UC384XBD [MOTOROLA]

HIGH PERFORMANCE CURRENT MODE CONTROLLERS; 高性能电流模式控制器
UC384XBD
型号: UC384XBD
厂家: MOTOROLA    MOTOROLA
描述:

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
高性能电流模式控制器

开关 光电二极管 控制器
文件: 总16页 (文件大小:437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by UC3844B/D  
The UC3844B, UC3845B series are high performance fixed frequency  
current mode controllers. They are specifically designed for Off–Line and  
dc–to–dc converter applications offering the designer a cost–effective  
solution with minimal external components. These integrated circuits feature  
an oscillator, a temperature compensated reference, high gain error  
amplifier, current sensing comparator, and a high current totem pole output  
ideally suited for driving a power MOSFET.  
HIGH PERFORMANCE  
CURRENT MODE  
CONTROLLERS  
Also included are protective features consisting of input and reference  
undervoltage lockouts each with hysteresis, cycle–by–cycle current limiting,  
a latch for single pulse metering, and a flip–flop which blanks the output off  
every other oscillator cycle, allowing output deadtimes to be programmed  
from 50% to 70%.  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626  
8
1
These devices are available in an 8–pin dual–in–line and surface mount  
(SO–8) plastic package as well as the 14–pin plastic surface mount (SO–14).  
The SO–14 package has separate power and ground pins for the totem pole  
output stage.  
D1 SUFFIX  
PLASTIC PACKAGE  
CASE 751  
8
(SO–8)  
1
The UCX844B has UVLO thresholds of 16 V (on) and 10 V (off), ideally  
suited for off–line converters. The UCX845B is tailored for lower voltage  
applications having UVLO thresholds of 8.5 V (on) and 7.6 V (off).  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A  
14  
1
(SO–14)  
Trimmed Oscillator for Precise Frequency Control  
Oscillator Frequency Guaranteed at 250 kHz  
Current Mode Operation to 500 kHz Output Switching Frequency  
Output Deadtime Adjustable from 50% to 70%  
Automatic Feed Forward Compensation  
Latching PWM for Cycle–By–Cycle Current Limiting  
Internally Trimmed Reference with Undervoltage Lockout  
High Current Totem Pole Output  
PIN CONNECTIONS  
V
1
2
3
4
8
7
6
5
Compensation  
Voltage Feedback  
Current Sense  
ref  
V
CC  
Output  
Gnd  
R
/C  
T
T
(Top View)  
Undervoltage Lockout with Hysteresis  
Low Startup and Operating Current  
Compensation  
1
2
3
4
5
14  
13  
12  
11  
10  
9
V
ref  
NC  
Voltage Feedback  
NC  
NC  
V
CC  
V
C
Current Sense  
NC  
Output  
Gnd  
6
7
Simplified Block Diagram  
8
R
/C  
Power Ground  
T
T
V
7(12)  
CC  
(Top View)  
ORDERING INFORMATION  
Operating  
V
CC  
5.0V  
Reference  
V
Undervoltage  
Lockout  
ref  
8(14)  
R
R
Device  
Package  
Temperature Range  
V
ref  
Undervoltage  
Lockout  
V
C
UC384XBD  
UC384XBD1  
UC384XBN  
UC284XBD  
UC284XBD1  
UC284XBN  
UC384XBVD  
UC384XBVD1  
UC384XBVN  
SO–14  
SO–8  
7(11)  
T
= 0° to + 70°C  
A
Output  
6(10)  
Plastic  
SO–14  
SO–8  
R
/C  
T
Oscillator  
T
4(7)  
Latching  
PWM  
Power  
Ground  
T
= – 25° to + 85°C  
Voltage  
Feedback  
Input  
A
5(8)  
3(5)  
Plastic  
SO–14  
SO–8  
2(3)  
1(1)  
Error  
Amplifier  
Current  
Sense Input  
Output/  
Compensation  
T
= – 40° to +105°C  
A
Plastic  
Gnd  
5(9)  
X indicates either a 4 or 5 to define specific device  
part numbers.  
Pin numbers in parenthesis are for the D suffix SO–14 package.  
Motorola, Inc. 1996  
Rev 1  
UC3844B, 45B UC2844B, 45B  
MAXIMUM RATINGS  
Rating  
Symbol  
(I + I )  
Value  
Unit  
mA  
A
Total Power Supply and Zener Current  
Output Current, Source or Sink (Note 1)  
Output Energy (Capacitive Load per Cycle)  
Current Sense and Voltage Feedback Inputs  
Error Amp Output Sink Current  
30  
CC  
Z
I
O
1.0  
5.0  
W
µJ  
V
in  
– 0.3 to + 5.5  
10  
V
I
O
mA  
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package, SO–14 Case 751A  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance, Junction–to–Air  
D1 Suffix, Plastic Package, SO–8 Case 751  
P
862  
145  
mW  
°C/W  
A
D
R
R
R
θJA  
Maximum Power Dissipation @ T = 25°C  
P
702  
178  
mW  
°C/W  
A
D
θJA  
Thermal Resistance, Junction–to–Air  
N Suffix, Plastic Package, Case 626  
Maximum Power Dissipation @ T = 25°C  
P
1.25  
100  
W
°C/W  
A
D
θJA  
Thermal Resistance, Junction–to–Air  
Operating Junction Temperature  
T
+150  
°C  
°C  
J
Operating Ambient Temperature  
UC3844B, UC3845B  
T
A
0 to + 70  
UC2844B, UC2845B  
– 25 to + 85  
Storage Temperature Range  
T
stg  
– 65 to +150  
°C  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 15 V [Note 2], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max values T is  
T
T
A
A
the operating ambient temperature range that applies [Note 3], unless otherwise noted.)  
UC284XB  
Typ  
UC384XB, XBV  
Characteristic  
REFERENCE SECTION  
Symbol  
Min  
Max  
Min  
Typ  
Max  
Unit  
Reference Output Voltage (I = 1.0 mA, T = 25°C)  
V
ref  
4.95  
5.0  
2.0  
3.0  
0.2  
5.05  
20  
25  
4.9  
5.0  
2.0  
3.0  
0.2  
5.1  
20  
V
mV  
mV  
mV/°C  
V
O
J
Line Regulation (V  
CC  
= 12 V to 25 V)  
Reg  
line  
load  
S
Load Regulation (I = 1.0 mA to 20 mA)  
O
Reg  
T
25  
Temperature Stability  
Total Output Variation over Line, Load, and Temperature  
Output Noise Voltage (f = 10 Hz to 10 kHz, T = 25°C)  
V
ref  
4.9  
5.1  
4.82  
5.18  
V
n
50  
50  
µV  
J
Long Term Stability (T = 125°C for 1000 Hours)  
S
5.0  
– 85  
5.0  
– 85  
mV  
mA  
A
Output Short Circuit Current  
I
– 30  
–180  
– 30  
–180  
SC  
OSCILLATOR SECTION  
Frequency  
f
kHz  
OSC  
T = 25°C  
49  
48  
225  
52  
250  
55  
56  
275  
49  
48  
225  
52  
250  
55  
56  
275  
J
A
T
= T  
to T  
high  
T
low  
T = 25°C (R = 6.2 k, C = 1.0 nF)  
J
T
Frequency Change with Voltage (V  
= 12 V to 25 V)  
f  
f  
/V  
/T  
0.2  
1.0  
1.0  
0.2  
0.5  
1.0  
%
%
CC  
Frequency Change with Temperature  
= T to T  
OSC  
OSC  
T
A
low  
Oscillator Voltage Swing (Peak–to–Peak)  
Discharge Current (V = 2.0 V)  
high  
V
1.6  
1.6  
V
OSC  
I
mA  
OSC  
dischg  
T = 25°C  
7.8  
7.5  
8.3  
8.8  
8.8  
7.8  
7.6  
7.2  
8.3  
8.8  
8.8  
8.8  
J
T
= T  
= T  
to T  
to T  
(UC284XB, UC384XB)  
(UC384XBV)  
A
A
low  
low  
high  
high  
T
NOTES: 1. Maximum package power dissipation limits must be observed.  
2. Adjust V above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
=
=
=
0°C for UC3844B, UC3845B  
– 25°C for UC2844B, UC2845B  
– 40°C for UC3844BV, UC3845BV  
T
= + 70°C for UC3844B, UC3845B  
= + 85°C for UC2844B, UC2845B  
= +105°C for UC3844BV, UC3845BV  
low  
high  
2
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 15 V [Note 2], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max values T is  
T
T
A
A
the operating ambient temperature range that applies [Note 3], unless otherwise noted.)  
UC284XB  
Typ  
UC384XB, XBV  
Characteristic  
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V = 2.5 V)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
Unit  
V
I
2.45  
2.5  
– 0.1  
90  
2.55  
–1.0  
2.42  
2.5  
– 0.1  
90  
2.58  
V
µA  
O
FB  
Input Bias Current (V  
= 5.0 V)  
– 2.0  
FB  
IB  
Open Loop Voltage Gain (V = 2.0 V to 4.0 V)  
A
VOL  
65  
0.7  
60  
65  
0.7  
60  
dB  
O
Unity Gain Bandwidth (T = 25°C)  
BW  
1.0  
70  
1.0  
70  
MHz  
dB  
J
Power Supply Rejection Ratio (V  
= 12 V to 25 V)  
PSRR  
CC  
Output Current  
mA  
Sink (V = 1.1 V, V  
Source (V = 5.0 V, V  
O
= 2.7 V)  
I
Sink  
Source  
2.0  
– 0.5  
12  
–1.0  
2.0  
– 0.5  
12  
–1.0  
O
FB  
= 2.3 V)  
I
FB  
Output Voltage Swing  
V
High State (R = 15 k to ground, V  
= 2.3 V)  
FB  
= 2.7 V)  
V
OH  
V
OL  
5.0  
6.2  
5.0  
6.2  
L
Low State (R = 15 k to V , V  
L
ref FB  
(UC284XB, UC384XB)  
0.8  
1.1  
0.8  
0.8  
1.1  
1.2  
(UC384XBV)  
CURRENT SENSE SECTION  
Current Sense Input Voltage Gain (Notes 4 & 5)  
(UC284XB, UC384XB)  
(UC384XBV)  
A
V/V  
V
V
2.85  
3.0  
3.15  
2.85  
2.85  
3.0  
3.0  
3.15  
3.25  
Maximum Current Sense Input Threshold (Note 4)  
(UC284XB, UC384XB)  
(UC384XBV)  
V
th  
0.9  
1.0  
1.1  
0.9  
0.85  
1.0  
1.0  
1.1  
1.1  
Power Supply Rejection Ratio  
PSRR  
70  
70  
dB  
(V  
CC  
= 12 V to 25 V) (Note 4)  
Input Bias Current  
I
– 2.0  
150  
–10  
300  
– 2.0  
150  
–10  
300  
µA  
IB  
Propagation Delay (Current Sense Input to Output)  
t
ns  
PLH(In/Out)  
OUTPUT SECTION  
Output Voltage  
Low State (I  
V
V
= 20 mA)  
= 200 mA, UC284XB, UC384XB)  
= 200 mA, UC384XBV)  
V
13  
12  
0.1  
1.6  
13.5  
0.4  
2.2  
13  
12.9  
12  
0.1  
1.6  
1.6  
13.5  
0.4  
2.2  
2.3  
Sink  
Sink  
Sink  
OL  
(I  
(I  
High State (I  
= 20 mA, UC284XB, UC384XB)  
= 20 mA, UC384XBV)  
= 200 mA)  
V
OH  
Source  
Source  
Source  
(I  
(I  
13.4  
13.4  
Output Voltage with UVLO Activated  
= 6.0 V, I = 1.0 mA  
V
0.1  
1.1  
0.1  
1.1  
OL(UVLO)  
V
CC  
Sink  
Output Voltage Rise Time (C = 1.0 nF, T = 25°C)  
t
r
50  
50  
150  
150  
50  
50  
150  
150  
ns  
ns  
L
J
Output Voltage Fall Time (C = 1.0 nF, T = 25°C)  
t
f
L
J
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold  
UCX844B, BV  
UCX845B, BV  
V
V
V
th  
15  
7.8  
16  
8.4  
17  
9.0  
14.5  
7.8  
16  
8.4  
17.5  
9.0  
Minimum Operating Voltage After Turn–On  
UCX844B, BV  
UCX845B, BV  
V
CC(min)  
9.0  
7.0  
10  
7.6  
11  
8.2  
8.5  
7.0  
10  
7.6  
11.5  
8.2  
NOTES: 2. Adjust V  
above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
T
T
= 0°C for UC3844B, UC3845B  
= – 25°C for UC2844B, UC2845B  
= – 40°C for UC3844BV, UC3845BV  
T
= + 70°C for UC3844B, UC3845B  
= + 85°C for UC2844B, UC2845B  
= +105°C for UC3844BV, UC3845BV  
low  
low  
low  
high  
high  
igh  
T
T
h
4. This parameter is measured at the latch trip point with V  
= 0 V.  
FB  
V Output Compensation  
V Current Sense Input  
5. Comparator gain is defined as: A  
=
V
3
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 15 V [Note 2], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max values T is  
T
T
A
A
the operating ambient temperature range that applies [Note 3], unless otherwise noted.)  
UC284XB  
Typ  
UC384XB, XBV  
Characteristic  
Symbol  
Min  
Max  
Min  
Typ  
Max  
Unit  
PWM SECTION  
Duty Cycle  
%
Maximum (UC284XB, UC384XB)  
Maximum (UC384XBV)  
Minimum  
DC  
47  
48  
50  
0
47  
46  
48  
48  
50  
50  
0
(max)  
DC  
(min)  
TOTAL DEVICE  
Power Supply Current  
I
mA  
V
CC  
Startup (V  
Start–Up (V  
CC  
Operating (Note 2)  
= 6.5 V for UCX845B,  
14 V for UCX844B, BV)  
0.3  
0.5  
0.3  
0.5  
CC  
12  
36  
17  
12  
36  
17  
Power Supply Zener Voltage (I  
= 25 mA)  
V
30  
30  
CC  
Z
NOTES: 2. Adjust V  
above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
=
=
=
0°C for UC3844B, UC3845B  
– 25°C for UC2844B, UC2845B  
– 40°C for UC3844BV, UC3845BV  
T
= + 70°C for UC3844B, UC3845B  
= + 85°C for UC2844B, UC2845B  
= +105°C for UC3844BV, UC3845BV  
low  
high  
Figure 1. Timing Resistor  
Figure 2. Output Deadtime  
versus Oscillator Frequency  
versus Oscillator Frequency  
80  
50  
75  
V
= 15 V  
= 25°C  
CC  
3
1. C = 10 nF  
2. C = 5.0 nF  
3. C = 2.0 nF  
4. C = 1.0 nF  
T
T
T
T
T
T
T
T
A
70  
65  
2
4
20  
5. C = 500 pF  
6. C = 200 pF  
7. C = 100 pF  
1
8.0  
5.0  
60  
55  
7
5
2.0  
0.8  
NOTE: Output switches at  
1/2 the oscillator frequency  
6
50  
10 k  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
20 k  
50 k 100 k  
200 k  
500 k  
1.0 M  
f
, OSCILLATOR FREQUENCY (kHz)  
f
, OSCILLATOR FREQUENCY (kHz)  
OSC  
OSC  
Figure 3. Error Amp Small Signal  
Transient Response  
Figure 4. Error Amp Large Signal  
Transient Response  
V
= 15 V  
= –1.0  
V
= 15 V  
CC  
CC  
A = –1.0  
V
A
V
A
2.55 V  
3.0 V  
T
= 25  
°C  
T = 25°C  
A
2.5 V  
2.5 V  
2.0 V  
2.45 V  
0.5  
µs/DIV  
1.0 µs/DIV  
4
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
Figure 5. Error Amp Open Loop Gain and  
Figure 6. Current Sense Input Threshold  
versus Error Amp Output Voltage  
Phase versus Frequency  
0
30  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
80  
60  
40  
20  
V
= 15 V  
V
= 15 V  
= 2.0 V to 4.0 V  
= 100 k  
CC  
CC  
V
R
O
L
Gain  
T
= 25°C  
A
60  
T
= 25°C  
A
90  
T
= 125°C  
Phase  
A
120  
150  
180  
T
= – 55°C  
A
0
– 20  
0
2.0  
4.0  
6.0  
8.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
V
, ERROR AMP OUTPUT VOLTAGE (V )  
O
f, FREQUENCY (Hz)  
O
Figure 7. Reference Voltage Change  
versus Source Current  
Figure 8. Reference Short Circuit Current  
versus Temperature  
0
110  
V
= 15 V  
0.1 Ω  
CC  
V
= 15 V  
CC  
R
L
– 4.0  
– 8.0  
– 12  
– 16  
– 20  
– 24  
90  
T
= 55°C  
A
T
= 125°C  
A
70  
50  
T
= 25°C  
A
0
20  
40  
60  
80  
100  
120  
– 55  
– 25  
0
25  
50  
75  
100  
125  
I
, REFERENCE SOURCE CURRENT (mA)  
T , AMBIENT TEMPERATURE (°C)  
ref  
A
Figure 9. Reference Load Regulation  
Figure 10. Reference Line Regulation  
V
= 15 V  
= 1.0 mA to 20 mA  
= 25°C  
CC  
V
= 12 V to 25 V  
CC  
= 25°C  
I
T
O
T
A
A
2.0 ms/DIV  
2.0 ms/DIV  
5
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
Figure 11. Output Saturation Voltage  
versus Load Current  
Figure 12. Output Waveform  
0
–1.0  
– 2.0  
Source Saturation  
(Load to Ground)  
V
80  
= 15 V  
s Pulsed Load  
CC  
V
V
C
T
= 15 V  
= 1.0 nF  
= 25°C  
CC  
CC  
L
µ
T
= 25°C  
A
90%  
120 Hz Rate  
A
T
= – 55°C  
A
3.0  
2.0  
1.0  
0
T
= – 55°C  
A
T
= 25°C  
A
10%  
Sink Saturation  
(Load to V  
)
Gnd  
600  
CC  
0
200  
400  
800  
50 ns/DIV  
I
, OUTPUT LOAD CURRENT (mA)  
O
Figure 13. Output Cross Conduction  
Figure 14. Supply Current versus Supply Voltage  
