MTW14N50E [MOTOROLA]

TMOS POWER FET 14 AMPERES 500 VOLTS RDS(on) = 0.40 OHM; TMOS功率FET 14安培500伏的RDS(on ) = 0.40 OHM
MTW14N50E
型号: MTW14N50E
厂家: MOTOROLA    MOTOROLA
描述:

TMOS POWER FET 14 AMPERES 500 VOLTS RDS(on) = 0.40 OHM
TMOS功率FET 14安培500伏的RDS(on ) = 0.40 OHM

文件: 总8页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MTW14N50E/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Device  
TMOS POWER FET  
14 AMPERES  
500 VOLTS  
N–Channel Enhancement–Mode Silicon Gate  
This advanced TMOS E–FET is designed to withstand high  
energy in the avalanche and commutation modes. The new energy  
efficient design also offers a drain–to–source diode with a fast  
recovery time. Designed for high voltage, high speed switching  
applications in power supplies, converters and PWM motor  
controls, these devices are particularly well suited for bridge circuits  
where diode speed and commutating safe operating areas are  
critical and offer additional safety margin against unexpected  
voltage transients.  
R
= 0.40 OHM  
DS(on)  
Designed to Replace External Zener Transient Suppressor —  
Absorbs High Energy in the Avalanche Mode  
Source–to–Drain Diode Recovery Time Comparable to a  
Discrete Fast Recovery Diode  
D
Diode is Characterized for Use in Bridge Circuits  
I
and V  
Specified at Elevated Temperature  
DSS  
DS(on)  
G
CASE 340K–01, Style 1  
TO–247AE  
S
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Symbol  
Value  
500  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Drain–Source Voltage  
V
DSS  
Drain–Gate Voltage (R  
GS  
= 1.0 M)  
V
DGR  
500  
Gate–Source Voltage — Continuous  
V
GS  
±20  
Drain Current — Continuous  
Drain Current — Continuous @ 100°C  
I
I
14  
9.0  
60  
D
D
Drain Current — Single Pulse (t 10 µs)  
I
Apk  
p
DM  
Total Power Dissipation  
Derate above 25°C  
P
D
180  
1.44  
Watts  
W/°C  
Operating and Storage Temperature Range  
T , T  
stg  
55 to 150  
860  
°C  
J
Single Pulse Drain–to–Source Avalanche Energy — STARTING T = 25°C  
E
AS  
mJ  
J
(V  
DD  
= 50 Vdc, V  
= 10 Vpk, I = 14 Apk, L = 8.8 mH, R = 25 )  
GS L G  
Thermal Resistance — Junction to Case  
Thermal Resistance — Junction to Ambient  
R
θJC  
R
θJA  
0.7  
40  
°C/W  
Maximum Lead Temperature for Soldering Purposes, 1/8from case for 10 seconds  
T
L
260  
°C  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
E–FET and Designer’s are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 4  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage  
V
(BR)DSS  
(V  
GS  
= 0 V, I = 250 µAdc)  
500  
520  
Vdc  
mV/°C  
D
Temperature Coefficient (Positive)  
Zero Gate Voltage Drain Current  
I
µAdc  
DSS  
GSS  
(V  
DS  
(V  
DS  
= 500 Vdc, V  
= 500 Vdc, V  
= 0)  
250  
1000  
GS  
GS  
= 0, T = 125°C)  
J
Gate–Body Leakage Current (V  
= ±20 Vdc, V  
= 0)  
DS  
I
100  
nAdc  
GS  
ON CHARACTERISTICS*  
Gate Threshold Voltage  
V
GS(th)  
(V  
DS  
= V , I = 250 µAdc)  
2.0  
3.2  
7.0  
4.0  
Vdc  
mV/°C  
GS  
D
Temperature Coefficient (Negative)  
Static Drain–Source On–Resistance (V  
= 10 Vdc, I = 7.0 Adc)  
R
V
0.32  
0.40  
Ohm  
Vdc  
GS  
D
DS(on)  
Drain–Source On–Voltage (V  
= 10 Vdc)  
GS  
DS(on)  
(I = 14 Adc)  
6.7  
5.6  
D
(I = 7.0 Adc, T = 125°C)  
D
J
Forward Transconductance (V  
= 15 Vdc, I = 7.0 Adc)  
g
FS  
5.0  
mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
2510  
280  
67  
3510  
392  
94  
iss  
(V  
DS  
= 25 Vdc, V  
GS  
f = 1.0 MHz)  
= 0,  
Output Capacitance  
C
oss  
Reverse Transfer Capacitance  
C
rss  
SWITCHING CHARACTERISTICS*  
Turn–On Delay Time  
t
28  
80  
80  
60  
65  
17  
47  
34  
60  
160  
160  
120  
85  
ns  
d(on)  
(V  
= 250 Vdc, I = 14 Adc,  
D
Rise Time  
DD  
t
r
V
= 10 Vdc,  
GS  
G
Turn–Off Delay Time  
Fall Time  
t
d(off)  
R
= 4.7 )  
t
f
Gate Charge  
Q
T
Q
1
Q
2
Q
3
nC  
(V  
= 400 Vdc, I = 14 Adc,  
DS  
D
V
GS  
= 10 Vdc)  
SOURCE–DRAIN DIODE CHARACTERISTICS*  
Forward On–Voltage  
V
1.0  
0.9  
1.6  
Vdc  
ns  
(I = 14 Adc, V  
= 0)  
SD  
S
GS  
= 0, T = 125°C)  
(I = 14 Adc, V  
S
GS  
J
Reverse Recovery Time  
t
390  
245  
145  
5.35  
rr  
t
a
(I = 14 Adc, V  
= 0,  
S
GS  
dI /dt = 100 A/µs, V  
= 0)  
S
GS  
t
b
Reverse Recovery Stored Charge  
Q
µC  
RR  
INTERNAL PACKAGE INDUCTANCE  
Internal Drain Inductance  
(Measured from the drain lead 0.25from package to center of die)  
L
5.0  
13  
nH  
nH  
D
Internal Source Inductance  
(Measured from the source lead 0.25from package to source bond pad)  
L
S
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.  
Switching characteristics are independent of operating junction temperature.  
2
Motorola TMOS Power MOSFET Transistor Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
