MTP52N06VL [MOTOROLA]

TMOS POWER FET 52 AMPERES 60 VOLTS RDS(on) = 0.025 OHM; TMOS功率FET 52安培60伏特的RDS(on ) = 0.025 OHM
MTP52N06VL
型号: MTP52N06VL
厂家: MOTOROLA    MOTOROLA
描述:

TMOS POWER FET 52 AMPERES 60 VOLTS RDS(on) = 0.025 OHM
TMOS功率FET 52安培60伏特的RDS(on ) = 0.025 OHM

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总8页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MTP52N06VL/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Device  
N–Channel Enhancement–Mode Silicon Gate  
TMOS POWER FET  
52 AMPERES  
60 VOLTS  
TMOS V is a new technology designed to achieve an on–resis-  
tance area product about one–half that of standard MOSFETs. This  
new technology more than doubles the present cell density of our  
50 and 60 volt TMOS devices. Just as with our TMOS E–FET  
designs, TMOS V is designed to withstand high energy in the  
avalanche and commutation modes. Designed for low voltage, high  
speed switching applications in power supplies, converters and  
power motor controls, these devices are particularly well suited for  
bridge circuits where diode speed and commutating safe operating  
areas are critical and offer additional safety margin against  
unexpected voltage transients.  
R
= 0.025 OHM  
DS(on)  
TM  
D
New Features of TMOS V  
On–resistance Area Product about One–half that of Standard  
MOSFETs with New Low Voltage, Low R Technology  
DS(on)  
Faster Switching than E–FET Predecessors  
G
Features Common to TMOS V and TMOS E–FETS  
S
Avalanche Energy Specified  
and V Specified at Elevated Temperature  
Static Parameters are the Same for both TMOS V and TMOS E–FET  
CASE 221A–06, Style 5  
TO–220AB  
I
DSS  
DS(on)  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Symbol  
Value  
60  
Unit  
Drain–to–Source Voltage  
V
DSS  
Vdc  
Vdc  
Drain–to–Gate Voltage (R  
= 1.0 M)  
Gate–to–Source Voltage — Continuous  
V
DGR  
60  
GS  
V
± 15  
± 25  
Vdc  
Vpk  
GS  
Gate–to–Source Voltage — Non–repetitive (t 10 ms)  
V
GSM  
p
Drain Current — Continuous  
Drain Current — Continuous @ 100°C  
Drain Current — Single Pulse (t 10 µs)  
I
I
52  
41  
182  
Adc  
D
D
I
Apk  
p
DM  
Total Power Dissipation  
Derate above 25°C  
P
D
188  
1.25  
Watts  
W/°C  
Operating and Storage Temperature Range  
T , T  
stg  
55 to 175  
406  
°C  
J
Single Pulse Drain–to–Source Avalanche Energy — STARTING T = 25°C  
E
AS  
mJ  
J
(V  
DD  
= 25 Vdc, V  
= 5 Vdc, PEAK I = 52 Apk, L = 0.3 mH, R = 25 )  
GS L G  
Thermal Resistance — Junction to Case  
Thermal Resistance — Junction to Ambient  
R
R
0.8  
62.5  
°C/W  
°C  
θJC  
θJA  
Maximum Lead Temperature for Soldering Purposes, 1/8from Case for 10 seconds  
T
260  
L
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
E–FET, Designer’s, and TMOS V are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 3  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–to–Source Breakdown Voltage  
(V = 0 Vdc, I = .25 mAdc)  
Temperature Coefficient (Positive)  
(Cpk 2.0) (3)  
V
(BR)DSS  
60  
65  
Vdc  
mV/°C  
GS  
D
Zero Gate Voltage Drain Current  
I
µAdc  
DSS  
(V  
DS  
(V  
DS  
= 60 Vdc, V  
= 60 Vdc, V  
= 0 Vdc)  
= 0 Vdc, T = 150°C)  
10  
100  
GS  
GS  
J
Gate–Body Leakage Current (V  
= ± 15 Vdc, V  
= 0 Vdc)  
DS  
I
100  
nAdc  
GS  
GSS  
ON CHARACTERISTICS (1)  
Gate Threshold Voltage  
(Cpk 2.0) (3)  
(Cpk 2.0) (3)  
V
GS(th)  
(V  
= V , I = 250 µAdc)  
1.0  
1.5  
4.5  
2.0  
Vdc  
mV/°C  
DS  
GS  
D
Threshold Temperature Coefficient (Negative)  
Static Drain–to–Source On–Resistance  
R
V
Ohm  
Vdc  
DS(on)  
(V  
GS  
= 5 Vdc, I = 26 Adc)  
0.022  
0.025  
D
Drain–to–Source On–Voltage  
DS(on)  
(V  
GS  
(V  
GS  
= 5 Vdc, I = 52 Adc)  
1.6  
1.4  
D
= 5 Vdc, I = 26 Adc, T = 150°C)  
D
J
Forward Transconductance (V  
= 6.3 Vdc, I = 20 Adc)  
g
FS  
17  
30  
Mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
1900  
550  
2660  
770  
iss  
(V  
DS  
= 25 Vdc, V  
GS  
f = 1.0 MHz)  
= 0 Vdc,  
Output Capacitance  
C
oss  
Transfer Capacitance  
C
170  
340  
rss  
SWITCHING CHARACTERISTICS (2)  
Turn–On Delay Time  
t
15  
500  
100  
200  
62  
30  
1000  
200  
400  
90  
ns  
d(on)  
(V  
= 30 Vdc, I = 52 Adc,  
D
Rise Time  
DD  
DS  
t
r
V
= 5 Vdc,  
GS  
G
Turn–Off Delay Time  
Fall Time  
t
d(off)  
R
= 9.1 )  
t
f
Gate Charge  
(See Figure 8)  
Q
T
Q
1
Q
2
Q
3
nC  
4.0  
31  
(V  
= 48 Vdc, I = 52 Adc,  
D
V
GS  
= 5 Vdc)  
16  
SOURCE–DRAIN DIODE CHARACTERISTICS  
Forward On–Voltage  
V
Vdc  
ns  
SD  
(I = 52 Adc, V  
= 0 Vdc)  
S
GS  
= 0 Vdc, T = 150 °C)  
1.03  
0.9  
1.5  
(I = 52 Adc, V  
S
GS  
J
Reverse Recovery Time  
t
104  
63  
rr  
t
a
(I = 52 Adc, V  
= 0 Vdc,  
S
GS  
dI /dt = 100 A/µs)  
S
t
41  
b
Reverse Recovery Stored Charge  
Q
0.28  
µC  
RR  
INTERNAL PACKAGE INDUCTANCE  
Internal Drain Inductance  
(Measured from contact screw on tab to center of die)  
(Measured from the drain lead 0.25from package to center of die)  
L
D
nH  
3.5  
4.5  
Internal Source Inductance  
(Measured from the source lead 0.25from package to source bond pad)  
L
S
nH  
7.5  
(1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.  
(2) Switching characteristics are independent of operating junction temperature.  
(3) Reflects typical values.  
Max limit – Typ  
C
=
pk  
3 x SIGMA  
2
Motorola TMOS Power MOSFET Transistor Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
110  
100  
110  
V
= 10 V  
GS  
T
= 25°C  
V
10 V  
6 V  
J
DS  
100  
90  
80  
70  
60  
50  
T
= 55°C  
8 V  
7 V  
J
5 V  
90  
80  
70  
60  
50  
40  
30  
20  
100°C  
25°C  
4 V  
3 V  
40  
30  
20  
10  
0
10  
0
0
1
2
3
4
5
6
7
8
9
10  
0.5 1.0 1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
V , GATE–TO–SOURCE VOLTAGE (VOLTS)  
GS  
DS  
Figure 1. On–Region Characteristics  
Figure 2. Transfer Characteristics  
.070  
.060  
.050  
.040  
.030  
.020  
.010  
0
.040  
.035  
.030  
T
= 25°C  
V
= 5 V  
J
GS  
V
= 5 V  
10 V  
GS  
.025  
.020  
.015  
.010  
T
= 100°C  
J
25°C  
55°C  
.005  
0
0
10  
20  
30  
I
40  
50  
60  
70  
80  
90 100 110  
0
10  
20  
30  
I
40  
50  
60  
70  
80  
90 100 110  
, DRAIN CURRENT (AMPS)  
, DRAIN CURRENT (AMPS)  
D
D
Figure 3. On–Resistance versus Drain Current  
and Temperature  
Figure 4. On–Resistance versus Drain Current  
and Gate Voltage  
1000  
100  
10  
1.8  
V
= 5 V  
GS  
= 26 A  
V
= 0 V  
GS  
1.6  
1.4  
1.2  
1
I
D
T
= 125°C  
J
100°C  
0.8  
0.6  
0.4  
0.2  
0
1
50  
25  
0
25  
50  
75  
100  
125  
C)  
150  
175  
0
10  
20  
30  
40  
50  
60  
T , JUNCTION TEMPERATURE (  
°
V
DS  
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
J
Figure 5. On–Resistance Variation with  
Temperature  
Figure 6. Drain–To–Source Leakage  
Current versus Voltage  
Motorola TMOS Power MOSFET Transistor Device Data  
3
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge controlled.  
The lengths of various switching intervals (t) are determined  
by how fast the FET input capacitance can be charged by  
current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
iss  
a voltage corresponding to the off–state condition when cal-  
culating t  
and is read at a voltage corresponding to the  
d(on)  
on–state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements  
complicate the analysis. The inductance of the MOSFET  
source lead, inside the package and in the circuit wiring  
which is common to both the drain and gate current paths,  
produces a voltage at the source which reduces the gate  
drive current. The voltage is determined by Ldi/dt, but since  
di/dt is a function of drain current, the mathematical solution  
is complex. The MOSFET output capacitance also compli-  
cates the mathematics. And finally, MOSFETs have finite  
internal gate resistance which effectively adds to the  
resistance of the driving source, but the internal resistance is  
difficult to measure and, consequently, is not specified.  
The resistive switching time variation versus gate resis-  
tance (Figure 9) shows how typical switching performance is  
affected by the parasitic circuit elements. If the parasitics  
were not present, the slope of the curves would maintain a  
value of unity regardless of the switching speed. The circuit  
used to obtain the data is constructed to minimize common  
inductance in the drain and gate circuit loops and is believed  
readily achievable with board mounted components. Most  
power electronic loads are inductive; the data in the figure is  
taken with a resistive load, which approximates an optimally  
snubbed inductive load. Power MOSFETs may be safely  
operated into an inductive load; however, snubbing reduces  
switching losses.  
The published capacitance data is difficult to use for calculat-  
ing rise and fall because drain–gate capacitance varies  
greatly with applied voltage. Accordingly, gate charge data is  
used. In most cases, a satisfactory estimate of average input  
current (I  
) can be made from a rudimentary analysis of  
G(AV)  
the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a resis-  
tive load, V remains virtually constant at a level known as  
GS  
the plateau voltage, V  
. Therefore, rise and fall times may  
SGP  
be approximated by the following:  
t = Q x R /(V  
– V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
V
= the gate drive voltage, which varies from zero to V  
GG  
GG  
R
= the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
GSP  
2
During the turn–on and turn–off delay times, gate current is  
not constant. The simplest calculation uses appropriate val-  
ues from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R  
= R  
C
C
In [V  
/(V  
GG GG  
– V  
)]  
GSP  
d(on)  
G
iss  
In (V  
/V  
GG GSP  
)
d(off)  
G
iss  
8000  
7000  
6000  
5000  
V
= 0 V  
V
= 0 V  
DS  
GS  
T
= 25  
°C  
J
C
iss  
C
rss  
4000  
3000  
C
iss  
2000  
1000  
0
C
oss  
C
rss  
10  
5
0
5
10  
15  
20  
25  
V
V
DS  
GS  
GATE–TO–SOURCE OR DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
4
Motorola TMOS Power MOSFET Transistor Device Data  
10  
9
30  
27  
24  
21  
18  
15  
12  
9
1000  
100  
QT  
V
= 30 V  
= 52 A  
= 5 V  
= 25°C  
DD  
t
r
I
V
T
D
GS  
8
7
6
5
V
GS  
t
f
J
t
d(off)  
Q2  
Q1  
4
3
2
10  
1
t
d(on)  
I
T
= 52 A  
= 25°C  
D
J
6
3
0
70  
1
0
Q3  
10  
V
DS  
0
20  
30  
40  
50  
60  
1
10  
, GATE RESISTANCE (OHMS)  
G
100  
Q , TOTAL CHARGE (nC)  
R
T
Figure 8. Gate–To–Source and Drain–To–Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN–TO–SOURCE DIODE CHARACTERISTICS  
55  
V
= 0 V  
GS  
= 25°C  
50  
45  
40  
35  
30  
25  
20  
15  
10  
T
J
5
0
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95  
1
1.05  
V
, SOURCE–TO–DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain–to–source voltage and  
drain current that a transistor can handle safely when it is  
forward biased. Curves are based upon maximum peak  
reliable operation, the stored energy from circuit inductance  
dissipated in the transistor while in avalanche must be less  
than the rated limit and adjusted for operating conditions  
differing from those specified. Although industry practice is to  
rate in terms of energy, avalanche energy capability is not a  
constant. The energy rating decreases non–linearly with an  
increase of peak current in avalanche and peak junction  
temperature.  
junction temperature and a case temperature (T ) of 25°C.  
C
Peak repetitive pulsed power limits are determined by using  
the thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance–General  
Data and Its Use.”  
Although many E–FETs can withstand the stress of  
drain–to–source avalanche at currents up to rated pulsed  
Switching between the off–state and the on–state may  
traverse any load line provided neither rated peak current  
current (I  
), the energy rating is specified at rated  
DM  
(I  
) nor rated voltage (V ) is exceeded and the transition  
DM DSS  
continuous current (I ), in accordance with industry custom.  
D
time (t ,t ) do not exceed 10 µs. In addition the total power  
averaged over a complete switching cycle must not exceed  
r f  
The energy rating must be derated for temperature as shown  
in the accompanying graph (Figure 12). Maximum energy at  
(T  
– T )/(R ).  
J(MAX)  
C
θJC  
currents below rated continuous I can safely be assumed to  
A Power MOSFET designated E–FET can be safely used  
D
in switching circuits with unclamped inductive loads. For  
Motorola TMOS Power MOSFET Transistor Device Data  
equal the values indicated.  
5
SAFE OPERATING AREA  
1000  
100  
450  
400  
V
= 15 V  
GS  
SINGLE PULSE  
= 25  
I
= 52 A  
D
10 µs  
T
°C  
C
350  
300  
250  
200  
150  
100  
100 µs  
1 ms  
10  
1
10 ms  
10  
R
LIMIT  
dc  
DS(on)  
THERMAL LIMIT  
PACKAGE LIMIT  
50  
0
0.1  
1
100  
25  
50  
75  
100  
125  
150  
C)  
175  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
T , STARTING JUNCTION TEMPERATURE (°  
DS  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1
D = 0.5  
0.2  
0.1  
P
(pk)  
0.1  
0.05  
0.02  
R
(t) = r(t) R  
JC θJC  
θ
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
t
READ TIME AT t  
T
1
1
0.01  
t
– T = P R (t)  
(pk) θJC  
2
J(pk)  
C
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.01  
1.0E–05  
1.0E–04  
1.0E–03  
1.0E–02  
1.0E–01  
1.0E+00  
1.0E+01  
t, TIME (s)  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
t
a
b
TIME  
0.25 I  
t
S
p
I
S
Figure 14. Diode Reverse Recovery Waveform  
6
Motorola TMOS Power MOSFET Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
STYLE 5:  
1
2
3
U
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
H
L
R
V
J
G
T
U
V
D
N
Z
0.080  
2.04  
CASE 221A–06  
ISSUE Y  
Motorola TMOS Power MOSFET Transistor Device Data  
7
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MTP52N06VL/D  

相关型号:

MTP52N06VLG

52A, 60V, 0.025ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, LEAD FREE, CASE 221A-09, 3 PIN
ONSEMI

MTP55N06

TMOS POWER FET 55 AMPERES 60 VOLTS RDS(on) = 18 mohm
MOTOROLA

MTP55N06Z

TMOS POWER FET 55 AMPERES 60 VOLTS RDS(on) = 18 mohm
MOTOROLA

MTP55N10EL

55A, 100V, 0.03ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP5614N6

P-Channel Enhancement Mode MOSFET
CYSTEKEC

MTP5N05

Trans MOSFET N-CH 400V 5A 3-Pin(3+Tab) TO-220
NJSEMI

MTP5N05

Power Field-Effect Transistor, 5A I(D), 50V, 0.6ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP5N06

Trans MOSFET N-CH 400V 5A 3-Pin(3+Tab) TO-220
NJSEMI

MTP5N06

5A, 60V, 0.6ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP5N06E

Trans MOSFET N-CH 400V 5A 3-Pin(3+Tab) TO-220
NJSEMI

MTP5N12

Power Field-Effect Transistor, 5A I(D), 120V, 0.9ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP5N20

POWER FIELD EFFECT TRANSISTOR
MOTOROLA