25  
V
C
= 30 V  
= 15 pF  
= 25°C  
CC  
L
20  
15  
10  
5
T
A
R
C
V
T
T
FB  
I
T
Sense  
A
0
0
10  
20  
30  
40  
100 ns/DIV  
V
, SUPPLY VOLTAGE (V)  
CC  
PIN FUNCTION DESCRIPTION  
Pin  
8–Pin  
14–Pin  
Function  
Description  
This pin is the Error Amplifier output and is made available for loop compensation.  
1
2
1
3
Compensation  
Voltage  
Feedback  
This is the inverting input of the Error Amplifier. It is normally connected to the switching power  
supply output through a resistor divider.  
3
4
5
7
Current Sense  
A voltage proportional to inductor current is connected to this input. The PWM uses this  
information to terminate the output switch conduction.  
R /C  
T
The Oscillator frequency and maximum Output duty cycle are programmed by connecting  
T
resistor R to V and capacitor C to ground. Oscillator operation to 1.0 kHz is possible.  
T
ref  
T
5
6
Gnd  
This pin is the combined control circuitry and power ground.  
10  
Output  
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced  
and sunk by this pin. The output switches at one–half the oscillator frequency.  
7
8
12  
14  
V
This pin is the positive supply of the control IC.  
CC  
V
ref  
This is the reference output. It provides charging current for capacitor C through  
T
resistor R .  
T
8
Power  
Ground  
This pin is a separate power ground return that is connected back to the power source. It is used  
to reduce the effects of switching transient noise on the control circuitry.  
11  
V
The Output high state (V ) is set by the voltage applied to this pin. With a separate power  
OH  
C
source connection, it can reduce the effects of switching transient noise on the control circuitry.  
This pin is the control circuitry ground return and is connected back to the power source ground.  
No connection. These pins are not internally connected.  
9
Gnd  
NC  
2,4,6,13  
6
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
OPERATING DESCRIPTION  
power supply is operating and the load is removed, or at the  
The UC3844B, UC3845B series are high performance,  
fixed frequency, current mode controllers. They are  
specifically designed for Off–Line and dc–to–dc converter  
applications offering the designer a cost–effective solution  
with minimal external components. A representative block  
diagram is shown in Figure 15.  
beginning of a soft–start interval (Figures 20, 21). The Error  
Amp minimum feedback resistance is limited by the  
amplifier’s source current (0.5 mA) and the required output  
voltage (V  
) to reach the comparator’s 1.0 V clamp level:  
OH  
3.0 (1.0 V) + 1.4 V  
R
= 8800  
f(min)  
Oscillator  
0.5 mA  
The oscillator frequency is programmed by the values  
selected for the timing components R and C . Capacitor C  
is charged from the 5.0 V reference through resistor R to  
T
approximately 2.8 V and discharged to 1.2 V by an internal  
T
T
T
Current Sense Comparator and PWM Latch  
The UC3844B, UC3845B operate as a current mode  
controller, whereby output switch conduction is initiated by  
the oscillator and terminated when the peak inductor current  
reaches the threshold level established by the Error Amplifier  
Output/Compensation (Pin 1). Thus the error signal controls  
the peak inductor current on a cycle–by–cycle basis. The  
Current Sense Comparator PWM Latch configuration used  
ensures that only a single pulse appears at the Output during  
any given oscillator cycle. The inductor current is converted  
to a voltage by inserting the ground–referenced sense  
current sink. During the discharge of C , the oscillator  
T
generates an internal blanking pulse that holds the center  
input of the NOR gate high. This causes the Output to be in a  
low state, thus producing a controlled amount of output  
deadtime. An internal flip–flop has been incorporated in the  
UCX844/5B which blanks the output off every other clock  
cycle by holding one of the inputs of the NOR gate high. This  
in combination with the C discharge period yields output  
T
deadtimes programmable from 50% to 70%. Figure 1 shows  
resistor R in series with the source of output switch Q1. This  
S
R
versus Oscillator Frequency and Figure 2, Output  
T
voltage is monitored by the Current Sense Input (Pin 3) and  
compared to a level derived from the Error Amp Output. The  
peak inductor current under normal operating conditions is  
controlled by the voltage at Pin 1 where:  
Deadtime versus Frequency, both for given values of C .  
Note that many values of R and C will give the same  
T
T
T
oscillator frequency but only one combination will yield a  
specific output deadtime at a given frequency. The oscillator  
thresholds are temperature compensated to within ±6% at 50  
kHz. Also, because of industry trends moving the UC384X  
into higher and higher frequency applications, the UC384XB  
is guaranteed to within ±10% at 250 kHz.  
V
– 1.4 V  
(Pin 1)  
3 R  
S
I
pk  
=
Abnormal operating conditions occur when the power  
supply output is overloaded or if output voltage sensing is  
lost. Under these conditions, the Current Sense Comparator  
threshold will be internally clamped to 1.0 V. Therefore the  
maximum peak switch current is:  
In many noise–sensitive applications it may be desirable  
to frequency–lock the converter to an external system clock.  
This can be accomplished by applying a clock signal to the  
circuit shown in Figure 17. For reliable locking, the  
free–running oscillator frequency should be set about 10%  
less than the clock frequency. A method for multi–unit  
synchronization is shown in Figure 18. By tailoring the clock  
waveform, accurate Output duty cycle clamping can be  
achieved to realize output deadtimes of greater than 70%.  
1.0 V  
I
=
pk(max)  
R
S
When designing a high power switching regulator it  
becomes desirable to reduce the internal clamp voltage in  
Error Amplifier  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical dc  
voltage gain of 90 dB, and a unity gain bandwidth of 1.0 MHz  
with 57 degrees of phase margin (Figure 5). The  
non–inverting input is internally biased at 2.5 V and is not  
pinned out. The converter output voltage is typically divided  
down and monitored by the inverting input. The maximum  
input bias current is –2.0 µA which can cause an output  
voltage error that is equal to the product of the input bias  
current and the equivalent input divider source resistance.  
The Error Amp Output (Pin 1) is provided for external loop  
compensation (Figure 28). The output voltage is offset by two  
diode drops (1.4 V) and divided by three before it connects  
to the inverting input of the Current Sense Comparator. This  
guarantees that no drive pulses appear at the Output (Pin 6)  
order to keep the power dissipation of R to a reasonable  
S
level. A simple method to adjust this voltage is shown in  
Figure 19. The two external diodes are used to compensate  
the internal diodes, yielding a constant clamp voltage over  
temperature. Erratic operation due to noise pickup can result  
if there is an excessive reduction of the I  
voltage.  
clamp  
pk(max)  
A narrow spike on the leading edge of the current  
waveform can usually be observed and may cause the power  
supply to exhibit an instability when the output is lightly  
loaded. This spike is due to the power transformer  
interwinding capacitance and output rectifier recovery time.  
The addition of an RC filter on the Current Sense Input with a  
time constant that approximates the spike duration will  
usually eliminate the instability (refer to Figure 23).  
when Pin 1 is at its lowest state (V ). This occurs when the  
OL  
7
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
Figure 15. Representative Block Diagram  
V
V
in  
CC  
V
CC  
7(12)  
36V  
V
ref  
Reference  
Regulator  
8(14)  
(See  
Text)  
+
V
R
R
CC  
UVLO  
V
Internal  
Bias  
C
2.5V  
R
C
T
7(11)  
+
3.6V  
V
ref  
UVLO  
Output  
Q1  
Oscillator  
4(7)  
6(10)  
T
+
1.0mA  
S
Power Ground  
2R  
Q
Voltage  
Feedback  
Input  
PWM  
Latch  
R
5(8)  
2(3)  
1(1)  
R
Error  
Amplifier  
1.0V  
Current Sense Input  
Output/  
Compensation  
Current Sense  
Comparator  
3(5)  
R
S
Gnd  
5(9)  
Pin numbers adjacent to terminals are for the 8–pin dual–in–line package.  
Pin numbers in parenthesis are for the D suffix SO–14 package.  
= Sink Only Positive True Logic  
Figure 16. Timing Diagram  
Capacitor C  
T
Latch “Set”  
Input  
Output/  
Compensation  
Current Sense  
Input  
Latch “Reset”  
Input  
Output  
Small R /Large C  
T
Large R /Small C  
T
T
T
8
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
Undervoltage Lockout  
added flexibility in tailoring the drive voltage independent of  
. A zener clamp is typically connected to this input when  
V
Two undervoltage lockout comparators have been  
incorporated to guarantee that the IC is fully functional before  
the output stage is enabled. The positive power supply  
CC  
driving power MOSFETs in systems where V  
is greater  
CC  
than 20 V. Figure 22 shows proper power and control ground  
connections in a current–sensing power MOSFET  
application.  
terminal (V ) and the reference output (V ) are each  
CC  
ref  
monitored by separate comparators. Each has built–in  
hysteresis to prevent erratic output behavior as their  
Reference  
respective thresholds are crossed. The V  
CC  
upper and lower thresholds are 16 V/10 V for the UCX844B,  
and 8.4 V/7.6 V for the UCX845B. The V comparator upper  
and lower thresholds are 3.6 V/3.4 V. The large hysteresis  
and low startup current of the UCX844B makes it ideally  
suited in off–line converter applications where efficient  
bootstrap startup techniques are required (Figure 29). The  
UCX845B is intended for lower voltage dc–to–dc converter  
applications. A 36 V zener is connected as a shunt regulator  
comparator  
The 5.0 V bandgap reference is trimmed to ±1.0%  
tolerance at T = 25°C on the UC284XB, and ±2.0% on the  
J
ref  
UC384XB. Its primary purpose is to supply charging current  
to the oscillator timing capacitor. The reference has  
short–circuit protection and is capable of providing in excess  
of 20 mA for powering additional control system circuitry.  
Design Considerations  
Do not attempt to construct the converter on  
wire–wrap or plug–in prototype boards. High frequency  
circuit layout techniques are imperative to prevent  
pulse–width jitter. This is usually caused by excessive noise  
pick–up imposed on the Current Sense or Voltage Feedback  
inputs. Noise immunity can be improved by lowering circuit  
impedances at these points. The printed circuit layout should  
contain a ground plane with low–current signal and  
high–current switch and output grounds returning on  
separate paths back to the input filter capacitor. Ceramic  
from V  
to ground. Its purpose is to protect the IC from  
CC  
excessive voltage that can occur during system startup. The  
minimum operating voltage for the UCX844B is 11 V and 8.2  
V for the UCX845B.  
Output  
These devices contain a single totem pole output stage  
that was specifically designed for direct drive of power  
MOSFETs. It is capable of up to ±1.0 A peak drive current and  
has a typical rise and fall time of 50 ns with a 1.0 nF load.  
Additional internal circuitry has been added to keep the  
Output in a sinking mode whenever an undervoltage lockout  
is active. This characteristic eliminates the need for an  
external pull–down resistor.  
The SO–14 surface mount package provides separate  
pins for V (output supply) and Power Ground. Proper  
implementation will significantly reduce the level of switching  
transient noise imposed on the control circuitry. This  
becomesparticularlyusefulwhenreducingtheI  
bypass capacitors (0.1 µF) connected directly to V , V ,  
CC  
C
and V may be required depending upon circuit layout. This  
ref  
provides a low impedance path for filtering the high frequency  
noise. All high current loops should be kept as short as  
possible using heavy copper runs to minimize radiated EMI.  
The Error Amp compensation circuitry and the converter  
output voltage divider should be located close to the IC and  
as far as possible from the power switch and other  
noise–generating components.  
C
clamp  
pk(max)  
level. The separate V supply input allows the designer  
C
Figure 17. External Clock Synchronization  
Figure 18. External Duty Cycle Clamp and  
Multi–Unit Synchronization  
V
ref  
8(14)  
R
8(14)  
R
R
Bias  
A
B
Bias  
R
T
R
R
8
4
R
5.0k  
5.0k  
6
3
7
Osc  
Osc  
4(7)  
4(7)  
C
R
S
T
+
+
5
2
Q
0.01  
2R  
2R  
External  
Sync  
Input  
EA  
R
EA  
R
2(3)  
1(1)  
2(3)  
1(1)  
5.0k  
1
47  
C
MC1455  
5(9)  
5(9)  
To Additional  
UCX84XBs  
The diode clamp is required if the Sync amplitude is large enough to cause  
1.44  
2R )C  
R
A
f
D
(max)  
the bottom side of C to go more than 300 mV below ground.  
(R  
R
A
2R  
B
T
A
B
9
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
Figure 19. Adjustable Reduction of Clamp Level  
Figure 20. Soft–Start Circuit  
V
V
in  
CC  
7(12)  
5.0V Ref  
8(14)  
R
R
5.0V Ref  
Bias  
8(14)  
4(7)  
R
R
+
Bias  
+
7(11)  
+
Osc  
Q1  
4(7)  
T
Osc  
+
T
6(10)  
S
R
1.0mA  
V
+
Clamp  
1.0V  
2(3)  
1.0M  
1(1)  
Q
R
R
2
1
S
R
1.0 mA  
2R  
2R  
R
Q
EA  
5(8)  
3(5)  
EA  
2(3)  
1(1)  
R
1.0V  
Comp/Latch  
R
S
C
5(9)  
5(9)  
t
3600C in µF  
Soft–Start  
R R  
1.67  
1
2
R
2
Where: 0  
V
1.0 V  
–3  
Clamp  
V
+ 0.33x10  
Clamp  
R
R
R
2
1
1
1
V
Clamp  
I
pk(max)  
R
S
Figure 21. Adjustable Buffered Reduction of  
Clamp Level with Soft–Start  
Figure 22. Current Sensing Power MOSFET  
V
V
in  
CC  
V
V
in  
CC  
R
I
r
pk DS(on)  
S
V
(12)  
Pin  
5
7(12)  
r
R
S
DM(on)  
If: SENSEFET  
=
=
MTP10N10M  
200  
R
S
5.0V Ref  
5.0V Ref  
Then :  
V
0.075 I  
pk  
Pin  
5
8(14)  
4(7)  
+
R
R
+
Bias  
D
SENSEFET  
(11)  
(10)  
7(11)  
6(10)  
+
+
S
K
G
Q1  
Osc  
T
T
M
+
V
Clamp  
S
R
S
R
1.0 mA  
Q
Q
(8)  
(5)  
2R  
R
5(8)  
3(5)  
EA  
2(3)  
1(1)  
Comp/Latch  
Comp/Latch  
1.0V  
5(9)  
Power Ground:  
To Input Source  
Return  
R
2
R
S
R
S
1/4 W  
R
C
1
Control Circuitry Ground:  
To Pin (9)  
MPSA63  
1.67  
Where: 0  
V
1.0 V  
Clamp  
V
Clamp  
Virtually lossless current sensing can be achieved with the implementation  
of a SENSEFET power switch. For proper operation during over–current  
R
R
2
1
1
conditions, a reduction of the I  
Refer to Figures 19 and 21.  
clamp level must be implemented.  
pk(max)  
V
V
C
R
1
R
Clamp  
1
2
t
In  
1
C
I
pk(max)  
Soft-Start  
3V  
R
R
R
Clamp  
2
S
10  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
Figure 23. Current Waveform Spike Suppression  
V
V
CC  
in  
7(12)  
5.0V Ref  
+
7(11)  
+
The addition of the RC filter will eliminate  
instability caused by the leading edge spike  
on the current waveform.  
Q1  
T
6(10)  
5(8)  
S
R
Q
3(5)  
R
Comp/Latch  
C
R
S
Figure 24. MOSFET Parasitic Oscillations  
Figure 25. Bipolar Transistor Drive  
V
V
CC  
in  
I
B
7(12)  
+
0
V
in  
Base Charge  
Removal  
5.0V Ref  
+
C1  
+
7(11)  
R
Q1  
Q1  
g
6(10)  
T
6(10)  
S
R
Q
5(8)  
5(8)  
3(5)  
Comp/Latch  
3(5)  
R
S
R
S
Series gate resistor R will damp any high frequency  
g
The totem pole output can furnish negative base current  
for enhanced transistor turn–off, with the addition of  
parasitic oscillations caused by the MOSFET input  
capacitance and any series wiring inductance in the  
gate–source circuit.  
capacitor C .  
1
11  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
Figure 26. Isolated MOSFET Drive  
V
V
in  
CC  
7(12)  
Isolation  
Boundary  
5.0V Ref  
+
V
Waveforms  
+
GS  
+
0
+
7(11)  
Q1  
0
50% DC  
25% DC  
T
6(10)  
5(8)  
S
R
V
– 1.4  
Q
(Pin 1)  
3 R  
N
S
p
I
=
pk  
N
S
R
3(5)  
Comp/Latch  
C
R
S
N
S
N
P
Figure 27. Latched Shutdown  
8(14)  
R
Bias  
R
Osc  
4(7)  
+
1.0 mA  
2R  
R
2(3)  
1(1)  
EA  
MCR  
101  
2N  
3905  
5(9)  
2N  
3903  
The MCR101 SCR must be selected for a holding of < 0.5 mA @ T  
simple two transistor circuit can be used in place of the SCR as shown. All  
resistors are 10 k.  
. The  
A(min)  
Figure 28. Error Amplifier Compensation  
2.5V  
2.5V  
From V  
From V  
O
O
+
+
1.0mA  
1.0mA  
2R  
2R  
R
i
R
p
p
R
2(3)  
2(3)  
i
R
R
C
EA  
C
EA  
C
R
R
f
f
R
d
R
d
f
f
1(1)  
1(1)  
R
8.8k  
f
5(9)  
5(9)  
Error Amp compensation circuit for stabilizing any current mode topology except  
for boost and flyback converters operating with continuous inductor current.  
Error Amp compensation circuit for stabilizing current mode boost  
and flyback topologies operating with continuous inductor current.  
12  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
Figure 29. 7 W Off–Line Flyback Regulator  
L1  
MBR1635  
2200  
5.0V/4.0A  
4.7  
+
T1  
4.7k  
+
+
+
+
250  
MDA  
202  
3300  
pF  
1000  
56k  
115 Vac  
5.0V RTN  
12V/0.3A  
MUR110  
1000  
1N4935 1N4935  
L2  
10  
68  
+
7(12)  
+
47  
100  
±12V RTN  
5.0V Ref  
1000  
10  
L3  
1N4937  
+
+
0.01  
8(14)  
33k  
+
R
R
–12V/0.3A  
MUR110  
Bias  
7(11)  
6(10)  
+
680pF  
1N4937  
2.7k  
22  
Osc  
4(7)  
2(3)  
MTP  
4N50  
T
1.0nF  
+
1N5819  
S
R
18k  
Q
5(8)  
3(5)  
100  
pF  
EA  
150k  
1.0k  
Comp/Latch  
4.7k  
1(1)  
0.5  
470pF  
5(9)  
T1 Primary: 45 Turns #26 AWG  
Secondary 12 V: 9 Turns #30 AWG (2 Strands) Bifiliar Wound  
L1  
L2, L3  
– 15  
– 25  
µ
µ
H at 5.0 A, Coilcraft Z7156  
H at 5.0 A, Coilcraft Z7157  
±
Secondary 5.0 V: 4 Turns (six strands) #26 Hexfiliar Wound  
Secondary Feedback: 10 Turns #30 AWG (2 strands) Bifiliar Wound  
Core: Ferroxcube EC35–3C8  
Bobbin: Ferroxcube EC35PCB1  
Gap:  
0.10” for a primary inductance of 1.0 mH  
Test  
Conditions  
Results  
Line Regulation: 5.0 V  
V
in  
= 95 Vac to 130 Vac  
= 50 mV or ±0.5%  
= 24 mV or ±0.1%  
±12 V  
Load Regulation: 5.0 V  
V
in  
V
in  
= 115 Vac, I  
= 115 Vac, I  
= 1.0 A to 4.0 A  
= 100 mA to 300 mA = 60 mV or ±0.25%  
= 300 mV or ±3.0%  
out  
out  
±12 V  
Output Ripple:  
Efficiency  
5.0 V  
±12 V  
V
= 115 Vac  
40 mV  
80 mV  
in  
pp  
pp  
V
in  
= 115 Vac  
70%  
All outputs are at nominal load currents unless otherwise noted.  
13  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
Figure 30. Step–Up Charge Pump Converter  
Output Load Regulation  
(Open Loop Configuration)  
V
= 15V  
in  
7(12)  
I
(mA)  
V
(V)  
O
UC3845B  
O
+
47  
0
2
9
18  
36  
29.9  
28.8  
28.3  
27.4  
24.4  
34V  
Reference  
Regulator  
8(14)  
10k  
+
V
R
R
CC  
UVLO  
1N5819  
2.5V  
7(11)  
6(10)  
Internal  
Bias  
+
V
3.6V  
ref  
15  
10  
1N5819  
UVLO  
Osc  
V
2 (V )  
in  
O
+
4(7)  
2(3)  
1.0nF  
T
+
+
Connect to  
Pin 2 for  
closed loop  
operation.  
47  
S
R
0.5mA  
5(8)  
3(5)  
R2  
R1  
2R  
Q
PWM  
Latch  
1.0V  
R
Error  
Amplifier  
Current Sense  
Comparator  
1(1)  
R2  
1
V
= 2.5  
5(9)  
O
R1  
The capacitor’s equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series resistor  
may be required when using tantalum or other low ESR capacitors. The converter’s output can provide excellent line  
and load regulation by connecting the R2/R1 resistor divider as shown.  
Figure 31. Voltage–Inverting Charge Pump Converter  
V
= 15V  
Output Load Regulation  
in  
UC3845B  
7(12)  
I
O
(mA)  
V
(V)  
O
+
47  
0
2
9
18  
32  
–14.4  
–13.2  
–12.5  
–11.7  
–10.6  
34V  
Reference  
Regulator  
8(14)  
R
R
+
V
CC  
UVLO  
2.5V  
7(11)  
6(10)  
Internal  
Bias  
10k  
+
V
3.6V  
ref  
15  
10  
UVLO  
1N5819  
V
–V  
in  
Osc  
O
4(7)  
2(3)  
1.0nF  
T
+
1N5819  
+
47  
S
R
0.5mA  
5(8)  
3(5)  
2R  
Q
PWM  
Latch  
1.0V  
R
Error  
Amplifier  
Current Sense  
Comparator  
1(1)  
5(9)  
The capacitor’s equivalent series resistance must limit the Drive Output current to 1.0 A.  
An additional series resistor may be required when using tantalum or other low ESR capacitors.  
OUTLINE DIMENSIONS  
14  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
MILLIMETERS  
INCHES  
1
4
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
0.370  
0.240  
0.155  
0.015  
0.040  
F
–A–  
NOTE 2  
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
7.62 BSC  
–––  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.300 BSC  
–––  
0.050  
0.012  
0.135  
C
10  
1.01  
10  
0.040  
0.76  
0.030  
J
M
–T–  
SEATING  
PLANE  
N
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D1 SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–8)  
NOTES:  
ISSUE N  
1. DIMENSIONING AND TOLERANCING PER  
–A–  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.127  
(0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
8
5
4
4X P  
–B–  
M
M
0.25 (0.010)  
B
1
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
4.80  
3.80  
1.35  
0.35  
0.40  
MAX  
5.00  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.196  
0.157  
0.068  
0.019  
0.049  
0.189  
0.150  
0.054  
0.014  
0.016  
R X 45  
F
C
SEATING  
PLANE  
–T–  
1.27 BSC  
0.050 BSC  
K
J
M
0.18  
0.10  
0
0.25  
0.25  
7
0.007  
0.004  
0
0.009  
0.009  
7
8X D  
0.25 (0.010)  
M
S
S
T
B
A
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
R
15  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844B, 45B UC2844B, 45B  
OUTLINE DIMENSIONS  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A–03  
(SO–14)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
–A–  
ISSUE F  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
14  
1
8
7
–B–  
P 7 PL  
M
M
0.25 (0.010)  
B
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
0.337  
0.150  
0.054  
0.014  
0.016  
–T–  
SEATING  
PLANE  
J
M
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
R
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
re registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
UC3844B/D  

相关型号:

UC384XBD1

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
MOTOROLA

UC384XBD1

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC384XBD1G

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC384XBD1R2

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC384XBD1R2G

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC384XBDG

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC384XBDR2

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC384XBDR2G

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC384XBN

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
MOTOROLA

UC384XBN

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC384XBNG

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC384XBVD

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
MOTOROLA