20  
18  
16  
14  
20  
7 V  
10 V  
T
= 25  
°C  
18  
16  
14  
6 V  
V
10 V  
J
DS  
12  
10  
8
12  
10  
8
55  
°C  
T
= 100°C  
J
V
= 5 V  
25°  
C
GS  
6
6
4
4
2
2
0
4 V  
9
0
0
1
2
3
4
5
6
7
8
10  
0
0
0
1
2
3
4
5
6
7
8
9
10  
V
, GATE–TO–SOURCE VOLTAGE (VOLTS)  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
GS  
DS  
Figure 1. On–Region Characteristics  
Figure 2. Transfer Characteristics  
1.0  
0.38  
0.36  
0.34  
0.32  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
V
= 10V  
GS  
T
= 25°C  
J
0.8  
0.6  
0.4  
0.2  
0.0  
T
= 100°C  
J
V
= 10 V  
GS  
T
= 25°C  
J
V
= 15 V  
GS  
T
= –55  
°C  
J
0
4
8
12  
16  
20  
24  
28  
4
8
12  
16  
20  
24  
28  
I
, DRAIN CURRENT (AMPS)  
I
, DRAIN CURRENT (AMPS)  
D
D
Figure 3.On–Resistance versus Drain Current  
Figure 4.On–Resistance versus Drain Current  
2.5  
100000  
V
= 0 V  
GS  
T
T
= 125  
= 100  
°
C
C
J
J
20000  
10000  
2.0  
1.5  
1.0  
2000  
1000  
°
200  
100  
T
= 25°C  
J
V
= 10 V  
GS  
= 7 A  
0.5  
0
I
D
20  
10  
50  
0
50  
100  
150  
200  
100  
V , DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
DS  
200  
300  
400  
500  
T , JUNCTION TEMPERATURE (  
°C)  
J
Figure 5.On–Resistance Variation  
With Temperature  
Figure 6.Drain–To–Source Leakage  
Current versus Voltage  
Motorola TMOS Power MOSFET Transistor Device Data  
3
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge controlled.  
The lengths of various switching intervals (t) are deter-  
mined by how fast the FET input capacitance can be charged  
by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
iss  
a voltage corresponding to the off–state condition when cal-  
culating t  
and is read at a voltage corresponding to the  
d(on)  
on–state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements com-  
plicate the analysis. The inductance of the MOSFET source  
lead, inside the package and in the circuit wiring which is  
common to both the drain and gate current paths, produces a  
voltage at the source which reduces the gate drive current.  
The voltage is determined by Ldi/dt, but since di/dt is a func-  
tion of drain current, the mathematical solution is complex.  
The MOSFET output capacitance also complicates the  
mathematics. And finally, MOSFETs have finite internal gate  
resistance which effectively adds to the resistance of the  
driving source, but the internal resistance is difficult to mea-  
sure and, consequently, is not specified.  
The resistive switching time variation versus gate resis-  
tance (Figure 10) shows how typical switching performance  
is affected by the parasitic circuit elements. If the parasitics  
were not present, the slope of the curves would maintain a  
value of unity regardless of the switching speed. The circuit  
used to obtain the data is constructed to minimize common  
inductance in the drain and gate circuit loops and is believed  
readily achievable with board mounted components. Most  
power electronic loads are inductive; the data in the figure is  
taken with a resistive load, which approximates an optimally  
snubbed inductive load. Power MOSFETs may be safely op-  
erated into an inductive load; however, snubbing reduces  
switching losses.  
The published capacitance data is difficult to use for calculat-  
ing rise and fall because drain–gate capacitance varies  
greatly with applied voltage. Accordingly, gate charge data is  
used. In most cases, a satisfactory estimate of average input  
current (I  
) can be made from a rudimentary analysis of  
G(AV)  
the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a resis-  
tive load, V remains virtually constant at a level known as  
GS  
the plateau voltage, V  
. Therefore, rise and fall times may  
SGP  
be approximated by the following:  
t = Q x R /(V  
– V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
V
= the gate drive voltage, which varies from zero to V  
GG  
GG  
R
= the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
GSP  
2
During the turn–on and turn–off delay times, gate current is  
not constant. The simplest calculation uses appropriate val-  
ues from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R  
= R  
C
C
In [V  
/(V  
GG GG  
– V  
)]  
GSP  
d(on)  
G
iss  
In (V  
/V  
GG GSP  
)
d(off)  
G
iss  
8000  
10000  
T
= 25°C  
V
= 0 V  
J
T
= 25  
°C  
V
= 0 V  
DS  
J
GS  
7000  
6000  
5000  
4000  
C
iss  
V
= 0 V  
GS  
2000  
1000  
C
iss  
200  
100  
C
oss  
3000  
2000  
C
rss  
C
oss  
1000  
0
20  
10  
C
rss  
10  
5
0
5
10  
15  
20  
25  
1
2
10  
20  
100  
200  
1000  
V
V
DS  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
GS  
DS  
GATE–TO–SOURCE OR DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
Figure 7a. Low Voltage Capacitance Variation  
Figure 7b. High Voltage Capacitance Variation  
4
Motorola TMOS Power MOSFET Transistor Device Data  
15  
12  
9
500  
400  
300  
200  
10000  
T
= 25°C  
= 14 A  
J
t
t
T
I
V
= 25  
J
°
C
d(off)  
I
V
D
V
= 14 A  
DS  
= 400 V  
D
DD  
GS  
DS  
2000  
1000  
= 250 V  
= 10 V  
Q
T
V
d(on)  
Q
1
200  
100  
6
3
0
Q
2
t
r
V
GS  
100  
0
t
f
20  
10  
Q
3
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
1
2
10  
R , GATE RESISTANCE (OHMS)  
G
20  
100  
200  
1000  
Q , TOTAL CHARGE (nC)  
T
Figure 8. Gate–To–Source and Drain–To–Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN–TO–SOURCE DIODE CHARACTERISTICS  
14  
T
V
= 25°C  
J
12  
10  
8
= 0 V  
GS  
dI /dt = 100 A/µs  
S
6
4
2
0
0
0.2  
0.4  
0.6  
0.8  
1
V
, SOURCE–TO–DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define the  
maximum simultaneous drain–to–source voltage and drain  
current that a transistor can handle safely when it is forward  
biased. Curves are based upon maximum peak junction tem-  
operation, the stored energy from circuit inductance dissi-  
pated in the transistor while in avalanche must be less than  
the rated limit and adjusted for operating conditions differing  
from those specified. Although industry practice is to rate in  
terms of energy, avalanche energy capability is not a  
constant. The energy rating decreases non–linearly with an  
increase of peak current in avalanche and peak junction tem-  
perature.  
perature and a case temperature (T ) of 25°C. Peak repetitive  
C
pulsed power limits are determined by using the thermal re-  
sponse data in conjunction with the procedures discussed in  
AN569, “Transient Thermal Resistance–General Data and Its  
Use.”  
Although many E–FETs can withstand the stress of drain–  
to–source avalanche at currents up to rated pulsed current  
Switching between the off–state and the on–state may tra-  
verse any load line provided neither rated peak current (I  
)
DM  
(I  
), the energy rating is specified at rated continuous cur-  
DM  
nor rated voltage (V  
) is exceeded and the transition time  
DSS  
rent (I ), in accordance with industry custom. The energy rat-  
D
(t ,t ) do not exceed 10µs. In addition the total power averaged  
r f  
ing must be derated for temperature as shown in the  
accompanying graph (Figure 12). Maximum energy at cur-  
over a complete switching cycle must not exceed (T  
J(MAX)  
T )/(R  
).  
C
θJC  
rents below rated continuous I can safely be assumed to  
A Power MOSFET designated E–FET can be safely used in  
switching circuits with unclamped inductive loads. For reliable  
D
equal the values indicated.  
Motorola TMOS Power MOSFET Transistor Device Data  
5
900  
800  
700  
600  
500  
100  
V
= 20 V  
GS  
SINGLE PULSE  
= 25  
10 µs  
PEAK I = 14 A  
D
V
= 50 V  
T
°C  
DD  
C
20  
10  
100 µs  
1 ms  
400  
300  
200  
100  
0
2
1
10 ms  
dc  
THERMAL LIMIT  
PACKAGE LIMIT  
0.2  
0.1  
R
LIMIT  
DS(on)  
25  
50  
75  
100  
125  
C)  
150  
1
2
10  
20  
100  
200  
1000  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
T , STARTING JUNCTION TEMPERATURE (  
°
DS  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1
D = 0.5  
= 0.2  
0.2  
= 0.1  
0.1  
= 0.05  
= 0.02  
= 0.01  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
°C/W MAX  
0.02  
0.01  
DUTY CYCLE, D = t /t  
1 2  
= 0.7  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
P
(pk)  
SINGLE PULSE  
t
1
1
(pk)  
t
2
T
– T = P  
R
(t)  
JC  
J(pk)  
C
θ
0.002  
0.001  
0.01  
0.02  
0.1  
0.2  
1
2
10  
20  
100  
200  
1000  
t, TIME (ms)  
Figure 13. Thermal Response  
6
Motorola TMOS Power MOSFET Transistor Device Data  
PACKAGE DIMENSIONS  
–T–  
E
–Q–  
M
M
0.25 (0.010)  
T B  
NOTES:  
–B–  
C
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
4
2. CONTROLLING DIMENSION: MILLIMETER.  
U
L
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
E
MIN  
19.7  
15.3  
4.7  
1.0  
1.27 REF  
2.0  
5.5 BSC  
2.2  
0.4  
14.2  
MAX  
20.3  
15.9  
5.3  
MIN  
MAX  
0.799  
0.626  
0.209  
0.055  
A
K
0.776  
0.602  
0.185  
0.039  
0.050 REF  
0.079  
R
1
2
3
1.4  
F
2.4  
0.094  
STYLE 1:  
PIN 1. GATE  
–Y–  
G
H
J
K
L
0.216 BSC  
P
2.6  
0.8  
14.8  
0.087  
0.016  
0.559  
0.102  
0.031  
0.583  
2. DRAIN  
3. SOURCE  
4. DRAIN  
5.5 NOM  
0.217 NOM  
P
3.7  
3.55  
5.0 NOM  
5.5 BSC  
3.0  
4.3  
3.65  
0.146  
0.140  
0.197 NOM  
0.217 BSC  
0.118 0.134  
0.169  
0.144  
V
H
Q
R
U
V
F
J
G
D
3.4  
M
S
0.25 (0.010)  
Y
Q
CASE 340K–01  
ISSUE O  
Motorola TMOS Power MOSFET Transistor Device Data  
7
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MTW14N50E/D  

相关型号:

MTW15-51212

15W to 60W Low Profi le Triple Output Power Supplies
TDK

MTW15-51212-V

AC-DC Power Supplies
TDK

MTW15-51215-V

AC-DC Power Factor Correction Module
TDK

MTW15-51515

15W to 60W Low Profi le Triple Output Power Supplies
TDK

MTW15-51515-V

AC-DC Power Factor Correction Module
TDK

MTW15N25E

15A, 250V, 0.28ohm, N-CHANNEL, Si, POWER, MOSFET, TO-247
MOTOROLA

MTW16N40E

TMOS POWER FET 16 AMPERES 400 VOLTS RDS(on) = 0.24 OHM
MOTOROLA

MTW20N50E

TMOS POWER FET 20 AMPERES 500 VOLTS RDS(on) = 0.24 OHM
MOTOROLA

MTW22N20E

22A, 200V, 0.15ohm, N-CHANNEL, Si, POWER, MOSFET, TO-247
MOTOROLA

MTW23N25E

TMOS POWER FET 23 AMPERES 250 VOLTS RDS(on) = 0.11 OHM
MOTOROLA

MTW24N40E

TMOS POWER FET 24 AMPERES 400 VOLTS RDS(on) = 0.16 OHM
MOTOROLA

MTW26N15E

TMOS POWER FET 26 AMPERES 150 VOLTS RDS(on) = 0.095 OHM
MOTOROLA