29F040-12 [Macronix]

4M-BIT [512KX8] CMOS EQUAL SECTOR FLASH MEMORY; 4M- BIT [ 512KX8 ] CMOS EQUAL部门FLASH MEMORY
29F040-12
型号: 29F040-12
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

4M-BIT [512KX8] CMOS EQUAL SECTOR FLASH MEMORY
4M- BIT [ 512KX8 ] CMOS EQUAL部门FLASH MEMORY

文件: 总40页 (文件大小:592K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX29F040  
4M-BIT[512KX8]CMOSEQUALSECTORFLASHMEMORY  
FEATURES  
program data to, another sector that is not being  
erased, then resumes the erase.  
• 524,288 x 8 only  
• Single power supply operation  
- 5.0V only operation for read, erase and program op-  
eration  
• Status Reply  
- Data polling & Toggle bit for detection of program  
and erase cycle completion.  
• Fast access time: 55/70/90/120ns  
• Low power consumption  
• Sector protect/unprotect for 5V only system or 5V/  
12V system.  
- 30mA maximum active current(5MHz)  
- 1uA typical standby current  
• Sector protection  
- Hardware method to disable any combination of  
sectors from program or erase operations  
• 100,000 minimum erase/program cycles  
• Latch-up protected to 100mA from -1V to VCC+1V  
• Low VCC write inhibit is equal to or less than 3.2V  
• Package type:  
• Command register architecture  
- Byte Programming (7us typical)  
- Sector Erase  
8 equal sectors of 64K-Byte each  
• Auto Erase (chip & sector) and Auto Program  
- Automatically erase any combination of sectors with  
Erase Suspend capability.  
- 32-pin PLCC, TSOP or PDIP  
• Compatibility with JEDEC standard  
- Pinout and software compatible with single-power  
supply Flash  
- Automatically program and verify data at specified  
address  
• Erase suspend/Erase Resume  
- Suspends an erase operation to read data from, or  
• 20 years data retention  
GENERAL DESCRIPTION  
The MX29F040 is a 4-mega bit Flash memory organized  
as 512K bytes of 8 bits. MXIC's Flash memories offer  
the most cost-effective and reliable read/write non-vola-  
tile random access memory. The MX29F040 is pack-  
aged in 32-pin PLCC, TSOP, PDIP. It is designed to be  
reprogrammed and erased in system or in standard  
EPROM programmers.  
during erase and programming, while maintaining maxi-  
mum EPROM compatibility.  
MXIC Flash technology reliably stores memory  
contents even after 100,000 erase and program  
cycles. The MXIC cell is designed to optimize the  
erase and program mechanisms. In addition, the  
combination of advanced tunnel oxide processing  
and low internal electric fields for erase and  
programming operations produces reliable cycling.  
The MX29F040 uses a 5.0V±10% VCC supply to  
perform the High Reliability Erase and auto  
Program/Erase algorithms.  
The standard MX29F040 offers access time as fast as  
55ns, allowing operation of high-speed microprocessors  
without wait states. To eliminate bus contention, the  
MX29F040 has separate chip enable (CE) and output  
enable (OE) controls.  
MXIC's Flash memories augment EPROM functionality  
with in-circuit electrical erasure and programming. The  
MX29F040 uses a command register to manage this  
functionality. The command register allows for 100%  
TTL level control inputs and fixed power supply levels  
The highest degree of latch-up protection is  
achieved with MXIC's proprietary non-epi process.  
Latch-up protection is proved for stresses up to 100  
milliamps on address and data pin from -1V to VCC  
+ 1V.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
1
MX29F040  
PIN CONFIGURATIONS  
32 PDIP  
32 PLCC  
VCC  
WE  
A17  
A14  
A13  
A8  
A18  
A16  
A15  
A12  
A7  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
1
32  
30  
29  
5
9
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Q0  
A14  
A13  
A8  
4
5
A6  
6
A9  
A5  
7
A9  
A11  
OE  
A10  
CE  
A4  
8
A3  
9
MX29F040  
25  
A11  
OE  
A10  
CE  
Q7  
A2  
10  
11  
12  
13  
14  
15  
16  
A1  
Q7  
A0  
Q6  
Q0  
Q5  
Q1  
13  
14  
21  
Q4  
Q2  
17  
20  
Q3  
GND  
32TSOP (StandardType) (8mm x 20mm)  
A11  
A9  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
OE  
A10  
CE  
Q7  
Q6  
Q5  
Q4  
Q3  
GND  
Q2  
Q1  
Q0  
A0  
2
A8  
3
A13  
A14  
A17  
WE  
VCC  
A18  
A16  
A15  
A12  
A7  
4
5
6
7
8
MX29F040  
9
10  
11  
12  
13  
14  
15  
16  
A6  
A1  
A5  
A2  
A4  
A3  
SECTOR STRUCTURE  
MX29F040 SECTOR ADDRESS TABLE  
PIN DESCRIPTION  
SYMBOL  
A0~A18  
Q0~Q7  
CE  
PIN NAME  
Sector  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
A18  
0
A17  
0
A16 Address Range  
Address Input  
0
1
0
1
0
1
0
1
00000h-0FFFFh  
10000h-1FFFFh  
20000h-2FFFFh  
30000h-3FFFFh  
40000h-4FFFFh  
50000h-5FFFFh  
60000h-6FFFFh  
70000h-7FFFFh  
Data Input/Output  
Chip Enable Input  
Write Enable Input  
Output Enable Input  
Ground Pin  
0
0
0
1
WE  
0
1
OE  
1
0
GND  
1
0
VCC  
+5.0V single power supply  
1
1
1
1
Note: All sectors are 64 Kbytes in size.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
2
MX29F040  
BLOCK DIAGRAM  
WRITE  
STATE  
CONTROL  
INPUT  
PROGRAM/ERASE  
HIGH VOLTAGE  
CE  
OE  
WE  
MACHINE  
(WSM)  
LOGIC  
STATE  
MX29F040  
FLASH  
ADDRESS  
LATCH  
REGISTER  
ARRAY  
ARRAY  
A0-A18  
AND  
SOURCE  
HV  
BUFFER  
Y-PASS GATE  
COMMAND  
DATA  
DECODER  
PGM  
SENSE  
DATA  
HV  
AMPLIFIER  
COMMAND  
DATA LATCH  
PROGRAM  
DATA LATCH  
Q0-Q7  
I/O BUFFER  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
3
MX29F040  
AUTOMATIC PROGRAMMING  
AUTOMATIC ERASE ALGORITHM  
The MX29F040 is byte programmable using the Auto-  
matic Programming algorithm. The Automatic Program-  
ming algorithm makes the external system do not need  
to have time out sequence nor to verify the data pro-  
grammed. The typical chip programming time at room  
temperature of the MX29F040 is less than 4 seconds.  
MXIC's Automatic Erase algorithm requires the user to  
write commands to the command register using stand-  
ard microprocessor write timings. The device will auto-  
matically pre-program and verify the entire array. Then  
the device automatically times the erase pulse width,  
provides the erase verification, and counts the number  
of sequences. A status bit toggling between consecu-  
tive read cycles provides feedback to the user as to the  
status of the programming operation.  
AUTOMATIC CHIP ERASE  
The entire chip is bulk erased using 10 ms erase pulses  
according to MXIC's Automatic Chip Erase algorithm.  
Typical erasure at room temperature is accomplished in  
less than 4 second. The Automatic Erase algorithm au-  
tomatically programs the entire array prior to electrical  
erase. The timing and verification of electrical erase are  
controlled internally within the device.  
Register contents serve as inputs to an internal state-  
machine which controls the erase and programming cir-  
cuitry. During write cycles, the command register inter-  
nally latches address and data needed for the program-  
ming and erase operations. During a system write cycle,  
addresses are latched on the falling edge of WE or CE,  
whichever happens later, and data are latched on the  
rising edge of WE or CE, whichever happens first.  
MXIC's Flash technology combines years of EPROM  
experience to produce the highest levels of quality, relia-  
bility, and cost effectiveness.The MX29F040 electrically  
erases all bits simultaneously using Fowler-Nordheim  
tunneling. The bytes are programmed by using the  
EPROM programming mechanism of hot electron injec-  
tion.  
AUTOMATIC SECTOR ERASE  
The MX29F040 is sector(s) erasable using MXIC's  
Auto Sector Erase algorithm. Sector erase modes  
allow sectors of the array to be erased in one erase  
cycle. The Automatic Sector Erase algorithm  
automatically programs the specified sector(s) prior to  
electrical erase. The timing and verification of  
electrical erase are controlled internally within the  
device.  
During a program cycle, the state-machine will control  
the program sequences and command register will not  
respond to any command set. During a Sector Erase  
cycle, the command register will only respond to Erase  
Suspend command. After Erase Suspend is completed,  
the device stays in read mode. After the state machine  
has completed its task, it will allow the command regis-  
ter to respond to its full command set.  
AUTOMATIC PROGRAMMING ALGORITHM  
MXIC's Automatic Programming algorithm require the user  
to only write program set-up commands (including 2 un-  
lock write cycle and A0H) and a program command (pro-  
gram data and address). The device automatically times  
the programming pulse width, provides the program veri-  
fication, and counts the number of sequences. A status  
bit similar to DATA polling and a status bit toggling be-  
tween consecutive read cycles, provide feedback to the  
user as to the status of the programming operation.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
4
MX29F040  
TABLE 1. SOFTWARE COMMAND DEFINITIONS  
First Bus  
Cycle  
Second Bus Third Bus  
Cycle Cycle  
Fourth Bus  
Cycle  
Fifth Bus  
Cycle  
Sixth Bus  
Cycle  
Command  
Bus  
Cycle Addr  
XXXH F0H  
RA RD  
555H AAH 2AAH 55H 555H 90H ADI  
555H AAH 2AAH 55H 555H 90H (SA)X 00H  
Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Reset  
1
Read  
1
Read Silicon ID  
Sector Protect Verify  
4
4
DDI  
02  
01H  
PD  
Program  
4
6
6
1
1
6
555H AAH 2AAH 55H 555H A0H PA  
Chip Erase  
555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H  
555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H  
XXXH B0H  
555H 10H  
SA 30H  
Sector Erase  
Sector Erase Suspend  
Sector Erase Resume  
Unlock for sector  
protect/unprotect  
XXXH 30H  
555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H  
555H 20H  
Note:  
1. ADI = Address of Device identifier; A1=0, A0 = 0 for manufacture code,A1=0, A0 = 1 for device code A2-A18=Do  
not care.  
(Refer to table 3)  
DDI = Data of Device identifier : C2H for manufacture code, A4H for device code.  
X = X can be VIL or VIH  
RA=Address of memory location to be read.  
RD=Data to be read at location RA.  
2. PA = Address of memory location to be programmed.  
PD = Data to be programmed at location PA.  
SA = Address to the sector to be erased.  
3. The system should generate the following address patterns: 555H or 2AAH to Address A10~A0 .  
Address bit A11~A18=X=Don't care for all address commands except for Program Address (PA) and Sector  
Address (SA). Write Sequence may be initiated with A11~A18 in either state.  
4. For Sector Protect Verify Operation : If read out data is 01H, it means the sector has been protected. If read out  
data is 00H, it means the sector is still not being protected.  
COMMAND DEFINITIONS  
Device operations are selected by writing specific ad-  
dress and data sequences into the command register.  
Writing incorrect address and data values or writing them  
in the improper sequence will reset the device to the  
read mode. Table 1 defines the valid register command  
sequences. Note that the Erase Suspend (B0H) and  
Erase Resume (30H) commands are valid only while the  
Sector Erase operation is in progress. Either of the two  
reset command sequences will reset the device (when  
applicable).  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
5
MX29F040  
TABLE 2. MX29F040 BUS OPERATION  
Mode  
Pins  
CE  
L
OE  
WE  
A0  
A1  
A6  
A9  
Q0 ~ Q7  
Read Silicon ID  
Manufacturer Code(1)  
Read Silicon ID  
Device Code(1)  
Read  
L
H
L
L
X
VID(2)  
C2H  
L
L
H
H
L
X
VID(2)  
A4H  
L
H
L
L
L
L
H
X
H
L
A0  
X
A1  
X
A6  
X
A9  
X
DOUT  
Standby  
X
HIGH Z  
HIGH Z  
DIN(3)  
X
Output Disable  
Write  
H
X
X
X
X
H
A0  
X
A1  
X
A6  
L
A9  
VID(2)  
Sector Protect with 12V  
system(6)  
VID(2)  
L
Chip Unprotect with 12V  
system(6)  
L
L
L
L
L
X
VID(2)  
L
X
X
X
X
X
X
X
H
X
X
H
X
H
X
L
VID(2)  
VID(2)  
H
X
Verify Sector Protect  
with 12V system  
Sector Protect without 12V  
system (6)  
L
H
L
Code(5)  
X
H
H
L
Chip Unprotect without 12V  
system (6)  
L
H
X
X
H
X
Verify Sector Protect/Unprotect  
without 12V system (7)  
Reset  
H
X
H
Code(5)  
HIGH Z  
X
X
NOTES:  
1. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 1.  
2. VID is the Silicon-ID-Read high voltage, 11.5V to 12.5V.  
3. Refer to Table 1 for valid Data-In during a write operation.  
4. X can be VIL or VIH.  
5. Code=00H means unprotected.  
Code=01H means protected.  
A18~A16=Sector address for sector protect.  
6. Refer to sector protect/unprotect algorithm and waveform.  
Must issue "unlock for sector protect/unprotect" command before "sector protect/unprotect without 12V system" command.  
7. The "verify sector protect/unprotect without 12V system" is only following "Sector protect/unprotect without 12V system"  
command.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
6
MX29F040  
READ/RESET COMMAND  
SET-UP AUTOMATIC CHIP/SECTOR ERASE  
The read or reset operation is initiated by writing the  
read/reset command sequence into the command reg-  
ister. Microprocessor read cycles retrieve array data.  
The device remains enabled for reads until the command  
register contents are altered.  
Chip erase is a six-bus cycle operation. There are two  
"unlock" write cycles. These are followed by writing the  
"set-up" command 80H. Two more "unlock" write cy-  
cles are then followed by the chip erase command 10H.  
The Automatic Chip Erase does not require the device  
to be entirely pre-programmed prior to executing the Au-  
tomatic Chip Erase. Upon executing the Automatic Chip  
Erase, the device will automatically program and verify  
the entire memory for an all-zero data pattern. When the  
device is automatically verified to contain an all-zero  
pattern, a self-timed chip erase and verify begin. The  
erase and verify operations are completed when the data  
on Q7 is "1" at which time the device returns to the  
Read mode. The system is not required to provide any  
control or timing during these operations.  
If program-fail or erase-fail happen, the write of F0H will  
reset the device to abort the operation. A valid com-  
mand must then be written to place the device in the  
desired state.  
SILICON-ID-READ COMMAND  
Flash memories are intended for use in applications where  
the local CPU alters memory contents. As such, manu-  
facturer and device codes must be accessible while the  
device resides in the target system. PROM program-  
mers typically access signature codes by raising A9 to  
a high voltage. However, multiplexing high voltage onto  
address lines is not generally desired system design  
practice.  
When using the Automatic Chip Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory array  
(no erase verification command is required).  
If the Erase operation was unsuccessful, the data on  
Q5 is "1"(see Table 4), indicating the erase operation  
exceed internal timing limit.  
The MX29F040 contains a Silicon-ID-Read operation to  
supplement traditional PROM programming methodol-  
ogy. The operation is initiated by writing the read silicon  
ID command sequence into the command register. Fol-  
lowing the command write, a read cycle with  
A1=VIL,A0=VIL retrieves the manufacturer code of C2H.  
A read cycle with A1=VIL, A0=VIH returns the device  
code of A4H for MX29F040.  
The automatic erase begins on the rising edge of the  
lastWE or CE, whichever happens first pulse in the com-  
mand sequence and terminates when the data on Q7 is  
"1" and the data on Q6 stops toggling for two consecu-  
tive read cycles, at which time the device returns to the  
Read mode.  
TABLE 3. EXPANDED SILICON ID CODE  
Pins  
A0  
A1  
Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Code(Hex)  
Manufacturecode  
VIL VIL  
1
1
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1
0
C2H  
Device code for MX29F040 VIH VIL  
A4H  
Sector Protection Verification X  
X
VIH  
VIH  
01H(Protected)  
00H(Unprotected)  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
7
MX29F040  
SECTOR ERASE COMMANDS  
The Automatic Sector Erase does not require the device  
to be entirely pre-programmed prior to executing the Au-  
tomatic Set-up Sector Erase command and Automatic  
Sector Erase command. Upon executing the Automatic  
Sector Erase command, the device will automatically  
program and verify the sector(s) memory for an all-zero  
data pattern. The system is not required to provide any  
control or timing during these operations.  
(no erase verification command is required). Sector erase  
is a six-bus cycle operation. There are two "unlock"  
write cycles. These are followed by writing the set-up  
command 80H. Two more "unlock" write cycles are then  
followed by the sector erase command 30H. The sector  
address is latched on the falling edge ofWE or CE, which-  
ever happens later, while the command (data) is latched  
on the rising edge ofWE or CE, whichever happens first.  
Sector addresses selected are loaded into internal reg-  
ister on the sixth falling edge of WE or CE, whichever  
happens later. Each successive sector load cycle  
started by the falling edge of WE or CE, whichever hap-  
pens later must begin within 30us from the rising edge  
of the preceding WE or CE, whichever happens first.  
Otherwise, the loading period ends and internal auto  
sector erase cycle starts. (Monitor Q3 to determine if  
the sector erase timer window is still open, see section  
Q3, Sector EraseTimer.) Any command other than Sec-  
tor Erase (30H) or Erase Suspend (B0H) during the time-  
out period resets the device to read mode.  
When the sector(s) is automatically verified to contain  
an all-zero pattern, a self-timed sector erase and verify  
begin. The erase and verify operations are complete  
when the data on Q7 is "1" and the data on Q6 stops  
toggling for two consecutive read cycles, at which time  
the device returns to the Read mode. The system is not  
required to provide any control or timing during these  
operations.  
When using the Automatic Sector Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory array  
TABLE 4. Write Operation Status  
Status  
Q7  
Q6  
Q5  
Q3  
Q2  
Note1  
Note2  
Byte Program in Auto Program Algorithm  
Auto Erase Algorithm  
Q7 Toggle  
0
0
0
N/A No Toggle  
0
1
Toggle  
No  
1
Toggle  
Toggle  
Erase Suspend Read  
N/A  
In Progress  
(Erase Suspended Sector)  
Erase Suspend Read  
Toggle  
Erase Suspended Mode  
Data Data Data Data  
Data  
N/A  
(Non-Erase Suspended Sector)  
Erase Suspend Program  
Q7 Toggle  
Q7 Toggle  
0
1
1
1
N/A  
Byte Program in Auto Program Algorithm  
N/A No Toggle  
Exceeded Auto Erase Algorithm  
0
Toggle  
1
Toggle  
N/A  
Time Limits Erase Suspend Program  
Q7 Toggle  
N/A  
Note:  
1. Q7 and Q2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
2. Q5 switches to '1' when an Auto Program or Auto Erase operation has exceeded the maximum timing limits.  
See "Q5:Exceeded Timing Limits " for more information.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
8
MX29F040  
tem is not required to provide further controls or timings.  
The device will automatically provide an adequate inter-  
nally generated program pulse and verify margin.  
ERASE SUSPEND  
This command only has meaning while the state ma-  
chine is executing Automatic Sector Erase operation,  
and therefore will only be responded during Automatic  
Sector Erase operation. When the Erase Suspend com-  
mand is written during a sector erase operation, the de-  
vice requires a maximum of 100us to suspend the erase  
operations.However,When the Erase Suspend command  
is written during the sector erase time-out, the device  
immediately terminates the time-out period and suspends  
the erase operation. After this command has been ex-  
ecuted, the command register will initiate erase suspend  
mode. The state machine will return to read mode auto-  
matically after suspend is ready. At this time, state ma-  
chine only allows the command register to respond to  
the Read Memory Array, Erase Resume and program  
commands.  
If the program operation was unsuccessful, the data on  
Q5 is "1"(seeTable 4), indicating the program operation  
exceed internal timing limit.The automatic programming  
operation is completed when the data read on Q6 stops  
toggling for two consecutive read cycles and the data  
on Q7 and Q6 are equivalent to data written to these two  
bits, at which time the device returns to the Read mode  
(no program verify command is required).  
DATA POLLING-Q7  
The MX29F040 also features Data Polling as a method  
to indicate to the host system that the Automatic Pro-  
gram or Erase algorithms are either in progress or com-  
pleted.  
The system can determine the status of the program  
operation using the Q7 or Q6 status bits, just as in the  
standard program operation. After an erase-suspend pro-  
gram operation is complete, the system can once again  
read array data within non-suspended sectors.  
While the Automatic Programming algorithm is in opera-  
tion, an attempt to read the device will produce the  
complement data of the data last written to Q7. Upon  
completion of the Automatic Program Algorithm an at-  
tempt to read the device will produce the true data last  
written to Q7. The Data Polling feature is valid after the  
rising edge of the fourth WE or CE, whichever happens  
first pulse of the four write pulse sequences for auto-  
matic program.  
ERASE RESUME  
This command will cause the command register to clear  
the suspend state and return back to Sector Erase mode  
but only if an Erase Suspend command was previously  
issued. Erase Resume will not have any effect in all  
other conditions. Another Erase Suspend command can  
be written after the chip has resumed erasing.  
While the Automatic Erase algorithm is in operation, Q7  
will read "0" until the erase operation is competed. Upon  
completion of the erase operation, the data on Q7 will  
read "1". The Data Polling feature is valid after the rising  
edge of the sixth WE or CE, whichever happens first  
pulse of six write pulse sequences for automatic chip/  
sector erase.  
SET-UP AUTOMATIC PROGRAM COMMANDS  
To initiate Automatic Program mode, A three-cycle com-  
mand sequence is required. There are two "unlock" write  
cycles. These are followed by writing the Automatic Pro-  
gram command A0H.  
The Data Polling feature is active during Automatic Pro-  
gram/Erase algorithm or sector erase time-out. (see sec-  
tion Q3 Sector Erase Timer)  
Once the Automatic Program command is initiated, the  
next WE or CE pulse causes a transition to an active  
programming operation. Addresses are latched on the  
falling edge, and data are internally latched on the  
rising edge of the WE or CE, whichever happens first  
pulse. The rising edge ofWE or CE, whichever happens  
first also begins the programming operation. The sys-  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
9
MX29F040  
that sector is erase-suspended. Toggle Bit I is valid af-  
ter the rising edge of the final WE or CE, whichever hap-  
pens first pulse in the command sequence.  
Q6:Toggle BIT I  
Toggle Bit I on Q6 indicates whether an Automatic Pro-  
gram or Erase algorithm is in progress or complete, or  
whether the device has entered the Erase Suspend mode.  
Toggle Bit I may be read at any address, and is valid  
after the rising edge of the final WE or CE, whichever  
happens first pulse in the command sequence (prior to  
the program or erase operation), and during the sector  
time-out.  
Q2 toggles when the system reads at addresses within  
those sectors that have been selected for erasure. (The  
system may use either OE or CE to control the read  
cycles.) But Q2 cannot distinguish whether the sector  
is actively erasing or is erase-suspended. Q6, by com-  
parison, indicates whether the device is actively eras-  
ing, or is in Erase Suspend, but cannot distinguish which  
sectors are selected for erasure. Thus, both status bits  
are required for sectors and mode information. Refer to  
Table 4 to compare outputs for Q2 and Q6.  
During an Automatic Program or Erase algorithm opera-  
tion, successive read cycles to any address cause Q6  
to toggle. The system may use either OE or CE to con-  
trol the read cycles.When the operation is complete, Q6  
stops toggling.  
Reading Toggle Bits Q6/ Q2  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Q6 toggles and  
returns to reading array data. If not all selected sectors  
are protected, the Automatic Erase algorithm erases the  
unprotected sectors, and ignores the selected sectors  
that are protected.  
Whenever the system initially begins reading toggle bit  
status, it must read Q7-Q0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit  
after the first read. After the second read, the system  
would compare the new value of the toggle bit with the  
first. If the toggle bit is not toggling, the device has  
completed the program or erase operation. The system  
can read array data on Q7-Q0 on the following read cycle.  
The system can use Q6 and Q2 together to determine  
whether a sector is actively erasing or is erase sus-  
pended.When the device is actively erasing (that is, the  
Automatic Erase algorithm is in progress), Q6 toggling.  
When the device enters the Erase Suspend mode, Q6  
stops toggling. However, the system must also use Q2  
to determine which sectors are erasing or erase-sus-  
pended. Alternatively, the system can use Q7.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of Q5 is high  
(see the section on Q5). If it is, the system should then  
determine again whether the toggle bit is toggling, since  
the toggle bit may have stopped toggling just as Q5 went  
high. If the toggle bit is no longer toggling, the device  
has successfully completed the program or erase op-  
eration. If it is still toggling, the device did not complete  
the operation successfully, and the system must write  
the reset command to return to reading array data.  
If a program address falls within a protected sector, Q6  
toggles for approximately 2us after the program com-  
mand sequence is written, then returns to reading array  
data.  
Q6 also toggles during the erase-suspend-program mode,  
and stops toggling once the Automatic Program algo-  
rithm is complete.  
The remaining scenario is that system initially determines  
that the toggle bit is toggling and Q5 has not gone high.  
The system may continue to monitor the toggle bit and  
Q5 through successive read cycles, determining the sta-  
tus as described in the previous paragraph. Alterna-  
tively, it may choose to perform other system tasks. In  
this case, the system must start at the beginning of the  
algorithm when it returns to determine the status of the  
operation.  
Table 4 shows the outputs for Toggle Bit I on Q6.  
Q2:Toggle Bit II  
The "Toggle Bit II" on Q2, when used with Q6, indicates  
whether a particular sector is actively erasing (that is,  
the Automatic Erase algorithm is in process), or whether  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
10  
MX29F040  
specific command sequences. The device also incor-  
porates several features to prevent inadvertent write  
cycles resulting fromVCC power-up and power-down tran-  
sition or system noise.  
Q5  
Exceeded Timing Limits  
Q5 will indicate if the program or erase time has ex-  
ceeded the specified limits (internal pulse count). Under  
these conditions Q5 will produce a "1". This time-out  
condition indicates that the program or erase cycle was  
not successfully completed. Data Polling andToggle Bit  
are the only operating functions of the device under this  
condition.  
Q3  
Sector Erase Timer  
After the completion of the initial sector erase command  
sequence, the sector erase time-out will begin. Q3 will  
remain low until the time-out is complete. Data Polling  
andToggle Bit are valid after the initial sector erase com-  
mand sequence.  
If this time-out condition occurs during sector erase op-  
eration, it specifies that a particular sector is bad and it  
may not be reused. However, other sectors are still func-  
tional and may be used for the program or erase opera-  
tion. The device must be reset to use other sectors.  
Write the Reset command sequence to the device, and  
then execute program or erase command sequence. This  
allows the system to continue to use the other active  
sectors in the device.  
If Data Polling or the Toggle Bit indicates the device has  
been written with a valid erase command, Q3 may be  
used to determine if the sector erase timer window is  
still open. If Q3 is high ("1") the internally controlled  
erase cycle has begun; attempts to write subsequent  
commands to the device will be ignored until the erase  
operation is completed as indicated by Data Polling or  
Toggle Bit. If Q3 is low ("0"), the device will accept  
additional sector erase commands. To insure the com-  
mand has been accepted, the system software should  
check the status of Q3 prior to and following each sub-  
sequent sector erase command. If Q3 were high on the  
second status check, the command may not have been  
accepted.  
If this time-out condition occurs during the chip erase  
operation, it specifies that the entire chip is bad or com-  
bination of sectors are bad.  
If this time-out condition occurs during the byte program-  
ming operation, it specifies that the entire sector con-  
taining that byte is bad and this sector may not be re-  
used, (other sectors are still functional and can be re-  
used).  
The time-out condition may also appear if a user tries to  
program a non blank location without erasing. In this  
case the device locks out and never completes the Au-  
tomatic Algorithm operation. Hence, the system never  
reads a valid data on Q7 bit and Q6 never stops tog-  
gling. Once the Device has exceeded timing limits, the  
Q5 bit will indicate a "1". Please note that this is not a  
device failure condition since the device was incorrectly  
used.  
WRITE PULSE "GLITCH" PROTECTION  
Noise pulses of less than 5ns (typical) on CE or WE will  
not initiate a write cycle.  
LOGICAL INHIBIT  
Writing is inhibited by holding any one of OE = VIL, CE  
= VIH or WE = VIH. To initiate a write cycle CE and WE  
must be a logical zero while OE is a logical one.  
DATA PROTECTION  
The MX29F040 is designed to offer protection against  
accidental erasure or programming caused by spurious  
system level signals that may exist during power transi-  
tion. During power up the device automatically resets  
the state machine in the Read mode. In addition, with  
its control register architecture, alteration of the memory  
contents only occurs after successful completion of  
POWER SUPPLY DECOUPLING  
In order to reduce power switching effect, each device  
should have a 0.1uF ceramic capacitor connected be-  
tween itsVCC and GND.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
11  
MX29F040  
is noted that all sectors are unprotected after the chip  
unprotect algorithm is completed.  
SECTOR PROTECTION WITH 12V SYSTEM  
The MX29F040 features sector protection. This feature  
will disable both program and erase operations for these  
sectors protected. To activate this mode, the program-  
ming equipment must force VID on address pin A9 and  
control pin OE, (suggest VID = 12V) A6 = VIL and CE =  
VIL. (see Table 2) Programming of the protection cir-  
cuitry begins on the falling edge of the WE or CE, which-  
ever happens later pulse and is terminated on the rising  
edge. Please refer to sector protect algorithm and wave-  
form.  
POWER-UP SEQUENCE  
The MX29F040 powers up in the Read only mode. In  
addition, the memory contents may only be altered after  
successful completion of the predefined command se-  
quences.  
SECTOR PROTECTION WITHOUT 12V SYS-  
TEM  
To verify programming of the protection circuitry, the pro-  
gramming equipment must force VID on address pin A9  
( with CE and OE at VIL and WE at VIH). When A1=1, it  
will produce a logical "1" code at device output Q0 for a  
protected sector. Otherwise the device will produce 00H  
for the unprotected sector. In this mode, the addresses,  
except for A1, are don't care. Address locations with A1  
=VIL are reserved to read manufacturer and device codes.  
(Read Silicon ID)  
The MX29F040 also feature a sector protection method  
in a system without 12V power supply.The programming  
equipment do not need to supply 12 volts to protect sec-  
tors. The details are shown in sector protect algorithm  
and waveform.  
CHIP UNPROTECT WITHOUT 12V SYSTEM  
It is also possible to determine if the sector is protected  
in the system by writing a Read Silicon ID command.  
Performing a read operation with A1=VIH, it will produce  
a logical "1" at Q0 for the protected sector.  
The MX29F040 also feature a chip unprotection method  
in a system without 12V power supply.The programming  
equipment do not need to supply 12 volts to unprotect all  
sectors. The details are shown in chip unprotect algo-  
rithm and waveform.  
CHIP UNPROTECT WITH 12V SYSTEM  
The MX29F040 also features the chip unprotect mode,  
so that all sectors are unprotected after chip unprotect  
is completed to incorporate any changes in the code. It  
is recommended to protect all sectors before activating  
chip unprotect mode.  
To activate this mode, the programming equipment must  
forceVID on control pin OE and address pin A9. The CE  
pins must be set atVIL. Pins A6 must be set toVIH.(see  
Table 2) Refer to chip unprotect algorithm and wave-  
form for the chip unprotect algorithm. The unprotection  
mechanism begins on the falling edge of the WE or CE,  
whichever happens later, pulse and is terminated on the  
rising edge.  
It is also possible to determine if the chip is unprotected  
in the system by writing the Read Silicon ID command.  
Performing a read operation with A1=VIH, it will produce  
00H at data outputs(Q0-Q7) for an unprotected sector.It  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
12  
MX29F040  
CAPACITANCE (TA = 25oC, f = 1.0 MHz)  
SYMBOL  
CIN1  
PARAMETER  
MIN.  
TYP  
MAX.  
8
UNIT  
pF  
CONDITIONS  
VIN = 0V  
Input Capacitance  
Control Pin Capacitance  
Output Capacitance  
CIN2  
12  
pF  
VIN = 0V  
COUT  
12  
pF  
VOUT = 0V  
READ OPERATION  
DC CHARACTERISTICS (TA = 0° CTO 70° C, -40oC to 85oC,VCC = 5V±10%)  
SYMBOL PARAMETER  
MIN.  
TYP  
MAX.  
UNIT  
uA  
uA  
mA  
uA  
mA  
mA  
V
CONDITIONS  
ILI  
Input Leakage Current  
1
VIN = GND to VCC  
VOUT = GND to VCC  
CE = VIH  
ILO  
Output Leakage Current  
Standby VCC current  
10  
ISB1  
ISB2  
ICC1  
ICC2  
VIL  
1
1
5
CE = VCC + 0.3V  
IOUT = 0mA, f=5MHz  
IOUT = 0mA, f=10MHz  
Operating VCC current  
30  
50  
Input Low Voltage  
-0.3(NOTE 1)  
2.0  
0.8  
VIH  
Input High Voltage  
VCC + 0.3  
0.45  
V
VOL  
VOH1  
VOH2  
Output Low Voltage  
Output High Voltage(TTL)  
V
IOL = 2.1mA  
2.4  
V
IOH = -2mA  
Output High Voltage(CMOS) VCC-0.4  
V
IOH = -100uA,VCC=VCC MIN  
NOTES:  
1. VIL min. = -1.0V for pulse width is equal to or less than 50 ns.  
VIL min. = -2.0V for pulse width is equal to or less than 20 ns.  
2. VIH max. = VCC + 1.5V for pulse width is equal to or less  
than 20 ns.  
IfVIHisoverthespecifiedmaximumvalue, readoperation  
cannot be guaranteed.  
AC CHARACTERISTICS (TA = 0oC to 70oC, -40oC to 85oC,VCC = 5V±10%)  
29F040-55(note2)29F040-70 29F040-90 29F040-12  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. Unit Conditions  
55  
Symbol PARAMETER  
tACC Address to Output Delay  
70  
70  
40  
30  
90  
90  
40  
40  
120  
120  
50  
ns  
ns  
ns  
ns  
ns  
CE=OE=VIL  
OE=VIL  
tCE  
tOE  
tDF  
tOH  
CE to Output Delay  
55  
30  
30  
OE to Output Delay  
CE=VIL  
OE High to Output Float (Note1)0  
0
0
0
0
0
0
40  
CE=VIL  
Address to Output hold  
0
CE=OE=VIL  
TEST CONDITIONS:  
NOTE:  
Input pulse levels: 0.45V/2.4V  
1. tDF is defined as the time at which the output achieves the  
open circuit condition and data is no longer driven.  
2. Under condition of VCC=5V±10%,CL=50pF,VIH/VIL=3.0/  
0V,VOH/VOL=1.5/1.5V,IOL=2mA,IOH=-2mA.  
Input rise and fall times is equal to or less than 0ns  
Output load: 1 TTL gate + 100pF (Including scope and jig)  
Reference levels for measuring timing: 0.8V, 2.0V  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
13  
MX29F040  
NOTICE:  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed under ABSOLUTE  
MAXIMUM RATINGS may cause permanent damage to  
the device. This is a stress rating only and functional  
operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for  
extended period may affect reliability.  
RATING  
VALUE  
Ambient Operating Temperature -40oC to 85oC  
Storage Temperature  
Ambient Temperature with Power -55oC to 125oC  
-65oC to 125oC  
Applied  
NOTICE:  
Applied Input Voltage  
Applied Output Voltage  
VCC to Ground Potential  
A9 & OE  
-0.5V to 7.0V  
-0.5V to 7.0V  
-0.5V to 7.0V  
-0.5V to 13.5V  
Specifications contained within the following tables are  
subject to change.  
READ TIMING WAVEFORMS  
VIH  
ADD Valid  
Addresses  
VIL  
tCE  
VIH  
CE  
VIL  
VIH  
WE  
tDF  
VIL  
tOE  
VIH  
OE  
tACC  
VIL  
tOH  
HIGH Z  
HIGH Z  
VOH  
VOL  
Outputs  
DATA Valid  
COMMAND PROGRAMMING/DATA PROGRAMMING/ERASE OPERATION  
DC CHARACTERISTICS (TA = 0oC to 70oC, -40oC to 85oC,VCC = 5V±10%)  
SYMBOL  
PARAMETER  
MIN.  
TYP  
MAX.  
30  
UNIT  
mA  
mA  
mA  
mA  
mA  
CONDITIONS  
ICC1 (Read)  
ICC2  
Operating VCC Current  
IOUT=0mA, f=5MHz  
IOUT=0mA, F=10MHz  
In Programming  
50  
ICC3 (Program)  
ICC4 (Erase)  
ICCES  
50  
50  
In Erase  
VCC Erase Suspend Current  
2
CE=VIH, Erase Suspended  
NOTES:  
3. ICCES is specified with the device de-selected. If the  
device is read during erase suspend mode, current draw  
is the sum of ICCES and ICC1 or ICC2.  
1. VILmin.=-0.6Vforpulsewidthisequaltoorlessthan20ns.  
2. If VIH is over the specified maximum value, programming  
operation cannot be guaranteed.  
4. All current are in RMS unless otherwise noted.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
14  
MX29F040  
AC CHARACTERISTICS TA = 0oC to 70oC, -40oC to 85oC,VCC = 5V ± 10%  
29F040-55(Note2) 29F040-70  
29F040-90  
29F040-12  
SYMBOL PARAMETER  
MIN.  
50  
70  
45  
20  
20  
0
MAX. MIN.  
MAX. MIN. MAX. MIN.  
MAX. Unit  
tOES  
tCWC  
tCEP  
tCEPH1  
tCEPH2  
tAS  
OE setup time  
50  
50  
90  
45  
20  
20  
0
50  
120  
50  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Command programming cycle  
WE programming pulse width  
WE programming pulse width High  
WE programming pulse width High  
Address setup time  
70  
45  
20  
20  
0
tAH  
Address hold time  
45  
30  
0
45  
45  
45  
0
50  
50  
0
tDS  
Data setup time  
30  
tDH  
Data hold time  
0
tCESC  
tDF  
CE setup time before command write  
Output disable time (Note 1)  
Total erase time in auto chip erase  
Total erase time in auto sector erase  
Total programming time in auto verify  
Sector address load time  
CE Hold Time  
0
0
0
0
30  
30  
40  
40  
ns  
s
tAETC  
tAETB  
tAVT  
4(TYP.) 32  
4(TYP.) 32  
4(TYP.) 32  
4(TYP.) 32  
1.3(TYP.)10.4 1.3(TYP.) 10.4  
1.3(TYP.)10.4  
1.3(TYP.)10.4  
s
7
210  
7
210  
7
210  
7
210  
us  
us  
ns  
ns  
us  
us  
us  
ms  
tBAL  
100  
0
100  
0
100  
0
100  
0
tCH  
tCS  
CE setup to WE going low  
Voltage Transition Time  
0
0
0
0
tVLHT  
tOESP  
tWPP1  
tWPP2  
4
4
4
4
OE Setup Time to WE Active  
Write pulse width for sector protect  
4
4
4
4
10  
10  
12  
10  
12  
10  
12  
Write pulse width for sector unprotect 12  
NOTES:  
1. tDF defined as the time at which the output achieves the open circuit condition and data is no longer driven.  
2. Under conditions of VCC=5V±10%,CL=50pF,VIH/VIL=3.0/0V,VOL/VOH=1.5/1.5, IOL=2mA,IOH=-2mA.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
15  
MX29F040  
SWITCHING TEST CIRCUITS  
DEVICE UNDER  
TEST  
1.6K ohm  
+5V  
CL  
DIODES=IN3064  
OR EQUIVALENT  
1.2K ohm  
CL=100pF Including jig capacitance  
CL= 50pF for 29F040-55  
SWITCHING TEST WAVEFORMS  
2.4V  
2.0V  
0.8V  
2.0V  
TEST POINTS  
0.8V  
0.45V  
INPUT  
OUTPUT  
AC TESTING: Inputs are driven at 2.4V for a logic "1" and 0.45V for a logic "0".  
Input pulse rise and fall times are < 20ns.(5ns for 29F040-55)  
Note:VIH/VIL=3.0/0V,VOH/VOL=1.5/1.5V for 29F040-55  
COMMAND WRITE TIMING WAVEFORM  
VCC  
5V  
VIH  
VIL  
Addresses  
ADD Valid  
tAH  
tAS  
VIH  
VIL  
WE  
CE  
tOES  
tCEPH1  
tCEP  
tCWC  
VIH  
VIL  
tCS  
tCH  
tDH  
VIH  
VIL  
OE  
tDS  
VIH  
VIL  
Data  
DIN  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
16  
MX29F040  
AUTOMATIC PROGRAMMING TIMING WAVEFORM  
One byte data is programmed. Verify in fast algorithm  
and additional programming by external control are not  
required because these operations are executed auto-  
matically by internal control circuit. Programming  
completion can be verified by DATA polling and toggle  
bit checking after automatic verification starts. Device  
outputs DATA during programming and DATA after pro-  
gramming on Q7.(Q6 is for toggle bit; see toggle bit,  
DATA polling, timing waveform)  
AUTOMATIC PROGRAMMING TIMING WAVEFORM  
Vcc 5V  
A11~A18  
ADD Valid  
2AAH  
555H  
ADD Valid  
tAVT  
A0~A10  
WE  
555H  
tAS  
tCWC  
tCEPH1  
tAH  
tCESC  
CE  
OE  
tCEP  
tDS tDH  
tDF  
Q0,Q1,Q2  
Q4(Note 1)  
DATA  
DATA  
Command In  
Command In  
Command In  
Data In  
Data In  
DATA polling  
DATA  
Command In  
Command In  
Command In  
Q7  
Command #A0H  
Command #55H  
Command #AAH  
(Q0~Q7)  
tOE  
Notes:  
(1). Q6:Toggle bit, Q5:Timing-limit bit, Q3: Time-out bit  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
17  
MX29F040  
AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data A0H Address 555H  
Write Program Data/Address  
NO  
Toggle Bit Checking  
Q6 not Toggled  
YES  
NO  
Invalid  
Verify Byte Ok  
Command  
YES  
NO  
.
Q5 = 1  
Reset  
Auto Program Completed  
YES  
Auto Program Exceed  
Timing Limit  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
18  
MX29F040  
AUTOMATIC CHIP ERASE TIMING WAVEFORM  
All data in chip are erased. External erase verification is  
not required because data is erased automatically by  
internal control circuit. Erasure completion can be  
verified by DATA polling and toggle bit checking after  
automaticerasestarts. Deviceoutputs0duringerasure  
and1aftererasureonQ7.(Q6isfortogglebit;seetoggle  
bit, DATA polling, timing waveform)  
AUTOMATIC CHIP ERASE TIMING WAVEFORM  
Vcc 5V  
A11~A18  
2AAH  
555H  
555H  
2AAH  
555H  
A0~A10  
WE  
555H  
tAS  
tCWC  
tAH  
tCEPH1  
tAETC  
CE  
OE  
tCEP  
tDS tDH  
Command In  
Q0,Q1,  
Command In  
Command In  
Command In  
Command In  
Command In  
Q4(Note 1)  
DATA polling  
Command In  
Command In  
Command In  
Command In  
Command In  
Command In  
Q7  
Command #80H  
Command #AAH  
Command #55H  
Command #10H  
Command #AAH  
(Q0~Q7)  
Command #55H  
Notes:  
(1). Q6:Toggle bit, Q5:Timing-limit bit, Q3: Time-out bit, Q2: Toggle bit  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
19  
MX29F040  
AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 10H Address 555H  
NO  
Toggle Bit Checking  
Q6 not Toggled  
YES  
NO  
Invalid  
DATA Polling  
Q7 = 1  
Command  
YES  
.
Q5 = 1  
Auto Chip Erase Completed  
YES  
Reset  
Auto Chip Erase Exceed  
Timing Limit  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
20  
MX29F040  
AUTOMATIC SECTOR ERASE TIMING WAVEFORM  
Sector dataindicatedbyA16toA18areerased. External  
erase verify is not required because data are erased  
automaticallybyinternalcontrolcircuit. Erasurecomple-  
tion can be verified by DATA polling and toggle bit  
checking after automatic erase starts. Device outputs 0  
duringerasureand1aftererasureonQ7.(Q6isfortoggle  
bit; see toggle bit, DATA polling, timing waveform)  
AUTOMATIC SECTOR ERASE TIMING WAVEFORM  
Vcc 5V  
Sector  
Addressn  
Sector  
Address0  
Sector  
Address1  
A16-A18  
555H  
555H  
555H  
tAS  
2AAH  
2AAH  
A0~A10  
tCWC  
tAH  
WE  
CE  
tCEPH1  
tBAL  
tAETB  
tCEP  
tDS  
OE  
tDH  
Command  
In  
Command  
In  
Q0,Q1,  
Command  
In  
Command  
In  
Command  
In  
Command  
In  
Command  
In  
Command  
In  
Q4(Note 1)  
DATA polling  
Command  
In  
Command  
In  
Command  
In  
Command  
In  
Command  
In  
Command  
In  
Command  
In  
Command  
In  
Q7  
Command #AAH Command #55H Command #80H Command #AAH Command #55H Command #30H  
(Q0~Q7)  
Command #30H  
Command #30H  
Notes:  
(1). Q6:Toggle bit, Q5:Timing-limit bit, Q3: Time-out bit, Q2: Toggle bit  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
21  
MX29F040  
AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 30H Sector Address  
NO  
Toggle Bit Checking  
Invalid Command  
Q6 Toggled ?  
YES  
Load Other Sector Addrss If Necessary  
(Load Other Sector Address)  
NO  
Last Sector  
to Erase  
YES  
NO  
NO  
Time-out Bit  
Checking Q3=1 ?  
YES  
Toggle Bit Checking  
Q6 not Toggled  
YES  
.
Q5 = 1  
Reset  
DATA Polling  
Q7 = 1  
Auto Sector Erase Completed  
Auto Sector Erase Exceed  
Timing Limit  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
22  
MX29F040  
ERASE SUSPEND/ERASE RESUME FLOWCHART  
START  
Write Data B0H  
NO  
Toggle Bit checking Q6  
not toggled  
YES  
Read Array or  
Program  
Reading or  
NO  
Programming End  
YES  
Write Data 30H  
Continue Erase  
Another  
.
NO  
Erase Suspend ?  
YES  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
23  
MX29F040  
TIMING WAVEFORM FOR SECTOR PROTECTION FOR SYSTEM WITH 12V  
A1  
A6  
12V  
5V  
A9  
tVLHT  
tVLHT  
Verify  
12V  
5V  
OE  
tVLHT  
tWPP 1  
WE  
CE  
tOESP  
Data  
01H  
F0H  
tOE  
A18-A16  
Sector Address  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
24  
MX29F040  
TIMING WAVEFORM FOR CHIP UNPROTECTION FOR SYSTEM WITH 12V  
A1  
12V  
5V  
A9  
A6  
tVLHT  
Verify  
12V  
5V  
OE  
tVLHT  
tVLHT  
tWPP 2  
WE  
CE  
tOESP  
Data  
00H  
F0H  
tOE  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
25  
MX29F040  
SECTOR PROTECTION ALGORITHM FOR SYSTEM WITH 12V  
START  
Set Up Sector Addr  
(A18, A17, A16)  
PLSCNT=1  
OE=VID,A9=VID,CE=VIL  
A6=VIL  
Activate WE Pulse  
Time Out 10us  
Set WE=VIH, CE=OE=VIL  
A9 should remain VID  
.
Read from Sector  
No  
Addr=SA, A1=1  
No  
Data=01H?  
PLSCNT=32?  
Yes  
Device Failed  
Yes  
Protect Another  
Sector?  
Remove VID from A9  
Write Reset Command  
Sector Protection  
Complete  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
26  
MX29F040  
CHIP UNPROTECTION ALGORITHM FOR SYSTEM WITH 12V  
START  
Protect All Sectors  
PLSCNT=1  
Set OE=A9=VID  
CE=VIL,A6=1  
Activate WE Pulse  
Time Out 12ms  
Increment  
PLSCNT  
Set OE=CE=VIL  
A9=VID,A1=1  
Set Up First Sector Addr  
Read Data from Device  
No  
No  
Data=00H?  
Increment  
PLSCNT=1000?  
Sector Addr  
Yes  
Yes  
Device Failed  
No  
All sectors have  
been verified?  
Yes  
Remove VID from A9  
Write Reset Command  
Chip Unprotect  
Complete  
* It is recommended before unprotect whole chip, all sectors should be protected in advance.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
27  
MX29F040  
TIMING WAVEFORM FOR SECTOR PROTECTION FOR SYSTEM WITHOUT 12V  
A1  
A6  
Toggle bit polling  
Verify  
5V  
OE  
tCEP  
WE  
* See the following Note!  
CE  
Don't care  
(Note 2)  
Data  
01H  
F0H  
tOE  
A18-A16  
Sector Address  
Note1: Must issue "unlock for sector protect/unprotect" command before sector protection  
for a system without 12V provided.  
Note2: Except F0H  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
28  
MX29F040  
TIMING WAVEFORM FOR CHIP UNPROTECTION FOR SYSTEM WITHOUT 12V  
A1  
A6  
Toggle bit polling  
Verify  
5V  
OE  
tCEP  
WE  
* See the following Note!  
CE  
Don't care  
(Note 2)  
Data  
F0H  
00H  
tOE  
Note1: Must issue "unlock for sector protect/unprotect" command before sector unprotection  
for a system without 12V provided.  
Note2: Except F0H  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
29  
MX29F040  
SECTOR PROTECTION ALGORITHM FOR SYSTEM WITHOUT 12V  
START  
PLSCNT=1  
Write "unlock for sector protect/unprotect"  
Command(Table1)  
Set Up Sector Addr  
(A18, A17, A16)  
OE=VIH,A9=VIH  
CE=VIL,A6=VIL  
Activate WE Pulse to start  
Data don't care  
Toggle bit checking  
Q6 not Toggled  
No  
.
Yes  
Increment PLSCNT  
Set CE=OE=VIL  
A9=VIH  
Read from Sector  
Addr=SA, A1=1  
No  
No  
Data=01H?  
PLSCNT=32?  
Yes  
Device Failed  
Yes  
Protect Another  
Sector?  
Write Reset Command  
Sector Protection  
Complete  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
30  
MX29F040  
CHIP UNPROTECTION ALGORITHM FOR SYSTEM WITHOUT 12V  
START  
Protect All Sectors  
PLSCNT=1  
Write "unlock for sector protect/unprotect"  
Command (Table 1)  
Set OE=A9=VIH  
CE=VIL,A6=1  
Activate WE Pulse to start  
Data do'nt care  
No  
Toggle bit checking  
Q6 not Toggled  
Increment  
PLSCNT  
Yes  
Set OE=CE=VIL  
A9=VIH,A1=1  
Set Up First Sector Addr  
Read Data from Device  
No  
No  
Data=00H?  
Increment  
PLSCNT=1000?  
Sector Addr  
Yes  
Yes  
Device Failed  
No  
All sectors have  
been verified?  
Yes  
Write Reset Command  
Chip Unprotect  
Complete  
* It is recommended before unprotect whole chip, all sectors should be protected in advance.  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
31  
MX29F040  
ID CODE READ TIMING WAVEFORM  
VCC  
5V  
VID  
ADD  
A9  
VIH  
VIL  
VIH  
VIL  
ADD  
A0  
tACC  
tACC  
VIH  
VIL  
A1  
ADD  
A2-A8  
VIH  
A10-A18 VIL  
CE  
VIH  
VIL  
VIH  
VIL  
tCE  
WE  
OE  
tOE  
VIH  
VIL  
tDF  
tOH  
tOH  
VIH  
VIL  
DATA  
Q0-Q7  
DATA OUT  
C2H  
DATA OUT  
A4H  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
32  
MX29F040  
ERASE AND PROGRAMMING PERFORMANCE (1)  
LIMITS  
TYP.(2)  
PARAMETER  
MIN.  
MAX.(3)  
10.4  
32  
UNITS  
sec  
Sector Erase Time  
Chip Erase Time  
1.3  
4
sec  
Byte Programming Time  
Chip Programming Time  
Erase/Program Cycles  
7
210  
us  
4
12  
sec  
100,000  
Cycles  
Note: 1.Not 100% Tested, Excludes external system level over head.  
2.Typical values measured at 25°C,5V.  
3.Maximunm values measured at 25° C,4.5V.  
LATCH-UP CHARACTERISTICS  
MIN.  
-1.0V  
MAX.  
Input Voltage with respect to GND on all pins except I/O pins  
Input Voltage with respect to GND on all I/O pins  
Current  
13.5V  
Vcc + 1.0V  
+100mA  
-1.0V  
-100mA  
Includes all pins except Vcc. Test conditions: Vcc = 5.0V, one pin at a time.  
DATA RETENTION  
PARAMETER  
MIN.  
UNIT  
Data Retention Time  
20  
Years  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
33  
MX29F040  
ORDERING INFORMATION  
PLASTIC PACKAGE  
PART NO.  
AccessTime Operating Current Standby Current Temperature PACKAGE  
Remark  
(ns)  
MAX.(mA)  
MAX.(uA)  
Range  
MX29F040QC-55  
MX29F040QC-70  
MX29F040QC-90  
MX29F040QC-12  
MX29F040TC-55  
55  
70  
30  
30  
30  
30  
30  
5
5
5
5
5
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
32 Pin PLCC  
32 Pin PLCC  
32 Pin PLCC  
32 Pin PLCC  
32 Pin TSOP  
(Normal Type)  
32 Pin TSOP  
(Normal Type)  
32 Pin TSOP  
(Normal Type)  
32 Pin TSOP  
(Normal Type)  
32 Pin PDIP  
32 Pin PDIP  
32 Pin PDIP  
32 Pin PDIP  
90  
120  
55  
MX29F040TC-70  
MX29F040TC-90  
MX29F040TC-12  
70  
90  
30  
30  
30  
5
5
5
0oC~70oC  
0oC~70oC  
0oC~70oC  
120  
MX29F040PC-55  
MX29F040PC-70  
MX29F040PC-90  
MX29F040PC-12  
MX29F040QC-55G  
MX29F040QC-70G  
MX29F040QC-90G  
MX29F040TC-55G  
MX29F040TC-70G  
MX29F040TC-90G  
MX29F040TC-12G  
MX29F040PC-55G  
MX29F040PC-70G  
MX29F040PC-90G  
MX29F040QI-55  
MX29F040QI-70  
MX29F040QI-90  
55  
70  
90  
120  
55  
70  
90  
55  
70  
90  
120  
55  
70  
90  
55  
70  
90  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
0oC~70oC  
32 pin PLCC PB free  
32 pin PLCC PB free  
32 pin PLCC PB free  
32 pin TSOP PB free  
32 pin TSOP PB free  
32 pin TSOP PB free  
32 pin TSOP PB free  
32 pin PDIP PB free  
32 pin PDIP PB free  
32 pin PDIP PB free  
-40oC~85oC 32 Pin PLCC  
-40oC~85oC 32 Pin PLCC  
-40oC~85oC 32 Pin PLCC  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
34  
MX29F040  
PART NO.  
AccessTime Operating Current Standby Current Temperature PACKAGE  
Remark  
(ns)  
MAX.(mA)  
MAX.(uA)  
Range  
MX29F040TI-55  
MX29F040TI-70  
MX29F040TI-90  
55  
30  
5
-40oC~85oC 32 Pin TSOP  
(Normal Type)  
70  
90  
30  
30  
5
5
-40oC~85oC 32 Pin TSOP  
(Normal Type)  
-40oC~85oC 32 Pin TSOP  
(Normal Type)  
MX29F040PI-55  
MX29F040PI-70  
MX29F040PI-90  
MX29F040QI-55G  
MX29F040QI-70G  
MX29F040QI-90G  
MX29F040TI-55G  
55  
70  
90  
55  
70  
90  
55  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
-40oC~85oC 32 Pin PDIP  
-40oC~85oC 32 Pin PDIP  
-40oC~85oC 32 Pin PDIP  
-40oC~85oC 32 Pin PLCC PB free  
-40oC~85oC 32 Pin PLCC PB free  
-40oC~85oC 32 Pin PLCC PB free  
-40oC~85oC 32 Pin TSOP PB free  
(Normal Type)  
MX29F040TI-70G  
MX29F040TI-90G  
70  
90  
30  
30  
5
5
-40oC~85oC 32 Pin TSOP PB free  
(Normal Type)  
-40oC~85oC 32 Pin TSOP PB free  
(Normal Type)  
MX29F040PI-55G  
MX29F040PI-70G  
MX29F040PI-90G  
55  
70  
90  
30  
30  
30  
5
5
5
-40oC~85oC 32 Pin PDIP PB free  
-40oC~85oC 32 Pin PDIP PB free  
-40oC~85oC 32 Pin PDIP PB free  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
35  
MX29F040  
PACKAGE INFORMATION  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
36  
MX29F040  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
37  
MX29F040  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
38  
MX29F040  
REVISION HISTORY  
Revision Description  
Page  
Date  
1.0  
To remove "Advanced Information" datasheet marking and  
P1  
JUL/01/1999  
contain information on products in full production.  
To improve ICC1:from 40mA @5MHz to 30mA @5MHz  
To add the description for 100K endurance cycle  
To modify timing of sector address loading period while  
operating multi-sector erase from 80us to 30us  
To modify tBAL from 80us to 100us  
1.1  
1.2  
P1,13,14,33  
P1,34  
P8  
JUL/12/1999  
OCT/04/1999  
P15  
1.3  
1.Program/erase cycle times:10K cycles-->100K cycles  
2.To remove A9 from "timing waveform for sector protection for  
system without 12V"  
P1,34  
P28  
DEC/17/1999  
To remove A9 from "timing waveform for chip unprotection for  
system without 12V"  
P29  
3.To add data retention minimum 20 years  
Add erase suspend ready max. 100us in ERASE SUSPEND's  
section at page 9  
P1,34  
P9  
1.4  
MAY/29/2000  
1.5  
1.6  
1.7  
1.8  
To modify "Package Information"  
To add "Ambient temperature with power applied"  
1.To corrected typing error  
1. Changed flow chart of chip unprotection algorithm for system  
with and without 12V  
P35~37  
P14  
All  
JUN/12/2001  
AUG/08/2001  
JUL/01/2002  
SEP/04/2002  
P27,31  
1.9  
2.0  
To modify Package Information  
1. Add 32 pin TSOP PB free package  
P35~37  
P34  
NOV/21/2002  
JAN/17/2003  
2.To modify 32-PDIP & 32-PLCC package information  
1. Add industrial grade option  
1.Added Pb-free option  
P35,36  
P13~15, P34  
P34  
2.1  
2.2  
2.3  
AUG/20/2004  
NOV/08/2004  
DEC/10/2004  
1.Added industrial-grade PB free option  
P35  
P/N:PM0538  
REV. 2.3, DEC. 10, 2004  
39  
MX29F040  
MACRONIX INTERNATIONALCO., LTD.  
Headquarters:  
TEL:+886-3-578-6688  
FAX:+886-3-563-2888  
Europe Office :  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
Hong Kong Office :  
TEL:+86-755-834-335-79  
FAX:+86-755-834-380-78  
Japan Office :  
Kawasaki Office :  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
Osaka Office :  
TEL:+81-6-4807-5460  
FAX:+81-6-4807-5461  
Singapore Office :  
TEL:+65-6346-5505  
FAX:+65-6348-8096  
Taipei Office :  
TEL:+886-2-2509-3300  
FAX:+886-2-2509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-262-8887  
FAX:+1-408-262-8810  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY