HDAS-16ME-C [MURATA]

ADC, Proprietary Method,;
HDAS-16ME-C
型号: HDAS-16ME-C
厂家: muRata    muRata
描述:

ADC, Proprietary Method,

文件: 总8页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
®
HDAS-16, HDAS-8  
12-Bit, 50kHz, Complete Data Acquisition Systems  
FEATURES  
  
Miniature 62-pin cermanic package  
  
12-Bit resolution, 50kHz throughput  
  
Full-scale input range from 50mV to 10V  
  
Three-state outputs  
  
16 S.E. or 8 differential input channels  
  
Auto-sequencing channel addressing  
  
MIL-STD-883 versions  
  
No missing codes  
  
Available in SMT or DIP packages  
GENERAL DESCRIPTION  
Internal HDAS circuitry includes:  
Using thin and thick-film hybrid technology, DATEL offers complete low-cost  
data acquisition systems with superior performance and reliability.  
  
Analog input multiplexer (16 S.E. or 8 diff.)  
  
Resistor-programmable instrumentation amplifier  
The HDAS-8 (with 8 differential input channels) and the HDAS-16 (with  
16 single-ended input channels) are complete, high-performance, 12-bit  
data acquisition systems in 62-pin SMT or DIP packages. Each HDAS may  
be expanded up to 32 single-ended or 16 differential channels by adding  
externalmultiplexers.  
  
Sample-and-hold circuit complete with MOS hold capacitor  
  
10 Volt buffered reference  
  
12-bit A/D converter with three-state outputs and control logic  
Internal channel address sequencing is automatic after each conversion,  
or the user may supply external channel addresses.  
5
49 50  
48 47  
45  
46 39  
40 38 36 37  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
7
CH0 HI /CH0  
CH1 HI /CH1  
CH2 HI /CH2  
CH3 HI /CH3  
CH4 HI /CH4  
CH5 HI /CH5  
CH6 HI /CH6  
CH7 HI /CH7  
CH0 LO /CH8  
CH1 LO /CH9  
CH2 LO /CH10  
CH3 LO /CH11  
CH4 LO /CH12  
CH5 LO /CH13  
CH6 LO /CH14  
CH7 LO /CH15  
4
3
2
1
BIT 1  
BIT 2  
BIT 3  
BIT 4  
EN (1-4)  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
EN (5-8)  
BIT 9  
BIT 10  
BIT 11  
BIT 12 (LSB)  
EN (9-12)  
EOC  
(MSB)  
THREE  
STATE  
I/A  
S/H  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
16 CHANNEL  
SINGLE ENDED  
OR  
8 CHANNEL  
DIFFERENTIAL  
ANALOG  
12-BIT  
A/D  
CONVERTER  
THREE  
STATE  
(HOLD)  
MULTIPLEXER  
THREE  
STATE  
(START)  
MUX  
ADDRESS  
REGISTER  
CONTROL  
LOGIC  
12 11 10  
MUX  
9
6
8
19  
16 15 1413 20 41  
44 42  
43 18 17  
MUX  
ADDRESS IN  
ADDRESS OUT  
Typical topology is shown.  
Figure 1. Functional Block Diagram  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
06 May 2013 MDA_HDAS-16/8.C02 Page 1 of 8  
®
®
HDAS-16, HDAS-8  
12-Bit, 50kHz, Complete Data Acquisition Systems  
ABSOLUTE MAXIMUM RATINGS  
PERFORMANCE (CONT.)  
Unipolar Zero Error  
+25°C  
–40 to +100°C  
–55 to +125°C  
Bipolar Zero Error  
+25°C   
–40 to +100°C  
–55 to +125°C  
Bipolar Offset Error  
+25°C   
–40 to +100°C  
–55 to +125°C  
Gain Error  
MIN.  
TYP.  
MAX.  
UNITS  
PARAMETERS  
MIN.  
–0.5  
+0.5  
–0.5  
–35  
TYP.  
MAX.  
+18  
–18  
+7  
+35  
+7  
UNITS  
Volts  
Volts  
Volts  
Volts  
Volts  
+15V Supply (pin 43)  
–15V Supply (pin 44)  
+5V Supply (pin 18)  
Analog Inputs   
Digital Inputs  
Thermal Resistances:  
Junction-Case  
Case-Ambient  
0.1  
0.25 %  
0.3  
%FSR  
FSR  
%FSR  
–0.5  
0.1  
0.25 %  
0.3  
%FSR  
FSR  
%FSR  
15  
15  
30  
°C/Watt  
°C/Watt  
°C/Watt  
°C  
Junction-Ambient  
Lead Temp. (10 seconds)  
0.1  
0.25 %  
0.3  
%FSR  
FSR  
%FSR  
300  
FUNCTIONAL SPECIFICATIONS  
(The following specifications apply over the operating temperature range and power  
supply range unless otherwise indicated.)  
+25°C   
0.2  
0.3 %  
0.3  
%
FSR  
%
–40 to +100°C  
–55 to +125°C  
DYNAMIC CHARACTERISTICS  
Acquisition Time, Gain = 1  
+25°C  
–40 to +100°C  
–55 to +125°C  
Aperture Delay Time  
Aperture Uncertainty  
S/H Droop Rate  
Feedthrough  
A/D Conversion Time  
+25°C  
–40 to +100°C  
–55 to +125°C  
Throughput Rate  
+25°C  
–40 to +100°C  
–55 to +125°C  
DIGITAL INPUTS  
Logic Levels  
(Pins 8, 13–16, 19–21, 26, 31)  
Logic 1  
Logic 0  
(Pin 5)  
Logic 1  
Logic 0  
ANALOG INPUTS  
Signal Range, Unipolar  
Gain = 1  
Gain = 200  
Signal Range, Bipolar  
Gain = 1  
MIN.  
TYP.  
MAX.  
UNITS  
0
+10  
+50  
Volts  
mV  
9
10  
15  
15  
500  
1
μs  
μs  
μs  
ns  
ns  
–10  
–50  
+10  
+50  
Volts  
mV  
Gain = 200  
Input Gain Equation   
Gain Equation Error  
Instrumentation Amplifier  
Input Impedance  
Gain = 1 + (20kΩ/RGAIN)  
108  
1012  
0.1  
%
Ohms  
pA  
1
0.01  
μV/μs  
%
Input Bias Current:  
+25°C  
–55 to +125°C  
Input Offset Current:  
+25°C  
–55 to +125°C  
250  
6
8
10  
10  
μs  
μs  
μs  
Doubles every 10°C  
1
nA  
Doubles every 10°C  
50  
33  
33  
66  
kHz  
kHz  
kHz  
Multiplexer  
Channel ON Resistance  
Channel OFF Input Leakage  
Channel OFF Output Leakage  
Channel ON Leakage  
Input Capacitance  
HDAS-16, Channel ON  
HDAS-8, Channel ON  
+25°C, Channel OFF  
Input Offset Voltage  
Gain = 1, +25°C  
–55 to +125°C (max.)  
Gain = 1000, +25°C  
–55 to +125°C (max.)  
Common Mode Range  
CMRR, Gain = 1, at 60Hz  
Input Voltage Noise, Gain = 1  
(Referred to input)  
Channel Crosstalk  
PERFORMANCE  
2
kΩ  
pA  
nA  
pA  
30  
1
100  
+2.0  
0
+5.5  
+0.8  
Volts  
Volts  
100  
50  
5
pF  
pF  
pF  
+4.0  
0
+5.5  
+0.8  
Volts  
Volts  
2
mV  
Logic Loading  
(Pins 5, 8, 13–16, 19–21, 26, 31)  
Logic 1  
( 3ppm/°C x Gain) 20ppm/°C  
100 mV  
( 3ppm/°C x Gain) 20ppm/°C  
20  
40  
20  
10  
10  
30  
μA  
μA  
ns  
ns  
n
10  
70  
82  
Volts  
dB  
Logic 0  
Multiplexer Address Set-upTime  
ENABLE to Data Valid Delay  
STROBE   
OUTPUTS  
Logic Levels (Output Data)  
Logic 1  
Logic 1 (pin 7)  
Logic 0  
(Pins 9, 10, 11, and 12)  
Logic 1  
Logic 0  
Logic Loading  
Logic 1  
150  
200  
–80  
μVrms  
dB  
Resolution  
Integral Nonlinearity  
0 to +70°C  
–40 to +100°C  
–55 to +125°C  
Differential Nonlinearity  
0 to +70°C  
–40 to +100°C  
–55 to +125°C  
No Missing Codes  
12  
Bits  
+2.4  
+2.5  
+0.4  
Volts  
Volts  
Volts  
1
1
1
LSB  
LSB  
LSB  
+2.5  
+0.4  
Volts  
Volts  
1
1
1
LSB  
LSB  
LSB  
–400  
+4  
μA  
mA  
Logic 0  
Over the operating temperature range  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
06 May 2013 MDA_HDAS-16/8.C02 Page 2 of 8  
®
®
HDAS-16, HDAS-8  
12-Bit, 50kHz, Complete Data Acquisition Systems  
PIN NO.  
1
2
3
4
5
6
7
8
HDAS-16  
HDAS-8  
CH3 HIGH IN  
CH2 HIGH IN  
CH1 HIGH IN  
OUTPUTS (CONT.)  
Internal Reference:  
Voltage, +25°C  
CH3 IN  
CH2 IN  
CH1 IN  
CH0 IN  
MUX ENABLE  
RDELAY  
EOC  
STROBE  
A8  
A4  
A2  
A1  
RA8  
RA4  
RA2  
RA1  
+9.99  
+10.00 +10.01  
Volts  
ppm/°C  
mA  
Drift  
20  
1
CH0 HIGH IN  
External Current  
Output Data Coding  
POWER REQUIREMENTS  
Power Supply Ranges  
+15V Supply  
–15V Supply  
+5V Supply  
Power Supply Currents  
+15V Supply  
–15V Supply  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Straight binary (unipolar) or offset binary (bipolar)  
MIN.  
TYP.  
MAX.  
UNITS  
9
MULTIPLEXER  
ADDRESS  
OUT  
+14.25  
–14.25  
+4.75  
+15.0  
–15.0  
+5.0  
+15.75  
–15.75  
+5.25  
Volts  
Volts  
Volts  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
MULTIPLEXER  
ADDRESS  
IN  
+33  
–30  
+15  
1.25  
mA  
mA  
mA  
+5V Suppy  
DIGITAL COMMON  
+5V SUPPLY  
LOAD  
Power Dissipation  
PHYSICAL/ENVIRONMENTAL  
Operating Temp. Range, Case  
MC Models  
Watts  
CLEAR  
ENABLE (Bits 9–12)  
BIT 12 (LSB)  
BIT 11  
BIT 10  
BIT 9  
ENABLE (Bits 5–8)  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
0
+70  
+100  
+125  
+150  
°C  
°C  
°C  
°C  
ME Models  
–40  
–55  
–65  
MM/883 Models  
Storage Temperature Range  
Weight  
1.4 ounces (39.7 grams)  
62-pin cermanic DIP  
Package Type  
Footnotes:  
Analog inputs will withstand 35V with power on. If the power is off, the maximum  
safe input (no damage) is 20V.  
The gain equation error is guaranteed before external trimming and applies at gains  
less than 50. This error increases at gains over 50.  
Adjustable to zero.  
ENABLE (Bits 1–4)  
BIT 4  
BIT 3  
BIT 2  
STROBE pulse width must be less than EOC period to achieve maximum throughput  
rate.  
BIT 1 (MSB)  
GAIN ADJUST  
OFFSET ADJUST  
BIPOLAR INPUT  
SAMPLE/HOLD OUT  
+10V REFERENCE OUT  
TECHNICAL NOTES  
1. Input channels are protected to 20 Volts beyond the powersupplies.  
All digital output pins have one second short-circuit protection.  
2. To retain high system throughput rates while digitizing low-level signals,  
apply external high-gain amplifiers foreach channel. MPS’s AM-551 is  
suggested for such amplifier-per-channel applications.  
3. The HDAS devices have self-starting circuits for free-running sequential  
operation. If, however, in a power-upcondition the supply voltage slew rate  
is less than 3V per microsecond, the free running state might not be initial-  
ized. Apply a negative pulse to the STROBE, to eliminate this condition.  
4. For unipolar operation, connect BIPOLAR INPUT (pin 38) to S/H OUT (pin 39).  
For bipolar operation, connect BIPOLAR INPUT (pin 38) to +10V REFERENCE  
OUT (pin 40).  
5. RDELAY may be a standard value 5% carbon composition or film-type resistor.  
6. RGAIN must be very accurate with low temperature coefficients. If neces-  
sary, fabricate the gain resistor from a precision metal-film type in series  
with a low value trim resistor or potentiometer. The total resistor tempera-  
ture coefficient must be no greater than 10ppm/°C.  
ANALOG SIGNAL COMMON  
ANALOG POWER COMMON  
+15V SUPPLY  
–15V SUPPLY  
ANALOG SIGNAL COMMON  
ANALOG SIGNAL COMMON  
RGAIN LOW  
*
*
*
*
*
*
*
RGAIN HIGH  
AMP. IN HIGH   
AMP. IN LOW   
CH15 IN  
CH14 IN  
CH13 IN  
CH12 IN  
CH11 IN  
CH10 IN  
CH9 IN  
CH7 LOW IN  
CH6 LOW IN  
CH5 LOW IN  
CH4 LOW IN  
CH3 LOW IN  
CH2 LOW IN  
CH1 LOW IN  
CH0 LOW IN  
CH7 HIGH IN  
CH6 HIGH IN  
CH5 HIGH IN  
CH4 HIGH IN  
CH8 IN  
CH7 IN  
CH6 IN  
CH5 IN  
CH4 IN  
7. ANALOG SIGNAL COMMON, POWER COMMON and DIGITAL COMMON are  
connected internally. For optimal performance, tie all ground pins (17, 41,  
42, 45, 46) directly to a large analog ground plane beneath the package.  
8. For HDAS-16, tie pin 50 to a “signal source common” if possible. Otherwise  
tie pin 50 to pin 41 (ANA SIG COM).  
*Same as HDAS-16  
Caution: Pins 49 and 50 do not have overvoltage protection; therefore, protected multiplexers,  
such as MPS’s MX-1606 and MX-808 are recommended. See the General Operation description.  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
06 May 2013 MDA_HDAS-16/8.C02 Page 3 of 8  
®
®
HDAS-16, HDAS-8  
12-Bit, 50kHz, Complete Data Acquisition Systems  
Table 1. Description of Pin Functions  
Table 2. Calibration Table  
FUNCTION  
LOGIC STATE  
DESCRIPTION  
UNIPOLAR RANGE  
ADJUST  
INPUT VOLTAGE  
DIGITAL INPUTS  
0 to +5V  
ZERO  
GAIN  
+0.6mV  
+4.9982V  
STROBE  
1 to 0  
0
Initiates acquisition and conversion of  
analog signal  
0 to +10V  
ZERO  
GAIN  
+1.2mV  
+9.9963V  
LOAD  
Random address mode initiated on  
falling edge of STROBE  
BIPOLAR RANGE  
1
0
Sequential address mode  
2.5V  
OFFSET  
GAIN  
–2.4994V  
+2.4982V  
CLEAR  
Allows next STROBE pulse to reset  
MULTIPLEXER ADDRESS to CH0 overrid-  
ing LOAD COMMAND  
5V  
OFFSET  
GAIN  
–4.9988V  
+4.9963V  
MUX ENABLE  
0
1
Disables internal multiplexer  
Enables internal multiplexer  
10V  
OFFSET  
GAIN  
–9.9976V  
+9.9927V  
MUX ADDRESS IN  
Selects channel for random address  
mode 8, 4, 2, 1 natural binary coding  
Calibration Procedures  
1. Offset and gain adjustments are made by connecting two 20k trim potenti-  
ometers as shown in Figure 2.  
DIGITAL OUTPUTS  
EOC (STATUS)  
0
1
0
1
0
1
0
1
Conversion complete  
2. Connect a precision voltage source to pin 4 (CH0 IN). If the HDAS-8 is used,  
connect pin 58 (CH0 LOW IN) to analog ground. Ground pin 20 (CLEAR) and  
momentarily short pin8 (STROBE). Trigger the A/D by connecting pin 7 (EOC)  
to pin 8 (STROBE). Select proper value for RGAIN and RDELAY by referring to  
Table 3.  
3. Adjust the precision voltage source to the value shown in Table 2 for the  
unipolar zero adjustment (ZERO + 1/2LSB)or the bipolar offset adjustment  
(–FS + 1/2LSB). Adjust the offset trim potentiometer so that the output code  
flickers equally between 0000 0000 0000 and 0000 0000 0001.  
4. Change the output of the precision voltage source to the value shown in  
Table 2 for the unipolar or bipolar gain adjustment (+FS – 1 1/2LSB). Adjust  
the gain trim potentiometer so that the output flickers equally between  
1111 1111 1110 and 1111 1111 1111.  
Conversion in process  
ENABLE (1–4)  
Enables three-state outputs bits 1-4  
Disables three-state outputs bits 1-4  
Enables three-state outputs bits 5-8  
Disables three-state outputs bits 5-8  
Enables three-state outputs bits 9-12  
Disables three-state outputs bits 9-12  
ENABLE (5–8)  
ENABLE (9–12)  
MUX ADDRESS OUT  
Output of multiplexer address register  
8, 4, 2, 1 natural binary coding  
ANALOG INPUTS  
CHANNEL INPUTS  
BIPOLAR INPUT  
DESCRIPTION  
Limit voltage to 20V beyond power supplies  
For unipolar operation, connect to pin 39 (S/H OUT). For  
bipolar operation, connect to in 40 (+10V OUT)  
GAIN  
ADJUST  
AMP. IN LOW  
AMP. IN HIGH  
These pins are direct inputs to the instrumentation  
amplifier for external channel expansion beyond 16SE  
or 8D channels.  
+15Vdc  
36  
20k  
ANALOG OUTPUTS  
S/H OUT  
37  
20k  
Sample/hold output  
OFFSET  
ADJUST  
–15Vdc  
+10V REFERENCE OUT  
ADJUSTMENT PINS  
ANALOG SIGNAL COMMON  
GAIN ADJUSTMENT  
OFFSET ADJUSTMENT  
RGAIN  
Buffered +10V reference output  
Figure 2. External Adjustment  
Low level analog signal return  
External gain adjustment. See calibration instructions.  
External offset adjustment. See calibration instructions.  
GENERAL OPERATION  
The HDAS devices accept either 16 single-ended or 8 differential input signals.  
For single-ended circuits, the AMP INLOW (pin 50) input to the instrumentation  
amplifier must terminate at ANALOG SIGNAL COMMON (pin 41). For differential  
circuits, both the HIGH and LOW signal inputs must terminate externally for  
each channel. Tie unused channels to the ANALOG SIGNAL COMMON (pin 41).  
To obtain additional channels, connect external multiplexers to the AMP IN  
HIGH (pin 49) and AMP IN LOW (pin 50). Using this scheme, the HDAS-16 can  
provide 32 single-ended expansion channels while the HDAS-8 can provide  
up to 16 differential expansion channels. MPS’s MX Series multiplexers are  
recommended.  
Optional gain selection point. Factory adjusted for G = 1  
when left open.  
RDELAY  
Optional acquisition time adjustment when connected  
to +5V. Factory adjusted for 9μs. Must be connected to  
+5V either directly or through a resistor.  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
06 May 2013 MDA_HDAS-16/8.C02 Page 4 of 8  
®
®
HDAS-16, HDAS-8  
12-Bit, 50kHz, Complete Data Acquisition Systems  
The acquisition time is the amount of time the multiplexer, instrumenta-  
tion amplifier, and sample/hold require to settle within a specified range of  
accuracy after STROBE (pin 8)goes low. The acquisition time period can be  
observed by measuring how long EOC is low after the falling edge of STROBE  
(see Figure 4). For higher gains, increase the acquisition time. Do this by con-  
necting a resistor from RDELAY (pin 6) to +5V (pin 18). An external resistor,  
RGAIN, can be added to increase the gain value. The gain is equal to 1 without  
an RGAIN resistor. Table 3 refers to the appropriate RDELAY and RGAIN resis-  
tors required for various gains.  
driving the EOC output high.The HDAS devices can be configured for either  
bipolar or unipolar operation (see Table 2). The conversion is complete within a  
maximum of 10 microseconds. The EOC now returns low, the data is valid and  
sent to the three-state output buffers.The sample/hold amplifier is now ready  
to acquire new data.The next falling edge of the STROBE pulse repeats the  
process for the next conversion.  
Multiplexer Addressing  
The HDAS devices can be configured in either random orsequential address-  
ing modes. Refer to Table 5 and the subsequent descriptions. The number of  
channels sequentially addressed can be truncated using the MUX ADDRESS  
OUT(pins 9, 10, 11 and 12) and appropriate decoding circuitry forthe highest  
channel desired. The decoding circuit can drive the CLEAR (pin 20) function low  
to reset the addressing to channel 0.  
The HDAS devices enter the hold mode and are ready for conversion as  
soon as the one-shot (controling acquisition time) times out. An internal clock  
is gated ON, and a start-convert pulse is sent to the 12-bit A/D converter,  
Table 3. Input Range Parameters (Typical)  
INPUT  
RANGE    
SYSTEM ACCURACY  
(% OF FSR)  
GAIN  
1
RGAIN ()  
OPEN  
RDELAY ()   
0 (SHORT)  
0 (SHORT)  
0 (SHORT)  
0 (SHORT)  
7k  
THROUGHPUT   
66.6kHz  
10V  
0.009  
0.009  
0.009  
0.009  
0.010  
0.011  
0.016  
5V  
2
20.0k  
66.6kHz  
2.5V  
4
6.667k  
2.222k  
408.2  
66.6kHz  
1V  
10  
50  
100  
200  
66.6kHz  
200mV  
100mV  
50mV  
40.0kHz  
202.0  
21k  
25.6kHz  
100.5  
51k  
14.5kHz  
Notes  
The analog input range to the A/D converter is 0 to +10V for unipolar  
signals and ±10V for bipolar signals.  
Full scale can be accommodated for analog signal ranges of ±±0mV to  
±10V.  
For gains between 1 and 10, RDELAY (pin 6) must be shorted to +±V  
(pin 18).  
RGAIN (Ω) = 20,000  
(GAIN – 1)  
RDELAY (Ω) = [Total Acquisition Delay (μs) x 1000] – 9000  
Throughput period equals acquisition and settling delay, plus A/D con-  
version period (10 microseconds maximum).  
Table 4. Output Coding  
UNIPOLAR  
Table 5. Mux Channel Addressing  
PIN  
STRAIGHT BINARY  
MUX ADDRESS  
INPUT  
+FS – 1LSB  
+1/2FS  
+1LSB  
0 to +10V  
+9.9976  
+5.0000  
+0.0024  
0.0000  
0 to +5V  
+4.9988  
+2.5000  
+0.0012  
0.0000  
MSB  
1111  
1000  
0000  
0000  
LSB  
5
13  
14  
15  
16  
1111  
0000  
1111  
0000  
0001  
0000  
MUX  
ENABLE  
RA8  
RA4  
RA2  
RA1  
0000  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
NONE  
0
1
2
3
4
5
6
7
ZERO  
0000  
BIPOLAR  
10V  
OFFSET BINARY*  
HDAS-8  
(3-BIT  
ADDRESS)  
INPUT  
+FS – 1LSB  
+1/2FS  
+1LSB  
5V  
MSB  
1111  
1100  
1000  
1000  
0000  
0000  
LSB  
+9.9951  
+5.0000  
+0.0049  
0.0000  
+4.9976  
+2.5000  
+0.0024  
0.0000  
1111  
0000  
0000  
0000  
0000  
0000  
1111  
0000  
0001  
0000  
0001  
0000  
8
9
ZERO  
–FS + 1LSB  
–FS  
–9.9951  
–10.000  
–4.9976  
–5.0000  
10  
11  
12  
13  
14  
15  
HDAS-16  
(4-BIT  
ADDRESS)  
* For 2’s complement coding, add an inverter to the MSB line.  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
06 May 2013 MDA_HDAS-16/8.C02 Page 5 of 8  
®
®
HDAS-16, HDAS-8  
12-Bit, 50kHz, Complete Data Acquisition Systems  
Random Addressing  
tents of the address counter to be incremented by one, followed by an  
A/D conversion in 9 microseconds.  
Set pin 19 (LOAD) to logic 0. The next falling edge of STROBE will load the MUX  
CHANNEL ADDRESS present on pin 13 to pin 16. Digital address inputs must be  
stable 20ns before andafter falling edge of the STROBE pulse.  
Input Voltage Protection  
As shown in Figure 3, the multiplexer has reversed biased diodes which  
protect the input channels from being damaged by overvoltage signals. The  
HDAS input channels areprotected up to 20V beyond the supplies and can be  
increasedby adding series resistors (Ri) to each channel. The input resistor  
must limit the current flowing through the protection diodes to 10mA.  
Free Running Sequential Addressing  
Set pin 19 (LOAD) and pin 20 (CLEAR) to logic 1 or leave open. Connect pin 7  
(EOC) to pin 8 (STROBE). The fallingedge of EOC will increment channel  
address. This means thatwhen the EOC is low, the digital output data is valid  
for theprevious channel (CHn – 1) rather than the channel indicated on  
MUX ADDRESS OUTPUT. The HDAS will continually scan all channels.  
The value of Ri for a specific voltage protection range (Vp) can be calculated  
by the following formula:  
Example: CH4 has been addressed and a conversion takes place. The EOC  
goes low. That channel’s (CH4’s) data becomes valid, but MUX ADDRESS  
OUTPUT is now CH5.  
Vp = (Rsignal + Ri + RON) (10mA)where RON = 2k  
NOTE: Increased input series resistance will increase multiplexer settling  
time significantly.  
Triggered Sequential Addressing  
Set pin 19 (LOAD) and pin 20 (CLEAR) to logic 1 or leaveopen. Apply a falling  
edge trigger pulse to pin 8 (STROBE).This negative transition causes the con-  
+15V  
CHn  
INPUT  
Ri  
R1  
1k  
INST.  
AMP.  
1k  
10pF  
100pF  
R
SIGNAL  
~ SIGNAL  
–15V  
Figure 3. Multiplexer Equivalent Circuit  
40nsec min.  
STROBE  
EXTERNAL  
STROBE PULSE  
40nsecmin.  
9μsec typ.  
6μsec typ.  
CH0  
CH12  
DATA VALID  
DATA VALID  
EOC  
ACQUISITION CONVERSION ACQUISITION CONVERSION  
CH0 CH0 CH1 CH1  
ACQUISITION CONVERSION  
CH12 CH12  
LOAD  
t
2
t
t ,  
t
1 2  
t50nsec  
1
CLEAR  
t t 20nsec min.  
RA8  
RA4  
RA2  
RA1  
A8  
CH12  
SELECTED  
40nsec min.  
A4  
A2  
A1  
40nsec min.  
CH1 ADDRESSED  
CH0 ADDRESSED  
CH2 ADDRESSED  
CH12 ADDRESSED  
CODE  
MODE  
CLEAR  
SEQUENTIAL (EOC TIED TO STROBE)  
RANDOM  
MAY CHANGE  
OR DON'T CARE  
Figure 4. HDAS Timing Diagram  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
06 May 2013 MDA_HDAS-16/8.C02 Page 6 of 8  
®
®
HDAS-16, HDAS-8  
12-Bit, 50kHz, Complete Data Acquisition Systems  
Mechnical Dimensions  
INCHES (mm)  
0.150  
(3.810)  
2.325  
(59.055)  
Dimension Tolerances (unless otherwise indicated):  
2 place decimal (.XX) ±0.010 (±0.254)  
3 place decimal (.XXX) ±0.005 (±0.127)  
1
21  
Lead Material: Kovar alloy  
62  
Lead Finish:  
50 microinches (minimum) gold plating  
over 100 microinches (nominal) nickel plating  
1.100 1.415 MAX.  
(27.940)  
(35.94)  
52  
32  
0.100 TYP.  
(2.540)  
0.150  
(3.810)  
0.235 MAX.  
(5.969)  
2.00±0.008  
(50.800)  
0.200 MAX.  
(5.080)  
0.190 MAX.  
(4.826)  
0.020 ±0.002  
(0.508)  
0.040  
(1.016)  
0.150  
(3.810)  
1.100 ±0.008  
(27.940)  
0.150  
(3.810)  
SEATING  
PLANE  
0.025 ±0.010  
(0.635)  
DIP PACKAGE  
2.30 REF  
C
L
1.000  
1.000  
.100 TYP  
62x .050  
1.220  
.450  
.050  
1.250  
REF  
1.40 REF  
.900  
C
L
.100  
TYP  
62x .100  
2.120  
2.150 REF  
SMT PACKAGE  
.010  
REF  
.020  
REF  
.100  
REF  
.050  
REF  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
06 May 2013 MDA_HDAS-16/8.C02 Page 7 of 8  
®
®
HDAS-16, HDAS-8  
12-Bit, 50kHz, Complete Data Acquisition Systems  
ORDERING INFORMATION  
Operating Temperature Package RoHS Compliant  
Model Number  
HDAS-16MC  
0 to +70°C  
DIP  
DIP  
NO  
NO  
ISO 9001  
R
E G I S T E R E D  
HDAS-16ME  
-40 to +100°C  
-55 to +125°C  
-55 to +125°C  
0 to +70°C  
HDAS-16MM  
HDAS-16/883  
HDAS-16GC  
DIP  
NO  
DIP  
NO  
SMT  
SMT  
SMT  
SMT  
DIP  
NO  
HDAS-16GE  
-40 to +100°C  
-55 to +125°C  
-55 to +125°C  
0 to +70°C  
NO  
HDAS-16GM  
NO  
HDAS-16G/883*  
HDAS-16MC-C  
HDAS-16ME-C  
HDAS-16MM-C  
HDAS-16MM-QL  
HDAS-16/883-C  
HDAS-16GC-C  
HDAS-16GE-C  
HDAS-16GM-C  
NO  
YES  
YES  
YES  
NO  
-40 to +100°C  
-55 to +125°C  
-55 to +125°C  
-55 to +125°C  
0 to +70°C  
DIP  
DIP  
DIP  
DIP  
YES  
YES  
YES  
YES  
YES  
SMT  
SMT  
SMT  
SMT  
-40 to +100°C  
-55 to +125°C  
HDAS-16G/883-C -55 to +125°C  
HDAS-8MC  
0 to +70°C  
DIP  
DIP  
NO  
NO  
HDAS-8ME  
-40 to +100°C  
-55 to +125°C  
-55 to +125°C  
0 to +70°C  
HDAS-8MM  
DIP  
NO  
HDAS-8/883  
HDAS-8GC  
DIP  
NO  
SMT  
SMT  
SMT  
SMT  
DIP  
NO  
HDAS-8GE  
-40 to +100°C  
-55 to +125°C  
-55 to +125°C  
0 to +70°C  
NO  
HDAS-8GM  
NO  
HDAS-8G/883  
HDAS-8MC-C  
HDAS-8ME-C  
HDAS-8MM-C  
HDAS-8MM-QL  
HDAS-8/883-C  
HDAS-8GC-C  
HDAS-8GE-C  
HDAS-8GM-C  
HDAS-8G/883-C  
NO  
YES  
YES  
YES  
NO  
-40 to +100°C  
-55 to +125°C  
-55 to +125°C  
-55 to +125°C  
0 to +70°C  
DIP  
DIP  
DIP  
DIP  
YES  
YES  
YES  
YES  
YES  
SMT  
SMT  
SMT  
SMT  
-40 to +100°C  
-55 to +125°C  
-55 to +125°C  
Receptacle for PC board mounting can be ordered through AMP Inc.,  
Part #3-331272-4 (Component Lead Spring Socket), 62 required.  
The MIL-STD-883 units are available under DESC Drawing Number  
5962-8851404.  
Contact DATEL for MIL-STD-883 product specifications.  
*HDAS-16G/883 devices are delivered with solder-tin leads.  
DATEL  
. makes no representation that the use of its products in the circuits described herein, or the use of other  
technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not  
imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change  
without notice.  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
ITAR and ISO 9001/14001 REGISTERED  
© 2013  
www.datel.com • e-mail: help@datel.com  
06 May 2013 MDA_HDAS-16/8.C02 Page 8 of 8  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY