MUN5235T3 [MOTOROLA]

100mA, 50V, NPN, Si, SMALL SIGNAL TRANSISTOR, SC-70, 3 PIN;
MUN5235T3
型号: MUN5235T3
厂家: MOTOROLA    MOTOROLA
描述:

100mA, 50V, NPN, Si, SMALL SIGNAL TRANSISTOR, SC-70, 3 PIN

文件: 总12页 (文件大小:172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preferred Devices  
NPN Silicon Surface Mount Transistor  
with Monolithic Bias Resistor Network  
This new series of digital transistors is designed to replace a single  
device and its external resistor bias network. The BRT (Bias Resistor  
Transistor) contains a single transistor with a monolithic bias network  
consisting of two resistors; a series base resistor and a base–emitter  
resistor. The BRT eliminates these individual components by  
integrating them into a single device. The use of a BRT can reduce  
both system cost and board space. The device is housed in the  
SC–70/SOT–323 package which is designed for low power surface  
mount applications.  
http://onsemi.com  
NPN SILICON  
BIAS RESISTOR  
TRANSISTORS  
Simplifies Circuit Design  
Reduces Board Space  
PIN3  
COLLECTOR  
(OUTPUT)  
Reduces Component Count  
R1  
The SC–70/SOT–323 package can be soldered using  
wave or reflow. The modified gull–winged leads absorb  
thermal stress during soldering eliminating the possibility  
of damage to the die.  
PIN1  
R2  
BASE  
(INPUT)  
PIN2  
EMITTER  
(GROUND)  
Available in 8 mm embossed tape and reel  
Use the Device Number to order the 7 inch/3000 unit reel.  
Replace “T1” with “T3” in the Device Number to order  
the 13 inch/10,000 unit reel.  
3
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
Rating  
Collector-Base Voltage  
Collector-Emitter Voltage  
Collector Current  
Symbol  
Value  
50  
Unit  
Vdc  
1
2
V
CBO  
V
CEO  
50  
Vdc  
CASE 419  
SC–70/SOT–323  
STYLE 3  
I
C
100  
mAdc  
Total Power Dissipation  
P
D
(1.)  
@ T = 25°C  
150  
1.2  
mW  
mW/°C  
A
Derate above 25°C  
DEVICE MARKING AND RESISTOR VALUES  
Preferred devices are recommended choices for future use  
and best overall value.  
Device  
Marking  
R1 (K)  
R2 (K)  
Shipping  
3000/Tape & Reel  
MUN5211T1  
MUN5212T1  
MUN5213T1  
MUN5214T1  
MUN5215T1  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
MUN5235T1  
8A  
8B  
8C  
8D  
8E  
8F  
8G  
8H  
8J  
10  
22  
47  
10  
10  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
10  
22  
47  
47  
(2.)  
(2.)  
(2.)  
(2.)  
(2.)  
(2.)  
(2.)  
(2.)  
1.0  
2.2  
4.7  
47  
47  
47  
8K  
8L  
8M  
2.2  
1. Device mounted on a FR–4 glass epoxy printed circuit board using the  
minimum recommended footprint.  
2. New devices. Updated curves to follow in subsequent data sheets.  
Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
May, 2000 – Rev. 3  
MUN5211T1/D  
MUN5211T1 SERIES  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
°C/W  
°C  
Thermal Resistance — Junction to Ambient (surface mounted)  
Operating and Storage Temperature Range  
R
833  
θ
JA  
T , T  
–65 to +150  
J
stg  
Maximum Temperature for Soldering Purposes,  
Time in Solder Bath  
T
L
260  
10  
°C  
Sec  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector-Base Cutoff Current (V = 50 V, I = 0)  
I
I
100  
500  
nAdc  
nAdc  
mAdc  
CB  
E
CBO  
Collector-Emitter Cutoff Current (V = 50 V, I = 0)  
CE  
B
CEO  
Emitter-Base Cutoff Current  
(V = 6.0 V, I = 0)  
MUN5211T1  
MUN5212T1  
MUN5213T1  
MUN5214T1  
MUN5215T1  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
MUN5235T1  
I
0.5  
0.2  
0.1  
0.2  
0.9  
1.9  
4.3  
2.3  
1.5  
0.18  
0.13  
0.2  
EBO  
EB  
C
Collector-Base Breakdown Voltage (I = 10 µA, I = 0)  
V
V
50  
50  
Vdc  
Vdc  
C
E
(BR)CBO  
(3.)  
Collector-Emitter Breakdown Voltage  
(I = 2.0 mA, I = 0)  
C
B
(BR)CEO  
ON CHARACTERISTICS (3.)  
DC Current Gain  
MUN5211T1  
MUN5212T1  
MUN5213T1  
MUN5214T1  
MUN5215T1  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
MUN5235T1  
h
FE  
35  
60  
80  
60  
(V = 10 V, I = 5.0 mA)  
100  
140  
140  
350  
350  
5.0  
15  
CE  
C
80  
160  
160  
3.0  
8.0  
15  
80  
80  
80  
30  
200  
150  
140  
Collector-Emitter Saturation Voltage (I = 10 mA, I = 0.3 mA)  
V
CE(sat)  
0.25  
Vdc  
Vdc  
C
B
(I = 10 mA, I = 5 mA) MUN5230T1/MUN5231T1  
C
B
(I = 10 mA, I = 1 mA) MUN5215T1/MUN5216T1  
C
B
MUN5232T1/MUN5233T1/MUN5234T1  
Output Voltage (on)  
(V = 5.0 V, V = 2.5 V, R = 1.0 k)  
V
OL  
MUN5211lT1  
MUN5212T1  
MUN5214T1  
MUN5215T1  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
MUN5235T1  
MUN5213T1  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
CC  
B
L
(V = 5.0 V, V = 3.5 V, R = 1.0 k)  
CC  
B
L
3. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%  
http://onsemi.com  
2
MUN5211T1 SERIES  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (off) (V = 5.0 V, V = 0.5 V, R = 1.0 k)  
V
OH  
4.9  
Vdc  
CC  
B
L
(V = 5.0 V, V = 0.050 V, R = 1.0 k)  
MUN5230T1  
CC  
B
L
(V = 5.0 V, V = 0.25 V, R = 1.0 k)  
MUN5215T1  
MUN5216T1  
MUN5233T1  
CC  
B
L
Input Resistor  
MUN5211T1  
MUN5212T1  
MUN5213T1  
MUN5214T1  
MUN5215T1  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
MUN5235T1  
R1  
7.0  
15.4  
32.9  
7.0  
7.0  
3.3  
0.7  
1.5  
3.3  
3.3  
10  
22  
47  
10  
10  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
13  
28.6  
61.1  
13  
13  
6.1  
1.3  
2.9  
6.1  
6.1  
k Ω  
15.4  
1.54  
28.6  
2.86  
2.2  
Resistor Ratio  
MUN5211T1/MUN5212T1/MUN5213T1  
MUN5214T1  
MUN5215T1/MUN5216T1  
MUN5230T1/MUN5231T1/MUN5232T1  
MUN5233T1  
R1/R2  
0.8  
0.17  
1.0  
0.21  
1.0  
0.1  
1.2  
0.25  
0.8  
1.2  
0.055  
0.38  
0.038  
0.185  
0.56  
0.056  
MUN5234T1  
MUN5235T1  
0.47  
0.047  
250  
200  
150  
100  
R
θ
= 833°C/W  
JA  
50  
0
50  
0
50  
100  
150  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 1. Derating Curve  
http://onsemi.com  
3
MUN5211T1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5211T1  
1
1000  
I /I = 10  
C B  
V
CE  
= 10 V  
T = –25°C  
A
25°C  
T =75°C  
A
25°C  
0.1  
–25°C  
75°C  
100  
0.01  
0.001  
10  
0
20  
40  
50  
1
10  
100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 2. VCE(sat) versus IC  
Figure 3. DC Current Gain  
4
3
100  
10  
25°C  
75°C  
f = 1 MHz  
I = 0 V  
E
T = –25°C  
A
T = 25°C  
A
1
0.1  
2
1
0
0.01  
0.001  
V = 5 V  
O
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
7
8
9
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 4. Output Capacitance  
Figure 5. Output Current versus Input Voltage  
10  
V = 0.2 V  
O
T = –25°C  
A
25°C  
75°C  
1
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 6. Input Voltage versus Output Current  
http://onsemi.com  
4
MUN5211T1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5212T1  
1000  
1
V
CE  
= 10 V  
I /I = 10  
C B  
T =75°C  
A
25°C  
25°C  
T = –25°C  
A
0.1  
–25°C  
75°C  
100  
10  
0.01  
0.001  
1
10  
100  
0
20  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 7. VCE(sat) versus IC  
Figure 8. DC Current Gain  
4
3
2
1
0
100  
10  
1
75°C  
25°C  
f = 1 MHz  
I = 0 V  
T = 25°C  
A
T = –25°C  
A
E
0.1  
0.01  
V = 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 9. Output Capacitance  
Figure 10. Output Current versus Input Voltage  
100  
V = 0.2 V  
O
T = –25°C  
A
10  
1
25°C  
75°C  
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 11. Input Voltage versus Output Current  
http://onsemi.com  
5
MUN5211T1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5213T1  
10  
1
1000  
V
= 10 V  
CE  
I /I = 10  
C B  
T =75°C  
A
25°C  
–25°C  
25°C  
75°C  
100  
T = –25°C  
A
0.1  
0.01  
10  
0
20  
I , COLLECTOR CURRENT (mA)  
40  
50  
1
10  
100  
I , COLLECTOR CURRENT (mA)  
C
C
Figure 12. VCE(sat) versus IC  
Figure 13. DC Current Gain  
1
100  
10  
1
25°C  
f = 1 MHz  
I = 0 V  
T = 25°C  
A
75°C  
E
T = –25°C  
A
0.8  
0.6  
0.4  
0.1  
0.01  
0.2  
0
V = 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 14. Output Capacitance  
Figure 15. Output Current versus Input Voltage  
100  
V = 0.2 V  
O
T = –25°C  
A
25°C  
75°C  
10  
1
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 16. Input Voltage versus Output Current  
http://onsemi.com  
6
MUN5211T1 SERIES  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5214T1  
1
0.1  
300  
T =75°C  
A
V
CE  
= 10  
I /I = 10  
C B  
T = –25°C  
250  
200  
150  
100  
A
25°C  
25°C  
75°C  
–25°C  
0.01  
50  
0
0.001  
0
20  
40  
60  
80  
1
2
4
6
8
10 15 20 40 50 60 70 80 90 100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 17. VCE(sat) versus IC  
Figure 18. DC Current Gain  
4
3.5  
3
100  
10  
1
f = 1 MHz  
T =75°C  
25°C  
A
l = 0 V  
E
T = 25°C  
A
–25°C  
2.5  
2
1.5  
1
0.5  
0
V = 5 V  
O
0
2
4
6
8
10 15 20 25 30 35 40 45 50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 19. Output Capacitance  
Figure 20. Output Current versus Input Voltage  
10  
V = 0.2 V  
O
T = –25°C  
A
25°C  
75°C  
1
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 21. Input Voltage versus Output Current  
http://onsemi.com  
7
MUN5211T1 SERIES  
TYPICAL APPLICATIONS FOR NPN BRTs  
+12 V  
ISOLATED  
LOAD  
FROM µP OR  
OTHER LOGIC  
Figure 22. Level Shifter: Connects 12 or 24 Volt Circuits to Logic  
+12 V  
V
CC  
OUT  
IN  
LOAD  
Figure 23. Open Collector Inverter:  
Inverts the Input Signal  
Figure 24. Inexpensive, Unregulated Current Source  
http://onsemi.com  
8
MUN5211T1 SERIES  
MINIMUM RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.025  
0.65  
0.025  
0.65  
0.075  
1.9  
0.035  
0.9  
0.028  
0.7  
inches  
mm  
SC–70/SOT–323 POWER DISSIPATION  
The power dissipation of the SC–70/SOT–323 is a  
function of the pad size. This can vary from the minimum  
pad size for soldering to the pad size given for maximum  
power dissipation. Power dissipation for a surface mount  
into the equation for an ambient temperature T of 25°C,  
one can calculate the power dissipation of the device which  
in this case is 150 milliwatts.  
A
150°C – 25°C  
PD  
=
= 150 milliwatts  
device is determined by T  
, the maximum rated  
J(max)  
833°C/W  
junction temperature of the die, R , the thermal  
θJA  
The 833°C/W assumes the use of the recommended  
footprint on a glass epoxy printed circuit board to achieve a  
power dissipation of 150 milliwatts. Another alternative  
would be to use a ceramic substrate or an aluminum core  
board such as Thermal Clad . Using a board material such  
as Thermal Clad, a power dissipation of 300 milliwatts can  
be achieved using the same footprint.  
resistance from the device junction to ambient; and the  
operating temperature, T . Using the values provided on  
A
the data sheet, P can be calculated as follows:  
D
TJ(max) – TA  
PD  
=
Rθ  
JA  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
SOLDERING PRECAUTIONS  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within  
a short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference should be a maximum of 10°C.  
The soldering temperature and time should not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient should be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling  
* Soldering a device without preheating can cause  
excessive thermal shock and stress which can result in  
damage to the device.  
http://onsemi.com  
9
MUN5211T1 SERIES  
SOLDER STENCIL GUIDELINES  
Prior to placing surface mount components onto a printed  
or stainless steel with a typical thickness of 0.008 inches.  
The stencil opening size for the surface mounted package  
should be the same as the pad size on the printed circuit  
board, i.e., a 1:1 registration.  
circuit board, solder paste must be applied to the pads. A  
solder stencil is required to screen the optimum amount of  
solder paste onto the footprint. The stencil is made of brass  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of  
control settings that will give the desired heat pattern. The  
operator must set temperatures for several heating zones,  
and a figure for belt speed. Taken together, these control  
settings make up a heating “profile” for that particular  
circuit board. On machines controlled by a computer, the  
computer remembers these profiles from one operating  
session to the next. Figure 25 shows a typical heating  
profile for use when soldering a surface mount device to a  
printed circuit board. This profile will vary among  
soldering systems but it is a good starting point. Factors that  
can affect the profile include the type of soldering system in  
use, density and types of components on the board, type of  
solder used, and the type of board or substrate material  
being used. This profile shows temperature versus time.  
The line on the graph shows the actual temperature that  
might be experienced on the surface of a test board at or  
near a central solder joint. The two profiles are based on a  
high density and a low density board. The Vitronics  
SMD310 convection/infrared reflow soldering system was  
used to generate this profile. The type of solder used was  
62/36/2 Tin Lead Silver with a melting point between  
177189°C. When this type of furnace is used for solder  
reflow work, the circuit boards and solder joints tend to  
heat first. The components on the board are then heated by  
conduction. The circuit board, because it has a large surface  
area, absorbs the thermal energy more efficiently, then  
distributes this energy to the components. Because of this  
effect, the main body of a component may be up to 30  
degrees cooler than the adjacent solder joints.  
STEP 5  
HEATING  
ZONES 4 & 7  
SPIKE”  
STEP 6 STEP 7  
VENT COOLING  
STEP 1  
PREHEAT  
ZONE 1  
STEP 2  
VENT  
SOAK” ZONES 2 & 5  
RAMP”  
STEP 3  
HEATING  
STEP 4  
HEATING  
ZONES 3 & 6  
SOAK”  
205° TO 219°C  
PEAK AT  
SOLDER JOINT  
RAMP”  
200°C  
150°C  
170°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
160°C  
150°C  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
140°C  
100°C  
MASS OF ASSEMBLY)  
100°C  
50°C  
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
TIME (3 TO 7 MINUTES TOTAL)  
T
MAX  
Figure 25. Typical Solder Heating Profile  
http://onsemi.com  
10  
MUN5211T1 SERIES  
PACKAGE DIMENSIONS  
SC–70  
(SOT–323)  
CASE 419–02  
ISSUE J  
A
L
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
3
2. CONTROLLING DIMENSION: INCH.  
B
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
1
2
MIN  
1.80  
1.15  
0.90  
0.30  
1.20  
0.00  
0.10  
MAX  
2.20  
1.35  
1.25  
0.40  
1.40  
0.10  
0.25  
A
B
C
D
G
H
J
0.071  
0.045  
0.035  
0.012  
0.047  
0.000  
0.004  
0.087  
0.053  
0.049  
0.016  
0.055  
0.004  
0.010  
D
V
G
K
L
N
R
S
0.017 REF  
0.026 BSC  
0.028 REF  
0.425 REF  
0.650 BSC  
0.700 REF  
R
J
N
C
0.031  
0.079  
0.012  
0.039  
0.087  
0.016  
0.80  
2.00  
0.30  
1.00  
2.20  
0.40  
0.05 (0.002)  
V
K
H
STYLE 1:  
STYLE 2:  
PIN 1. ANODE  
2. N.C.  
STYLE 3:  
PIN 1. BASE  
STYLE 4:  
PIN 1. CATHODE  
STYLE 5:  
PIN 1. ANODE  
2. ANODE  
CANCELLED  
2. EMITTER  
3. COLLECTOR  
2. CATHODE  
3. ANODE  
3. CATHODE  
3. CATHODE  
STYLE 6:  
PIN 1. EMITTER  
STYLE 7:  
PIN 1. BASE  
STYLE 8:  
PIN 1. GATE  
STYLE 9:  
PIN 1. ANODE  
2. CATHODE  
STYLE 10:  
PIN 1. CATHODE  
2. ANODE  
2. BASE  
3. COLLECTOR  
2. EMITTER  
3. COLLECTOR  
2. SOURCE  
3. DRAIN  
3. CATHODE–ANODE  
3. ANODE–CATHODE  
http://onsemi.com  
11  
MUN5211T1 SERIES  
Thermal Clad is a trademark of the Bergquist Company  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MUN5211T1/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY