SN8205UFL [MURATA]

Telecom Circuit,;
SN8205UFL
型号: SN8205UFL
厂家: muRata    muRata
描述:

Telecom Circuit,

电信 电信集成电路
文件: 总43页 (文件大小:1988K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN820X Wi-Fi Network Controller  
Module Family  
Data Sheet  
Version 2.2  
February 28, 2014  
Note: Murata Electronics N.A, Inc (Murata) reserves the right to make changes in specifications at any time and  
without notice. The information furnished in this data sheet is believed to be accurate and reliable. However, no  
responsibility is assumed by Murata for its use, nor any infringements of patents or other rights of third parties  
resulting from its use. No license is generated under any rights of Murata or its supporters unless specifically  
agreed. Murata Electronics N.A, Inc is a wholly owned subsidiary of Murata Manufacturing Company, Ltd. of  
Japan.  
Revision History  
Revision  
0.1  
Date  
Author  
Y. Fang  
Change Description  
12/09/2012  
02/03/2012  
02/20/2012  
Initial version  
0.5  
Y. Fang  
Preliminary version  
0.6  
N. Nagayama  
Update performance data and adjusted table for-  
mat  
0.7  
1.0  
1.1  
04/20/2012  
08/27/2012  
01/23/2013  
J. Gregus  
Y. Fang  
Y. Fang  
Update CE compliance information  
Formal release  
Added Power Rail Current specification and  
Standby Mode Current specification  
1.2  
1.3  
05/30/2013  
09/20/2013  
R. Willett  
R Willett  
Changed specs in Table 1 for Pin 2, 3, 4, and 30  
Separated Data Sheet/User Manual and created  
new data sheet combining  
SN8200/8200 UFL and SN8205/8205 UFL  
1.4  
1.5  
11/07/13  
11/11/13  
R. Willett  
R Willett  
Added Acronyms list; Revised Fig. 1.1, 2.1; revised  
content and renumbered tables in Chap. 3: added  
Chapters 4 - 10 and reorganized information;  
amended regulatory information.  
Revised Operating Temperature specification on  
page 6; revised Table 5.1 “Absolute Maximum Rat-  
ings,” page 38.  
2.0  
2.1  
2.2  
11/25/13  
12/17/13  
02/28/14  
R Willett  
R. Willett  
R. Willett  
Removed references to SyChip; updated copyright,  
deleted Chap 11, “Disclaimer;”  
Added text describing module software download in  
Chapter 1, page 7.  
Revised text on page 42, Table 9.2.  
www.murata-ws.com E-mail: modules@murata.com  
©2014 by Murata  
Page 2 of 43  
SN820X - 2/28/14  
Table of Contents  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
1.1 Model SN820X Module Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.2 Model SN820X Module Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.4 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2 Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1 Module Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.2 Top and Side View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.3 PCB Footprint (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.4 Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.1 Typical Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2 GPIO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.3 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.4 Output Voltage Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.5 I2C Interface Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.6 I2S SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.7 12-Bit ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.8 DAC Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4 RF Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
4.1 DC/RF Characteristics for IEEE 802.11b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
4.2 DC/RF Characteristics for IEEE 802.11g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4.3 DC/RF Characteristics for IEEE 802.11n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5 Environmental Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
5.1 Absolute Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6 Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
7 Packing and Marking Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
7.1 Carrier Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.2 Module Marking Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8 RoHS Delcaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
9 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
10 Technical Support Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
www.murata-ws.com E-mail: modules@murata.com  
Page 3 of 43  
©2014 by Murata  
SN820X - 02/28/14  
List of Figures  
FIGURE 1.1: SN820X Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
FIGURE 2.1: SN820X and SN820XUFL Top and Side View . . . . . . . . . . . . . . . . . . . . . . . .8  
FIGURE 2.2: Detailed Pad Dimensions (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
FIGURE 3.1: SN8200/8200UFL I2C bus AC Waveforms and Measurement Circuit . . . . .18  
FIGURE 3.2: SN8205/8205UFL I2C bus AC Waveforms and Measurement Circuit . . . . . 19  
FIGURE 3.3: SPI Timing Diagram - Slave Mode and CPHA = 0, SN8200/8200UFL and  
SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
FIGURE 3.4: SPI Timing Diagram - Slave Mode and CPHA = 1(1)SPI Timing Diagram - Slave  
Mode and CPHA = 0, SN8200/8200UFL and SN8205/8205UFL . . . . . . . . . 23  
FIGURE 3.5: SPI Timing Diagram - Master Mode SN8200/8200UFL  
and SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
FIGURE 3.6: ADC Accuracy Characteristics, SN8200/8200UFL . . . . . . . . . . . . . . . . . . . . 27  
FIGURE 3.7: ADC Accuracy Characteristics, SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . 30  
FIGURE 3.8: Typical Connection Diagram Using the ADC, SN8205/8205UFL . . . . . . . . . 30  
FIGURE 7.1 SN820X/820XUFL Carrier Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 40  
FIGURE 7.2 Typical SN820X/820XUFL module marking . . . . . . . . . . . . . . . . . . . . . . . . . 40  
www.murata-ws.com E-mail: modules@murata.com  
Page 4 of 43  
©2014 by Murata  
SN820X - 02/28/14  
List of Tables  
Table 1.1: SN820X WiFi Network Controller Module Family . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2.1: Module Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2.2: Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 2.3: Signal Pinouts for SN820X/820XUFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3.1.1: SN8200/SN8200UFL and SN8205/SN8205 UFL Typical  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3.2.1: Digital I/O Characteristics SN8200/SN8200UFL . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3.2.2: Digital I/O Characteristics, SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3.3.1: Voltage Characteristics, SN820X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3.3.2: Current Characteristics, SN8200/8200UFL . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3.3.3: Current Characteristics, SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3.4.1: Output Voltage Characteristics, SN8200/SN8200UFL . . . . . . . . . . . . . . . . . 16  
Table 3.4.2: Output Voltage Characteristics, SN8205/SN8205UFL . . . . . . . . . . . . . . . . . 16  
Table 3.5.1: I2C Characteristics SN8200/8200UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3.5.2: I2C Characteristics SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 3.5.3: SCL Frequency (fPCLK1= 36 MHz., VDD = 3.3 V)(1)(2) SN8200/8200UFL 19  
Table 3.5.4: SCL Frequency (fPCLK1= 30 MHz., VDD = 3.3 V)(1)(2) SN8205/8205UFL 20  
Table 3.6.1: SPI Characteristics SN8200/8200UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 3.6.2: SPI Characteristics SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 3.7.1: ADC Characteristics, SN8200/8200UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 3.7.2: RAIN max for fADC = 14 MHz(1), SN8200/8200UFL . . . . . . . . . . . . . . . . . . 26  
Table 3.7.3: ADC accuracy, SN8200/8200UFL - limited test conditions(1)(2) . . . . . . . . . 26  
Table 3.7.4: ADC Accuracy (1) (2) (3), SN8200/8200UFL . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 3.7.5: ADC Characteristics, SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 3.7.6: ADC Accuracy, SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 3.8.1: DAC Characteristics, SN8200/8200UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 3.8.2: DAC Characteristic, SN8205/8205UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 4.1.1: RF Characteristics for IEEE 802.11b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 4.2.1: RF Characteristics for IEEE 802.11g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 4.3.1: RF Characteristics for IEEE 802.11n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 5.1: Absolute Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 5.2: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 9.1: SN8200/8200UFL Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 9.2: SN8205/8205UFL Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
www.murata-ws.com E-mail: modules@murata.com  
Page 5 of 43  
©2014 by Murata  
SN820X - 02/28/14  
SN820X Family  
1 Introduction  
1.1 Model SN820X Module Family  
Wi-Fi Network  
Controller Module  
The SN820X Module Family is a portfolio of low power, self-contained,  
embedded wireless module solutions that address the connectivity demands  
of M2M applications. These products integrate a micro-controller, a Wi-Fi  
BB/MAC/RF IC, an RF front end and two clocks into small form factor mod-  
ules. The module family includes 2 different micro-controller options as  
shown below. The modules can also be purchased with either a standard on-  
board chip antenna or a U.FL connector where remote antenna flexibility is  
required.  
Table 1.1: SN820X WiFi Network Controller Module Family  
Model #  
SN8200  
P/N  
Built-in STM  
ARM Cortex M3  
ARM Cortex M3  
ARM Cortex M3  
ARM Cortex M3  
RAM Size  
Flash Size  
768KB  
88-00151-00  
88-00151-02  
88-00158-00  
88-00158-02  
96KB  
SN8200UFL  
SN8205  
96KB  
768KB  
128KB  
128KB  
1024KB  
1024KB  
SN8205UFL  
1.2 Model SN820X Module Features  
2.4 GHz IEEE 802.11 b/g/n radio technology  
Dimensions: 30.5 × 19.4 × 2.8 mm  
Antenna configurations: On-board antenna or U.FL connector  
Transmitter power: +18 dBm @80211b  
Receiver sensitivity: -96 dBm  
MCU: ARM Cortex-M3  
Serial Interface Options: UART, SPI  
Peripheral Interface Options: ADC, DAC, I2C, I2S, GPIO  
Operating temperature range: -40 ºC to +85 ºC  
RoHS2 compliant  
MSL Level 3  
FCC/IC certified and CE compliant  
Compatible with Broadcom WICED™ SDK  
www.murata-ws.com E-mail: modules@murata.com  
Page 6 of 43  
©2014 by Murata  
SN820X - 02/28/14  
1.3 Block Diagram  
for on-board  
antenna version  
(
)
VBAT  
VDD  
VDD_WIFI_IN  
16 MHz  
26 MHz  
TCXO  
ANT  
UART  
SPI  
I2C  
12S  
Wi-Fi SoC  
(802.11b/g/n  
ARM  
Cortex M3  
LPF  
SPDT  
ADC  
DAC  
GPIO  
for U.FL  
connector version  
(
)
32 KHz  
(optional)  
WIFI_SLEEP  
_CLK_IN  
(optional)  
FIGURE 1.1: SN820X Block Diagram  
Murata offers Serial-to-WiFi and EZ Web Wizzard software for SN820x in the SN820x EVK+. The modules are  
also compatible with Broadcom WICED™ SDK. The customer can obtain the WICED™ SDK from Broadcom  
directly. The modules are delivered with no application firmware pre-installed.  
Finalize the firmware image, and then download the firmware to the module. For more details, please see ref-  
erence [4].  
1.4 Acronyms  
- ADC Analog to Digital Converter  
- DAC Digital to Analog Converter  
- GPIO General-Purpose Input-Output  
- I2C  
- I2S  
- ISM  
Intelligent Interface Controller  
Integrated Interchip Sound  
Industrial, Scientific and Medical  
- MAC Medium Access Control  
- MSL Moisture Sensitivity Level  
- PER Packet Error Rate  
- ROHS Restriction of Hazardous Substances  
- SPI  
Serial Peripheral Interface  
- UART Universal Asynchronous Receiver-Transmitter  
1.5 References  
[1] STM32F103RF Data Sheet, ST Microelectronics  
[2] STM32F205RG, Data Sheet, ST Microelectronics  
[3] SN820X Wi-Fi Network Controller Module Family User Manual, Murata  
[4] AN_SN8200_002 SN820X Firmware Downloading Application Note, Murata  
www.murata-ws.com E-mail: modules@murata.com  
Page 7 of 43  
©2014 by Murata  
SN820X - 02/28/14  
 
 
2 Mechanical Specifications  
2.1 Module Dimensions  
Table 2.1: Module Dimensions  
Parameter  
Typical  
30.5 x 19.4 x 2.8  
±0.2  
Units  
mm  
Dimensions (LxWxH)  
Dimension tolerances (LxWxH)  
mm  
2.2 Top and Side View  
SN820X Top and Side View  
SN820XUFL Top and Side View  
FIGURE 2.1: SN820X and SN820XUFL Top and Side View  
www.murata-ws.com E-mail: modules@murata.com  
Page 8 of 43  
©2014 by Murata  
SN820X - 02/28/14  
2.3 PCB Footprint (top view)  
FIGURE 2.2: Detailed Pad Dimensions (top view)  
www.murata-ws.com E-mail: modules@murata.com  
Page 9 of 43  
©2014 by Murata  
SN820X - 02/28/14  
2.4 Pinouts  
Table 2.2: Pinouts  
Pin #  
Pin Name  
I/O  
-
Description  
1
2
GND  
Ground  
OSC32_IN  
I/O  
Optional precision 32.768 KHz slow  
clock input. No connect if not used  
3
OSC32_OUT  
WIFI_VDD_EN  
ADC3  
I/O  
No connect  
4
I/O  
No connect  
5
I/O  
General purpose I/O or ADC3  
General purpose I/O or ADC4  
General purpose I/O or ADC5  
DC supply for MCU and I/O  
General purpose I/O or ADC6  
General purpose I/O or DAC2  
General purpose I/O or DAC1  
General purpose I/O or ADC1  
No connect  
6
ADC4  
I/O  
7
ADC5  
I/O  
8
VDD  
PI  
9
ADC6  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DAC2  
I/O  
DAC1  
I/O  
ADC1  
I/O  
-
Reserved  
Reserved  
GND  
-
No connect  
-
Ground  
GND  
-
Ground  
GND  
-
Ground  
GND  
-
Ground  
GND  
-
Ground  
GND  
-
Ground  
GND  
-
Ground  
GND  
-
Ground  
GND  
-
Ground  
GND  
-
Ground  
GND  
-
Ground  
VDD_WIFI_IN  
Reserved  
Reserved  
Reserved  
WIFI_SLEEP_CLK_IN  
PI  
-
Wi-Fi power supply  
No connect  
-
No connect  
-
No connect  
I
Optional precision 32.768 kHz Wi-Fi  
sleep clock input. Tie to GND if not  
used  
31  
32  
33  
34  
35  
36  
37  
GND  
-
Ground  
UART_TX  
UART_RX  
UART_CTS  
UART_RTS  
JTMS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General purpose I/O or UART_TX  
General purpose I/O or UART_RX  
General purpose I/O or UART_CTS  
General purpose I/O or UART_RTS  
General purpose I/O or JTMS  
JTDI/SPI_NSS  
General purpose I/O or JTDI or  
SPI_NSS  
www.murata-ws.com E-mail: modules@murata.com  
Page 10 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Table 2.2: Pinouts (Continued)  
Pin #  
38  
Pin Name  
I/O  
I/O  
-
Description  
General purpose I/O or JTCK  
Ground  
JTCK  
39  
Ground  
40  
JTDO/SPI_SCK  
I/O  
General purpose I/O or JTDO or  
SPI_SCK  
41  
JTRST/SPI_MISO  
I/O  
General purpose I/O or JTRST or  
SPI_MISO  
42  
43  
44  
45  
SPI_MOSI  
I2C_SCL  
I2C_SDA  
BOOT  
I/O  
I/O  
I/O  
-
General purpose I/O or SPI_MOSI  
General purpose I/O or I2C_SCL  
General purpose I/O or I2C_SDA  
Normal operation if connected to  
ground at power up.  
46  
47  
48  
ADC2  
I/O  
I
General purpose I/O or ADC2  
Module reset  
MICRO_RST_N  
VBAT  
PI  
Power supply for backup circuitry  
when VDD is not present  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Reserved  
GND  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
No connect  
Ground  
www.murata-ws.com E-mail: modules@murata.com  
Page 11 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Table 2.3: Signal Pinouts for SN820X/820XUFL  
Pin Pin name STM32F103RF/STM32F205RG pin  
5
6
7
9
ADC3  
ADC4  
ADC5  
ADC6  
PA0/WKUP/ADC123_0/USART2_CTS  
TIM2_CH1_ETR/ TIM5_CH1 / TIM8_ETR  
PA1/ADC123_1/USART2_RTS TIM2_CH2 / TIM5_CH2  
PA2/ADC123_2/USART2_TX TIM2_CH3 / TIM5_CH3 /  
TIM9_CH1  
PA3/ADC123_3/USART2_RX TIM2_CH4 / TIM5_CH4 /  
TIM9_CH2  
10  
11  
12  
32  
33  
34  
35  
36  
37  
38  
40  
41  
42  
43  
44  
46  
DAC2  
DAC1  
ADC1  
PA4/ADC12_4/DAC1/USART2_CK/SPI1_NSS  
PA5/ADC12_5/DAC2/SPI1_SCK  
PA7/ADC12_7/SPI1_MOSI  
PA9/UART1_TX  
UART_TX  
UART_RX  
UART_CTS  
UART_RTS  
JTMS  
PA10/UART1_RX  
PA11/UART1_CTS/USB2_DM/CAN_RX  
PA12/UART1_RTS/USB2_DP/CAN_TX  
PA13/JTMS/SWIO  
JTDI/SPI_NSS  
JTCK  
PA15/JTDI/SPI3_NSS/I2S3_WS  
PA14/JTCK/SWCLK  
JTDO/SPI_SCK  
JTRST/SPI_MISO  
SPI_MOSI  
I2C_SCL  
PB3/JTDO/SPI3_SCK/I2S3_CK  
PB4/JTRST/SPI3_MISO  
PB5/I2C1_SMBA/SPI3_MOSI/ I2S3_SD  
PB6/I2C1_SCL TIM4_CH1  
PB7/I2C1_SDA TIM4_CH2  
PA6/ADC12_6/SPI1_MISO  
I2C_SDA  
ADC2  
www.murata-ws.com E-mail: modules@murata.com  
Page 12 of 43  
©2014 by Murata  
SN820X - 02/28/14  
3 DC Electrical Specifications  
The I/O pins from SN820X are based on the built-in STM32 microcontroller. The information shown in sections  
3.2 through 3.8 is derived from the ST Microelectronics Data Sheet for user convenience. For original informa-  
tion, see reference [1] and [2] on page of References.  
3.1 Typical Power Consumption  
Table 3.1.1: SN8200/SN8200UFL and SN8205/SN8205 UFL Typical Power Consumption  
Values  
Item  
Condition  
Min  
Typ  
110  
370  
Max  
Units  
mA  
11b  
11g  
11n  
Receive mode  
11 Mbps  
Transmit mode  
(18 dBm/  
mA  
100% Duty Cycle)  
Receive mode  
54 Mbps  
MCS7  
110  
290  
mA  
mA  
Transmitmode  
(14.5 dBm/100%  
Duty Cycle)  
Receive mode  
110  
280  
mA  
mA  
Transmit mode  
(13.5 dBm/  
100%DutyCycle)  
Standby Mode with IEEE802.11 Power  
Save  
DTIM 1, Telnet session estab-  
lished and idling  
3.15  
1.28  
mA  
mA  
Standby Mode with IEEE802.11 Power  
Save  
DTIM 3, Telnet session estab-  
lished and idling  
3.2 GPIO Interface  
The general purpose I/O (GPIO) pins available on the SN820X will connect to various external devices. GPIOs are configured  
as input floating by default. Subsequently, they can be programmed to be either input or output pins via the GPIO control reg-  
ister. They can also be programmed to have internal pull-up or pull-down resistors. The MICRO_RST_N pin is connected to a  
permanent pull-up resistor, R  
.
PU  
Table 3.2.1: Digital I/O Characteristics SN8200/SN8200UFL  
SYM  
min.  
typ.  
max.  
unit  
Input Low Voltage1  
Input High Voltage1  
Input Low Voltage2  
VIL  
-0.3  
0.28 (VDD-2) +0.8  
V
VIH  
VIL  
VIH  
0.41 (VDD-2) +1.3  
-0.3  
VDD+0.3  
0.32 (VDD2) +0.75  
VDD +0.5  
V
V
V
Input High Voltage2  
0.42 (VDD-2) +1  
Input Low Voltage (MICRO_RST_N)  
Input High Voltage (MICRO_RST_N)  
Output Low Voltage  
VIL  
VIH  
-0.5  
2
0.8  
VDD + 0.5  
0.4  
V
V
VOL  
VOH  
RPU  
V
Output High Voltage  
VDD - 0.4  
30  
V
Weak Pull-up Equivalent Resistor  
40  
40  
50  
50  
k  
Weak Pull-down Equivalent resistor  
RPD  
30  
kΩ  
1 - for pins 5, 6, 7, 9, 10, 11, 12, 42, 46  
2 - for pins 32 - 38, 40, 41, 43, 44  
www.murata-ws.com E-mail: modules@murata.com  
©2014 by Murata  
Page 13 of 43  
SN820X - 02/28/14  
Table 3.2.2: Digital I/O Characteristics, SN8205/8205UFL  
SYM  
min.  
typ.  
max.  
unit  
Input Low Voltage1  
Input High Voltage1  
Input Low Voltage2  
VIL  
-0.3  
0.3 VDD  
V
VIH  
VIL  
VIH  
0.7 VDD  
-0.3  
3.6  
0.3 VDD  
3.6  
V
V
V
Input High Voltage2  
0.7  
Input Low Voltage (MICRO_RST_N)  
Input High Voltage (MICRO_RST_N)  
Output Low Voltage  
VIL  
VIH  
-0.5  
2
0.8  
VDD + 0.5  
0.4  
V
V
VOL  
VOH  
RPU  
V
Output High Voltage  
VDD - 0.4  
30/8*  
V
Weak Pull-up Equivalent Resistor  
40/11*  
40/11*  
50/15*  
50/15*  
kΩ  
Weak Pull-down Equivalent resistor  
RPD  
30/8*  
kΩ  
1 - for pins 5, 6, 7, 9, 10, 11, 12, 42, 46  
2 - for pins 32-38, 40, 41, 43, 44  
(*) - Pin 33  
3.3 Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA  
(with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3mA. When using  
the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.  
In the user application, the number of I/O pins which can drive current must be limited to respect the  
absolute maximum rating specified in Table 3.3.1.  
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the  
MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD.  
Table 3.3.1: Voltage Characteristics, SN820X  
Symbol  
Ratings  
Min  
–0.3  
Max  
4.0  
U
(1)  
VDD–VSS  
External main supply voltage (including VDDA, VDD  
Input voltage on five-volt tolerant pin(2)  
Input voltage on any other pin  
)
VSS–0.3  
VDD+4  
4.0  
V
VIN  
VSS–0.3  
|VDDx  
|
Variations between different VDD power pins  
-
-
50  
mV  
V
|VSSX VSS|  
Variations between all the different ground pins  
Electrostatic discharge voltage (human body model)  
50  
VESD(HBM)  
2000  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in  
the permitted range.  
2. VIN maximum value must always be respected.  
www.murata-ws.com E-mail: modules@murata.com  
Page 14 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Table 3.3.2: Current Characteristics, SN8200/8200UFL  
Symbol  
Ratings  
Max.  
150  
Uni  
Total current into VDD/VDDA power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
IVDD  
IVSS  
150  
25  
IIO  
25  
mA  
Injected current on five volt tolerant pins(3)  
Injected current on any other pin(4)  
(2)  
-5/+0  
± 5  
IINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
ΣIINJ(PIN)  
± 25  
Table 3.3.3: Current Characteristics, SN8205/8205UFL  
Symbol  
Ratings  
Max.  
Unit  
IVDD  
IVSS  
120  
120  
25  
(1)  
(1)  
Total current into VDD power lines (source)  
Total current out of VSS ground lines (sink)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
IIO  
25  
mA  
-5/+0  
±5  
(3)  
Injected current on five-volt tolerant I/O  
(2)  
(4)  
IINJ(PIN)  
(4)  
Injected current on any other pin  
ΣIINJ(PIN)  
±25  
(5)  
Total injected current (sum of all I/O and control pins)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. Negative injection disturbs the analog performance of the device.  
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be  
exceeded.  
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. INJ(PIN)  
I
must never be  
exceeded.  
Σ
5. When several inputs are submitted to a current injection, the maximum  
and negative injected currents (instantaneous values)  
IINJ(PIN) is the absolute sum of the positive  
www.murata-ws.com E-mail: modules@murata.com  
Page 15 of 43  
©2014 by Murata  
SN820X - 02/28/14  
3.4 Output Voltage Levels  
Unless otherwise specified, the parameters given in Table 3.4.1 and Table 3.4.2 are derived from tests per-  
formed under ambient temperature and V supply voltage conditions. All I/Os are CMOS and TTL compliant.  
DD  
Table 3.4.1: Output Voltage Characteristics, SN8200/SN8200UFL  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
(1)  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
-
0.4  
VOL  
TTL port(3)  
IIO = +8 mA  
2.7 V < VDD < 3.6 V  
V
(2)  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
VDD—0.4  
VOH  
(1)  
CMOS port(3)  
IIO=+ 8mA  
2.7 V < VDD < 3.6 V  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
-
0.4  
1.3  
0.4  
VOL  
V
V
V
(2)  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
2.4  
-
VOH  
(1)(4)  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
VOL  
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
(2)(4)  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
VDD—1.3  
VOL  
(1)(4)  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
VOL  
IIO= +6 mA  
2 V < VDD < 2.7 V  
(2)(4)  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
VDD—0.4  
VOL  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 3.4.1 and the  
sum of IIO (I/O ports and control pins) must not exceed IVSS.  
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 3.4.1 and  
the sum of IIO (I/O ports and control pins) must not exceed IVDD.  
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
4. Based on characterization data, not tested in production.  
Table 3.4.2: Output Voltage Characteristics, SN8205/SN8205UFL  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
(2)  
CMOS port(3)  
IIO=+ 8mA  
2.7 V < VDD < 3.6 V  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
-
0.4  
VOL  
V
(3)  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
VDD—0.4  
VOH  
(2)  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
-
0.4  
1.3  
0.4  
VOL  
TTL port(3)  
IIO = +8 mA  
2.7 V < VDD < 3.6 V  
V
V
V
(3)  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
2.4  
-
VOH  
(2)(4)  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
VOL  
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
(3)(4)  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
VDD—1.3  
VOL  
(2)(4)  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
VOL  
IIO= +6 mA  
2 V < VDD < 2.7 V  
(3)(4)  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
VDD—0.4  
VOL  
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of  
current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2  
MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).  
www.murata-ws.com E-mail: modules@murata.com  
Page 16 of 43  
©2014 by Murata  
SN820X - 02/28/14  
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 3.4.2 and the  
sum of IIO (I/O ports and control pins) must not exceed IVSS.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 3.4.2 and  
the sum of IIO (I/O ports and control pins) must not exceed IVDD.  
4. Based on characterization data, not tested in production.  
2
3.5 I C Interface Characteristics  
Unless otherwise specified, the parameters given below are derived from tests performed under ambient tem-  
perature, fPCLK1 frequency and VDD supply voltage conditions. The SN8200/8200UFL and SN8205/  
2
2
8205UFL performance line I C interface meets the requirements of the standard I C communication protocol  
with the following restrictions: the I/O pins to which SDA and SCL are mapped are not "true" open-drain. When  
configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present.  
2
The I C characteristics are described in Table 3.5.1 and Table 3.5.2.  
2
Table 3.5.1: I C Characteristics SN8200/8200UFL  
2
(1)  
Standard mode  
Fast mode I C  
Symbol  
Parameter  
Unit  
M
Max  
Min  
Max  
4.7  
4.0  
-
1.3  
0.6  
100  
(4)  
-
-
µs  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
-
250  
-
-
-
(3)  
0
(3)  
0
900  
SDA data hold time  
-
-
1000  
20 + 0.1Cb  
300  
tr(SDA)  
tr(SCL)  
tf(SDA)  
tf(SCL)  
SDA and SCL rise time  
ns  
µs  
300  
-
300  
SDA and SCL fall time  
Start condition hold time  
4.0  
4.7  
-
-
0.6  
0.6  
-
-
th(STA)  
Repeated Start  
tsu(STA)  
condition setup time  
4.0  
4.7  
-
-
0.6  
1.3  
-
-
μs  
μs  
tsu(STO)  
Stop condition setup time  
tw(STO:STA)  
Stop to Start condition  
time (bus free)  
-
400  
-
400  
pF  
Cb  
Capacitive load for each  
bus line  
1. Guaranteed by design, not tested in production.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve the  
fast mode I2C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock  
speed of 400 kHz.  
3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of  
SCL signal.  
4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined  
region of the falling edge of SCL.  
www.murata-ws.com E-mail: modules@murata.com  
Page 17 of 43  
©2014 by Murata  
SN820X - 02/28/14  
2
Table 3.5.2: I C Characteristics SN8205/8205UFL  
Standard mode  
2
(1  
Fast mode I C  
Symbol  
Parameter  
Unit  
M
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
250  
0
-
1.3  
0.6  
100  
0
-
µs  
-
-
-
-
-
(3)  
900  
SDA data hold time  
tr(SDA) r(SCL)  
t
-
1000  
20 +  
300  
0.1Cb  
ns  
µs  
SDA and SCL rise time  
tf(SDA) f(SCL)  
t
-
300  
-
300  
SDA and SCL fall time  
Start condition hold time  
th(STA)  
4.0  
4.7  
-
-
0.6  
0.6  
-
-
tsu(STA)  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
4.0  
4.7  
-
-
0.6  
1.3  
-
-
μs  
μs  
tw(STO:STA)  
Stop to Start condition time  
(bus free)  
Cb  
Capacitive load for each  
bus line  
-
400  
-
400  
pF  
1. Guaranteed by design, not tested in production.  
2
2. fPCLK1 must be at least 2 MHz to achieve standard mode I C frequencies. It must be at least 4 MHz to achieve fast  
2
2
mode I C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I C fast mode clock.  
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of the SCL signal.  
2
FIGURE 3.1: SN8200/8200UFL I C bus AC Waveforms and Measurement Circuit  
www.murata-ws.com E-mail: modules@murata.com  
©2014 by Murata  
Page 18 of 43  
SN820X - 02/28/14  
2
FIGURE 3.2: SN8205/8205UFL I C bus AC Waveforms and Measurement Circuit  
f
Table 3.5.3: SCL Frequency (  
= 36 MHz., VDD = 3.3 V)(1)(2) SN8200/8200UFL  
I2C_CCR value  
PCLK1  
fSCL (kHz)  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x801E  
0x8028  
0x803C  
0x00B4  
0x0168  
0x0384  
20  
2
1. RP = External pull-up resistance, fSCL = I C speed.  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on  
the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the  
application.  
www.murata-ws.com E-mail: modules@murata.com  
Page 19 of 43  
©2014 by Murata  
SN820X - 02/28/14  
(1)(2)  
= 30 MHz., VDD = 3.3 V)  
f
Table 3.5.4: SCL Frequency (  
SN8205/8205UFL  
PCLK1  
I2C_CCR value  
fSCL (kHz)  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x8019  
0x8021  
0x8032  
0x0096  
0x012C  
0x02EE  
20  
2
1. RP = External pull-up resistance, fSCL = I C speed.  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on  
the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the  
application.  
www.murata-ws.com E-mail: modules@murata.com  
Page 20 of 43  
©2014 by Murata  
SN820X - 02/28/14  
2
3.6 I S SPI Characteristics  
The I2S interface is multiplexed with SPI and can be operated in master or slave mode. Unless otherwise  
specified, the parameters given below for I2S are derived from tests performed under ambient temperature,  
f
PCLKx frequency and V supply voltage conditions.  
DD  
Table 3.6.1: SPI Characteristics SN8200/8200UFL  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Uni  
fSCK  
SPI clock frequency  
-
-
-
18  
18  
8
MHz  
1/tc(SCK)  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
ns  
%
DuCy(SCK)  
SPI slave input clock  
duty cycle  
Slave mode  
30  
70  
(1)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4tPCLK  
2tPCLK  
50  
-
-
tsu(NSS)  
(1)  
th(NSS)  
(1)  
SCK high and low time  
Master mode, fPCLK =36MHz,  
presc = 4  
60  
tw(SCLH)  
(1)  
tw(SCLL)  
(1)  
Master mode  
5
5
5
4
0
2
-
-
tsu(MI)  
Data input setup time  
Data input hold time  
(2)  
Slave mode  
-
tsu(SI)  
(1)  
Master mode  
-
th(MI)  
(1)  
Slave mode  
-
th(SI)  
(1)(3)  
Data output access  
Data output disable  
Data output valid time  
Data output valid time  
Slave mode, fPCLK = 20 MHz  
Slave mode  
3tPCLK  
ta(SO)  
ns  
(1)(2)  
10  
25  
5
tdis(SO)  
(1)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
tv(SO)  
(1)  
-
tv(MO)  
(1)  
15  
2
-
th(SO)  
Data output hold time  
(1)  
-
th(MO)  
1. Based on characterization, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in  
Hi-Z.  
www.murata-ws.com E-mail: modules@murata.com  
Page 21 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Table 3.6.2: SPI Characteristics SN8205/8205UFL  
Symbol  
fSCK  
Parameter  
Conditions  
Min  
Max  
Unit  
-
30  
SPI1 master/slave mode  
SPI clock frequency  
MHz  
1/tc(SCK)  
-
-
15  
8
SPI2/SPI3 master/slave mode  
tr(SCL)  
tf(SCL)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF,  
fPCLK = 30 MHz  
ns  
%
SPI slave input clock  
duty cycle  
Slave mode  
DuCy(SCK)  
30  
70  
-
(1)  
tsu(NSS)  
NSS setup time  
NSS hold time  
4t  
PCLK  
2tPCLK  
tPCLK-3  
Slave mode  
(1)  
th(NSS)  
-
Slave mode  
(1)  
tw(SCLH)  
tPCLK+3  
Master mode, fPCLK=3- MHz  
SCK high and low time  
Data input setup time  
presc = 2  
Master mode  
(1)  
tsu(MI)  
5
5
5
4
0
-
-
Slave mode  
(1)  
th(MI)  
-
-
Master mode  
Data input hold time  
Slave mode  
ns  
(1)(2)  
(1)(3)  
Data output access  
time  
3tPCLK  
Slave mode, fPCLK = 30 MHz  
ta(so)  
Data output disable  
time  
2
Slave mode  
tdis(SO)  
10  
25  
(1)  
(1)  
Data output valid time  
Data output valid time  
-
-
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
tv(SO)  
5
-
tv(MO)  
(1)  
15  
2
th(SO)  
Data output hold time  
(1)  
-
t(MO)  
1. Based on characterization, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in  
Hi-Z  
www.murata-ws.com E-mail: modules@murata.com  
Page 22 of 43  
©2014 by Murata  
SN820X - 02/28/14  
FIGURE 3.3: SPI Timing Diagram - Slave Mode and CPHA = 0, SN8200/8200UFL and SN8205/8205UFL  
(1)  
FIGURE 3.4: SPI Timing Diagram - Slave Mode and CPHA = 1 SPI Timing Diagram - Slave Mode and  
CPHA = 0, SN8200/8200UFL and SN8205/8205UFL  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7 VDD.  
www.murata-ws.com E-mail: modules@murata.com  
Page 23 of 43  
©2014 by Murata  
SN820X - 02/28/14  
FIGURE 3.5: SPI Timing Diagram - Master Mode SN8200/8200UFL and SN8205/8205UFL  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.  
www.murata-ws.com E-mail: modules@murata.com  
©2014 by Murata  
Page 24 of 43  
SN820X - 02/28/14  
3.7 12-Bit ADC Characteristics  
Unless otherwise specified, the parameters given below are preliminary values derived from tests performed  
under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions.  
NOTE: It is recommended to perform a calibration after each power-up.  
Table 3.7.1: ADC Characteristics, SN8200/8200UFL  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
Power supply  
2.4  
-
3.6  
V
VREF+  
IVREF  
Positive reference voltage  
2.4  
-
-
V
V
DDA  
220(1)  
Current on the V  
input pin  
160  
µA  
REF  
fADC  
ADC clock frequency  
Sampling rate  
0.6  
-
-
14  
1
MHz  
MHz  
(2)  
0.05  
fS  
(2)  
fADC = 14 MHz  
-
-
-
-
-
823  
17  
kHz  
1/fADC  
V
fTRIG  
External trigger frequency  
0 (VSSA or VREF  
-
VREF+  
(3)  
VAIN  
Conversion voltage range  
tied to ground)  
-
(2)  
See Equation 1  
for details  
-
50  
RAIN  
External input impedance  
Sampling switch resistance  
k  
kΩ  
(2)  
-
-
-
-
1
8
RADC  
(2)  
Internal sample and hold  
capacitor  
pF  
CADC  
tCAL  
f
ADC = 14 MHz  
5.9  
83  
µs  
1/fADC  
µs  
Calibration time  
(2)  
fADC = 14 MHz  
-
-
-
0.214  
tlat  
Injection trigger conversion  
latency  
(4)  
3
-
1/fADC  
µs  
(2)  
f
ADC = 14 MHz  
-
-
0.143  
tlatr  
Regular trigger conversion  
latency  
(4)  
-
0.107  
1.5  
0
-
2
1/fADC  
µs  
(2)  
fADC = 14 MHz  
-
17.1  
239.5  
1
tS  
Sampling time  
Power-up time  
-
1/fADC  
µs  
(2)  
0
tSTAB  
(2)  
fADC = 14 MHz  
1
18  
µs  
tCONV  
Total conversion time (including  
sampling time)  
14 to 252 (tS for sampling +12.5 for suc-  
cessive approximation)  
1/fADC  
1. Based on characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.  
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified above.  
www.murata-ws.com E-mail: modules@murata.com  
Page 25 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Equation 1 (SN8200/8200UFL): R  
max formula  
AIN  
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error  
below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 3.7.2: R  
max for f  
= 14 MHz , SN8200/8200UFL  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (k)  
1.5  
0.11  
0.54  
0.4  
7.5  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)  
Table 3.7.3: ADC accuracy, SN8200/8200UFL - limited test conditions  
(3)  
Symbol  
E
Parameter  
Total unadjusted error  
Offset error  
Test conditions  
fPCLK2 = 56 MHz,  
Typ  
±1.  
±1  
Max  
Unit  
±2  
fADC = 14 MHz, RAIN < 10  
k,  
EO  
±1.5  
±1.5  
±1  
EG  
Gain error  
±0.  
±0.  
±0.  
VDDA = 3 V to  
LSB  
ED  
Differential linearity error  
Integral linearity error  
3.6 V TA = 25 °C  
Measurements made after  
EL  
±1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non- robust) analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may poten-  
tially inject negative current.  
3. Based on characterization, not tested in production.  
www.murata-ws.com E-mail: modules@murata.com  
Page 26 of 43  
©2014 by Murata  
SN820X - 02/28/14  
(1) (2) (3)  
Table 3.7.4: ADC Accuracy  
, SN8200/8200UFL  
(4)  
Symbol  
Parameter  
Total unadjusted error  
Offset error  
Test conditions  
Typ  
±2  
Max  
Unit  
E
E
±5  
fPCLK2 = 56 MHz,  
fADC = 14 MHz, RAIN < 10  
k,  
±1.  
±1.  
±1  
±2.5  
±3  
E
Gain error  
LSB  
ED  
EL  
Differential linearity error  
Integral linearity error  
±2  
V
DDA = 2.4 V to 3.6 V  
Measurements made after  
±1.  
±3  
1. ADC DC accuracy values are measured after internal calibration.  
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.  
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non- robust) analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may poten-  
tially inject negative current.  
4. Preliminary values.  
FIGURE 3.6: ADC Accuracy Characteristics, SN8200/8200UFL  
www.murata-ws.com E-mail: modules@murata.com  
Page 27 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Table 3.7.5: ADC Characteristics, SN8205/8205UFL  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.8(1)  
VDDA  
Power supply  
-
3.6  
V
1.8(1)  
0.6  
VREF+  
fADC  
Positive reference voltage  
ADC clock frequency  
-
-
-
-
VDDA  
15  
V
VDDA = 1.8(1) to 2.4 V  
VDDA = 2.4 to 3.6 V  
MHz  
MHz  
kHz  
0.6  
-
30  
(3)  
fADC = 30 MHz with  
12-bit resolution  
1764  
fTRI  
G
External trigger frequency  
-
-
-
17  
1fADC  
V
(4)  
VAIN  
Conversion voltage range  
0 (VSSA or VREF-  
tied to ground)  
V
REF+  
(3)  
External input impedance  
See Equation 1  
for details  
-
-
50  
kΩ  
RAIN  
(3,5)  
Sampling switch resistance  
1.5  
-
-
6
-
kΩ  
RADC  
(3)  
Internal sample and hold capacitor  
4
pF  
CADC  
Injection trigger conversion latency  
Regular trigger conversion latency  
fADC = 30 MHz  
-
-
-
0.100  
µs  
(3)  
tlat  
3(6)  
-
1/f  
ADC  
(3)  
f
f
ADC = 30 MHz  
ADC = 30 MHz  
-
-
0.067  
µs  
1/fADC  
µs  
tlatr  
(6)  
2
-
0.100  
3
-
(3)  
-
16  
480  
3
ts  
Sampling time  
Power-up time  
-
1/fADC  
µs  
(3)  
-
2
-
tSTAB  
(3)  
fADC = 30 MHz  
0.5  
16.40  
µs  
tCONV  
12-bit resolution  
f
ADC = 30 MHz  
0.43  
0.37  
0.3  
-
-
-
16.34  
16.27  
16.20  
µs  
µs  
Total conversion time (including sam-  
pling time)  
10-bit resolution  
fADC = 30 MHz  
8-bit resolution  
fADC = 30 MHz  
6-bit resolution  
µs  
9 to 492 (tS for sampling +n-bit resolution for successive approxi-  
mation)  
1/fADC  
(3)  
12-bit resolution  
Single ADC  
fs  
-
-
-
-
2
Msps  
Msps  
Sampling rate (fADC = 30 MHz)  
12-bit resolution  
Interleave Dual ADC  
mode  
3.75  
12-bit resolution  
Interleave Triple ADC  
mode  
-
-
6
Msps  
www.murata-ws.com E-mail: modules@murata.com  
Page 28 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Table 3.7.5: ADC Characteristics, SN8205/8205UFL (Continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fADC = 30 MHz  
-
300  
500  
µA  
3 sampling time 12-  
bit resolution  
(3)  
ADC VREF DC current consump-  
tion in conversion mode  
IVREF+  
f
ADC = 30 MHz  
-
-
-
-
1.6  
-
16  
1.8  
60  
µA  
mA  
µA  
480 sampling time  
12-bit resolution  
(3)  
fADC = 30 MHz  
IVDDA  
3 sampling time 12-  
bit resolution  
ADC VDDA DC current con-  
sumption in conversion mode  
f
ADC = 30 MHz  
480 sampling time  
12-bit resolution  
1. If IRROFF is set to VDD, this value can be lowered to 1.7 V when the device operates in the 0 to 70 °C temperature  
range.  
2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.  
3. Based on characterization, not tested in production.  
4. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.  
5, RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.  
6. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified above.  
Equation 1: SN8205/8205UFL R  
Max Formula  
AIN  
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error  
below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the  
ADC_SMPR1 register.  
Table 3.7.6: ADC Accuracy, SN8205/8205UFL  
(2)  
Symbol  
Parameter  
Total unadjusted error  
Offset error  
Test conditions  
Typ  
±2  
Max  
Unit  
ET  
E
±5  
LSB  
±1.  
±1.  
±1  
±2.5  
fPCLK2 = 60 MHz,  
fADC = 30 MHz, RAIN < 10  
E
Gain error  
±3  
±2  
±3  
(3)  
k, VDDA = 1.8 to 3.6 V  
ED  
EL  
Differential linearity error  
Integral linearity error  
±1.  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Based on characterization, not tested in production.  
3. If IRROFF is set to VDD, this value can be lowered to 1.7 V when the device operates in the 0 to 70 °C temperature  
range.  
NOTE: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins  
should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially  
inject negative currents.  
www.murata-ws.com E-mail: modules@murata.com  
Page 29 of 43  
©2014 by Murata  
SN820X - 02/28/14  
FIGURE 3.7: ADC Accuracy Characteristics, SN8205/8205UFL  
1. Example of an actual transfer curve.  
2. Ideal transfer curve.  
3. End point correlation line.  
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.  
FIGURE 3.8: Typical Connection Diagram Using the ADC, SN8205/8205UFL  
Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad  
capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should  
be reduced.  
www.murata-ws.com E-mail: modules@murata.com  
Page 30 of 43  
©2014 by Murata  
SN820X - 02/28/14  
3.8 DAC Electrical Specifications  
Table 3.8.1: DAC Characteristics, SN8200/8200UFL  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
VDDA  
Analog supply voltage  
2.4  
-
3.6  
V
VREF+  
VSSA  
Reference supply voltage  
Ground  
2.4  
0
-
-
3.6  
0
V
V
VREF+ must always be below VDDA  
Resistive load vs. VSSA with  
buffer ON  
5
-
-
-
-
kΩ  
kΩ  
1)  
RLOAD  
(
Resistive load vs. VDDA with  
buffer ON  
15  
When the buffer is OFF, the Minimum  
resistive load between DAC_OUT and  
(1)  
Impedance output with buffer  
OFF  
RO  
V
SS to have a 1% accuracy is  
-
-
-
-
15  
50  
kΩ  
1.5 MΩ  
Maximum capacitive load at DAC_OUT  
pin (when the buffer is ON).  
(1)  
Capacitive load  
pF  
CLOAD  
It gives the maximum output excursion of  
the DAC.  
DAC_OUT  
min(1)  
Lower DAC_OUT voltage with  
buffer ON  
It corresponds to 12-bit input code  
(0x0E0) to (0xF1C) at VREF+ = 3.6 V  
0.2  
-
-
-
-
V
V
DAC_OUT  
max(1)  
Higher DAC_OUT voltage  
with buffer ON  
and (0x155) and (0xEAB) at VREF+  
2.4 V  
=
VDDA – 0.2  
DAC_OUT  
min(1)  
Lower DAC_OUT voltage with  
buffer OFF  
-
-
0.5  
mV  
V
It gives the maximum output excursion of  
the DAC.  
DAC_OUT  
max(1)  
Higher DAC_OUT voltage  
with buffer OFF  
VREF+  
10  
mV  
DAC DC current consump-  
tion in quiescent mode  
(Standby mode)  
With no load, worst code (0x0E4) at  
VREF+ = 3.6 V in terms of DC consump-  
tion on the inputs  
IDDVREF  
-
-
380  
380  
µA  
µA  
+
With no load, middle code (0x800) on the  
inputs  
IDDA  
DAC DC current consump-  
tion in quiescent mode  
(Standby mode)  
-
-
480  
µA  
With no load, worst code (0xF1C) at  
VREF+ = 3.6 V in terms of DC consump-  
tion on the inputs  
DNL(2)  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
LSB  
±0.5  
±3  
Given for the DAC in 10-bit configuration  
Given for the DAC in 12-bit configuration  
-
-
-
LSB  
LSB  
LSB  
INL(2)  
Integral non linearity (difference  
between measured value at Code  
i and the value at Code i on a line  
drawn between Code 0 and last  
Code 1023)  
-
-
±1  
±4  
Given for the DAC in 10-bit configuration  
Given for the DAC in 12-bit configuration  
www.murata-ws.com E-mail: modules@murata.com  
Page 31 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Table 3.8.1: DAC Characteristics, SN8200/8200UFL (Continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
Offset (2)  
Offset error  
(difference between  
measured value at Code  
(0x800) and the ideal value =  
VREF+/2)  
-
-
±10  
mV  
Given for the DAC in 12-bit configuration  
-
-
-
-
-
-
±3  
±12  
±0.5  
4
LSB  
LSB  
%
Given for the DAC in 10-bit at VREF+  
= 3.6 V  
Given for the DAC in 12-bit at VREF+  
= 3.6 V  
Gain error (2)  
Gain error  
-
Given for the DAC in 12bit configuration  
(2)  
Settling time (full scale: for a 10-  
bit input code transition between  
the lowest and the highest input  
codes when DAC_OUT reaches  
final value±1LSB  
3
µs  
CLOAD 50 pF, RLOAD 5 kΩ  
tSETTLING  
Update  
rate(2)  
Max frequency for a correct  
DAC_OUT change when  
small variation in the input  
code (from code i to i+1LSB)  
-
-
-
-
1
MS/s  
µs  
CLOAD 50 pF, RLOAD 5 kΩ  
(2)  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
6.5  
–67  
10  
CLOAD 50 pF, RLOAD 5 kΩ  
tWAKEUP  
input code between lowest and highest  
PSRR+(1)  
Power supply rejection ratio  
(to VDDA) (static DC  
measurement  
–40  
dB  
No RLOAD, CLOAD = 50 pF  
1. Guaranteed by design, not tested in production.  
2. Preliminary values.  
www.murata-ws.com E-mail: modules@murata.com  
Page 32 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Table 3.8.2: DAC Characteristic, SN8205/8205UFL  
Symbol  
Parameter  
Min  
Ty  
M
Unit  
Comments  
(1)  
VDDA  
Analog supply voltage  
1.8  
1.8  
-
3.6  
V
(1)  
VREF+  
VSSA  
Reference supply voltage  
Ground  
-
-
-
3.6  
0
V
V
VREF+ VDDA  
0
5
(2)  
RLO  
Resistive load with buffer ON  
-
kΩ  
AD  
(2)  
When the buffer is OFF, the Minimum  
resistive load between DAC_OUT  
and VSS to have a 1% accuracy is  
1.5 MΩ  
RO  
Impedance output with buffer  
OFF  
-
-
-
-
15  
50  
kΩ  
Maximum capacitive load at  
DAC_OUT pin (when the buffer is  
ON).  
CLO  
AD(2)  
Capacitive load  
pF  
It gives the maximum output excur-  
sion of the DAC.  
DAC_OUT  
min(2)  
Lower DAC_OUT voltage with  
buffer ON  
It corresponds to 12-bit input code  
0.2  
-
-
-
-
V
V
(0x0E0) to (0xF1C) at VREF+  
=
DAC_OUT  
max(2)  
Higher DAC_OUT voltage with  
buffer ON  
3.6 V and (0x1C7) to (0xE38) at  
VREF+ = 1.8 V  
V
– 0.2  
DDA  
DAC_OUT  
min(2)  
Lower DAC_OUT voltage with  
buffer OFF  
-
-
-
0.5  
-
mV  
V
It gives the maximum output excur-  
sion of the DAC.  
DAC_OUT  
max(2)  
Higher DAC_OUT voltage with  
buffer OFF  
V
– 1LSB  
REF+  
-
With no load, worst code (0x800) at  
VREF+ = 3.6 V in terms of DC con-  
sumption on the inputs  
DAC DC VREF current con-  
sumption in quiescent mode  
(Standby mode)  
170  
240  
75  
(4)  
IVREF+  
µA  
With no load, worst code (0xF1C) at  
VREF+ = 3.6 V in terms of DC con-  
-
50  
sumption on the inputs  
With no load, middle code (0x800) on  
the inputs  
(4)  
DAC DC VDDA current con-  
-
-
280  
475  
380  
625  
µA  
µA  
IDDA  
(3)  
sumption in quiescent mode  
With no load, worst code (0xF1C) at  
VREF+ = 3.6 V in terms of DC con-  
sumption on the inputs  
DNL(4)  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
-
-
±0.5  
LSB  
Given for the DAC in 10-bit configura-  
tion.  
Given for the DAC in 12-bit configura-  
tion.  
-
-
-
-
±2  
±1  
LSB  
LSB  
Given for the DAC in 10-bit configu-  
ration.  
Integral non linearity (difference  
between measured value at  
(4)  
INL  
Code i and the value at Code i  
on a line drawn between Code 0  
and last Code 1023)  
Given for the DAC in 12-bit configu-  
www.murata-ws.com E-mail: modules@murata.com  
Page 33 of 43  
©2014 by Murata  
SN820X - 02/28/14  
Table 3.8.2: DAC Characteristic, SN8205/8205UFL (Continued)  
Symbol  
Parameter  
Min  
Ty  
M
Unit  
Comments  
Offset error  
(difference between  
measured value at Code  
(0x800) and the ideal value =  
VREF+/2)  
Given for the DAC in 12-bit configu-  
ration  
Offset(4)  
-
-
-
-
-
-
-
-
±10  
±3  
mV  
LSB  
LSB  
%
Given for the DAC in 10-bit at  
VREF+ = 3.6 V  
Given for the DAC in 12-bit at  
VREF+ = 3.6 V  
±12  
±0.5  
Gain error  
Given for the DAC in 12-bit configu-  
ration  
Gain error(4)  
Settling time (full scale: for a 10-bit  
input code transition between the  
lowest and the highest input codes  
when DAC_OUT reaches final  
value ±4LSB  
(4)  
tSETTLING  
C
LOAD 50 pF,  
LOAD 5 kΩ  
-
3
6
µs  
R
Total Harmonic Distortion  
Buffer ON  
CLOAD 50 pF,  
LOAD 5 kΩ  
CLOAD 50 pF,  
LOAD 5 kΩ  
THD(4)  
-
-
-
-
-
dB  
R
Max frequency for a correct  
DAC_OUT change when  
small variation in the input  
code (from code i to i+1LSB)  
Update rate(2)  
MS/s  
R
1
C
50 pF, R  
5 kΩ  
LOAD  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
t
(4)  
LOAD  
WAKEUP  
input code between lowest and highest  
possible ones.  
-
-
6.5  
10  
µs  
Power supply rejection ratio (to  
VDDA) (static DC measurement)  
PSRR+  
–67  
–40  
dB  
No RLOAD, CLOAD = 50 pF  
1. If IRROFF is set to VDD, this value can be lowered to 1.7 V when the device operates in the 0 to 70 °C temperature  
range.  
2. Guaranteed by design, not tested in production.  
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic  
consumption occurs.  
4. Guaranteed by characterization, not tested in production.  
www.murata-ws.com E-mail: modules@murata.com  
Page 34 of 43  
©2014 by Murata  
SN820X - 02/28/14  
4 RF Specifications  
4.1 DC/RF Characteristics for IEEE 802.11b  
Conditions: 25ºC, VDD_WIFI_IN=3.6 V, VDD= 3.3 V, 11 MBps mode unless otherwise specified. Parameters  
measured at RF connector.  
Table 4.1.1: RF Characteristics for IEEE 802.11b  
Parameters  
Specification  
Standards conformance  
IEEE 802.11b  
Modulation  
DSSS/CCK  
Physical layer data rate  
1,2,5.5,11 Mbps  
RF Characteristics  
Minimum  
2400  
Typical  
Maximum  
Unit  
MHz  
ppm  
Frequency range  
--  
--  
2483.5  
+20  
Carrier frequency error  
-20  
Transmit output power 1  
Spectrum mask  
16  
18  
20  
dBm  
1st side lobes  
--  
--  
--  
--  
--  
--  
--  
-30  
-50  
2
dBr  
dBr  
µs  
2nd side lobes  
Power-on and power-down ramp  
--  
RF carrier suppression  
15  
--  
--  
dBc  
%
Modulation accuracy (EVM)  
Out-of-band spurious emissions  
30 MHz to 1 GHz, BW=100 kHz  
1 GHz to 12.75 GHz, BW=1 MHz  
1.8 GHz to 1.9 GHz, BW=1 MHz  
5.15 GHz to5.3 GHz, BW=1 MHz  
35  
-96  
-41  
-65  
-85  
dBm  
dBm  
dBm  
dBm  
Receive sensitivity 1  
1 Mbps, FER8%  
11 Mbps, FER8%  
-94  
-86  
-9.5  
35  
-96  
-88  
--  
--  
--  
--  
dBm  
dBm  
dBm  
dB  
Maximum input level, FER8%  
Adjacent channel rejection, FER8%  
Notes:  
1. Derate by 1.5 dB for temperatures less than -10ºC or more than +55ºC in both transmit and receive modes.  
www.murata-ws.com E-mail: modules@murata.com  
Page 35 of 43  
©2014 by Murata  
SN820X - 02/28/14  
4.2 DC/RF Characteristics for IEEE 802.11g  
Conditions: 25ºC, VDD_WIFI_IN=3.6 V, VDD= 3.3 V, 54 Mbps mode unless otherwise specified. Parameters  
measured at RF connector.  
Table 4.2.1: RF Characteristics for IEEE 802.11g  
Parameters  
Specification  
Standards conformance  
IEEE 802.11g  
Modulation  
Data rate  
OFDM  
6, 9, 12, 18, 24, 36, 48, 54 Mbps  
RF Characteristics  
Minimum  
Typical  
Maximum  
Unit  
Frequency range  
2400  
--  
2483.5  
MHz  
Carrier frequency error  
-20  
--  
+20  
ppm  
dBm  
Transmit output power1  
Spectrum mask  
12.5  
14.5  
16.5  
9 MHz to 11 MHz, 0 dB to -20 dB  
11 MHz to 20 MHz, -20 dB to -28 dB  
20 MHz to 30 MHz, -28 dB to -40 dB  
30 MHz to 33 MHz, -40 dB  
0
0
0
0
--  
-
dB  
dB  
dB  
dB  
dB  
-
-
-
Constellation Error (EVM)  
--  
-25  
Out-of-band spurious emissions  
30 MHz to 1 GHz, BW=100 kHz  
1 GHz to 12.75 GHz, BW=1 MHz  
1.8 GHz to 1.9 GHz, BW=1 MHz  
5.15 GHz to5.3 GHz, BW=1 MHz  
-96  
-41  
-65  
-85  
dBm  
dBm  
dBm  
dBm  
Received Sensitivity1  
6 Mbps, PER 10%  
-87  
-72  
-13  
-1  
-89  
-74  
--  
--  
--  
--  
dBm  
dBm  
dBm  
dB  
54 Mbps, PER 10%  
Maximum input level, PER 10%  
Adjacent channel rejection, PER 10%  
Notes:  
1. Derate by 1.5 dB for temperatures less than -10ºC or more than +55ºC in both transmit and receive modes.  
www.murata-ws.com E-mail: modules@murata.com  
Page 36 of 43  
©2014 by Murata  
SN820X - 02/28/14  
4.3 DC/RF Characteristics for IEEE 802.11n  
Conditions: 25º C, VDD_WIFI_IN=3.6 V, VDD= 3.3 V, 65 Mbps mode unless otherwise specified. Parameters  
measured at RF connector.  
Table 4.3.1: RF Characteristics for IEEE 802.11n  
Parameters  
Standards conformance  
Specification  
IEEE 802.11n  
Modulation  
Data rate  
OFDM  
6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps  
RF Characteristics  
Minimum  
Typical  
Maximum  
Unit  
Frequency range  
2400  
--  
2483.5  
MHz  
Carrier frequency error  
-20  
11  
--  
+20  
15  
Ppm  
dBm  
Transmit Output Power1  
Spectrum mask  
13  
9 MHz to 11 MHz, 0 dB to -20 dB  
11 MHz to 20 MHz, -20 dB to -28 dB  
20 MHz to 30 MHz, -28 dB to -45 dB  
30 MHz to 33 MHz, -45 dB  
0
0
0
0
--  
-
dB  
dB  
dB  
dB  
dB  
-
-
-
Constellation Error (EVM)  
--  
-28  
Out-of-band spurious emissions  
30 MHz to 1 GHz, BW=100 kHz  
1 GHz to 12.75 GHz, BW=1 MHz  
1.8 GHz to 1.9 GHz, BW=1 MHz  
5.15 GHz to 5.3 GHz, BW=1 MHz  
-96  
-41  
-65  
-85  
dBm  
dBm  
dBm  
dBm  
Received Minimum Sensitivity1  
65 Mbps, PER 10%  
-69  
-13  
-2  
-71  
--  
dBm  
dB  
Maximum input level, PER 10%  
Adjacent channel rejection, PER 10%  
dB  
Notes:  
1. Derate by 1.5 dB for temperatures less than -10ºC or more than +55ºC in both transmit and receive modes.  
www.murata-ws.com E-mail: modules@murata.com  
Page 37 of 43  
©2014 by Murata  
SN820X - 02/28/14  
5 Environmental Specifications  
5.1 Absolute Maximum Rating  
Table 5.1: Absolute Maximum Rating  
Symbol  
Description  
Minimum  
Maximum  
Unit  
Specification operating temperature  
-30  
85  
°C  
Tsop  
Top*  
Tst  
Operating temperature  
Storage temperature  
-40  
-40  
85  
85  
°C  
°C  
VDD_IO  
VDD_BAT  
RFin  
IO Power supply  
0
0
3.6  
5.0  
0
V
V
Power supply  
RF input power  
dBm  
MSL  
Moisture Sensitivity Level  
Restriction of Hazardous Substances  
3
RoHS2  
Compliant  
*Note: RF performance may be degraded at exterme temperatures.  
5.2 Recommended Operating Conditions  
Table 5.2: Recommended Operating Conditions  
SupplyCurrent  
Specification  
(mA)  
Minimum (V)  
Typical (V)  
Maximum (V)  
VDD  
2.4  
2.0  
3.0  
3.3  
3.3  
3.6  
3.6  
3.6  
4.0  
150  
10  
VBAT  
VDD_WiFi  
500  
www.murata-ws.com E-mail: modules@murata.com  
Page 38 of 43  
©2014 by Murata  
SN820X - 02/28/14  
6 Regulatory Information  
The table below shows the regulatory compliance status of the SN820X Module family.  
Regulatory Body  
Standard  
CFR Part 15  
RSS-210  
Certificate ID  
QPU8200  
FCC  
IC  
4523A-SN8200  
Compliant  
CE  
For more information refer to the SN820X Wi-Fi Network Controller Module Family User Manual, reference [3],  
on page 7.  
www.murata-ws.com E-mail: modules@murata.com  
Page 39 of 43  
©2014 by Murata  
SN820X - 02/28/14  
7 Packing and Marking Information  
7.1 Carrier Tape Dimensions  
FIGURE 7.1 SN820X/820XUFL Carrier Tape Dimensions  
7.2 Module Marking Information  
The following marking information may be printed on a permanent label affixed to the module shield or perma-  
nently laser written into the module shield itself. The 2D barcode is used for internal purposes. A pin 1 ID is  
stamped into the shield. The Model will vary according to the module used - SN8200, SN8200UFL, SN8205,  
SN8205UFL, however the FCC ID and IC certification numbers apply to all modules in the SN820X Family.  
FIGURE 7.2 Typical SN820X/820XUFL module marking  
www.murata-ws.com E-mail: modules@murata.com  
Page 40 of 43  
©2014 by Murata  
SN820X - 02/28/14  
8 RoHS Delcaration  
To the best of our present knowledge, given our supplier declarations, this product does not contain sub-  
stances that are banned by Directive 2002/95/EC or contain a maximum concentration of 0.1% by weight in  
homogeneous materials for  
Lead and lead compounds  
Mercury and mercury compounds  
Chromium (VI)  
PBB (polybrominated biphenyl)  
PBDE (polybrominated biphenyl ether)  
And a maximum concentration of 0.01% by weight in homogeneous materials for  
Cadmium and cadmium compounds  
www.murata-ws.com E-mail: modules@murata.com  
Page 41 of 43  
©2014 by Murata  
SN820X - 02/28/14  
9 Ordering Information  
Table 9.1: SN8200/8200UFL Ordering Information  
RFM Model  
RFM Part  
Number  
Standard Order  
Increment  
Product  
Number  
SN8200 Evaluation Kit  
SN8200 EVK+  
SN8200  
88-00151-95  
88-00151-00  
88-00151-97  
88-00151-02  
1 pc  
SN8200 Module in Tape & Reel  
SN8200UFL Evaluation Kit  
SN8200UFL Module in Tape & Reel  
400 pcs  
1 pc  
SN8200UFL EVK+  
SN8200UFL  
400 pcs  
Table 9.2: SN8205/8205UFL Ordering Information  
RFM Model  
RFM Part  
Number  
Standard Order  
Increment  
Product  
Number  
SN8205 EVK+  
SN8205  
SN8205 Evaluation Kit  
88-00158-95  
1 pc  
SN8205 Module in Tape & Reel  
SN8205UFL Evaluation Kit  
88-00158-00  
88-00158-97  
88-00158-02  
400 pcs  
1 pc  
SN8205UFL EVK+  
SN8205UFL  
SN8205UFL Module in Tape & Reel  
400 pcs  
www.murata-ws.com E-mail: modules@murata.com  
©2014 by Murata  
Page 42 of 43  
SN820X - 02/28/14  
10 Technical Support Contact  
For technical support, please contact tech_sup@murata.com  
Murata Electronics, N.A., Inc.  
4441 Sigma Road  
Dallas, TX 75244  
USA  
www.murata-ws.com E-mail: modules@murata.com  
Page 43 of 43  
©2014 by Murata  
SN820X - 02/28/14  

相关型号:

SN820X

Wi-Fi 802.11 b/g/n Network Controller Module
MURATA

SN8320

Wide Band Low Power Amplifier, 0MHz Min, 1000MHz Max, SM-3, 4 PIN
APITECH

SN845-0394PS

Circular Connector Adapter, 1 Contact(s), Steel, Male-Female
AMPHENOL

SN845-0468PS

Circular Connector Adapter, 4 Contact(s), Steel, Male-Female
AMPHENOL

SN845-0797PS

Circular Connector Adapter, 54 Contact(s), Steel, Male-Female
AMPHENOL

SN845-1229PS

Circular Connector Adapter, 52 Contact(s), Steel, Male-Female
AMPHENOL

SN8461

Wide Band Low Power Amplifier, 0MHz Min, 400MHz Max, SM-3, 4 PIN
APITECH

SN8463

Wide Band Low Power Amplifier, 0MHz Min, 400MHz Max, SM-3, 4 PIN
APITECH

SN8464

Wide Band Low Power Amplifier, 0MHz Min, 400MHz Max, SM-3, 4 PIN
APITECH

SN8500D

Switching Type (Buck) LED Driver IC
KODENSHI

SN888C

总线极性借助 IEC-ESD 保护校正 RS-485 收发器
TI

SN888CD

总线极性借助 IEC-ESD 保护校正 RS-485 收发器 | D | 8 | -40 to 85
TI