MX25L1633EZNI-10G [Macronix]

Flash, 4MX4, PDSO8, 6 X 5 MM, 0.80 MM HEIGHT, 1.27 MM PITCH, HALOGEN FREE AND ROHS COMPLIANT, MO-220, WSON-8;
MX25L1633EZNI-10G
型号: MX25L1633EZNI-10G
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

Flash, 4MX4, PDSO8, 6 X 5 MM, 0.80 MM HEIGHT, 1.27 MM PITCH, HALOGEN FREE AND ROHS COMPLIANT, MO-220, WSON-8

时钟 光电二极管 内存集成电路
文件: 总49页 (文件大小:1109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX25L1633E  
MX25L1633E  
DATASHEET  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
1
MX25L1633E  
Contents  
FEATURES .................................................................................................................................................5  
General..............................................................................................................................................................5  
Performance......................................................................................................................................................5  
Software Features.............................................................................................................................................5  
Hardware Features............................................................................................................................................6  
GENERAL DESCRIPTION ........................................................................................................................7  
Table 1. Additional Feature Comparison ...........................................................................................................7  
PIN CONFIGURATIONS ............................................................................................................................8  
PIN DESCRIPTION.....................................................................................................................................8  
BLOCK DIAGRAM......................................................................................................................................9  
DATA PROTECTION.................................................................................................................................10  
Table 2. Protected Area Sizes.........................................................................................................................11  
Table 3. 512-bit Secured OTP Definition.........................................................................................................11  
Memory Organization..............................................................................................................................12  
Table 4. Memory Organization .......................................................................................................................12  
DEVICE OPERATION...............................................................................................................................13  
Figure 1. Serial Modes Supported...................................................................................................................13  
COMMAND DESCRIPTION......................................................................................................................14  
Table 5. Command Set....................................................................................................................................14  
(1) Write Enable (WREN)................................................................................................................................15  
(2) Write Disable (WRDI).................................................................................................................................15  
(3) Read Identification (RDID).........................................................................................................................15  
(4) Read Status Register (RDSR)...................................................................................................................16  
Status Register................................................................................................................................................16  
(5) Write Status Register (WRSR)...................................................................................................................17  
Table 6. Protection Modes...............................................................................................................................17  
(6) Read Data Bytes (READ) ..........................................................................................................................18  
(7) Read Data Bytes at Higher Speed (FAST_READ) ....................................................................................18  
(8) 2 x I/O Read Mode (2READ) .....................................................................................................................18  
(9) 4 x I/O Read Mode (4READ) .....................................................................................................................19  
(10) Sector Erase (SE)....................................................................................................................................19  
(11) Block Erase (BE)......................................................................................................................................20  
(12) Chip Erase (CE).......................................................................................................................................20  
(13) Page Program (PP)..................................................................................................................................20  
(14) 4 x I/O Page Program (4PP)....................................................................................................................21  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
2
MX25L1633E  
(15) Deep Power-down (DP)...........................................................................................................................21  
(16) Release from Deep Power-down (RDP), Read Electronic Signature (RES) ...........................................21  
(17) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4) .........................................22  
Table 7. ID Definitions ....................................................................................................................................22  
(18) Enter Secured OTP (ENSO)....................................................................................................................22  
(19) Exit Secured OTP (EXSO).......................................................................................................................23  
(20) Read Security Register (RDSCUR) .........................................................................................................23  
Table 8. Security Register Definition ...............................................................................................................23  
(21) Write Security Register (WRSCUR).........................................................................................................23  
POWER-ON STATE..................................................................................................................................24  
ELECTRICAL SPECIFICATIONS.............................................................................................................25  
Absolute Maximum Ratings ............................................................................................................................25  
Figure 2. Maximum Negative Overshoot Waveform .......................................................................................25  
Capacitance ....................................................................................................................................................25  
Figure 3. Maximum Positive Overshoot Waveform.........................................................................................25  
Figure 4. Input Test Waveforms and Measurement Level...............................................................................26  
Figure 5. Output Loading.................................................................................................................................26  
Table 9. DC Characteristics.............................................................................................................................27  
Table 10. AC Characteristics...........................................................................................................................28  
Timing Analysis.......................................................................................................................................29  
Figure 6. Serial Input Timing ...........................................................................................................................29  
Figure 7. Output Timing...................................................................................................................................29  
Figure 8. WP# Setup Timing and Hold Timing during WRSR when SRWD=1................................................30  
Figure 9. Write Enable (WREN) Sequence (Command 06)............................................................................30  
Figure 10. Write Disable (WRDI) Sequence (Command 04)...........................................................................30  
Figure 11. Read Identification (RDID) Sequence (Command 9F)...................................................................31  
Figure 12. Read Status Register (RDSR) Sequence (Command 05).............................................................31  
Figure 13. Write Status Register (WRSR) Sequence (Command 01)............................................................31  
Figure 14. Read Data Bytes (READ) Sequence (Command 03) ...................................................................32  
Figure 15. Read at Higher Speed (FAST_READ) Sequence (Command 0B) ...............................................32  
Figure 16. 2 x I/O Read Mode Sequence (Command BB)..............................................................................33  
Figure 17. 4 x I/O Read Mode Sequence (Command EB)..............................................................................33  
Figure 18. 4 x I/O Read enhance performance Mode Sequence (Command EB)..........................................34  
Figure 19. Page Program (PP) Sequence (Command 02).............................................................................35  
Figure 20. 4 x I/O Page Program (4PP) Sequence (Command 38)...............................................................35  
Figure 21. Sector Erase (SE) Sequence (Command 20)...............................................................................36  
Figure 22. Block Erase (BE) Sequence (Command D8)................................................................................36  
Figure 23. Chip Erase (CE) Sequence (Command 60 or C7)........................................................................36  
Figure 24. Deep Power-down (DP) Sequence (Command B9)......................................................................37  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
3
MX25L1633E  
Figure 25. RDP and Read Electronic Signature (RES) Sequence (Command AB) .......................................37  
Figure 26. Release from Deep Power-down (RDP) Sequence (Command AB) ............................................38  
Figure 27. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90 or EF or DF).......38  
Figure 28. Power-up Timing............................................................................................................................39  
Table 11. Power-Up Timing .............................................................................................................................39  
Initial Delivery State.........................................................................................................................................39  
OPERATING CONDITIONS......................................................................................................................40  
Figure 29. AC Timing at Device Power-Up......................................................................................................40  
Figure 30. Power-Down Sequence .................................................................................................................41  
ERASE AND PROGRAMMING PERFORMANCE...................................................................................42  
DATA RETENTION ..................................................................................................................................42  
LATCH-UP CHARACTERISTICS.............................................................................................................42  
ORDERING INFORMATION.....................................................................................................................43  
PART NAME DESCRIPTION....................................................................................................................44  
PACKAGE INFORMATION.......................................................................................................................45  
REVISION HISTORY ................................................................................................................................48  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
4
MX25L1633E  
16M-BIT [x 1/x 2/x 4] CMOS MXSMIO(SERIAL MULTI I/O) FLASH MEMORY  
FEATURES  
General  
• Serial Peripheral Interface compatible -- Mode 0 and Mode 3  
16,777,216 x 1 bit structure or 8,388,608 x 2 bits (two I/O read mode) structure or 4,194,304 x 4 bits (four I/O  
read mode) structure  
• 512 Equal Sectors with 4K byte each  
- Any Sector can be erased individually  
• 32 Equal Blocks with 64K byte each  
- Any Block can be erased individually  
• Single Power Supply Operation  
- 2.7 to 3.6 volt for read, erase, and program operations  
• Latch-up protected to 100mA from -1V to Vcc +1V  
Performance  
• High Performance  
- Fast read  
- 1 I/O: 104MHz with 8 dummy cycles  
- 2 I/O: 85MHz with 4 dummy cycles  
- 4 I/O: 85MHz with 6 dummy cycles  
- Fast access time: 104MHz serial clock  
- Serial clock of four I/O read mode : 85MHz, which is equivalent to 340MHz  
- Fast program time: 0.6ms(typ.) and 3ms(max.)/page (256-byte per page)  
- Byte program time: 9us (typical)  
- Fast erase time: 40ms (typ.)/sector (4K-byte per sector) ; 0.4s(typ.) /block (64K-byte per block); 5s(typ.) /chip  
• Low Power Consumption  
- Low active read current: 25mA(max.) at 104MHz and 10mA(max.) at 33MHz  
- Low active programming current: 15mA (typ.)  
- Low active sector erase current: 9mA (typ.)  
- Low standby current: 15uA (typ.)  
• Typical 100,000 erase/program cycles  
• 20 years data retention  
Software Features  
• Input Data Format  
- 1-byte Command code  
• Advanced Security Features  
- Block lock protection  
The BP0-BP3 status bit defines the size of the area to be software protection against program and erase  
instructions  
- Additional 512-bit secured OTP for unique identifier  
• Auto Erase and Auto Program Algorithm  
- Automatically erases and verifies data at selected sector  
- Automatically programs and verifies data at selected page by an internal algorithm that automatically times the  
program pulse widths (Any page to be programed should have page in the erased state first)  
Status Register Feature  
Electronic Identification  
- JEDEC 1-byte manufacturer ID and 2-byte device ID  
- RES command for 1-byte Device ID  
- Both REMS,REMS2 and REMS4 commands for 1-byte manufacturer ID and 1-byte device ID  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
5
MX25L1633E  
Hardware Features  
SCLK Input  
- Serial clock input  
• SI/SIO0  
- Serial Data Input or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode  
• SO/SIO1  
- Serial Data Output or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode  
• WP#/SIO2  
- Hardware write protection or serial data Input/Output for 4 x I/O read mode  
• NC/SIO3  
- NC pin or serial data Input/Output for 4 x I/O read mode  
• PACKAGE  
- 8-land WSON (6x5mm)  
- 8-land USON (4x4mm)  
- 8-pin SOP (200mil)  
- All devices are RoHS Compliant & Halogen-free.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
6
MX25L1633E  
GENERAL DESCRIPTION  
The MX25L1633E are 16,777,216 bit serial Flash memory, which is configured as 2,097,152 x 8 internally. When it  
is in two or four I/O read mode, the structure becomes 8,388,608 bits x 2 or 4,194,304 bits x 4. The MX25L1633E  
feature a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus  
signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access to the device  
is enabled by CS# input.  
When it is in two I/O read mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits in-  
put and data output. When it is in four I/O read mode, the SI pin, SO pin, WP# pin and NC pin become SIO0 pin,  
SIO1 pin, SIO2 pin and SIO3 pin for address/dummy bits input and data output.  
The MX25L1633E provides sequential read operation on whole chip.  
After program/erase command is issued, auto program/erase algorithms which program/erase and verify the speci-  
fied page or sector/block locations will be executed. Program command is executed on byte basis, or page (256  
bytes) basis, and erase command is executes on sector (4K-byte), or block (64K-byte), or whole chip basis.  
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read  
command can be issued to detect completion status of a program or erase operation via WIP bit.  
Advanced security features enhance the protection and security functions, please see security features section for  
more details.  
When the device is not in operation and CS# is high, it is put in standby mode.  
The MX25L1633E utilizes Macronix proprietary memory cell, which reliably stores memory contents even after  
100,000 program and erase cycles.  
Table 1. Additional Feature Comparison  
Protection and  
Security  
Read  
Performance  
Identifier  
Additional  
Features  
Flexible  
Block  
Protection secured  
512-bit  
RES  
REMS  
REMS2  
REMS4  
RDID  
2 I/O  
4 I/O  
Part  
Name  
(command: (command: (command: (command: (command:  
Read  
Read  
(BP0-  
BP3)  
OTP  
AB hex)  
90 hex)  
EF hex)  
DF hex)  
9F hex)  
C2 24 (hex) C2 24 (hex) C2 24 (hex) C2 24 15  
MX25L1633E  
MX25L1635D  
V
V
V
V
V
V
V
V
24 (hex)  
24 (hex)  
(if ADD=0) (if ADD=0) (if ADD=0)  
C2 24 (hex) C2 24 (hex) C2 24 (hex) C2 24 15  
(if ADD=0) (if ADD=0) (if ADD=0) (hex)  
(hex)  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
7
MX25L1633E  
PIN CONFIGURATIONS  
8-PIN SOP (200mil)  
8-LAND WSON (6x5mm), USON (4x4mm)  
1
VCC  
CS#  
SO/SIO1  
WP#/SIO2  
GND  
8
7
6
5
1
2
3
4
CS#  
SO/SIO1  
WP#/SIO2  
GND  
VCC  
8
7
6
5
NC/SIO3  
SCLK  
2
3
4
NC/SIO3  
SCLK  
SI/SIO0  
SI/SIO0  
PIN DESCRIPTION  
SYMBOL DESCRIPTION  
CS#  
Chip Select  
Serial Data Input (for 1 x I/O)/ Serial  
Data Input & Output (for 2xI/O or 4xI/  
O read mode)  
SI/SIO0  
Serial Data Output (for 1 x I/O)/ Serial  
Data Input & Output (for 2xI/O or 4xI/  
O read mode)  
SO/SIO1  
SCLK  
Clock Input  
Write protection: connect to GND or  
WP#/SIO2 Serial Data Input & Output (for 4xI/O  
read mode)  
NC pin (Not connect) or Serial Data  
Input & Output (for 4xI/O read mode)  
NC/SIO3  
VCC  
+ 3.3V Power Supply  
GND  
Ground  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
8
MX25L1633E  
BLOCK DIAGRAM  
Address  
Generator  
Memory Array  
Page Buffer  
Data  
Register  
SI/SIO0  
Y-Decoder  
SRAM  
Buffer  
Sense  
Amplifier  
CS#  
WP#/SIO2  
NC/SIO3  
Mode  
Logic  
State  
Machine  
HV  
Generator  
SCLK  
Clock Generator  
Output  
Buffer  
SO/SIO1  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
9
MX25L1633E  
DATA PROTECTION  
During power transition, there may be some false system level signals which result in inadvertent erasure or pro-  
gramming. The device is designed to protect itself from these accidental write cycles.  
The state machine will be reset as standby mode automatically during power up. In addition, the control register  
architecture of the device constrains that the memory contents can only be changed after specific command se-  
quences have completed successfully.  
In the following, there are several features to protect the system from the accidental write cycles during VCC power-  
up and power-down or from system noise.  
Valid command length checking: The command length will be checked whether it is at byte base and completed  
on byte boundary.  
Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before  
other command to change data. The WEL bit will return to reset stage under following situation:  
- Power-up  
- Write Disable (WRDI) command completion  
- Write Status Register (WRSR) command completion  
- Page Program (PP, 4PP) command completion  
- Sector Erase (SE) command completion  
- Block Erase (BE) command completion  
- Chip Erase (CE) command completion  
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from  
writing all commands except Release from deep power down mode command (RDP) and Read Electronic Sig-  
nature command (RES).  
Advanced Security Features: there are some protection and securuity features which protect content from inad-  
vertent write and hostile access.  
I. Block lock protection  
- The Software Protected Mode (SPM) use (BP3, BP2, BP1, BP0) bits to allow part of memory to be protected  
as read only. The proected area definition is shown as table of "Protected Area Sizes", the protected areas are  
more flexible which may protect various area by setting value of BP0-BP3 bits.  
Please refer to table of "protected area sizes".  
- The Hardware Proteced Mode (HPM) use WP#/SIO2 to protect the (BP3, BP2, BP1, BP0) bits and SRWD bit.  
If the system goes into four I/O read mode, the feature of HPM will be disabled.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
10  
MX25L1633E  
Table 2. Protected Area Sizes  
Status bit  
Protect Level  
BP0 16Mb  
BP3  
0
BP2  
0
BP1  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 (none)  
0
0
0
1 (1block, protected block 31th)  
2 (2blocks, protected block 30th-31th)  
3 (4blocks, protected block 28th-31th)  
4 (8blocks, protected block 24th-31th)  
5 (16blocks, protected block 16th-31th)  
6 (32blocks, protected all)  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
7 (32blocks, protected all)  
1
0
0
8 (32blocks, protected all)  
1
0
0
9 (32blocks, protected all)  
1
0
1
10 (16blocks, protected block 0th-15th)  
11 (24blocks, protected block 0th-23th)  
12 (28blocks, protected block 0th-27th)  
13 (30blocks, protected block 0th-29th)  
14 (31blocks, protected block 0th-30th)  
15 (32blocks, protected all)  
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
II. Additional 512-bit secured OTP for unique identifier: to provide 512-bit one-time program area for setting  
device unique serial number - Which may be set by factory or system customer. Please refer to table 3. 512-bit  
secured OTP definition.  
- Security register bit 0 indicates whether the chip is locked by factory or not.  
- To program the 512-bit secured OTP by entering 512-bit secured OTP mode (with ENSO command), and go-  
ing through normal program procedure, and then exiting 512-bit secured OTP mode by writing EXSO command.  
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register)  
command to set customer lock-down bit1 as "1". Please refer to table of "security register definition" for security  
register bit definition and table of "512-bit secured OTP definition" for address range definition.  
- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 512-bit se-  
cured OTP mode, array access is not allowed.  
Table 3. 512-bit Secured OTP Definition  
Address range  
xxxx00~xxxx0F  
xxxx10~xxxx3F  
Size  
Standard Factory Lock  
ESN (electrical serial number)  
N/A  
Customer Lock  
128-bit  
384-bit  
Determined by customer  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
11  
 
 
MX25L1633E  
Memory Organization  
Table 4. Memory Organization  
Block  
Sector  
255  
:
Address Range  
0FF000h 0FFFFFh  
Block  
Sector  
511  
:
Address Range  
1FF000h 1FFFFFh  
15  
:
:
31  
:
:
240  
239  
:
224  
223  
:
208  
207  
:
192  
191  
:
176  
175  
:
160  
159  
:
144  
143  
:
128  
127  
:
112  
111  
:
96  
95  
:
80  
79  
:
64  
63  
:
48  
47  
:
32  
31  
:
16  
15  
:
0F0000h  
0EF000h  
:
0E0000h  
0DF000h  
:
0D0000h  
0CF000h  
:
0C0000h  
0BF000h  
:
0B0000h  
0AF000h  
:
0A0000h  
09F000h  
:
090000h  
08F000h  
:
080000h  
07F000h  
:
070000h  
06F000h  
:
060000h  
05F000h  
:
050000h  
04F000h  
:
040000h  
03F000h  
:
030000h  
02F000h  
:
020000h  
01F000h  
:
010000h  
00F000h  
:
0F0FFFh  
0EFFFFh  
:
0E0FFFh  
0DFFFFh  
:
0D0FFFh  
0CFFFFh  
:
0C0FFFh  
0BFFFFh  
:
0B0FFFh  
0AFFFFh  
:
0A0FFFh  
09FFFFh  
:
090FFFh  
08FFFFh  
:
080FFFh  
07FFFFh  
:
070FFFh  
06FFFFh  
:
060FFFh  
05FFFFh  
:
050FFFh  
04FFFFh  
:
040FFFh  
03FFFFh  
:
030FFFh  
02FFFFh  
:
020FFFh  
01FFFFh  
:
010FFFh  
00FFFFh  
:
496  
495  
:
480  
479  
:
464  
463  
:
448  
447  
:
432  
431  
:
416  
415  
:
400  
399  
:
384  
383  
:
368  
367  
:
352  
351  
:
336  
335  
:
320  
319  
:
304  
303  
:
288  
287  
:
272  
271  
:
1F0000h  
1EF000h  
:
1E0000h  
1DF000h  
:
1D0000h  
1CF000h  
:
1C0000h  
1BF000h  
:
1B0000h  
1AF000h  
:
1A0000h  
19F000h  
:
190000h  
18F000h  
:
180000h  
17F000h  
:
170000h  
16F000h  
:
160000h  
15F000h  
:
150000h  
14F000h  
:
140000h  
13F000h  
:
130000h  
12F000h  
:
120000h  
11F000h  
:
110000h  
10F000h  
:
1F0FFFh  
1EFFFFh  
:
1E0FFFh  
1DFFFFh  
:
1D0FFFh  
1CFFFFh  
:
1C0FFFh  
1BFFFFh  
:
1B0FFFh  
1AFFFFh  
:
1A0FFFh  
19FFFFh  
:
190FFFh  
18FFFFh  
:
180FFFh  
17FFFFh  
:
170FFFh  
16FFFFh  
:
160FFFh  
15FFFFh  
:
150FFFh  
14FFFFh  
:
140FFFh  
13FFFFh  
:
130FFFh  
12FFFFh  
:
120FFFh  
11FFFFh  
:
110FFFh  
10FFFFh  
:
14  
13  
12  
11  
10  
9
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
8
7
6
5
4
3
2
1
0
2
1
0
002000h  
001000h  
000000h  
002FFFh  
001FFFh  
000FFFh  
256  
100000h  
100FFFh  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
12  
MX25L1633E  
DEVICE OPERATION  
1. Before a command is issued, status register should be checked to ensure device is ready for the intended op-  
eration.  
2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode  
until next CS# falling edge. In standby mode, all SO pins of this LSI should be High-Z.  
3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until  
next CS# rising edge.  
4. Input data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK.  
The difference of Serial mode 0 and mode 3 is shown as Figure 1.  
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, 2READ, 4READ, RES, REMS,  
REMS2, and REMS4 the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data  
being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR, SE, BE, CE, PP,  
4PP, RDP, DP, ENSO, EXSO,and WRSCUR, the CS# must go high exactly at the byte boundary; otherwise, the  
instruction will be rejected and not executed.  
6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglect-  
ed and not affect the current operation of Write Status Register, Program, Erase.  
Figure 1. Serial Modes Supported  
CPOL CPHA  
shift in  
shift out  
SCLK  
SCLK  
(Serial mode 0)  
(Serial mode 3)  
0
1
0
1
SI  
MSB  
SO  
MSB  
Note:  
CPOL indicates clock polarity of Serial master,  
-CPOL=1 for SCLK high while idle,  
-CPOL=0 for SCLK low while not transmitting.  
CPHA indicates clock phase.  
The combination of CPOL bit and CPHA bit decides which Serial mode is supported.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
13  
 
MX25L1633E  
COMMAND DESCRIPTION  
Table 5. Command Set  
RDID  
(read  
identific-  
ation)  
2READ (2 4READ (4  
FAST  
WREN  
(write  
enable)  
WRDI  
(write  
disable)  
RDSR  
(read status (write status  
register)  
05 (hex)  
WRSR  
Command  
(byte)  
READ (read  
x I/O read x I/O read  
command) command)  
READ (fast  
read data)  
data)  
register)  
01 (hex)  
Values  
Note1  
Note2  
1st byte  
2nd byte  
06 (hex)  
04 (hex)  
9F (hex)  
03 (hex)  
AD1  
(A23-A16)  
0B (hex)  
AD1  
BB (hex)  
EB (hex)  
ADD(4) &  
Dummy(4)  
ADD(2)  
AD2  
(A15-A8)  
AD3  
ADD(2) &  
Dummy(2)  
3rd byte  
AD2  
AD3  
Dummy(4)  
4th byte  
5th byte  
(A7-A0)  
Dummy  
n bytes  
read out  
sets the  
resets the  
outputs  
to read out to write new n bytes  
the values values of read out  
enable latch enable latch ID: 1-byte of the status the status until CS#  
n bytes  
read out read out by  
n bytes  
(WEL) write (WEL) write JEDEC  
until CS# by 2 x I/O 4 x I/O until  
goes high goes high until CS# CS# goes  
Action  
bit  
bit  
Manufact-  
urer ID  
register  
register  
goes high  
high  
& 2-byte  
Device ID  
RDP  
(Release  
4PP (quad  
page  
program)  
Command  
(byte)  
SE (sector  
erase)  
BE (block  
erase)  
CE (chip  
erase)  
PP (page  
DP (Deep  
RES (read  
program) power down) from deep electronic ID)  
power down)  
1st byte  
2nd byte  
3rd byte  
4th byte  
38 (hex)  
AD1  
20 (hex)  
AD1  
AD2  
D8 (hex) 60 or C7 (hex) 02 (hex)  
B9 (hex)  
AB (hex)  
AB (hex)  
AD1  
AD2  
AD3  
AD1  
AD2  
AD3  
x
x
x
AD3  
quad input to erase the to erase the  
to erase  
to program enters deep release from to read out  
to program  
the selected  
page  
selected  
sector  
selected  
block  
whole chip the selected power down deep power 1-byte Device  
Action  
page  
mode  
down mode  
ID  
Release  
Read  
Enhanced manufacturer  
& device ID)  
REMS (read  
electronic  
REMS2 (read REMS4 (read ENSO (enter EXSO (exit  
RDSCUR  
(read security (write security  
WRSCUR  
Command  
(byte)  
ID for 2x I/O ID for 4x I/O  
secured  
OTP)  
secured  
OTP)  
mode)  
mode)  
register)  
register)  
1st byte  
2nd byte  
3rd byte  
4th byte  
FFh (hex)  
90 (hex)  
EF (hex)  
DF (hex)  
B1 (hex)  
C1 (hex)  
2B (hex)  
2F (hex)  
x
x
x
x
x
X
X
x
x
ADD (Note 3) ADD (Note 3) ADD (Note 3)  
output the output the output the  
All these  
to enter  
to exit the to read value to set the  
512-bit of security lock-down bit  
ID & Device ID & Device ID & Device secured OTP secured OTP  
ID ID ID mode mode  
commands Manufacturer Manufacturer Manufacturer the 512-bit  
FFh, 00h,  
AAh or  
register  
as "1" (once  
lock-down,  
cannot be  
update)  
Action  
55h will  
escape the  
performance  
enhance  
mode  
Note 1: The count base is 4-bit for ADD(2) and Dummy(2) because of 2 x I/O.  
Note 2: The count base is 4-bit for ADD(4) and Dummy(4) because of 4 x I/O.  
Note 3: ADD=00H will output the manufacturer ID first and ADD=01H will output device ID first.  
Note 4: It is not recommended to adopt any other code not in the command definition table, which will potentially enter the hid-  
den mode.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
14  
 
 
 
MX25L1633E  
(1) Write Enable (WREN)  
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP,  
4PP, SE, BE, CE, and WRSR, which are intended to change the device content, should be set every time after the  
WREN instruction setting the WEL bit.  
The sequence of issuing WREN instruction is: CS# goes low→ sending WREN instruction code→CS# goes high. (see  
Figure 9)  
(2) Write Disable (WRDI)  
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.  
The sequence of issuing WRDI instruction is: CS# goes low→sending WRDI instruction code→CS# goes high. (see  
Figure 10)  
The WEL bit is reset by following situations:  
- Power-up  
- Write Disable (WRDI) instruction completion  
- Write Status Register (WRSR) instruction completion  
- Page Program (PP) instruction completion  
- Quad Page Program (4PP) instruction completion  
- Sector Erase (SE) instruction completion  
- Block Erase (BE) instruction completion  
- Chip Erase (CE) instruction completion  
(3) Read Identification (RDID)  
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix  
Manufacturer ID is C2(hex), the memory type ID is 24(hex) as the first-byte device ID, and the individual device ID  
of second-byte ID are listed as table of "ID Definitions". (see table 7)  
The sequence of issuing RDID instruction is: CS# goes low→sending RDID instruction code→24-bits ID data out on  
SO→ to end RDID operation can use CS# to high at any time during data out. (see Figure 11.)  
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cy-  
cle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
15  
MX25L1633E  
(4) Read Status Register (RDSR)  
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in  
program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP)  
bit before sending a new instruction when a program, erase, or write status register operation is in progress.  
The sequence of issuing RDSR instruction is: CS# goes low→sending RDSR instruction code→Status Register  
data out on SO (see Figure 12)  
The definition of the status register bits is as below:  
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write  
status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status  
register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status  
register cycle.  
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable  
latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/  
erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the de-  
vice will not accept program/erase/write status register instruction. The program/erase command will be ignored if it  
is applied to a protected memory area.  
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected  
area(as defined in table 2) of the device to against the program/erase instruction without hardware protection mode  
being set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruc-  
tion to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector  
Erase (SE), Block Erase (BE) and Chip Erase(CE) instructions (only if all Block Protect bits set to 0, the CE instruc-  
tion can be executed).  
QE bit. The Quad Enable (QE) bit, non-volatile bit, performs Quad when it is reset to "0" (factory default) to enable  
WP# or is set to "1" to enable Quad SIO2 and SIO3.  
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, which is set to "0" (factory default). The  
SRWD bit is operated together with Write Protection (WP#/SIO2) pin for providing hardware protection mode. The  
hardware protection mode requires SRWD sets to 1 and WP#/SIO2 pin signal is low stage. In the hardware protec-  
tion mode, the Write Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and  
Block Protect bits (BP3, BP2, BP1, BP0) are read only.  
Status Register  
bit7  
bit6  
bit5  
BP3  
(level of  
protected  
block)  
bit4  
BP2  
(level of  
protected  
block)  
bit3  
BP1  
(level of  
protected  
block)  
bit2  
BP0  
(level of  
protected  
block)  
bit1  
bit0  
SRWD (status  
register write  
protect)  
QE  
(Quad  
Enable)  
WEL  
(write enable  
latch)  
WIP  
(write in  
progress bit)  
1=Quad  
Enable  
0=not Quad  
Enable  
1=write  
enable  
0=not write 0=not in write  
1=write  
operation  
1=status  
register write  
disable  
(note 1)  
(note 1)  
(note 1)  
(note 1)  
enable  
operation  
Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile  
bit bit bit bit bit bit  
volatile bit  
volatile bit  
Note 1: see the table 2 "Protected Area Size".  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
16  
 
MX25L1633E  
(5) Write Status Register (WRSR)  
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the  
Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in ad-  
vance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the pro-  
tected area of memory (as shown in table 2). The WRSR also can set or reset the Quad enable (QE) bit and set or  
reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#/SIO2) pin signal, but  
has no effect on bit1(WEL) and bit0 (WIP) of the statur register. The WRSR instruction cannot be executed once the  
Hardware Protected Mode (HPM) is entered.  
The sequence of issuing WRSR instruction is: CS# goes low→sending WRSR instruction code→Status Register  
data on SI→ CS# goes high. (see Figure 13)  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write  
in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1  
during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL)  
bit is reset.  
Table 6. Protection Modes  
Mode  
Status register condition  
WP# and SRWD bit status  
Memory  
Status register can be written  
in (WEL bit is set to "1") and  
the SRWD, BP0-BP3, QE  
bits can be changed  
WP#=1 and SRWD bit=0, or  
WP#=0 and SRWD bit=0, or  
WP#=1 and SRWD=1  
The protected area  
cannot  
be program or erase.  
Software protection  
mode (SPM)  
The SRWD, BP0-BP3, QE of  
status register bits cannot be  
changed  
The protected area  
cannot  
be program or erase.  
Hardware protection  
mode (HPM)  
WP#=0, SRWD bit=1  
Note:  
1. As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in Table 2.  
As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM).  
Software Protected Mode (SPM):  
-
When SRWD bit=0, no matter WP#/SIO2 is low or high, the WREN instruction may set the WEL bit and can  
change the values of SRWD, BP3, BP2, BP1, BP0 and QE. The protected area, which is defined by BP3, BP2,  
BP1, BP0, is at software protected mode (SPM).  
-
When SRWD bit=1 and WP#/SIO2 is high, the WREN instruction may set the WEL bit can change the values of  
SRWD, BP3, BP2, BP1, BP0 and QE. The protected area, which is defined by BP3, BP2, BP1, BP0, is at soft-  
ware protected mode (SPM)  
Note:  
If SRWD bit=1 but WP#/SIO2 is low, it is impossible to write the Status Register even if the WEL bit has previously  
been set. It is rejected to write the Status Register and not be executed.  
Hardware Protected Mode (HPM):  
-
When SRWD bit=1, and then WP#/SIO2 is low (or WP#/SIO2 is low before SRWD bit=1), it enters the hardware  
protected mode (HPM). The data of the protected area is protected by software protected mode by BP3, BP2,  
BP1, BP0 and hardware protected mode by the WP#/SIO2 to against data modification.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
17  
MX25L1633E  
Note:  
To exit the hardware protected mode requires WP#/SIO2 driving high once the hardware protected mode is entered.  
If the WP#/SIO2 pin is permanently connected to high, the hardware protected mode can never be entered; only  
can use software protected mode via BP3, BP2, BP1, BP0.  
If the system goes into four I/O read mode, the feature of HPM will be disabled.  
(6) Read Data Bytes (READ)  
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on  
the falling edge of SCLK at a maximum frequency fR. The first address can be at any location. The address is auto-  
matically increased to the next higher address after each byte data is shifted out, so the whole memory can be read  
out at a single READ instruction. The address counter rolls over to 0 when the highest address has been reached.  
The sequence of issuing READ instruction is: CS# goes low→ sending READ instruction code→ 3-byte address on  
SI→data out on SO→to end READ operation can use CS# to high at any time during data out. (see Figure 14)  
(7) Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and  
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address can be at any  
location. The address is automatically increased to the next higher address after each byte data is shifted out, so  
the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when  
the highest address has been reached.  
The sequence of issuing FAST_READ instruction is: CS# goes low→sending FAST_READ instruction code→  
3-byte address on SI→1-dummy byte address on SI→data out on SO→ to end FAST_READ operation can use CS#  
to high at any time during data out. (see Figure 15)  
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
(8) 2 x I/O Read Mode (2READ)  
The 2READ instruction enable double throughput of Serial Flash in read mode. The address is latched on rising  
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maxi-  
mum frequency fT. The first address can be at any location. The address is automatically increased to the next high-  
er address after each byte data is shifted out, so the whole memory can be read out at a single 2READ instruction.  
The address counter rolls over to 0 when the highest address has been reached. Once writing 2READ instruction,  
the following address/dummy/data out will perform as 2-bit instead of previous 1-bit.  
The sequence of issuing 2READ instruction is: CS# goes low sending 2READ instruction 24-bit address inter-  
leave on SIO1 & SIO0 4 dummy cycles on SIO1 & SIO0 data out interleave on SIO1 & SIO0 to end 2READ  
operation can use CS# to high at any time during data out (see Figure 16 for 2 x I/O Read Mode Timing Waveform).  
While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
18  
MX25L1633E  
(9) 4 x I/O Read Mode (4READ)  
The 4READ instruction enable quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of status  
Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of SCLK,  
and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency  
fQ. The first address can be at any location. The address is automatically increased to the next higher address af-  
ter each byte data is shifted out, so the whole memory can be read out at a single 4READ instruction. The address  
counter rolls over to 0 when the highest address has been reached. Once writing 4READ instruction, the following  
address/dummy/data out will perform as 4-bit instead of previous 1-bit.  
The sequence of issuing 4READ instruction is: CS# goes low sending 4READ instruction 24-bit address inter-  
leave on SIO3, SIO2, SIO1 & SIO0 6 dummy cycles data out interleave on SIO3, SIO2, SIO1 & SIO0 to end  
4READ operation can use CS# to high at any time during data out (see Figure 17 for 4 x I/O Read Mode Timing  
Waveform).  
Another sequence of issuing 4 READ instruction especially useful in random access is : CS# goes low sending  
4 READ instruction 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0 performance enhance toggling bit  
P[7:0] 4 dummy cycles data out interleave on SIO3, SIO2, SIO1 and SIO0 till CS# goes high CS# goes low  
(reduce 4 Read instruction) 24-bit random access address (see Figure 18 for 4x I/O read enhance performance  
mode timing waveform).  
In the performance-enhancing mode (Note of Figure. 18), P[7:4] must be toggling with P[3:0] ; likewise  
P[7:0]=A5h,5Ah,F0h or 0Fh can make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no  
longer toggling with P[3:0]; likewise P[7:0]=FFh,00h,AAh or 55h. And afterwards CS# is raised or issuing FF com-  
mand (CS# goes high → CS# goes low→sending 0xFF→CS# goes high) instead of no toggling, the system then  
will escape from performance enhance mode and return to normal opertaion. In these cases, tSHSL=15ns(min) will  
be specified.  
While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
(10) Sector Erase (SE)  
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for  
any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before  
sending the Sector Erase (SE). Any address of the sector (see table 3) is a valid address for Sector Erase (SE) in-  
struction. The CS# must go high exactly at the byte boundary (the eighth bit of last address byte been latched-in);  
otherwise, the instruction will be rejected and not executed.  
Address bits [Am-A12] (Am is the most significant address) select the sector address.  
The sequence of issuing SE instruction is: CS# goes low→sending SE instruction code→3-byte address on SI  
→CS# goes high. (see Figure 21)  
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the  
tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the  
page is protected by BP3, BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
19  
MX25L1633E  
(11) Block Erase (BE)  
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for  
64K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)  
bit before sending the Block Erase (BE). Any address of the block (see table 3) is a valid address for Block Erase  
(BE) instruction. The CS# must go high exactly at the byte boundary (the eighth bit of address byte been latched-  
in); otherwise, the instruction will be rejected and not executed.  
The sequence of issuing BE instruction is: CS# goes low →sending BE instruction code→3-byte address on SI  
→CS# goes high. (see Figure 22)  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the  
tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the  
page is protected by BP3, BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page.  
(12) Chip Erase (CE)  
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruc-  
tion must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must go  
high exactly at the byte boundary (the eighth bit of instruction code been latched-in), otherwise the instruction will be  
rejected and not executed.  
The sequence of issuing CE instruction is: CS# goes low→ sending CE instruction code→ CS# goes high. (see Fig-  
ure 23)  
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE  
timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is  
protected by BP3, BP2, BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed  
when BP3, BP2, BP1, BP0 all set to "0".  
(13) Page Program (PP)  
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction  
must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device programs  
only the last 256 data bytes sent to the device. The last address byte (the 8 least significant address bits, A7-A0)  
should be set to 0 for 256 bytes page program. If A7-A0 are not all zero, transmitted data that exceed page length  
are programmed from the starting address (24-bit address that last 8 bit are all 0) of currently selected page. If the  
data bytes sent to the device exceeds 256, the last 256 data byte is programmed at the request page and previous  
data will be disregarded. If the data bytes sent to the device has not exceeded 256, the data will be programmed at  
the request address of the page. There will be no effort on the other data bytes of the same page.  
The sequence of issuing PP instruction is: CS# goes low→sending PP instruction code→3-byte address on SI→ at  
least 1-byte on data on SI→ CS# goes high. (see Figure 19)  
The CS# must be kept to low during the whole Page Program instruction cycle; The CS# must go high exactly at the  
byte boundary( the eighth bit of data being latched in), otherwise the instruction will be rejected and will not be ex-  
ecuted.  
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
20  
MX25L1633E  
Progress (WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the  
tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the  
page is protected by BP3, BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed.  
(14) 4 x I/O Page Program (4PP)  
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN) in-  
struction must execute to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1" before  
sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1, SIO2, and  
SIO3 as address and data input, which can improve programmer performance and the effectiveness of application  
of lower clock less than 85MHz. For system with faster clock, the Quad page program cannot provide more actual  
favors, because the required internal page program time is far more than the time data flows in. Therefore, we sug-  
gest that while executing this command (especially during sending data), user can slow the clock speed down to  
85MHz below. The other function descriptions are as same as standard page program.  
The sequence of issuing 4PP instruction is: CS# goes low→sending 4PP instruction code→3-byte address on  
SIO[3:0]→ at least 1-byte on data on SIO[3:0]→ CS# goes high. (see Figure 20)  
(15) Deep Power-down (DP)  
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to enter-  
ing the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode  
requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not ac-  
tive and all Write/Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep  
power-down mode. It's different from Standby mode.  
The sequence of issuing DP instruction is: CS# goes low→sending DP instruction code→ CS# goes high. (see Fig-  
ure 24)  
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP)  
and Read Electronic Signature (RES) instruction (those instructions allow the ID being reading out). When Power-  
down, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby  
mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction  
code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay  
of tDP is required before entering the Deep Power-down mode.  
(16) Release from Deep Power-down (RDP), Read Electronic Signature (RES)  
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip  
Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the  
Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in  
the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip  
Select (CS#) must remain High for at least tRES2(max), as specified in Table 10. AC Characteristics. Once in the  
Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. The  
RDP instruction is only for releasing from Deep Power Down Mode.  
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID  
Definitions in next page. This is not the same as RDID instruction. It is not recommended to use for new design. For  
new design, please use RDID instruction.  
The sequence is shown as Figure 25 and Figure 26. Even in Deep power-down mode, the RDP and RES are also  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
21  
MX25L1633E  
allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the  
current program/erase/write cycle in progress.  
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeat-  
edly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously  
in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in  
Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least  
tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute  
instruction.  
(17) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4)  
The REMS, REMS2 & REMS4 instruction is an alternative to the Release from Power-down/Device ID instruction  
that provides both the JEDEC assigned manufacturer ID and the specific device ID. The REMS4 instruction is rec-  
ommended to use for 4 I/O identification and REMS2 instruction is recommended to use for 2 I/O identification.  
The REMS, REMS2 & REMS4 instruction is very similar to the Release from Power-down/Device ID instruction.  
The instruction is initiated by driving the CS# pin low and shift the instruction code "90h" or "EFh" or "DFh" followed  
by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for Macronix (C2h) and the  
Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in Figure 27.  
The Device ID values are listed in Table 7 of ID Definitions in next page. If the one-byte address is initially set to  
01h, then the device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device  
IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high.  
Table 7. ID Definitions  
manufacturer ID  
C2  
memory type  
memory density  
15  
RDID Command  
RES Command  
24  
electronic ID  
24  
manufacturer ID  
C2  
device ID  
24  
REMS/REMS2/REMS4/  
Command  
(18) Enter Secured OTP (ENSO)  
The ENSO instruction is for entering the additional 512-bit secured OTP mode. The additional 512-bit secured OTP  
is independent from main array, which may use to store unique serial number for system identifier. After entering the  
Secured OTP mode, and then follow standard read or program, procedure to read out the data or update data. The  
Secured OTP data cannot be updated again once it is lock-down.  
The sequence of issuing ENSO instruction is: CS# goes low→sending ENSO instruction to enter Secured OTP  
mode→ CS# goes high.  
Please note that WRSR/WRSCUR commands are not acceptable during the access of secure OTP region, once se-  
curity OTP is lock down, only read related commands are valid.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
22  
 
MX25L1633E  
(19) Exit Secured OTP (EXSO)  
The EXSO instruction is for exiting the additional 512-bit secured OTP mode.  
The sequence of issuing EXSO instruction is: CS# goes low→sending EXSO instruction to exit Secured OTP  
mode→CS# goes high.  
(20) Read Security Register (RDSCUR)  
The RDSCUR instruction is for reading the value of Security Register bits. The Read Security Register can be read  
at any time (even in program/erase/write status register/write security register condition) and continuously.  
The sequence of issuing RDSCUR instruction is : CS# goes low→ sending RDSCUR instruction → Security Regis-  
ter data out on SO→CS# goes high.  
The definition of the Security Register bits is as below:  
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory before ex- factory or  
not. When it is "0", it indicates non- factory lock; "1" indicates factory- lock.  
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for custom-  
er lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 512-bit Secured OTP  
area cannot be update any more. While it is in 512-bit secured OTP mode, main array access is not allowed.  
Table 8. Security Register Definition  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
LDSO  
(indicate if  
lock-down  
Secured OTP  
indicator bit  
x
x
x
x
x
x
0 = not lock-down  
1 = lock-down  
(cannot  
program/erase  
OTP)  
0 = non-factory  
lock  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
1 = factory  
lock  
volatile bit volatile bit volatile bit volatile bit volatile bit volatile bit  
non-volatile bit  
non-volatile bit  
(21) Write Security Register (WRSCUR)  
The WRSCUR instruction is for changing the values of Security Register Bits. Unlike write status register, the WREN  
instruction is not required before sending WRSCUR instruction. The WRSCUR instruction may change the values  
of bit1 (LDSO bit) for customer to lock-down the 512-bit Secured OTP area. Once the LDSO bit is set to "1", the Se-  
cured OTP area cannot be updated any more.  
The sequence of issuing WRSCUR instruction is :CS# goes low→sending WRSCUR instruction→CS# goes high.  
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
23  
MX25L1633E  
POWER-ON STATE  
The device is at below states when power-up:  
- Standby mode ( please note it is not deep power-down mode)  
- Write Enable Latch (WEL) bit is reset  
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct  
level:  
- VCC minimum at power-up stage and then after a delay of tVSL  
- GND at power-down  
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.  
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change  
during power up state.  
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not  
guaranteed. The read, write, erase, and program command should be sent after the below time delay:  
- tVSL after VCC reached VCC minimum level  
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.  
Please refer to the figure of "power-up timing".  
Note:  
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommend-  
ed. (generally around 0.1uF)  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
24  
MX25L1633E  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
Rating  
Value  
Ambient Operating Temperature  
Storage Temperature  
Applied Input Voltage  
Applied Output Voltage  
VCC to Ground Potential  
Industrial grade  
-40°C to 85°C  
-65°C to 150°C  
-0.5V to 4.6V  
-0.5V to 4.6V  
-0.5V to 4.6V  
NOTICE:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to  
the device. This is stress rating only and functional operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended period may affect reliability.  
2. Specifications contained within the following tables are subject to change.  
3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, see Figure 2,  
and Figure 3.  
Figure 3. Maximum Positive Overshoot Waveform  
Figure 2. Maximum Negative Overshoot Waveform  
20ns  
20ns  
20ns  
Vss  
Vcc + 2.0V  
Vss-2.0V  
Vcc  
20ns  
20ns  
20ns  
Capacitance  
TA = 25°C, f = 1.0 MHz  
SYMBOL PARAMETER  
CIN Input Capacitance  
COUT Output Capacitance  
MIN.  
TYP  
MAX.  
UNIT  
pF  
CONDITIONS  
VIN = 0V  
6
8
pF  
VOUT = 0V  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
25  
 
 
MX25L1633E  
Figure 4. Input Test Waveforms and Measurement Level  
Input timing reference level  
Output timing reference level  
0.8VCC  
0.7VCC  
AC  
Measurement  
Level  
0.5VCC  
0.3VCC  
0.2VCC  
Note: Input pulse rise and fall time are <5ns  
Figure 5. Output Loading  
DEVICE UNDER  
TEST  
2.7K ohm  
+3.3V  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
CL=30pF Including jig capacitance  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
26  
 
 
MX25L1633E  
Table 9. DC Characteristics  
Temperature = -40 C to 85 C for Industrial grade, VCC = 2.7V ~ 3.6V  
°
°
SYMBOL PARAMETER  
NOTES  
MIN.  
TYP.  
MAX. UNITS TEST CONDITIONS  
VCC = VCC Max,  
VIN = VCC or GND  
ILI  
Input Load Current  
Output Leakage Current  
1
± 2  
± 2  
25  
uA  
uA  
uA  
uA  
VCC = VCC Max,  
VOUT = VCC or GND  
ILO  
1
1
VIN = VCC or GND,  
CS# = VCC  
ISB1 VCC Standby Current  
15  
2
Deep Power-down  
Current  
VIN = VCC or GND,  
CS# = VCC  
ISB2  
20  
f=104MHz,  
fQ=85MHz (4 x I/O read)  
SCLK=0.1VCC/0.9VCC,  
SO=Open  
25  
mA  
fT=85MHz (2 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
ICC1 VCC Read  
1
1
20  
10  
SO=Open  
f=33MHz,  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
VCC Program Current  
Program in Progress,  
CS# = VCC  
ICC2  
(PP)  
15  
3
20  
20  
20  
20  
mA  
VCC Write Status  
ICC3  
Program status register in  
mA  
Register (WRSR) Current  
progress, CS#=VCC  
VCC Sector Erase  
Current (SE)  
ICC4  
1
1
9
mA Erase in Progress, CS#=VCC  
mA Erase in Progress, CS#=VCC  
VCC Chip Erase Current  
ICC5  
(CE)  
15  
VIL  
VIH  
VOL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
-0.5  
0.3VCC  
VCC+0.4  
0.4  
V
V
0.7VCC  
V
V
IOL = 1.6mA  
IOH = -100uA  
VOH Output High Voltage  
VCC-0.2  
Notes :  
1. Typical values at VCC = 3.3V, T = 25 C. These currents are valid for all product versions (package and speeds).  
°
2. Typical value is calculated by simulation.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
27  
MX25L1633E  
Table 10. AC Characteristics  
Temperature = -40 C to 85 C for Industrial grade, VCC = 2.7V ~ 3.6V  
°
°
Symbol Alt. Parameter  
Clock Frequency for the following instructions:  
Min.  
Typ.  
Max.  
Unit  
fSCLK  
fC FAST_READ, SE, BE, CE, DP, RES, RDP,  
WREN, WRDI, RDID, RDSR, WRSR  
D.C.  
104  
MHz  
fP Clock Frequency for PP instructions  
f4P Clock Frequency for 4PP instructions  
fR Clock Frequency for READ instructions  
fT Clock Frequency for 2READ instructions  
fQ Clock Frequency for 4READ instructions  
D.C.  
D.C.  
86  
85  
33  
85  
85  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
ns  
ns  
ns  
V/ns  
V/ns  
ns  
ns  
ns  
fPSCLK  
fRSCLK  
fTSCLK  
fC=104MHz  
fR=33MHz  
fC=104MHz  
fR=33MHz  
4.7  
13  
4.7  
13  
0.1  
0.1  
5
tCH(1) tCLH Clock High Time (1633E-10G)  
tCL(1)  
tCLL Clock Low Time (1633E-10G)  
tCLCH(2)  
tCHCL(2)  
Clock Rise Time (3) (peak to peak)  
Clock Fall Time (3) (peak to peak)  
tSLCH tCSS CS# Active Setup Time (relative to SCLK)  
tCHSL CS# Not Active Hold Time (relative to SCLK)  
tDVCH tDSU Data In Setup Time  
5
2
tCHDX  
tCHSH  
tSHCH  
tDH Data In Hold Time  
5
5
5
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS# Active Hold Time (relative to SCLK)  
CS# Not Active Setup Time (relative to SCLK)  
Read  
tSHSL(3) tCSH CS# Deselect Time  
Write/Erase/Program  
2.7V-3.6V  
3.0V-3.6V  
10  
8
tSHQZ(2) tDIS Output Disable Time  
2.7V-3.6V  
9/8  
8/6  
ns  
Clock Low to Output Valid  
tCLQV  
tV  
Loading: 30pF/15pF  
tHO Output Hold Time  
Write Protect Setup Time  
3.0V-3.6V  
ns  
ns  
ns  
ns  
tCLQX  
tWHSL  
tSHWL  
tDP(2)  
1
20  
100  
Write Protect Hold Time  
CS# High to Deep Power-down Mode  
10  
us  
CS# High to Standby Mode without Electronic Signature  
Read  
tRES1(2)  
8.8  
us  
tRES2(2)  
tW  
CS# High to Standby Mode with Electronic Signature Read  
Write Status Register Cycle Time  
Byte-Program  
Page Program Cycle Time  
Sector Erase Cycle Time  
8.8  
100  
50  
3
200  
2
us  
ms  
us  
ms  
ms  
s
40  
9
0.6  
40  
0.4  
5
tBP  
tPP  
tSE  
tBE  
Block Erase Cycle Time  
Chip Erase Cycle Time  
tCE  
20  
s
Notes:  
1. tCH + tCL must be greater than or equal to 1/ f (fC or fR).  
2. Value guaranteed by characterization, not 100% tested in production.  
3. tSHSL=15ns from read instruction, tSHSL=50ns from Write/Erase/Program instruction.  
4. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.  
5. Test condition is shown as Figure 4 and Figure 5.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
28  
 
 
 
 
MX25L1633E  
Timing Analysis  
Figure 6. Serial Input Timing  
tSHSL  
tSHCH  
tCHCL  
CS#  
tCHSL  
tSLCH  
tCHSH  
SCLK  
tDVCH  
tCHDX  
tCLCH  
MSB  
LSB  
SI  
High-Z  
SO  
Figure 7. Output Timing  
CS#  
tCH  
SCLK  
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
SO  
tCLQX  
LSB  
ADDR.LSB IN  
SI  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
29  
MX25L1633E  
Figure 8. WP# Setup Timing and Hold Timing during WRSR when SRWD=1  
WP#  
tSHWL  
tWHSL  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14  
15  
SCLK  
01  
SI  
High-Z  
SO  
Figure 9. Write Enable (WREN) Sequence (Command 06)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
06  
SI  
High-Z  
SO  
Figure 10. Write Disable (WRDI) Sequence (Command 04)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
04  
SI  
High-Z  
SO  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
30  
 
 
MX25L1633E  
Figure 11. Read Identification (RDID) Sequence (Command 9F)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
28 29 30 31  
SCLK  
SI  
Command  
9F  
Manufacturer Identification  
Device Identification  
High-Z  
SO  
7
6
5
3
2
1
0
15 14 13  
MSB  
3
2
1
0
MSB  
Figure 12. Read Status Register (RDSR) Sequence (Command 05)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
SI  
command  
05  
Status Register Out  
Status Register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
Figure 13. Write Status Register (WRSR) Sequence (Command 01)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCLK  
command  
01  
Status  
Register In  
SI  
7
6
5
4
3
2
0
1
MSB  
High-Z  
SO  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
31  
 
 
 
MX25L1633E  
Figure 14. Read Data Bytes (READ) Sequence (Command 03)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
command  
03  
24-Bit Address  
23 22 21  
MSB  
3
2
1
0
SI  
Data Out 1  
Data Out 2  
High-Z  
2
7
6
5
4
3
1
7
0
SO  
MSB  
Figure 15. Read at Higher Speed (FAST_READ) Sequence (Command 0B)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCLK  
Command  
0B  
24 BIT ADDRESS  
SI  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
Configurable  
Dummy Cycle  
7
6
5
4
3
2
0
1
SI  
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
32  
 
 
MX25L1633E  
Figure 16. 2 x I/O Read Mode Sequence (Command BB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11  
18 19 20 21 22 23 24 25 26 27  
SCLK  
4 dummy  
cycle  
8 Bit Instruction  
12 BIT Address  
Data Output  
data  
address  
bit22, bit20, bit18...bit0  
BB(hex)  
P2 P0  
SI/SIO0  
bit6, bit4, bit2...bit0, bit6, bit4....  
High Impedance  
address  
bit23, bit21, bit19...bit1  
data  
P3 P1  
SO/SIO1  
bit7, bit5, bit3...bit1, bit7, bit5....  
Note:  
1. SI/SIO0 or SO/SIO1 should be kept "00" or "11" in the first 2 dummy cycles.  
In other words, P2=P0 or P3=P1 is necessary.  
Figure 17. 4 x I/O Read Mode Sequence (Command EB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
n
SCLK  
4 dummy  
cycles  
8 Bit Instruction  
6 Address cycles  
Data Output  
Performance  
enhance  
indicator (Note)  
data  
address  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
EB(hex)  
SI/SIO0  
bit4, bit0, bit4....  
bit20, bit16..bit0  
High Impedance  
High Impedance  
High Impedance  
address  
bit21, bit17..bit1  
data  
bit5 bit1, bit5....  
SO/SIO1  
WP#/SIO2  
NC/SIO3  
address  
bit22, bit18..bit2  
data  
bit6 bit2, bit6....  
address  
bit23, bit19..bit3  
data  
bit7 bit3, bit7....  
Notes:  
1. Hi-impedance is inhibited for the two clock cycles.  
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
33  
 
 
MX25L1633E  
Figure 18. 4 x I/O Read enhance performance Mode Sequence (Command EB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
n
SCLK  
4 dummy  
cycles  
8 Bit Instruction  
6 Address cycles  
Data Output  
Performance  
enhance  
indicator (Note)  
data  
address  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
EB(hex)  
SI/SIO0  
bit4, bit0, bit4....  
bit20, bit16..bit0  
High Impedance  
High Impedance  
High Impedance  
address  
bit21, bit17..bit1  
data  
bit5 bit1, bit5....  
SO/SIO1  
WP#/SIO2  
NC/SIO3  
address  
bit22, bit18..bit2  
data  
bit6 bit2, bit6....  
address  
bit23, bit19..bit3  
data  
bit7 bit3, bit7....  
CS#  
n+1  
...........  
n+7......n+9 ........... n+13  
...........  
SCLK  
4 dummy  
cycles  
6 Address cycles  
Data Output  
Performance  
enhance  
indicator (Note)  
data  
address  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
SI/SIO0  
bit4, bit0, bit4....  
bit20, bit16..bit0  
address  
bit21, bit17..bit1  
data  
bit5 bit1, bit5....  
SO/SIO1  
WP#/SIO2  
NC/SIO3  
address  
bit22, bit18..bit2  
data  
bit6 bit2, bit6....  
address  
bit23, bit19..bit3  
data  
bit7 bit3, bit7....  
Note: Performance enhance mode, if P7=P3 & P6=P2 & P5=P1 & P4=P0 (Toggling), ex: A5, 5A, 0F  
Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
34  
 
MX25L1633E  
Figure 19. Page Program (PP) Sequence (Command 02)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
02  
24-Bit Address  
Data Byte 1  
23 22 21  
MSB  
3
2
1
0
7
6
5
4
3
2
0
1
SI  
MSB  
CS#  
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  
SCLK  
Data Byte 2  
Data Byte 3  
Data Byte 256  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
7
6
5
4
3
2
0
1
1
1
SI  
MSB  
MSB  
MSB  
Figure 20. 4 x I/O Page Program (4PP) Sequence (Command 38)  
CS#  
10 11 12 13 14 15 16 17 18 19 20 21  
Data Data Data Data  
0
1
2
3
4
5
6
7
8
9
SCLK  
Command  
38  
6 Address cycle  
Byte 1 Byte 2 Byte 3 Byte 4  
16 12  
8
9
4
0
20  
4
0
4
0
4
0
4
0
SI/SIO0  
21 17 13  
5
6
7
1
2
3
SO/SIO1  
WP#/SIO2  
NC/SIO3  
5
6
7
1
2
3
5
6
7
1
2
3
5
6
7
1
2
3
5
6
7
1
2
3
22 18 14 10  
23 19 15 11  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
35  
 
MX25L1633E  
Figure 21. Sector Erase (SE) Sequence (Command 20)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
20  
24 Bit Address  
SI  
23 22  
MSB  
2
1
0
Note: SE command is 20(hex).  
Figure 22. Block Erase (BE) Sequence (Command D8)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
D8  
24 Bit Address  
SI  
23 22  
MSB  
2
0
1
Note: BE command is D8(hex).  
Figure 23. Chip Erase (CE) Sequence (Command 60 or C7)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
60 or C7  
Note: CE command is 60(hex) or C7(hex).  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
36  
 
 
MX25L1633E  
Figure 24. Deep Power-down (DP) Sequence (Command B9)  
CS#  
t
DP  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
B9  
Stand-by Mode  
Deep Power-down Mode  
Figure 25. RDP and Read Electronic Signature (RES) Sequence (Command AB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38  
SCLK  
Command  
AB  
t
3 Dummy Bytes  
RES2  
SI  
23 22 21  
MSB  
3
2
1
0
Electronic Signature Out  
High-Z  
7
6
5
4
3
2
0
1
SO  
MSB  
Deep Power-down Mode  
Stand-by Mode  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
37  
 
 
MX25L1633E  
Figure 26. Release from Deep Power-down (RDP) Sequence (Command AB)  
CS#  
t
RES1  
0
1
2
3
4
5
6
7
SCLK  
Command  
AB  
SI  
High-Z  
SO  
Deep Power-down Mode  
Stand-by Mode  
Figure 27. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90 or EF or DF)  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
SCLK  
Command  
90  
2 Dummy Bytes  
SI  
15 14 13  
3
2
1
0
High-Z  
SO  
CS#  
47  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
ADD (1)  
7
6
5
4
3
2
0
1
SI  
Manufacturer ID  
Device ID  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
X
SO  
MSB  
MSB  
MSB  
Notes:  
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.  
(2) Instruction is either 90(hex) or EF(hex) or DF(hex).  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
38  
 
 
MX25L1633E  
Figure 28. Power-up Timing  
V
CC  
V
(max)  
CC  
Chip Selection is Not Allowed  
V
(min)  
CC  
tVSL  
Device is fully  
accessible  
time  
Note: VCC (max.) is 3.6V and VCC (min.) is 2.7V.  
Table 11. Power-Up Timing  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tVSL(1)  
VCC(min) to CS# low  
200  
us  
Note: 1. The parameter is characterized only.  
Initial Delivery State  
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status  
Register contains 00h (all Status Register bits are 0).  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
39  
 
 
MX25L1633E  
OPERATING CONDITIONS  
At Device Power-Up and Power-Down  
AC timing illustrated in Figure 29 and Figure 30 are for the supply voltages and the control signals at device power-  
up and power-down. If the timing in the figures is ignored, the device will not operate correctly.  
During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be  
selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL.  
Figure 29. AC Timing at Device Power-Up  
VCC(min)  
VCC  
GND  
tVR  
tSHSL  
CS#  
tSHCH  
tSLCH  
tCHSL  
tCHSH  
SCLK  
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
SI  
High Impedance  
SO  
Symbol  
tVR  
Parameter  
VCC Rise Time  
Notes  
Min.  
5
Max.  
500000  
Unit  
us/V  
1
Notes:  
1. The value is guaranteed by characterization, not 100% tested in production.  
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to  
"AC CHARACTERISTICS" table.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
40  
 
MX25L1633E  
Figure 30. Power-Down Sequence  
During power-down, CS# needs to follow the voltage drop on VCC to avoid mis-operation.  
VCC  
CS#  
SCLK  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
41  
 
MX25L1633E  
ERASE AND PROGRAMMING PERFORMANCE  
PARAMETER  
Min.  
TYP. (1)  
Max. (2)  
UNIT  
ms  
ms  
s
Write Status Register Cycle Time  
Sector Erase Cycle Time  
Block Erase Cycle Time  
40  
40  
100  
200  
2
0.4  
Chip Erase Cycle Time  
5
20  
50  
3
s
Byte Program Time (via page program command)  
Page Program Cycle Time  
Erase/Program Cycle  
9
us  
0.6  
ms  
cycles  
100,000  
Notes:  
1. Typical program and erase time assumes the following conditions: 25 C, 3.3V, and checker board pattern.  
°
2. Under worst conditions of 85 C and 2.7V.  
°
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming com-  
mand.  
DATA RETENTION  
PARAMETER  
Condition  
Min.  
Max.  
UNIT  
Data retention  
55˚C  
20  
years  
LATCH-UP CHARACTERISTICS  
MIN.  
MAX.  
Input Voltage with respect to GND on all power pins, SI, CS#  
Input Voltage with respect to GND on SO  
Current  
-1.0V  
-1.0V  
2 VCCmax  
VCC + 1.0V  
+100mA  
-100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
42  
 
 
MX25L1633E  
ORDERING INFORMATION  
CLOCK  
(MHz)  
PART NO.  
MX25L1633EZNI-10G  
MX25L1633EZUI-10G  
MX25L1633EM2I-10G  
TEMPERATURE  
-40 C~85 C  
PACKAGE  
Remark  
8-WSON  
(6x5mm)  
8-USON  
(4x4mm)  
8-SOP  
104  
104  
104  
RoHS Compliant  
RoHS Compliant  
RoHS Compliant  
°
°
-40 C~85 C  
°
°
-40 C~85 C  
°
°
(200mil)  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
43  
MX25L1633E  
PART NAME DESCRIPTION  
MX 25 L 1633E ZN  
I
10 G  
OPTION:  
G: RoHS Compliant  
SPEED:  
10: 104MHz  
TEMPERATURE RANGE:  
I: Industrial (-40°C to 85°C)  
PACKAGE:  
ZN: 6mm x 5mm WSON  
ZU: 4mm x 4mm USON  
M2: 200mil 8-SOP  
DENSITY & MODE:  
1633E: 16Mb standard type  
TYPE:  
L: 3V  
DEVICE:  
25: Serial Flash  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
44  
MX25L1633E  
PACKAGE INFORMATION  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
45  
MX25L1633E  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
46  
MX25L1633E  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
47  
MX25L1633E  
REVISION HISTORY  
Revision No. Description  
Page  
Date  
0.01  
1. Added 4 x I/O=80MHz @VCC=3.0V~3.6V  
P5, 27, 28 JUN/21/2010  
2. Revised Storage Temperature  
P25  
0.02  
1. Changed title from "Advanced Information" to "Preliminary"  
P5  
AUG/02/2010  
1.0  
1. Changed Clock Rate  
P5, 27, 28 AUG/31/2010  
2 x I/O Read = From 75 MHz to 85MHz  
4 x I/O Read = From 75 MHz to 85MHz  
2. Removed 16 pin SOP  
P6, 8, 43, 44  
3. Removed the title "Preliminary"  
P5  
1.1  
1. Changed tVR(min.) from 20us/V to 5us/V  
2. Modified description for RoHS compliance  
P40  
P6,43,44  
NOV/18/2010  
1.2  
1.3  
1.4  
1. Updated 4PP program frequency  
P21,28  
APR/26/2011  
JUN/14/2011  
AUG/08/2012  
1. Revised tCLQV spec from 10ns@30pF loading to 9ns@30pF loading. P28  
1. Modified WEL bit description  
2. Modified Test Conditions of ILO  
P16  
P27  
1.5  
1. Added 8-USON 4x4mm package solution  
P6,8,43,44, NOV/08/2012  
P46  
1.6  
1. Modified tCLQX spec. in AC Characteristics Table  
1. Removed Advanced Information from MX25L1633EZUI-10G  
P28  
DEC/12/2012  
1.7  
P43  
JAN/09/2013  
1.8  
1. Updated parameters for DC Characteristics.  
2. Updated Erase and Programming Performance.  
3. Updated package information  
P5,27  
NOV/08/2013  
P5,27~28,42  
P45~46  
P5  
4. Updated feature descriptions  
P/N: PM1581  
REV. 1.8, NOV. 08, 2013  
48  
MX25L1633E  
Except for customized products which has been expressly identified in the applicable agreement, Macronix's  
products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or  
household applications only, and not for use in any applications which may, directly or indirectly, cause death,  
personal injury, or severe property damages. In the event Macronix products are used in contradicted to their  
target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its  
actual use in accordance with the applicable laws and regulations; and Macronix as well as it’s suppliers and/or  
distributors shall be released from any and all liability arisen therefrom.  
Copyright© Macronix International Co., Ltd. 2010~2013. All rights reserved, including the trademarks and  
tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit,  
NBiit, Macronix NBit, eLiteFlash, HybridNVM, HybridFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC,  
Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Audio, Rich Book, Rich TV, and FitCAM. The names  
and brands of third party referred thereto (if any) are for identification purposes only.  
For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  
49  

相关型号:

MX25L1633EZNI10G

16M-BIT [x 1/x 2/x 4] CMOS MXSMIO (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L1633EZUI10G

16M-BIT [x 1/x 2/x 4] CMOS MXSMIO (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L1635D

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix

MX25L1635DM1I-12G

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix

MX25L1635DM2I-10G

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix

MX25L1635DM2I-12G

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix

MX25L1635DMI-12G

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix

MX25L1635DZNI-10G

Flash, 4MX4, PDSO8, 6 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220, WSON-8
Macronix

MX25L1635DZNI-12G

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix

MX25L1635E

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix

MX25L1635EM2I-10G

Flash, 4MX4, PDSO8, 0.200 INCH, ROHS COMPLIANT, SOP-8
Macronix

MX25L1635EM2I10G

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix