MSK111E [MSK]

HIGH SPEED POWER AMPLIFIER; 高速功率放大器
MSK111E
型号: MSK111E
厂家: M.S. KENNEDY CORPORATION    M.S. KENNEDY CORPORATION
描述:

HIGH SPEED POWER AMPLIFIER
高速功率放大器

放大器 功率放大器
文件: 总5页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO 9001 CERTIFIED BY DSCC  
HIGH SPEED  
POWER AMPLIFIER  
111  
(315) 701-6751  
M.S.KENNEDY CORP.  
4707 Dey Road Liverpool, N.Y. 13088  
MIL-PRF-38534 CERTIFIED  
FEATURES:  
Replaces Apex WA-01  
Internal 1.5KFeedback Resistor  
High Output Current: 400mA  
ꢀery Fast Slew Rate: 3000ꢀ/µS  
Fast Settling Time  
Low Offset ꢀoltage: ± 5mꢀ  
Offset Null Capability  
DESCRIPTION:  
The MSK 111 is a high speed operational amplifier which utilizes low impedance push-pull circuitry to achieve high  
speed amplification. Laser trimmed offset voltage provides a high DC accuracy typically less than ± ±mꢀ. The  
MSK 111 also offers an external offset null capability for applications in which zero offset is critical. The speed and  
output current offered by the MSK 111 makes it an excellent choice for video processing circuits and high speed test  
circuits. The MSK 111 is packaged in a hermetically sealed 8 pin TO-3 package.  
EQUIVALENT SCHEMATIC  
PIN-OUT INFORMATION  
TYPICAL APPLICATIONS  
Output  
+ꢀCC  
NC  
8 Balance  
7 -ꢀCC  
1
±
3
4
Sample and Hold Circuits  
ꢀideo Processing  
Line Drivers  
6 +Input  
5 -Input  
Balance  
Function Generators  
Rev. B 10/05  
1
7
ABSOLUTE MAXIMUM RATINGS  
TST  
Storage Temperature Range  
Lead Temperature Range  
(10 Seconds)  
Total Supply ꢀoltage  
Output Current  
3±ꢀ  
0.4A  
± 6ꢀ  
CC  
-65°C to +150°C  
300°C  
TLD  
IOUT  
IN  
IN  
Differential Input ꢀoltage  
Common Mode Input ꢀoltage  
TC  
TJ  
Case Operating Temperature  
MSK111  
MSK111H/E  
± ꢀCC  
-40°C to +85°C  
-55°C to +1±5°C  
175°C  
Junction Temperature  
ELECTRICAL SPECIFICATIONS  
Group A  
MSK 111H/E  
MSK 111  
1
Parameter  
Units  
Test Conditions  
Subgroup Min.  
Max.  
Typ.  
Min.  
Max.  
Typ.  
STATIC  
Supply Voltge Range  
2
V
-
± 12  
± 16  
± 30  
± ±0  
± 1±  
± 28  
-
± 12  
± 16  
± 3±  
-
± 1±  
± 28  
-
mA  
mA  
1
-
-
-
-
Quiescent Current  
INPUT  
VIN=0V  
VIN=0V  
2,3  
mV  
mV  
µA  
dB  
1
2,3  
1
-
-
± ±  
± 0.±  
-
-
-
± 10  
± 0.±  
-
Input Offset Voltage  
± 30  
-
30  
-
2
Input Bias Current  
-
±
20  
-
±
Common Mode Rejection 2  
Power Supply Rejection 2  
VCM=± ±V  
4
48  
60  
-
-
±4  
7±  
48  
60  
±4  
7±  
VCC=24V to 30V  
dB  
1
-
OUTPUT  
Output Voltage Swing  
Output Current  
f=1KHz RL=1KΩ  
f=1KHz RL=±0Ω  
VO=20VPP  
V
mA  
4
4
-
± 10  
-
± 11  
-
± 10  
-
± 11  
-
400  
-
400  
-
2
Power Bandwidth  
MHz  
nS  
-
40  
-
-
40  
-
2
Settling Time  
Slew Rate  
10V Step  
-
-
-
20  
-
-
20  
VOUT=± 10V RL=1KΩ  
TC=2±°C  
V/µS  
nS  
4
-
2±00  
-
3000  
2.9  
31  
2±00  
-
3000  
2.9  
3±  
Propagation Delay 2  
Thermal Resistance  
-
-
-
-
-
Junction to Case @ 12±°C  
Rf  
2
°C/W  
KΩ  
-
-
-
-
Internal Feedback Resistor  
-
1.497  
1.±03  
1.±  
1.49±  
1.±0±  
1.±  
NOTES:  
1
2
Unless otherwise specified, VCC= 15V AV=10V/V and RL=and Tc=25°C.  
Guaranteed by design but not tested. Typical parameters are representative of actual device  
performance but are for reference only.  
30  
3
4
5
6
Industrial grade and "E" suffix devices shall be tested to subgroups 1 and 4 unless otherwise specified.  
Military grade devices ("H" suffix) shall be 100% tested to subgroups 1,2,3 and 4.  
Subgroup 5 and 6 testing available upon request.  
Subgroup 1,4 TA=TC=+25°C  
Subgroup 2,5 TA=TC=+125°C  
Subgroup 3,6 TA=TC=-55°C  
Continuous operation at or above absolute maximum ratings may adversely effect the device performance and/or life cycle.  
7
Rev. B 10/05  
2
APPLICATION NOTES  
POWER SUPPLY BYPASSING  
HEAT SINKING  
To select the correct heat sink for your application, refer  
to the thermal model and governing equation below.  
Both the negative and the positive supplies must be  
effectively decoupled with a high and low frequency  
bypass circuit to avoid power supply induced oscilla-  
tion. An effective decoupling scheme consists of a 0.01  
microfarad ceramic capacitor in parallel with a 4.7 mi-  
crofarad tantalum capacitor from each power supply pin  
to ground. All power supply decoupling capacitors should  
be placed as close to the package power supply pins as  
possible.  
Thermal Model:  
Output, power supply, and bypass leads should be kept  
as short as possible. Long connections can add signifi-  
cant inductance, raising impedance and limiting output  
current slew rate. This is especially true in the video  
frequency range.  
The case of the MSK 111 is electrically isolated and  
should be connected to a common ground plane. In ad-  
dition to the case, the input signal and input resistors  
should be connected to this common ground plane us-  
ing a single point grounding scheme. This will help to  
prevent undesired current feedback that can cause in-  
stability in the circuit.  
Governing Equation:  
TJ = PD x (RθJC + RθCS + RθSA) + TA  
Where  
GAIN  
The MSK 111, unlike most operational amplifiers, has  
an internal feedback resistor. The value of this resistor  
is 1.5K. Fewer external components are required to  
configure the MSK 111 in either inverting or non-invert-  
ing modes. Using an internal feedback resistor shortens  
the feedback path, lowering summing node capacitance  
to ground and stabilizing high frequency characteristics.  
TJ  
PD  
= Junction Temperature  
= Total Power Dissipation  
RθJC = Junction to Case Thermal Resistance  
RθCS = Case to HeaItNSink Thermal Resistance  
RθSA = Heat Sink to Ambient Thermal Resistance  
TC  
TA  
TS  
= Case Temperature  
= Ambient Temperature  
= Sink Temperature  
OUTPUT OFFSET NULL  
Typically,the MSK 111 has an input offset voltage of  
less than ± ±mꢀ. The input offset voltage is laser  
trimmed to less than ± 5mꢀ, but in applications where  
offset is critical, the balance pins may be used to null  
the offset to zero. A ±0Kpotentiometer may be placed  
between pins 4 and 8 with the wiper arm connected to  
+ꢀCC. If the balance function is not used pins 4 and 8  
should not be connected (floating). However, if settling  
time is extremely important, pin 8 should be tied to the  
AC ground with a 100-150pF capacitor.  
Example:  
In our example the amplifier application requires the output  
to drive a 10 volt peak sine wave across a 50 ohm load for  
0.± amp of output current. For a worst case analysis we will  
treat the 0.± amp peak output current as a D.C. output cur-  
rent. The power supplies are ± 15 ꢀDC.  
1.) Find Power Dissipation  
PD=[(quiescent current) x (+ꢀCC - (ꢀCC))] + [(ꢀS - O) x IOUT]  
=(±8 mA) x (30ꢀ) + (5ꢀ) x (0.±A)  
=0.84W + 1W  
SAFE OPERATING AREA-POWER DISSIPATION  
=1.84W  
The safe operating area curve is a graphical represen-  
tation of the power handling capability of the amplifier  
under various conditions. The wire bond current carry-  
ing capability, transistor junction temperature and sec-  
ondary breakdown limitations are all incorporated into  
the safe operating area curves. All applications should  
be checked against the S.O.A. curves to ensure high  
M.T.B.F.  
±.) For conservative design, set TJ = +150°C.  
3.) For this example, worst case TA = +±5°C.  
4.) RθJC = 31°C/W  
5.) Rearrange governing equation to solve for RθSA:  
RθSA = (TJ - TA) / PD - (RθJC) - (RθCS)  
= (150°C-±5°C)/1.84W-(31°C/W)-(0.15°C/W)  
= 36°C/W  
The heat sink in this example must have a thermal resis-  
tance of no more than 36°C/W to maintain a junction tempera-  
ture of less than +150°C. This calculation assumes a case to  
sink thermal resistance of 0.15°C/W.  
Rev. B 10/05  
3
TYPICAL PERFORMANCE CURVES  
Rev. B 10/05  
4
MECHANICAL SPECIFICATIONS  
CONTAINS INTERNAL BeO (BERYLLIUM OXIDE)  
WEIGHT = 15 GRAMS TYPICAL  
NOTE: ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED  
ORDERING INFORMATION  
Part  
Screening Level  
Number  
Industrial  
MSK111  
EXTENDED RELIABILITY  
MIL-PRF-38534 CLASS H  
MSK111E  
MSK111H  
M.S. Kennedy Corp.  
4707 Dey Road, Liverpool, New York 13088  
Phone (315) 701-6751  
FAX (315) 701-6752  
www.mskennedy.com  
The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make  
changes to its products or specifications without notice, however, and assumes no liability for the use of its products.  
Please visit our website for the most recent revision of this datasheet.  
5
Rev. B 10/05  

相关型号:

MSK111H

HIGH SPEED POWER AMPLIFIER
MSK

MSK114RHG

Operational Amplifier, 2 Func, 800uV Offset-Max, CDSO14, CERAMIC, SOP-14
MSK

MSK114VRH

Operational Amplifier, 2 Func, 1100uV Offset-Max, CDFP14, CERAMIC, DFP-14
MSK

MSK114VRHG

Operational Amplifier, 2 Func, 1100uV Offset-Max, CDSO14, CERAMIC, SOP-14
MSK

MSK115

POWER OPERATIONAL AMPLIFIER
MSK

MSK115B

POWER OPERATIONAL AMPLIFIER
MSK

MSK115E

POWER OPERATIONAL AMPLIFIER
MSK

MSK120VRHG

Comparator, 1 Func, 3000uV Offset-Max, CDSO10, CERAMIC, SMD-10
MSK

MSK121-10

Audio Amplifier, 60W, 2 Channel(s), 1 Func, MBFM8, TO-3, 8 PIN
MSK

MSK130

ULTRA HIGH VOLTAGE HIGH SPEED DIFFERENTIAL OP-AMP
MSK

MSK131

Operational Amplifier, 1 Func, 2000uV Offset-Max, CSFM10, CERAMIC, SIP-10
MSK

MSK138

Operational Amplifier, 1 Func, 15000uV Offset-Max, MOS, CDIP8, POWER, HERMETIC SEALED, DIP-8
MSK