R2 Suffix = 1,500 Units per 16 mm, 13 inch Reel.  
Device Marking = M1817  
ABSOLUTE MAXIMUM RATINGS (T = 25°C, Z = 50 , unless otherwise noted)  
A
O
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
dBm  
dBm  
°C  
DC Positive Supply Voltage  
DC Negative Supply Voltage  
RF Input Power  
V
6
D1, 2, 3  
V
SS  
–5  
10  
P
in  
RF Output Power  
P
out  
35  
Operating Case Temperature Range  
Storage Temperature Range  
T
C
35 to +85  
–55 to +150  
10  
T
stg  
°C  
Thermal Resistance, Junction to Case  
R
°C/W  
θJC  
8
V
GND  
9
G
V
10  
D2  
7
6
V
D3  
V
RF OUT  
RF OUT  
11  
12  
D2  
V
5
4
D1  
N/C 13  
GND 14  
RF OUT  
3
2
RF OUT  
N/C  
15  
RF IN  
N/C 16  
1
GND  
Pin Connections and Functional Block Diagram  
Motorola, Inc. 1997  
RECOMMENDED OPERATING RANGES  
Parameter  
Symbol  
Value  
2.7 to 5  
Unit  
Vdc  
Supply Voltage  
V
D1, 2, 3  
Gate Voltage  
V
–3.5 to –4.5  
1700 to 1900  
0 to 6  
Vdc  
SS  
RF  
RF Frequency Range  
RF Input Power  
f
MHz  
dBm  
P
RF  
ELECTRICAL CHARACTERISTICS (V  
= 3.6 V, V  
= –4 V, P = 5 dBm, Peak Measurement at 12.5% Duty Cycle, 4.6 ms  
SS in  
D1, 2, 3  
Period, T = 25°C unless otherwise noted. Measured in Reference Circuit Shown in Figure 1)  
A
Characteristic  
Min  
Typ  
Max  
1785  
Unit  
MHz  
dBm  
%
Frequency Range  
Output Power  
1710  
32  
35  
33.5  
42  
Power Added Efficiency  
Output Power (PCS 1900 Tuning f = 1850 to 1910 MHz)  
Power Added Efficiency (PCS 1900 Tuning f = 1850 to 1910 MHz)  
Input VSWR  
33.5  
42  
dBm  
%
2:1  
–35  
32  
VSWR  
dBc  
Harmonic Output (2nd and 3rd)  
–30  
Output Power at Low voltage (V , V , V  
D1 D2 D3  
= 3.0 V)  
30  
dBm  
dBm  
dBm  
dBc  
Output Power Isolation (V , V , V  
D1 D2 D3  
= 0 V)  
–40  
85  
–30  
–80  
–60  
Noise Power (In 100 kHz, 1805 to 1880 MHz)  
Stability – Spurious Output (P = 5 dBm, P  
VSWR = 6:1 at any Phase Angle, Source VSWR = 3:1, at any Phase Angle)  
= 0 to 33 dBm, Load  
out  
in  
(1)  
Load Mismatch stress (P = 33 dBm, Load VSWR = 10:1 at  
any Phase Angle)  
No Degradation in Output Power after Returning to  
Standard Conditions  
out  
(1)  
3 dB V Bandwidth  
2
2
MHz  
mA  
DD  
Negative Supply Current  
(1) Adjust V (0 to 3.6 V) for specified P ; Duty Cycle = 12.5%, Period = 4.6 ms.  
0.7  
D1, 2, 3  
out  
V
D2  
V
D3  
V
D1  
V
SS  
R1  
R2  
8
7
9
T4  
T3  
C1  
L1  
C11  
10  
11  
C9 C8  
C2  
C3  
6
5
4
3
2
1
12  
13  
14  
15  
16  
C4  
T1  
T5  
NC  
NC  
RF  
OUT  
C7 C6  
L2  
T2  
C5  
C10  
NC  
RF IN  
T2  
T3  
T4  
T5  
6 mm 50 Microstrip Line  
5 mm 40 Microstrip Line  
1 mm 40 Microstrip Line  
5.5 mm 50 Microstrip Line  
C1  
1 nF  
L1  
18 nH, Coilcraft or 20 mm  
50 Microstrip Line  
1.8 nH, Toko 2012  
2.7 K  
C2, C6, C8 22 pF, NPO/COG  
C3, C7, C9 47 nF  
C4  
C5  
L2  
R1  
R2  
T1  
5.6 pF, AVX0603 ACCUF  
3.9 pF, AVX0603 ACCUF  
Board Material: Glass/Epoxy, ε = 4.45,  
Thickness = 0.5 mm  
2.2 KΩ  
r
C10, C11 1 pf  
2.5 mm 50 Microstrip Line  
NOTE: For PCS 1900 tuning the following values are changed.  
C5 = 2.7 pF, AVX0603 ACCUF  
L2 = 1.5 nH, Toko 2012  
T3 = 1 mm 50 Microstrip Line  
Figure 1. Reference Circuit Configuration  
MRFIC1817  
2
MOTOROLA RF DEVICE DATA  
D
D
D
D
5
6
7
8
G
S
S
4
V
reg  
V
BAT  
3.0 V  
3.0 V  
3
VRAMP  
0 V  
0 V  
2
1
R3  
STANDBY  
C15  
C14  
C18  
1
2
14  
13  
Q1  
C19  
R5  
C16  
C17  
3
4
5
12  
11  
R1  
L1  
R2  
CR1  
10  
9
6
7
C11  
V
TUNE  
G
C13  
8
8
9
T4  
C1  
7
6
5
4
3
2
1
U2  
R4  
10  
11  
C2  
C5  
C3  
C21  
T3  
C10  
C9  
C12  
12  
13  
14  
15  
16  
T5  
T1  
RF  
OUT  
NC  
NC  
C4  
NC  
T2  
L2  
C20  
RF IN  
IN  
U1  
C1  
6.8 nF  
C20, C21  
CR1  
L1  
1 pF  
MMBD701LT1  
R4  
R5  
T1  
T2  
T3  
T4  
T5  
U1  
U2  
100 Ω  
470 Ω  
C2, C9, C10 22 pF, 0603 NPO/COG  
C3, C11 47 nF  
C4  
C5  
C12  
C13, C16, C17, C19 1 µF  
C14, C15 1 µF  
C18  
18 nH, Coilcraft or 20 mm  
50 Microstrip Line  
1.8 nH, Toko 2012  
MMSF4N01HD  
2.7 K  
0.5 mm 30 Microstrip Line  
5 mm 50 Microstrip Line  
8 mm 50 Microstrip Line  
1 mm 50 Microstrip Line  
5.5 mm 50 Microstrip Line  
MRFIC1817  
5.6 pF, AVX0603 ACCUF  
3.9 pF, AVX0603 ACCUF  
220 nF  
L2  
Q1  
R1  
R2  
R3  
3 KΩ  
22 Ω  
1 µF  
MC33169 (–4 V Version)  
Board Material: Glass/Epoxy, ε = 4.45,  
r
Thickness = 0.5 mm  
NOTE: For PCS1900 applications, the following  
component values are changed  
L2 = 1.5 nH Toko 2012  
C4 = 6.8 pF, AVX0603 ACCUF  
C5 = 2.7 pF, AVX0603 ACCUF  
C20 = Not Used  
T1 = 0.5 mm 50 Microstrip Line  
T2 = 5 mm 50 Microstrip Line  
T3 = 1 mm 40 Microstrip Line  
Figure 2. DCS1800/PCS1900 Applications Circuit Configuration  
MOTOROLA RF DEVICE DATA  
MRFIC1817  
3
Typical Characteristics  
33  
32.5  
32  
48  
T
= –35°C  
A
T
= –35°C  
A
46  
44  
42  
40  
25°  
C
C
25°  
C
C
31.5  
31  
85°  
85°  
P
V
V
= 5 dBm  
P
V
V
= 5 dBm  
in  
in  
30.5  
38  
36  
, V  
V
= 3.6 V  
, V  
V
= 3 V  
D1 D2, D3  
D1 D2, D3  
= –4 V  
= –4 V  
SS  
SS  
30  
1.7  
1.72  
1.74  
1.76  
1.78  
1.8  
1.8  
1.8  
1.7  
1.72  
1.74  
1.76  
1.78  
1.8  
1.8  
5
f, FREQUENCY (GHz)  
f, FREQUENCY (GHz)  
Figure 3. Output Power versus Frequency  
Figure 4. Power Added Efficiency  
versus Frequency  
35  
34.5  
34  
46  
V
, V , V  
= 4.2 V  
D1 D2 D3  
45  
44  
43  
42  
41  
40  
39  
3.6 V  
3 V  
T
= –35°C  
A
25  
°
C
C
33.5  
33  
85°  
P
V
V
= 5 dBm  
P
= 5 dBm  
= 25°C  
= –4 V  
in  
in  
, V  
V
= 3.6 V  
32.5  
T
D1 D2, D3  
A
= –4 V  
V
SS  
SS  
32  
1.7  
1.72  
1.74  
1.76  
1.78  
1.7  
1.72  
1.74  
1.76  
1.78  
f, FREQUENCY (GHz)  
f, FREQUENCY (GHz)  
Figure 5. Output Power versus Frequency  
Figure 6. Power Added Efficiency  
versus Frequency  
40  
30  
36  
35.5  
35  
T
= –35°C  
A
20  
T
= –35°C  
A
10  
25°C AND 85°C  
25  
°
C
C
0
–10  
–20  
–30  
–40  
34.5  
34  
85  
°
f = 1.75 GHz  
P
V
V
= 5 dBm  
in  
P
V
= 5 dBm  
= –4 V  
33.5  
33  
in  
SS  
, V = 4.2 V  
V
D1 D2, D3  
SS  
–50  
–60  
= –4 V  
0
1
2
3
4
1.7  
1.72  
1.74  
1.76  
1.78  
V
, V , V , DRAIN VOLTAGE (VOLTS)  
f, FREQUENCY (GHz)  
D1 D2 D3  
Figure 7. Output Power versus Frequency  
Figure 8. Output Power versus Drain Voltage  
MRFIC1817  
4
MOTOROLA RF DEVICE DATA  
Typical Characteristics  
60  
50  
40  
30  
35  
33  
31  
29  
27  
25  
23  
21  
T
= –35°C  
A
T
= –35°C  
A
25°C  
25°C  
85°C  
20  
10  
0
85°C  
f = 1.75 GHz  
f = 1.75 GHz  
19  
P
V
= 5 dBm  
= –4 V  
V
, V  
= –4 V  
V
= 3.6 V  
in  
SS  
D1 D2, D3  
V
17  
15  
–20  
SS  
0
1
2
3
4
5
–15  
–10  
–5  
P , INPUT POWER (dBm)  
in  
0
5
10  
V
, V , V , DRAIN VOLTAGE (VOLTS)  
D1 D2 D3  
Figure 9. Power Added Efficiency versus  
Drain Voltage  
Figure 10. Output Power versus Input Power  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
f = 1.75 GHz  
P
V
= 5 dBm  
in  
= –4 V  
SS  
T
= –35°C  
A
25°C  
T
= –35°C  
A
85°C  
f = 1.75 GHz  
85°C  
V
, V = 3.6 V  
= –4 V  
V
D1 D2, D3  
V
SS  
0
25°C  
0
–20  
–15  
–10  
–5  
5
10  
0
1
2
3
4
5
P
, INPUT POWER (dBm)  
V
, V , V , DRAIN VOLTAGE (VOLTS)  
in  
D1 D2 D3  
Figure 11. Power Added Efficiency versus  
Input Power  
Figure 12. Second Harmonic versus  
Drain Voltage  
0
35  
34.5  
34  
f = 1.75 GHz  
–5  
–10  
–15  
–20  
–25  
P
V
= 5 dBm  
= –4 V  
in  
SS  
T
= –35°C  
A
33.5  
33  
25  
°
C
C
85°  
32.5  
32  
T
= –35°C  
A
85°C  
25  
°C  
–30  
–35  
–40  
P
V
V
= 5 dBm  
in  
, V , V  
= 3.6 V  
D1 D2 D3  
31.5  
31  
= –4 V  
SS  
0
1
2
3
4
5
1.85  
1.86  
1.87  
1.88  
1.89  
1.9  
1.91  
V
, V , V , DRAIN VOLTAGE (VOLTS)  
f, FREQUENCY (GHz)  
D1 D2 D3  
Figure 13. Third Harmonic versus  
Drain Voltage  
Figure 14. Output Power versus  
Frequency – PCS Band  
MOTOROLA RF DEVICE DATA  
MRFIC1817  
5
Typical Characteristics  
48  
46  
44  
42  
40  
38  
36  
T
= –35°C  
A
25  
°
C
C
85°  
P
V
V
= 5 dBm  
in  
, V = 3.6 V  
V
D1 D2, D3  
34  
32  
= –4 V  
SS  
1.85  
1.86  
1.87  
1.88  
1.89  
1.9  
1.91  
f, FREQUENCY (GHz)  
Figure 15. Power Added Efficiency versus  
Frequency – PCS Band  
Table 2. Optimum Loads Derived from  
Circuit Characterization – PCS Band  
Table 1. Optimum Loads Derived from  
Circuit Characterization  
Z
Z
*
Z
Z
*
in  
OHMS  
OL  
OHMS  
in  
OHMS  
OL  
OHMS  
f
f
R
jX  
R
jX  
R
jX  
R
jX  
MHz  
MHz  
1850  
1860  
1870  
1880  
1890  
1900  
1910  
3.97  
3.94  
4.09  
4.04  
4.18  
4.27  
4.26  
–39.68  
–40.31  
–40.65  
–40.92  
–41.21  
–41.48  
–41.71  
7.49  
7.42  
7.38  
7.31  
7.28  
7.28  
7.23  
3.07  
2.81  
2.51  
2.28  
2.02  
1.73  
1.56  
1710  
1720  
1730  
1740  
1750  
1760  
1770  
1780  
1785  
7.77  
7.84  
7.87  
8.07  
8.24  
8.39  
8.44  
8.52  
8.57  
–34.15  
–34.37  
–34.67  
–34.79  
–35.05  
–35.22  
–35.56  
–35.79  
–35.82  
4.89  
4.87  
4.86  
4.78  
4.77  
4.73  
4.70  
4.67  
4.65  
9.50  
9.34  
9.18  
8.94  
8.70  
8.51  
8.32  
8.12  
7.95  
Z
Z
represents the input impedance of the device.  
* represents the conjugate of the optimum output load to present  
to the device.  
in  
OL  
Z
Z
represents the input impedance of the device.  
in  
OL  
* represents the conjugate of the optimum output load to present  
to the device.  
MRFIC1817  
6
MOTOROLA RF DEVICE DATA  
APPLICATIONS INFORMATION  
Design Philosophy  
The MRFIC1817 is a 3–stage integrated power amplifier  
designed for use in cellular phones, especially for those used  
in DCS1800 (PCN) 3.6 V operation. With matching circuit  
modifications, it is also applicable for use in DCS1900 (PCS)  
equipment. Due to the fact that the input, output and some of  
the interstage matching is accomplished off–chip, the device  
can be tuned to operate anywhere within the 1500 to 2000  
MHzfrequencyrange. Typicalperformanceatdifferentbattery  
voltages is:  
and tempera–ture will not affect amplifier performance  
significantly in these applications. The values shown in the  
Figure 1 will set quiescent currents of 20 to 40 mA for the first  
stage, 150 to 300 mA for the second stage, and 400 to 800  
mA for the final stage. For linear modes of operation which  
are required for CDMA amplifiers, the quiescent current must  
be more carefully controlled. For these applications, the V  
G
pins can be referenced to some tunable voltage which is set  
at the time of radio manufacturing. Less than 1 mA is  
required in the divider network so a DAC can be used as the  
voltage source.  
33.5 dBm @ 3.6 V  
32.0 dBm @ 3 V  
Power Control Using the MC33169  
The MC33169 is a dedicated GaAs power amplifier  
This capability makes the MRFIC1817 suitable for portable  
cellular applications such as:  
support IC which provides the –4 V required for V , an  
SS  
3 V and 3.6 V DCS1800 Class I and II  
3 V and 3.6 V PCS tag5  
N–MOS drain switch interface and driver and power supply  
sequencing. The MC33169 can be used for power control in  
applications where the amplifier is operated in saturation  
since the output power in non–linear operation is proportional  
RF Circuit Considerations  
The MRFIC1817 can be tuned by changing the values  
and/or positions of the appropriate external components.  
Refer to Figure 2, a typical DCS1800 Class I applications  
circuit. The input match is a shunt–L, series–C, high–pass  
structure and can be retuned as desired with the only  
limitation being the on–chip 6 pF blocking capacitor. For  
saturated applications such as DCS1800 and PCS1900, the  
input match should be optimized at the rated RF input power.  
Interstage matching can be optimized by changing the value  
to V . This provides a very linear and repeatable power  
D2  
control transfer function. This technique can be used open  
loop to achieve 40–45 dB dynamic range over process and  
temperature variation. With careful design and selection of  
calibration points, this technique can be used for DCS1800  
control where 30 dB dynamic range is required, eliminating  
the need for the complexity and cost of closed–loop control.  
The transmit waveform ramping function required for  
systems such as DCS1800 can be implemented with a  
simple Sallen and Key filter on the MC33169 control loop.  
and/or position of the decoupling capacitor on the V  
V
and  
supply lines. Moving the capacitor closer to the device or  
D1  
D2  
The amplifier is then ramped on as the V  
pin is taken  
RAMP  
reducing the value increases the frequency of resonance  
with the inductance of the device’s wirebonds and leadframe  
pin. Output matching is accomplished with a low–pass  
network as a compromise between bandwidth and harmonic  
rejection. Implementation is through high Q capacitors  
from 0 V to 3 V. To implement the different power steps  
required for DCS1800, the V pin is ramped between 0 V  
RAMP  
and the appropriate voltage between 0 V and 3 V for the  
desired output power. For closed–loop configurations using  
the MC33169, MMSF4N01HD N–MOS switch and the  
MRFIC1817 provide a typical 1 MHz 3 dB loop bandwidth.  
The STANDBY pin must be enabled (3 V) at least 800 µs  
mounted along a 50  
microstrip transmission line. Values  
and positions are chosen to present a 2 W loadline to the  
device while conjugating the device output parasitics. The  
network must also properly terminate the second and third  
harmonics to optimize efficiency and reduce harmonic  
output. All components used in this application are low–Q  
commercial chip capacitors, except for the output load line.  
Loss in circuit traces must also be considered. The output  
transmission line and the bias supply lines should be at least  
0.6 mm in width to accommodate the peak circulating  
currents which can be as high as 2 amperes under worst  
case conditions. The bias supply line which supplies the  
output should include an RF choke of at least 18 nH, surface  
mount solenoid inductors or quarter wave microstrip lines.  
Discrete inductors will usually give better efficiency and  
conserve board space.  
before the V  
pin goes high and disabled (0 V) at least 20  
RAMP  
ms before the V  
pin goes low. This STANDBY function  
RAMP  
allows for the enabling of the MC33169 one burst before the  
active burst thus reducing power consumption.  
Conclusion  
The MRFIC1817 offers the flexibility in matching circuitry  
and gate biasing required for portable cellular applications.  
Together with the MC33169 support IC, the device offers an  
efficient system solution for TDMA applications such as  
DCS1800 where saturated amplifier operation is used.  
For more information about the power control using the  
MC33169, refer to application note AN1599, “Power Control  
with the MRFIC0913 GaAs Integrated Power Amplifier and  
MC33169 Support IC.”  
Biasing Considerations  
Gate bias lines are tied together and connected to the V  
Evaluation Boards  
SS  
voltage, allowing gate biasing through use of external  
resistors or positive voltages. This allows setting the  
quiescent current of all stage in the same time while saving  
some board space. For applications where the amplifier is  
operated close to saturation, such as with TDMA amplifiers,  
the gate bias can be set with resistors. Variations in process  
Two versions of the MRFIC1817 evaluation board are  
available. Order MRFIC1817DCSTF for the 1.8 GHz version  
and order MRFIC1817PCSTF for the 1.9 GHz version. For a  
complete list of currently available boards and ones in  
development for newly introduced product, please contact  
your local Motorola Distributor or Sales Office.  
MOTOROLA RF DEVICE DATA  
MRFIC1817  
7
PACKAGE DIMENSIONS  
h X 45  
A
D
E2  
1
16  
NOTES:  
1. CONTROLLING DIMENSION: MILLIMETER.  
2. DIMENSIONS AND TOLERANCES PER ASME  
Y14.5M, 1994.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 PER SIDE. DIMENSIONS D AND E1 DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –H–.  
5. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION IS 0.127 TOTAL IN EXCESS OF THE  
b DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
D1  
8
9
E1  
B
BOTTOM VIEW  
8X E  
M
S
bbb  
C B  
6. DATUMS –A– AND –B– TO BE DETERMINED AT  
DATUM PLANE –H–.  
b1  
DATUM  
PLANE  
H
MILLIMETERS  
c
c1  
DIM  
A
A1  
A2  
D
D1  
E
E1  
E2  
L
MIN  
MAX  
2.350  
0.152  
2.100  
7.100  
5.180  
9.150  
7.100  
5.180  
0.720  
A2  
A
2.000  
0.025  
1.950  
6.950  
4.372  
8.850  
6.950  
4.372  
0.466  
b
M
S
aaa  
C A  
DETAIL Y  
SEATING  
PLANE  
C
SECT W–W  
L1  
b
b1  
c
c1  
e
0.250 BSC  
0.300  
0.300  
0.180  
0.180  
0.432  
0.375  
0.279  
0.230  
ccc  
C
0.800 BSC  
W
W
GAUGE  
PLANE  
h
–––  
0
0.200  
0.200  
0.100  
0.600  
7
aaa  
bbb  
ccc  
L
A1  
1.000  
0.039  
DETAIL Y  
CASE 978–02  
ISSUE A  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
MRFIC1817/D  

相关型号:

MRFIC1818

1700-1900 MHz MMIC DCS1800/PCS1900 INTEGRATED POWER AMPLIFIER GaAs MONOLITHIC INTEGRATED CIRCUIT
MOTOROLA

MRFIC1819R2

Narrow Band Medium Power Amplifier, 1700MHz Min, 1900MHz Max, 1 Func, GAAS, PLASTIC, TSSOP-16EP, 16 PIN
MOTOROLA

MRFIC1830DMR2

1800 MHz - 1880 MHz RF/MICROWAVE NARROW BAND LOW POWER AMPLIFIER, PLASTIC, CASE 846A, MICROPAK-8
MOTOROLA

MRFIC1856R2

824 MHz - 849 MHz RF/MICROWAVE NARROW BAND MEDIUM POWER AMPLIFIER, PLASTIC, TSSOP-20EP, 20 PIN
MOTOROLA

MRFIC1859R2

Narrow Band High Power Amplifier, 880MHz Min, 915MHz Max, 2 Func, GAAS, PLASTIC, TQFP-32EP
MOTOROLA

MRFIC1869

IC,RF AMPLIFIER,DUAL,LLCC,32PIN,PLASTIC
NXP

MRFIC1870

3.2 V DCS/PCS GaAs Integrated Power Amplifier
MOTOROLA

MRFIC1870D

3.2 V DCS/PCS GaAs Integrated Power Amplifier
MOTOROLA

MRFIC1870PP

3.2 V DCS/PCS GaAs Integrated Power Amplifier
MOTOROLA

MRFIC1870R2

RF/MICROWAVE NARROW BAND MEDIUM POWER AMPLIFIER, PLASTIC, CASE 1308-02, QFN-20
MOTOROLA

MRFIC1884

Dual-Band CDMA Upconverter
MOTOROLA

MRFIC1884R2

Dual-Band CDMA Upconverter
MOTOROLA