MX25L6435EZNI10G [Macronix]

64M-BIT [x 1/x 2/x 4] CMOS MXSMIO (SERIAL MULTI I/O) FLASH MEMORY;
MX25L6435EZNI10G
型号: MX25L6435EZNI10G
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

64M-BIT [x 1/x 2/x 4] CMOS MXSMIO (SERIAL MULTI I/O) FLASH MEMORY

文件: 总89页 (文件大小:1707K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX25L6435E  
MX25L6435E  
HIGH PERFORMANCE  
SERIAL FLASH SPECIFICATION  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
1
MX25L6435E  
Contents  
1. FEATURES ........................................................................................................................................................ 4  
2. GENERAL DESCRIPTION ............................................................................................................................... 6  
Table 1. Read Performance ...................................................................................................................6  
3. PIN CONFIGURATION ...................................................................................................................................... 7  
4. PIN DESCRIPTION............................................................................................................................................ 7  
5. BLOCK DIAGRAM............................................................................................................................................. 8  
6. DATA PROTECTION.......................................................................................................................................... 9  
Table 2. Protected Area Sizes..............................................................................................................10  
Table 3. 4K-bit Secured OTP Definition ...............................................................................................11  
7. MEMORY ORGANIZATION............................................................................................................................. 12  
Table 4. Memory Organization .............................................................................................................12  
8. DEVICE OPERATION...................................................................................................................................... 13  
9. HOLD FEATURE.............................................................................................................................................. 14  
10. COMMAND DESCRIPTION........................................................................................................................... 15  
Table 5. Command Sets.......................................................................................................................15  
10-1. Write Enable (WREN)..........................................................................................................................18  
10-2. Write Disable (WRDI)...........................................................................................................................19  
10-3. Read Identification (RDID)...................................................................................................................20  
10-4. Read Status Register (RDSR).............................................................................................................21  
10-5. Write Status Register (WRSR).............................................................................................................24  
Table 6. Protection Modes....................................................................................................................25  
10-6. Read Data Bytes (READ) ....................................................................................................................27  
10-7. Read Data Bytes at Higher Speed (FAST_READ) ..............................................................................28  
10-8. Dual Read Mode (DREAD)..................................................................................................................29  
10-9. 2 x I/O Read Mode (2READ) ...............................................................................................................30  
10-10. Quad Read Mode (QREAD) ................................................................................................................31  
10-11. 4 x I/O Read Mode (4READ) ...............................................................................................................32  
10-12. Performance Enhance Mode...............................................................................................................33  
10-13. Performance Enhance Mode Reset (FFh)...........................................................................................33  
10-14. Sector Erase (SE)................................................................................................................................36  
10-15. Block Erase (BE) .................................................................................................................................37  
10-16. Block Erase (BE32K)...........................................................................................................................38  
10-17. Chip Erase (CE)...................................................................................................................................39  
10-18. Page Program (PP) .............................................................................................................................40  
10-19. 4 x I/O Page Program (4PP)................................................................................................................41  
10-20. Continuous Program mode (CP mode)................................................................................................44  
10-21. Deep Power-down (DP).......................................................................................................................46  
10-22. Release from Deep Power-down (RDP), Read Electronic Signature (RES) .......................................47  
10-23. Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4) .....................................49  
10-24. ID Read................................................................................................................................................50  
Table 7. ID Definitions .........................................................................................................................50  
10-25. Enter Secured OTP (ENSO)................................................................................................................50  
10-26. Exit Secured OTP (EXSO)...................................................................................................................50  
10-27. Read Security Register (RDSCUR).....................................................................................................51  
Table 8. Security Register Definition ....................................................................................................52  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
2
MX25L6435E  
10-28. Write Security Register (WRSCUR).....................................................................................................53  
10-29. Write Protection Selection (WPSEL)....................................................................................................53  
10-30. Single Block Lock/Unlock Protection (SBLK/SBULK)..........................................................................57  
10-31. Read Block Lock Status (RDBLOCK)..................................................................................................60  
10-32. Gang Block Lock/Unlock (GBLK/GBULK) ...........................................................................................61  
10-33. Enable SO to Output RY/BY# (ESRY).................................................................................................62  
10-34. Disable SO to Output RY/BY# (DSRY)................................................................................................62  
10-35. No Operation (NOP) ............................................................................................................................62  
10-36. Software Reset (Reset-Enable (RSTEN) and Reset (RST)) ...............................................................62  
10-37. Read SFDP Mode (RDSFDP)..............................................................................................................63  
Table 9. Signature and Parameter Identification Data Values .............................................................64  
Table 10. Parameter Table (0): JEDEC Flash Parameter Tables.........................................................65  
Table 11. Parameter Table (1): Macronix Flash Parameter Tables.......................................................67  
11. POWER-ON STATE ....................................................................................................................................... 69  
12. ELECTRICAL SPECIFICATIONS.................................................................................................................. 70  
12-1. Absolute Maximum Ratings.................................................................................................................70  
12-2. Capacitance.........................................................................................................................................70  
Table 12. DC Characteristics................................................................................................................72  
Table 13. AC Characteristics................................................................................................................73  
13. TIMING ANALYSIS ........................................................................................................................................ 75  
Table 14. Power-Up Timing .................................................................................................................77  
13-1. Initial Delivery State.............................................................................................................................77  
14. OPERATING CONDITIONS........................................................................................................................... 78  
15. ERASE AND PROGRAMMING PERFORMANCE........................................................................................ 80  
16. DATA RETENTION ........................................................................................................................................ 80  
17. LATCH-UP CHARACTERISTICS.................................................................................................................. 80  
18. ORDERING INFORMATION.......................................................................................................................... 81  
19. PART NAME DESCRIPTION......................................................................................................................... 82  
20. PACKAGE INFORMATION............................................................................................................................ 83  
21. REVISION HISTORY ..................................................................................................................................... 88  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
3
MX25L6435E  
64M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY  
1. FEATURES  
GENERAL  
• Serial Peripheral Interface compatible -- Mode 0 and Mode 3  
67,108,864 x 1 bit structure or 33,554,432 x 2 bits (two I/O mode) structure or 16,777,216 x 4 bits (four I/O  
mode) structure  
• 2048 Equal Sectors with 4K bytes each  
- Any Sector can be erased individually  
• 256 Equal Blocks with 32K bytes each  
- Any Block can be erased individually  
• 128 Equal Blocks with 64K bytes each  
- Any Block can be erased individually  
• Power Supply Operation  
- 2.7 to 3.6 volt for read, erase, and program operations  
• Latch-up protected to 100mA from -1V to Vcc +1V  
PERFORMANCE  
• High Performance  
VCC = 2.7~3.6V  
- Normal read  
- 50MHz  
- Fast read  
- 1 I/O: 104MHz with 8 dummy cycles  
- 2 I/O: 86MHz with 4 dummy cycles for 2READ instruction  
- 4 I/O: Up to 104MHz  
- Configurable dummy cycle number for 4 I/O read operation  
- Fast program time: 0.7ms(typ.) and 3ms(max.)/page (256-byte per page)  
- Byte program time: 12us (typical)  
- Continuous Program mode (automatically increase address under word program mode)  
- Fast erase time: 30ms (typ.)/sector (4K-byte per sector) ; 0.25s(typ.) /block (64K-byte per block); 20s(typ.) /  
chip  
• Low Power Consumption  
- Low active read current: 19mA(max.) at 104MHz, 10mA(max.) at 33MHz  
- Low active programming current: 15mA (typ.)  
- Low active sector erase current: 10mA (typ.)  
- Low standby current: 15uA (typ.)  
- Deep power down current: 1uA (typ.)  
• Typical 100,000 erase/program cycles  
• 20 years data retention  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
4
MX25L6435E  
SOFTWARE FEATURES  
• Input Data Format  
- 1-byte Command code  
• Advanced Security Features  
- BP0-BP3 block group protect  
- Flexible individual block protect when OTP WPSEL=1  
- Additional 4K bits secured OTP for unique identifier  
• Auto Erase and Auto Program Algorithms  
Automatically erases and verifies data at selected sector  
-
-
Automatically programs and verifies data at selected page by an internal algorithm that automatically times  
the program pulse width (Any page to be programmed should have page in the erased state first.)  
Status Register Feature  
Electronic Identification  
JEDEC 1-byte Manufacturer ID and 2-byte Device ID  
- RES command for 1-byte Device ID  
-
- The REMS,REMS2, REMS4 commands for 1-byte Manufacturer ID and 1-byte Device ID  
Support Serial Flash Discoverable Parameters (SFDP) mode  
HARDWARE FEATURES  
SCLK Input  
Serial clock input  
• SI/SIO0  
-
Serial Data Input or Serial Data Input/Output for 2 x I/O mode and 4 x I/O mode  
• SO/SIO1  
-
Serial Data Output or Serial Data Input/Output for 2 x I/O mode and 4 x I/O mode  
• WP#/SIO2  
-
Hardware write protection or serial data Input/Output for 4 x I/O mode  
• HOLD#/SIO3  
-
To pause the device without deselecting the device or serial data Input/Output for 4 x I/O mode  
• PACKAGE  
-
- 16-pin SOP (300mil)  
8-pin SOP (200mil)  
-
-
8-WSON (6x5mm, 8x6mm)  
- 24 ball TFBGA (6x8mm)  
All devices are RoHS Compliant and Halogen-free  
-
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
5
MX25L6435E  
2. GENERAL DESCRIPTION  
MX25L6435E is 64Mb bits serial Flash memory, which is configured as 8,388,608 x 8 internally. When it is in two  
or four I/O mode, the structure becomes 33,554,432 bits x 2 or 16,777,216 bits x 4. MX25L6435E feature a se-  
rial peripheral interface and software protocol allowing operation on a simple 3-wire bus while it is in single I/O  
mode. The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Se-  
rial access to the device is enabled by CS# input.  
MX25L6435E, MXSMIO® (Serial Multi I/O) flash memory, provides sequential read operation on whole chip and  
multi-I/O features.  
When it is in dual I/O mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits input  
and data output. When it is in quad I/O mode, the SI pin, SO pin, WP# pin and HOLD# pin become SIO0 pin,  
SIO1 pin, SIO2 pin and SIO3 pin for address/dummy bits input and data Input/Output.  
After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the  
specified page or sector/block locations will be executed. Program command is executed on byte basis, or page (256  
bytes) basis, or word basis for Continuous Program mode, and erase command is executed on sector (4K-byte),  
block (32K-byte/64K-byte), or whole chip basis.  
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status  
read command can be issued to detect completion status of a program or erase operation via WIP bit.  
When the device is not in operation and CS# is high, it is put in standby mode.  
The MX25L6435E utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after  
100,000 program and erase cycles.  
Table 1. Read Performance  
Numbers of Dummy Cycles  
4 I/O  
86*  
6
8
104  
Note: *means default status  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
6
MX25L6435E  
3. PIN CONFIGURATION  
16-PIN SOP (300mil)  
4. PIN DESCRIPTION  
SYMBOL  
DESCRIPTION  
CS#  
Chip Select  
Serial Data Input (for 1xI/O)/ Serial  
1
2
3
4
5
6
7
8
SCLK  
SI/SIO0  
NC  
HOLD#/SIO3  
VCC  
16  
15  
14  
13  
12  
11  
10  
9
SI/SIO0 Data Input & Output (for 2xI/O or 4xI/O  
NC  
mode)  
NC  
NC  
Serial Data Output (for 1xI/O)/Serial  
SO/SIO1 Data Input & Output (for 2xI/O or 4xI/O  
mode)  
NC  
NC  
NC  
NC  
GND  
WP#/SIO2  
CS#  
SO/SIO1  
SCLK  
Clock Input  
Write protection: connect to GND or  
WP#/SIO2 Serial Data Input & Output (for 4xI/O  
mode)  
8-PIN SOP (200mil)  
To pause the device without deselecting  
the device or Serial data Input/Output  
for 4 x I/O mode  
HOLD#/  
SIO3  
1
2
3
4
CS#  
SO/SIO1  
WP#/SIO2  
GND  
VCC  
8
7
6
5
HOLD#/SIO3  
SCLK  
SI/SIO0  
VCC  
GND  
NC  
+ 3.0V Power Supply  
Ground  
No Connection  
8-WSON (6x5mm, 8x6mm)  
Note:  
1. The HOLD# pin is internal pull high.  
1
2
3
4
VCC  
CS#  
SO/SIO1  
WP#/SIO2  
GND  
8
7
6
5
HOLD#/SIO3  
SCLK  
SI/SIO0  
24-Ball TFBGA (6x8 mm)  
4
NC  
NC  
VCC  
GND  
WP#/SIO2 HOLD#/SIO3 NC  
NC  
NC  
3
2
1
SI/SIO0  
NC  
NC  
NC  
NC  
SCLK  
CS#  
SO/SIO1  
NC  
NC  
A
NC  
B
NC  
C
NC  
D
NC  
E
NC  
F
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
7
MX25L6435E  
5. BLOCK DIAGRAM  
Address  
Generator  
Memory Array  
Page Buffer  
Y-Decoder  
Data  
Register  
SI/SIO0  
SRAM  
Buffer  
Sense  
Amplifier  
CS#  
WP#/SIO2  
HOLD#/SIO3  
Mode  
Logic  
State  
Machine  
HV  
Generator  
SCLK  
Clock Generator  
Output  
Buffer  
SO/SIO1  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
8
MX25L6435E  
6. DATA PROTECTION  
During power transition, there may be some false system level signals which result in inadvertent erasure or pro-  
gramming. The device is designed to protect itself from these accidental write cycles.  
The state machine will be reset as standby mode automatically during power up. In addition, the control register  
architecture of the device constrains that the memory contents can only be changed after specific command se-  
quences have completed successfully.  
In the following, there are several features to protect the system from the accidental write cycles during VCC  
power-up and power-down or from system noise.  
• Valid command length checking: The command length will be checked whether it is at byte base and complet-  
ed on byte boundary.  
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before  
other command to change data. The WEL bit will return to reset stage under following situation:  
- Power-up  
- Write Disable (WRDI) command completion  
- Write Status Register (WRSR) command completion  
- Page Program (PP, 4PP) command completion  
- Continuous Program mode (CP) instruction completion  
- Sector Erase (SE) command completion  
- Block Erase (BE, BE32K) command completion  
- Chip Erase (CE) command completion  
- Single Block Lock/Unlock (SBLK/SBULK) instruction completion  
- Gang Block Lock/Unlock (GBLK/GBULK) instruction completion  
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from  
writing all commands except Release from Deep Power Down mode command (RDP) and Read Electronic  
Signature command (RES).  
I. Block lock protection  
- The Software Protected Mode (SPM) uses (BP3, BP2, BP1, BP0) bits to allow part of memory to be pro-  
tected as read only. The protected area definition is shown as table of "Table 2. Protected Area Sizes", the  
protected areas are more flexible which may protect various areas by setting value of BP0-BP3 bits.  
- The Hardware Protected Mode (HPM) uses WP#/SIO2 to protect the (BP3, BP2, BP1, BP0) bits and SRWD  
bit. If the system goes into four I/O mode, the feature of HPM will be disabled.  
- MX25L6435E provides individual block (or sector) write protect & unprotect. User may enter the mode with  
WPSEL command and conduct individual block (or sector) write protect with SBLK instruction, or SBULK for  
individual block (or sector) unprotect. Under the mode, user may conduct whole chip (all blocks) protect with  
GBLK instruction and unlock the whole chip with GBULK instruction.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
9
MX25L6435E  
Table 2. Protected Area Sizes  
Protected Area Sizes (TB bit = 0)  
Status bit  
Protect Level  
64Mb  
BP3  
0
BP2  
0
BP1  
0
BP0  
0
0 (none)  
0
0
0
1
1 (1block, block 127th)  
0
0
1
0
2 (2blocks, block 126th-127th)  
3 (4blocks, block 124th-127th)  
4 (8blocks, block 120th-127th)  
5 (16blocks, block 112th-127th)  
6 (32blocks, block 96th-127th)  
7 (64blocks, block 64th-127th)  
8 (128blocks, protect all)  
9 (128blocks, protect all)  
10 (128blocks, protect all)  
11 (128blocks, protect all)  
12 (128blocks, protect all)  
13 (128blocks, protect all)  
14 (128blocks, protect all)  
15 (128blocks, protect all)  
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Protected Area Sizes (TB bit = 1)  
Status bit  
Protect Level  
64Mb  
BP3  
0
BP2  
0
BP1  
0
BP0  
0
0 (none)  
0
0
0
1
1 (1block, block 0th)  
0
0
1
0
2 (2blocks, block 0th-1st)  
3 (4blocks, block 0th-3rd)  
4 (8blocks, block 0th-7th)  
5 (16blocks, block 0th-15th)  
6 (32blocks, block 0th-31st)  
7 (64blocks, block 0th-63rd)  
8 (128blocks, protect all)  
9 (128blocks, protect all)  
10 (128blocks, protect all)  
11 (128blocks, protect all)  
12 (128blocks, protect all)  
13 (128blocks, protect all)  
14 (128blocks, protect all)  
15 (128blocks, protect all)  
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Note: The device is ready to accept a Chip Erase instruction if, and only if, all Block Protect (BP3, BP2, BP1,  
BP0) are 0.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
10  
MX25L6435E  
II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit One-Time Program area for setting  
device unique serial number - Which may be set by factory or system maker.  
- Security register bit 0 indicates whether the chip is locked by factory or not.  
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with ENSO command), and  
going through normal program procedure, and then exiting 4K-bit secured OTP mode by writing EXSO com-  
mand.  
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register)  
command to set customer lock-down bit1 as "1". Please refer to table of "Table 8. Security Register Defini-  
tion" for security register bit definition and table of "Table 3. 4K-bit Secured OTP Definition" for address range  
definition.  
Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit Secured  
OTP mode, array access is not allowed.  
Table 3. 4K-bit Secured OTP Definition  
Address range  
xxx000~xxx00F  
xxx010~xxx1FF  
Size  
Standard Factory Lock  
ESN (electrical serial number)  
N/A  
Customer Lock  
128-bit  
3968-bit  
Determined by customer  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
11  
MX25L6435E  
7. MEMORY ORGANIZATION  
Table 4. Memory Organization  
Block(64K-byte) Block(32K-byte) Sector (4K-byte)  
Address Range  
2047  
7FF000h  
7FFFFFh  
255  
individual 16 sectors  
lock/unlock unit:4K-byte  
2040  
2039  
7F8000h  
7F7000h  
7F8FFFh  
7F7FFFh  
127  
254  
253  
252  
251  
250  
2032  
2031  
7F0000h  
7EF000h  
7F0FFFh  
7EFFFFh  
2024  
2023  
7E8000h  
7E7000h  
7E8FFFh  
7E7FFFh  
126  
individual block  
lock/unlock unit:64K-byte  
2016  
2015  
7E0000h  
7DF000h  
7E0FFFh  
7DFFFFh  
2008  
2007  
7D8000h  
7D7000h  
7D8FFFh  
7D7FFFh  
125  
2000  
7D0000h  
7D0FFFh  
individual block  
lock/unlock unit:64K-byte  
47  
02F000h  
02FFFFh  
5
4
3
2
1
0
40  
39  
028000h  
027000h  
028FFFh  
027FFFh  
2
1
individual block  
lock/unlock unit:64K-byte  
32  
31  
020000h  
01F000h  
020FFFh  
01FFFFh  
24  
23  
018000h  
017000h  
018FFFh  
017FFFh  
16  
15  
010000h  
00F000h  
010FFFh  
00FFFFh  
8
7
008000h  
007000h  
008FFFh  
007FFFh  
individual 16 sectors  
lock/unlock unit:4K-byte  
0
0
000000h  
000FFFh  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
12  
MX25L6435E  
8. DEVICE OPERATION  
1. Before a command is issued, status register should be checked to ensure device is ready for the intended op-  
eration.  
2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby  
mode until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z.  
3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until  
next CS# rising edge.  
4. For standard single data rate serial mode, input data is latched on the rising edge of Serial Clock(SCLK) and  
data shifts out on the falling edge of SCLK. The difference of Serial mode 0 and mode 3 is shown as "Figure 1.  
Serial Modes Supported (for Normal Serial mode)".  
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, RDSFDP, 2READ, DREAD,  
4READ, QREAD, RDBLOCK, RES, REMS, REMS2, and REMS4 the shifted-in instruction sequence is fol-  
lowed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the follow-  
ing instructions: WREN, WRDI, WRSR, SE, BE, BE32K, HPM, CE, PP, CP, 4PP, RDP, DP, WPSEL, SBLK,  
SBULK, GBLK, GBULK, ENSO, EXSO, WRSCUR, ESRY and DSRY. The CS# must go high exactly at the  
byte boundary; otherwise, the instruction will be rejected and not executed.  
6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is ne-  
glected and not affect the current operation of Write Status Register, Program, Erase.  
Figure 1. Serial Modes Supported (for Normal Serial mode)  
CPOL CPHA  
shift in  
shift out  
SCLK  
SCLK  
(Serial mode 0)  
(Serial mode 3)  
0
1
0
1
SI  
MSB  
SO  
MSB  
Note:  
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while  
not transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial  
mode is supported.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
13  
MX25L6435E  
9. HOLD FEATURE  
HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop  
the operation of write status register, programming, or erasing in progress.  
The operation of HOLD requires Chip Select (CS#) keeping low and starts on falling edge of HOLD# pin signal  
while Serial Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not  
start until Serial Clock signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while  
Serial Clock(SCLK) signal is being low( if Serial Clock signal is not being low, HOLD operation will not end until  
Serial Clock being low).  
Figure 2. Hold Condition Operation  
CS#  
SCLK  
HOLD#  
Hold  
Hold  
Condition  
(standard)  
Condition  
(non-standard)  
The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't  
care during the HOLD operation. If Chip Select (CS#) drives high during HOLD operation, it will reset the internal  
logic of the device. To re-start communication with chip, the HOLD# must be at high and CS# must be at low.  
Note: The HOLD feature is disabled during Quad I/O mode.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
14  
MX25L6435E  
10. COMMAND DESCRIPTION  
Table 5. Command Sets  
Read Commands  
I/O  
1
1
FAST READ  
(fast read  
data)  
0B (hex)  
AD1  
AD2  
AD3  
Dummy  
1
2
2
4
4
2READ  
(2 x I/O read (1I / 2O read  
command)  
BB (hex)  
AD1  
AD2  
AD3  
Dummy  
DREAD  
4READ  
READ  
(normal read)  
RDSFDP  
(Read SFDP)  
Command  
W4READ  
(4 x I/O read  
command)  
EB (hex)  
AD1  
AD2  
AD3  
Dummy*  
Quad I/O  
read with  
configurable  
dummy cycles  
command)  
3B (hex)  
AD1  
AD2  
AD3  
Dummy  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
03 (hex)  
AD1  
AD2  
5A (hex)  
AD1  
AD2  
AD3  
Dummy  
E7 (hex)  
AD1  
AD2  
AD3  
Dummy  
AD3  
n bytes read n bytes read Read SFDP n bytes read n bytes read Quad I/O read  
out until CS# out until CS# mode out by 2 x I/O out by Dual with 4 dummy  
until CS# goes Output until cycles  
high CS# goes high  
goes high  
goes high  
Action  
I/O  
4
QREAD  
6B (hex)  
AD1  
AD2  
AD3  
Command  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
Dummy  
n bytes read  
out by Quad  
Output until  
CS# goes high  
Action  
Note: *Dummy cycle number will be different, depending on the bit7 (DC) setting of Configuration Register.  
Please refer to "Configuration Register" Table.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
15  
MX25L6435E  
Other Commands  
WRSR  
(write status/  
configuration page program) (sector erase)  
register)  
RDCR (read  
configuration  
register)  
WREN  
WRDI  
RDSR (read  
4PP (quad  
SE  
Command  
(write enable) (write disable) status register)  
1st byte  
2nd byte  
3rd byte  
4th byte  
06 (hex)  
04 (hex)  
05 (hex)  
15 (hex)  
01 (hex)  
Values  
Values  
38 (hex)  
AD1  
AD2  
20 (hex)  
AD1  
AD2  
AD3  
AD3  
sets the (WEL) resets the to read out the to read out the to write new quad input to to erase the  
write enable  
latch bit  
(WEL) write values of the values of the values of the program the  
enable latch status register configuration status register selected page  
selected  
sector  
Action  
bit  
register  
RDP (Release  
from deep  
power down)  
BE 32K (block  
erase 32KB) erase 64KB)  
BE (block  
CE (chip  
erase)  
PP (page  
program)  
CP (continuous DP (Deep  
Command  
program)  
power down)  
1st byte  
2nd byte  
3rd byte  
4th byte  
52 (hex)  
AD1  
AD2  
D8 (hex)  
AD1  
AD2  
60 or C7 (hex)  
02 (hex)  
AD1  
AD2  
AD (hex)  
AD1  
AD2  
B9 (hex)  
AB (hex)  
AD3  
AD3  
AD3  
AD3  
to erase the  
to erase the to erase whole to program the continuously enters deep release from  
selected 32KB selected 64KB  
chip  
selected page  
program  
whole chip,  
the address is  
automatically  
increase  
power down  
mode  
deep power  
down mode  
block  
block  
Action  
REMS (read REMS2 (read REMS4 (read  
electronic electronic electronic  
electronic ID) manufacturer manufacturer manufacturer secured OTP)  
& device ID) & device ID) & device ID)  
RDID  
(read identific-  
ation)  
Command  
RES (read  
ENSO (enter  
1st byte  
2nd byte  
3rd byte  
4th byte  
9F (hex)  
AB (hex)  
90 (hex)  
EF (hex)  
DF (hex)  
B1 (hex)  
x
x
x
x
x
x
x
x
x
ADD (Note 2)  
output the  
ADD  
output the  
ADD  
output the  
outputs  
JEDEC  
ID: 1-byte  
Manufacturer  
ID & 2-byte  
Device ID  
to read out  
to enter the  
1-byte Device Manufacturer Manufacturer Manufacturer 4K-bit secured  
ID ID & Device ID ID & Device ID ID & device ID OTP mode  
Action  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
16  
MX25L6435E  
RDSCUR  
(read security (write security  
WRSCUR  
RDBLOCK  
(block protect  
read)  
3C (hex)  
AD1  
AD2  
Command  
EXSO (exit  
secured OTP)  
SBLK (single SBULK (single  
GBLK (gang  
block lock)  
block lock  
block unlock)  
register)  
2B (hex)  
register)  
2F (hex)  
1st byte  
2nd byte  
3rd byte  
4th byte  
C1 (hex)  
36 (hex)  
AD1  
39 (hex)  
AD1  
7E (hex)  
AD2  
AD2  
AD3  
AD3  
AD3  
to exit the 4K- to read value to set the lock-  
individual  
block  
individual  
block  
(64K-byte)  
or sector  
(4K-byte)  
unprotect  
read individual whole chip  
block or sector write protect  
write protect  
bit secured  
OTP mode  
of security  
register  
down bit as  
"1" (once lock- (64K-byte)  
down, cannot or sector  
Action  
status  
be update) (4K-byte) write  
protect  
RST  
RSTEN  
WPSEL  
ESRY (enable DSRY (disable  
GBULK (gang  
block unlock)  
NOP (No  
COMMAND  
(Reset  
(Write Protect SO to output SO to output  
Selection)  
Operation) (Reset Enable)  
Memory)  
RY/BY#)  
RY/BY#)  
1st byte  
2nd byte  
3rd byte  
4th byte  
Action  
98 (hex)  
00 (hex) 66 (hex)  
99 (hex)  
68 (hex)  
70 (hex)  
80 (hex)  
whole chip  
unprotect  
to enter  
and enable  
to enable SO to disable SO  
to output RY/ to output RY/  
individal block BY# during CP BY# during CP  
protect mode mode mode  
Release Read  
Enhanced  
FF (hex)  
COMMAND  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
Action  
All these  
commands  
FFh, 00h, AAh  
or 55h will  
escape the  
performance  
mode  
Note 1: The count base is 4-bit for ADD(2) and Dummy(2) because of 2 x I/O. And the MSB is on SI/SIO1 which is different  
from 1 x I/O condition.  
Note 2: ADD=00H will output the manufacturer ID first and ADD=01H will output device ID first.  
Note 3: It is not recommended to adopt any other code not in the command definition table, which will potentially enter the  
hidden mode.  
Note 4: Before executing RST command, RSTEN command must be executed. If there is any other command to interfere,  
the reset operation will be disabled.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
17  
MX25L6435E  
10-1. Write Enable (WREN)  
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP,  
4PP, CP, SE, BE, BE32K, CE, WRSR, WRSCUR, WPSEL, SBLK, SBULK, GBLK and GBULK, which are intend-  
ed to change the device content, should be set every time after the WREN instruction setting the WEL bit.  
The sequence of issuing WREN instruction is: CS# goes low→ sending WREN instruction code→ CS# goes  
high.  
The SIO[3:1] are don't care in this mode.  
Figure 3. Write Enable (WREN) Sequence (Command 06)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
06h  
SI  
High-Z  
SO  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
18  
MX25L6435E  
10-2. Write Disable (WRDI)  
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.  
The sequence of issuing WRDI instruction is: CS# goes low→ sending WRDI instruction code→ CS# goes high.  
The WEL bit is reset by following situations:  
- Power-up  
- Write Disable (WRDI) instruction completion  
- Write Status/Configuration Register (WRSR) instruction completion  
- Page Program (PP, 4PP) instruction completion  
- Sector Erase (SE) instruction completion  
- Block Erase (BE, BE32K) instruction completion  
- Chip Erase (CE) instruction completion  
- Continuous Program mode (CP) instruction completion  
- Single Block Lock/Unlock (SBLK/SBULK) instruction completion  
- Gang Block Lock/Unlock (GBLK/GBULK) instruction completion  
Figure 4. Write Disable (WRDI) Sequence (Command 04)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
04h  
SI  
High-Z  
SO  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
19  
MX25L6435E  
10-3. Read Identification (RDID)  
The RDID instruction is for reading the Manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC  
Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte Device ID, and the individual Device  
ID of second-byte ID are listed as table of "Table 7. ID Definitions".  
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code → 24-bits ID data  
out on SO→ to end RDID operation can use CS# to high at any time during data out.  
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the  
cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby  
stage.  
Figure 5. Read Identification (RDID) Sequence (Command 9F)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
28 29 30 31  
SCLK  
SI  
Command  
9Fh  
Manufacturer Identification  
Device Identification  
High-Z  
SO  
7
6
5
3
2
1
0
15 14 13  
MSB  
3
2
1
0
MSB  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
20  
MX25L6435E  
10-4. Read Status Register (RDSR)  
The RDSR instruction is for reading Status Register. The Read Status Register can be read at any time (even  
in program/erase/write status register condition) and continuously. It is recommended to check the Write in  
Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is  
in progress.  
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register  
data out on SO.  
The SIO[3:1] are don't care when during this mode.  
Figure 6. Read Status Register (RDSR) Sequence (Command 05)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
SI  
command  
05h  
Status Register Out  
Status Register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
21  
MX25L6435E  
The definition of the status register bits is as below:  
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/  
write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write  
status register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/  
write status register cycle.  
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write en-  
able latch. When WEL bit sets to "1", which means the internal write enable latch is set, the device can accept  
program/erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable  
latch; the device will not accept program/erase/write status register instruction. The program/erase command will  
be ignored and will reset WEL bit if it is applied to a protected memory area. To ensure both WIP bit & WEL bit are  
both set to 0 and available for next program/erase/operations, WIP bit needs to be confirm to be 0 before polling  
WEL bit. After WIP bit confirmed, WEL bit needs to be confirm to be 0.  
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protect-  
ed area (as defined in "Table 2. Protected Area Sizes") of the device to against the program/erase instruction  
without hardware protection mode being set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the  
Write Status Register (WRSR) instruction to be executed. Those bits define the protected area of the memory to  
against Page Program (PP), Sector Erase (SE), Block Erase (BE) and Chip Erase (CE) instructions (only if all  
Block Protect bits set to 0, the CE instruction can be executed). The BP3, BP2, BP1, BP0 bits are "0" as default.  
Which is un-protected.  
QE bit. The Quad Enable (QE) bit, non-volatile bit, while it is "0" (factory default), it performs non-Quad and WP#  
is enable. While QE is "1", it performs Quad I/O mode and WP# is disabled. In the other word, if the system goes  
into four I/O mode (QE=1), the feature of HPM will be disabled.  
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, default value is "0". SRWD bit is oper-  
ated together with Write Protection (WP#/SIO2) pin for providing hardware protection mode. The hardware pro-  
tection mode requires SRWD sets to 1 and WP#/SIO2 pin signal is low stage. In the hardware protection mode,  
the Write Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and Block  
Protect bits (BP3, BP2, BP1, BP0) are read only. The SRWD bit defaults to be "0".  
Status Register  
bit7  
SRWD  
(status  
bit6  
bit5  
BP3  
(level of  
protected  
block)  
bit4  
BP2  
(level of  
protected  
block)  
bit3  
BP1  
(level of  
protected  
block)  
bit2  
BP0  
(level of  
protected  
block)  
bit1  
bit0  
QE  
(Quad  
Enable)  
WEL  
(write enable  
latch)  
WIP  
(write in  
progress bit)  
register write  
protect)  
1= Quad  
Enable  
0=not Quad  
Enable  
1=write  
enable  
0=not write 0=not in write  
enable  
1=write  
operation  
1=status  
register write  
disable  
(note 1)  
(note 1)  
(note 1)  
(note 1)  
operation  
Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile  
bit bit bit bit bit bit  
volatile bit  
volatile bit  
Note: See the "Table 2. Protected Area Sizes" .  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
22  
MX25L6435E  
Configuration Register  
The Configuration Register is able to change the default status of Flash memory. Flash memory will be configured  
after the CR bit is set.  
TB bit  
The Top/Bottom (TB) bit is a non-volatile OTP bit. The Top/Bottom (TB) bit is used to configure the Block Protect  
area by BP bit (BP3, BP2, BP1, BP0), starting from TOP or Bottom of the memory array. The TB bit is defaulted as “0”,  
which means Top area protect. When it is set as “1”, the protect area will change to Bottom area of the memory  
device. To write the TB bit requires the Write Status Register (WRSR) instruction to be executed.  
Configuration Register  
bit7  
DC  
bit6  
bit5  
bit4  
bit3  
TB  
bit2  
bit1  
bit0  
(Dummy  
Cycle)  
Reserved  
Reserved  
Reserved  
(top/bottom  
selected)  
0=Top area  
protect  
Reserved  
Reserved  
Reserved  
(Note)  
x
x
x
x
x
x
1=Bottom  
area protect  
(Default=0)  
OTP  
x
x
x
x
x
x
Volatile bit  
Note: See "Dummy Cycle and Frequency Table", with "Don't Care" on other Reserved Configuration Registers.  
Dummy Cycle and Frequency Table  
Numbers of Dummy  
DC  
Quad I/O Fast Read  
clock cycles  
1
8
6
104  
86  
0 (default)  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
23  
MX25L6435E  
10-5. Write Status Register (WRSR)  
The WRSR instruction is for changing the values of Status Register Bits and Configuration Register Bits. Be-  
fore sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the  
Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3,  
BP2, BP1, BP0) bits to define the protected area of memory (as shown in "Table 2. Protected Area Sizes"). The  
WRSR also can set or reset the Quad enable (QE) bit and set or reset the Status Register Write Disable (SRWD)  
bit in accordance with Write Protection (WP#/SIO2) pin signal, but has no effect on bit1(WEL) and bit0 (WIP) of  
the status register. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is en-  
tered.  
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Regis-  
ter data on SI→ CS# goes high.  
Figure 7. Write Status Register (WRSR) Sequence (Command 01)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
Mode 3  
Mode 0  
SCLK  
command  
01h  
Status  
Register In  
Configuration  
Register In  
SI  
4
15 14  
13  
12 11  
10 9  
8
2
1
0
7
6
5
3
MSB  
High-Z  
SO  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
24  
MX25L6435E  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The  
Write in Progress (WIP) bit still can be checked out during the Write Status Register cycle is in progress. The  
WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write En-  
able Latch (WEL) bit is reset.  
Table 6. Protection Modes  
Mode  
Status register condition  
WP# and SRWD bit status  
Memory  
Status register can be written  
in (WEL bit is set to "1") and  
the SRWD, BP0-BP3  
Software protection  
mode (SPM)  
WP#=1 and SRWD bit=0, or  
WP#=0 and SRWD bit=0, or  
WP#=1 and SRWD=1  
The protected area cannot  
be programmed or erased.  
bits can be changed  
The SRWD, BP0-BP3 of  
status register bits cannot be  
changed  
Hardware protection  
mode (HPM)  
The protected area cannot  
be programmed or erased.  
WP#=0, SRWD bit=1  
Note: As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown  
in "Table 2. Protected Area Sizes".  
As the table above showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode  
(HPM):  
Software Protected Mode (SPM):  
-
-
When SRWD bit=0, no matter WP#/SIO2 is low or high, the WREN instruction may set the WEL bit and can  
change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1,  
BP0, is at software protected mode (SPM).  
When SRWD bit=1 and WP#/SIO2 is high, the WREN instruction may set the WEL bit can change the values  
of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software  
protected mode (SPM)  
Hardware Protected Mode (HPM):  
-
When SRWD bit=1, and then WP#/SIO2 is low (or WP#/SIO2 is low before SRWD bit=1), it enters the hard-  
ware protected mode (HPM). The data of the protected area is protected by software protected mode by BP3,  
BP2, BP1, BP0 and hardware protected mode by the WP#/SIO2 to against data modification.  
Note:  
To exit the hardware protected mode requires WP#/SIO2 driving high once the hardware protected mode is  
entered. If the WP#/SIO2 pin is permanently connected to high, the hardware protected mode can never be en-  
tered; only can use software protected mode via BP3, BP2, BP1, BP0.  
If the system goes into four I/O mode, the feature of HPM will be disabled.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
25  
MX25L6435E  
Figure 8. WRSR flow  
start  
WREN command  
RDSR command  
No  
WEL=1?  
Yes  
WRSR command  
Write status register data  
RDSR command  
No  
WIP=0?  
Yes  
RDSR command  
Read WEL=0, BP[3:0], QE,  
and SRWD data  
No  
Verify OK?  
Yes  
WRSR successfully  
WRSR fail  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
26  
MX25L6435E  
10-6. Read Data Bytes (READ)  
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out  
on the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The ad-  
dress is automatically increased to the next higher address after each byte data is shifted out, so the whole  
memory can be read out at a single READ instruction. The address counter rolls over to 0 when the highest ad-  
dress has been reached.  
The sequence of issuing READ instruction is: CS# goes low→ sending READ instruction code→3-byte address  
on SI →data out on SO→ to end READ operation can use CS# to high at any time during data out.  
Figure 9. Read Data Bytes (READ) Sequence (Command 03)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
03  
24 ADD Cycles  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
SI  
Data Out 2  
Data Out 1  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0 D7  
MSB MSB  
SO  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
27  
MX25L6435E  
10-7. Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and  
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be  
at any location. The address is automatically increased to the next higher address after each byte data is shifted  
out, so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to  
0 when the highest address has been reached.  
The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ instruction code→  
3-byte address on SI→1-dummy byte (default) address on SI→ data out on SO→ to end FAST_READ operation  
can use CS# to high at any time during data out.  
In the performance-enhancing mode, P[7:4] must be toggling with P[3:0] ; likewise P[7:0]=A5h,5Ah,F0h or 0Fh  
can make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer toggling with  
P[3:0]; likewise P[7:0]=FFh,00h,AAh or 55h and afterwards CS# is raised and then lowered, the system then will  
escape from performance enhance mode and return to normal operation.  
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any  
impact on the Program/Erase/Write Status Register current cycle.  
Figure 10. Read at Higher Speed (FAST_READ) Sequence (Command 0B) (104MHz)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCLK  
Command  
0Bh  
24 BIT ADDRESS  
SI  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
Dummy Cycle  
7
6
5
4
3
2
0
1
SI  
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
28  
MX25L6435E  
10-8. Dual Read Mode (DREAD)  
The DREAD instruction enable double throughput of Serial Flash in read mode. The address is latched on ris-  
ing edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at  
a maximum frequency fT. The first address byte can be at any location. The address is automatically increased  
to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single  
DREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writ-  
ing DREAD instruction, the following data out will perform as 2-bit instead of previous 1-bit.  
The sequence of issuing DREAD instruction is: CS# goes low  
sending DREAD instruction  
3-byte address  
on SI  
8-bit dummy cycle  
data out interleave on SO1 & SO0  
to end DREAD operation can use CS# to  
high at any time during data out.  
While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
Figure 11. Dual Read Mode Sequence (Command 3B)  
CS#  
30 31 32  
39 40 41 42 43 44 45  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data Out  
Data Out  
1
8 dummy  
cycle  
Command  
24 ADD Cycle  
2
A23 A22  
A1 A0  
D4 D2  
D6 D4  
D7 D5  
3B  
D6  
D7  
D0  
SI/SIO0  
High Impedance  
D1  
D5 D3  
SO/SIO1  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
29  
MX25L6435E  
10-9. 2 x I/O Read Mode (2READ)  
The 2READ instruction enables Double Transfer Rate of Serial Flash in read mode. The address is latched on  
rising edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at  
a maximum frequency fT. The first address byte can be at any location. The address is automatically increased  
to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single  
2READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writ-  
ing 2READ instruction, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit.  
The sequence of issuing 2READ instruction is: CS# goes low→ sending 2READ instruction→ 24-bit address in-  
terleave on SIO1 & SIO0→ 4-bit dummy cycle on SIO1 & SIO0→ data out interleave on SIO1 & SIO0→ to end  
2READ operation can use CS# to high at any time during data out.  
While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any  
impact on the Program/Erase/Write Status Register current cycle.  
Figure 12. 2 x I/O Read Mode Sequence (Command BB)  
CS#  
28 29  
18 19 20 21 22 23 24 25 26 27  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data Out  
Data Out  
4 dummy  
cycle  
Command  
12 ADD Cycle  
2
1
A22 A20  
A23 A21  
A2 A0  
P0  
D4 D2  
D6 D4  
D7 D5  
P2  
BB(hex)  
D6  
D7  
D0  
D1  
SI/SIO0  
High Impedance  
A3 A1 P3  
P1  
D5 D3  
SO/SIO1  
Note: SI/SIO0 or SO/SIO1 should be kept "0h" or "Fh" in the first two dummy cycles. In other words, P2=P0 or  
P3=P1 is necessary.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
30  
MX25L6435E  
10-10. Quad Read Mode (QREAD)  
The QREAD instruction enable quad throughput of Serial Flash in read mode. The address is latched on rising  
edge of SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a  
maximum frequency fQ. The first address byte can be at any location. The address is automatically increased  
to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single  
QREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writ-  
ing QREAD instruction, the following data out will perform as 4-bit instead of previous 1-bit.  
The sequence of issuing QREAD instruction is: CS# goes low  
sending QREAD instruction → 3-byte address  
on SI  
8-bit dummy cycle  
data out interleave on SO3, SO2, SO1 & SO0  
to end QREAD operation can  
use CS# to high at any time during data out.  
While Program/Erase/Write Status Register cycle is in progress, QREAD instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
Figure 13. Quad Read Mode Sequence (Command 6B)  
CS#  
29 30 31 32 33  
38 39 40 41 42  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data  
Out 2  
Data  
Out 3  
Command  
6B  
8 dummy cycles  
24 ADD Cycles  
Data  
Out 1  
A23A22  
A2 A1 A0  
D4 D0 D4 D0 D4  
SI/SO0  
High Impedance  
High Impedance  
High Impedance  
SO/SO1  
D5 D1 D5 D1 D5  
D6 D2 D6 D2 D6  
WP#/SO2  
HOLD#/SO3  
D7 D3 D7 D3 D7  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
31  
MX25L6435E  
10-11. 4 x I/O Read Mode (4READ)  
The 4READ instruction enables quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of sta-  
tus Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of  
SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum  
frequency fQ. The first address byte can be at any location. The address is automatically increased to the next  
higher address after each byte data is shifted out, so the whole memory can be read out at a single 4READ in-  
struction. The address counter rolls over to 0 when the highest address has been reached. Once writing 4READ  
instruction, the following address/dummy/data out will perform as 4-bit instead of previous 1-bit.  
The sequence of issuing 4READ instruction is: CS# goes low sending 4READ instruction 24-bit address in-  
terleave on SIO3, SIO2, SIO1 & SIO0 2+4 dummy cycles (default) data out interleave on SIO3, SIO2, SIO1 &  
SIO0 to end 4READ operation can use CS# to high at any time during data out.  
W4READ instruction (E7) is also available for 4 I/O read. The sequence is similar to 4READ, but with only 4  
dummy cycles. The clock rate runs at 54MHz.  
Figure 14. 4 x I/O Read Mode Sequence (Command EB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
n
SCLK  
Conꢀgurable  
Dummy cycles  
8 Bit Instruction  
EBh  
6 Address cycles  
Data Output  
(Note 3)  
Performance  
enhance  
indicator (Note2)  
data  
bit4, bit0, bit4....  
address  
bit20, bit16..bit0  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
SI/SIO0  
High Impedance  
High Impedance  
High Impedance  
address  
bit21, bit17..bit1  
data  
bit5 bit1, bit5....  
SO/SIO1  
address  
bit22, bit18..bit2  
data  
bit6 bit2, bit6....  
WP#/SIO2  
HOLD#/SIO3  
address  
bit23, bit19..bit3  
data  
bit7 bit3, bit7....  
Note:  
1. Hi-impedance is inhibited for the two clock cycles.  
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.  
3. The Configurable Dummy Cycle is set by Configuration Register Bit. Please see "Dummy Cycle and  
Frequency Table"  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
32  
MX25L6435E  
Another sequence of issuing 4READ instruction especially useful in random access is : CS# goes low→ sending  
4READ instruction→ 3-bytes address interleave on SIO3, SIO2, SIO1 & SIO0 →performance enhance toggling  
bit P[7:0]→ 4 dummy cycles (default)→ data out still CS# goes high → CS# goes low (reduce 4 Read instruc-  
tion) → 24-bit random access address (Please refer to "Figure 15. 4 x I/O Read Enhance Performance Mode  
Sequence (Command EB)").  
In the performance-enhancing mode (Notes of "Figure 15. 4 x I/O Read Enhance Performance Mode Sequence  
(Command EB)"), P[7:4] must be toggling with P[3:0]; likewise P[7:0]=A5h, 5Ah, F0h or 0Fh can make this  
mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer toggling with P[3:0]; likewise  
P[7:0]=FFh, 00h, AAh or 55h. These commands will reset the performance enhance mode. And afterwards CS#  
is raised and then lowered, the system then will return to normal operation.  
While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
10-12. Performance Enhance Mode  
The device could waive the command cycle bits if the two cycle bits after address cycle toggles. (Please note  
"Figure 15. 4 x I/O Read Enhance Performance Mode Sequence (Command EB)")  
Please be noticed that “EBh” and “E7h” commands support enhance mode. The performance enhance mode is  
not supported in dual I/O mode.  
After entering enhance mode, following CSB go high, the device will stay in the read mode and treat CSB go low  
of the first clock as address instead of command cycle.  
To exit enhance mode, a new fast read command whose first two dummy cycles is not toggle then exit. Or issue  
”FFh” command to exit enhance mode.  
10-13. Performance Enhance Mode Reset (FFh)  
To conduct the Performance Enhance Mode Reset operation, FFh command code, 8 clocks, should be issued in  
1I/O sequence.  
If the system controller is being Reset during operation, the flash device will return to the standard operation.  
Upon Reset of main chip, Instruction would be issued from the system. Instructions like Read ID (9Fh) or Fast  
Read (0Bh) would be issued.  
The SIO[3:1] are don't care when during this mode.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
33  
MX25L6435E  
Figure 15. 4 x I/O Read Enhance Performance Mode Sequence (Command EB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
n
SCLK  
Conꢀgurable  
Dummy cycles  
8 Bit Instruction  
EBh  
6 Address cycles  
Data Output  
(Note 2)  
Performance  
enhance  
indicator (Note1)  
data  
bit4, bit0, bit4....  
address  
bit20, bit16..bit0  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
SI/SIO0  
High Impedance  
High Impedance  
High Impedance  
address  
bit21, bit17..bit1  
data  
bit5 bit1, bit5....  
SO/SIO1  
address  
bit22, bit18..bit2  
data  
bit6 bit2, bit6....  
WP#/SIO2  
HOLD#/SIO3  
address  
bit23, bit19..bit3  
data  
bit7 bit3, bit7....  
CS#  
n+1  
...........  
n+7......n+9 ........... n+13  
...........  
SCLK  
Conꢀgurable  
Dummy cycles  
6 Address cycles  
address  
Data Output  
(Note 2)  
Performance  
enhance  
indicator (Note1)  
data  
bit4, bit0, bit4....  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
SI/SIO0  
bit20, bit16..bit0  
address  
bit21, bit17..bit1  
data  
bit5 bit1, bit5....  
SO/SIO1  
address  
bit22, bit18..bit2  
data  
bit6 bit2, bit6....  
WP#/SIO2  
HOLD#/SIO3  
address  
bit23, bit19..bit3  
data  
bit7 bit3, bit7....  
Note:  
1. Performance enhance mode, if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P0 (Toggling), ex: A5, 5A, 0F, if not using  
performance enhance recommend to keep 1 or 0 in performance enhance indicator.  
Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF  
2. The Configurable Dummy Cycle is set by Configuration Register Bit. Please see "Dummy Cycle and  
Frequency Table"  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
34  
MX25L6435E  
Figure 16. Performance Enhance Mode Reset for Fast Read Quad I/O  
Mode Bit Reset  
for Quad I/O  
CS#  
Mode 3  
Mode 3  
1
2
3
4
5
6
7
SCLK  
Mode  
Mode 0  
IO0  
IO1  
IO2  
FFh  
Don’t Care  
Don’t Care  
Don’t Care  
IO3  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
35  
MX25L6435E  
10-14. Sector Erase (SE)  
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used  
for any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)  
bit before sending the Sector Erase (SE). Any address of the sector (see "Table 4. Memory Organization" ) is a  
valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest  
eighth of address byte has been latched-in); otherwise, the instruction will be rejected and not executed.  
The sequence of issuing SE instruction is: CS# goes low → sending SE instruction code→ 3-byte address on SI  
→CS# goes high.  
The SIO[3:1] are don't care when during this mode.  
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked out during the Sector Erase cycle is in progress. The WIP sets 1 during  
the tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset.  
If the sector is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected  
(no change) and the WEL bit still be reset.  
Figure 17. Sector Erase (SE) Sequence (Command 20)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
20h  
24 Bit Address  
SI  
23 22  
MSB  
2
1
0
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
36  
MX25L6435E  
10-15. Block Erase (BE)  
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for  
64K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch  
(WEL) bit before sending the Block Erase (BE). Any address of the block (see "Table 4. Memory Organization")  
is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the lat-  
est eighth of address byte has been latched-in); otherwise, the instruction will be rejected and not executed.  
The sequence of issuing BE instruction is: CS# goes low → sending BE instruction code → 3-byte address on  
SI → CS# goes high.  
The SIO[3:1] are don't care when during this mode.  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked out during the Sector Erase cycle is in progress. The WIP sets 1 during  
the tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset.  
If the block is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit still be reset.  
Figure 18. Block Erase (BE) Sequence (Command D8)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
D8h  
24 Bit Address  
SI  
23 22  
MSB  
2
0
1
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
37  
MX25L6435E  
10-16. Block Erase (BE32K)  
The Block Erase (BE32) instruction is for erasing the data of the chosen block to be "1". The instruction is used  
for 32K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable  
Latch (WEL) bit before sending the Block Erase (BE32). Any address of the block (see "Table 4. Memory Or-  
ganization" ) is a valid address for Block Erase (BE32) instruction. The CS# must go high exactly at the byte  
boundary (the latest eighth of address byte has been latched-in); otherwise, the instruction will be rejected and  
not executed.  
The sequence of issuing BE32 instruction is: CS# goes low → sending BE32 instruction code → 3-byte address  
on SI → CS# goes high.  
The SIO[3:1] are don't care when during this mode.  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked out during the Sector Erase cycle is in progress. The WIP sets 1 during  
the tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset.  
If the block is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit still be reset.  
Figure 19. Block Erase 32KB (BE32K) Sequence (Command 52)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
52h  
24 Bit Address  
SI  
23 22  
MSB  
2
0
1
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
38  
MX25L6435E  
10-17. Chip Erase (CE)  
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) in-  
struction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS#  
must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The sequence of issuing CE instruction is: CS# goes low → sending CE instruction code → CS# goes high.  
The SIO[3:1] are don't care when during this mode.  
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked out during the Chip Erase cycle is in progress. The WIP sets 1 during the  
tCE timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the  
chip is protected the Chip Erase (CE) instruction will not be executed, but WEL will be reset.  
Figure 20. Chip Erase (CE) Sequence (Command 60 or C7)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
60h or C7h  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
39  
MX25L6435E  
10-18. Page Program (PP)  
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction  
must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device  
programs only the last 256 data bytes sent to the device. The last address byte (the 8 least significant address  
bits, A7-A0) should be set to 0 for 256 bytes page program. If A7-A0 are not all zero, transmitted data that  
exceed page length are programmed from the starting address (24-bit address that last 8 bit are all 0) of currently  
selected page. If the data bytes sent to the device exceeds 256, the last 256 data byte is programmed at the  
request page and previous data will be disregarded. If the data bytes sent to the device has not exceeded 256,  
the data will be programmed at the request address of the page. There will be no effort on the other data bytes of  
the same page.  
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on  
SI→ at least 1-byte on data on SI→ CS# goes high.  
The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte  
boundary (the latest eighth bit of data being latched in), otherwise, the instruction will be rejected and will not be  
executed.  
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write  
in Progress (WIP) bit still can be checked out during the Page Program cycle is in progress. The WIP sets 1  
during the tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit  
is reset. If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be  
protected (no change) and the WEL bit will still be reset.  
The SIO[3:1] are don't care when during this mode.  
Figure 21. Page Program (PP) Sequence (Command 02)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
02h  
24-Bit Address  
Data Byte 1  
23 22 21  
MSB  
3
2
1
0
7
6
5
4
3
2
0
1
SI  
MSB  
CS#  
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  
SCLK  
Data Byte 2  
Data Byte 3  
Data Byte 256  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
7
6
5
4
3
2
0
1
1
1
SI  
MSB  
MSB  
MSB  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
40  
MX25L6435E  
10-19. 4 x I/O Page Program (4PP)  
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN)  
instruction must execute to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1"  
before sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1,  
SIO2, and SIO3, which can raise programmer performance and the effectiveness of application of lower clock  
less than f4PP. For system with faster clock, the Quad page program cannot provide more actual favors,  
because the required internal page program time is far more than the time data flows in. Therefore, we suggest  
that while executing this command (especially during sending data), user can slow the clock speed down to f4PP  
below. The other function descriptions are as same as standard page program.  
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte address on  
SIO[3:0]→ at least 1-byte on data on SIO[3:0]→ CS# goes high.  
If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit will still be reset.  
Figure 22. 4 x I/O Page Program (4PP) Sequence (Command 38)  
CS#  
524 525  
10 11 12 13 14 15 16 17  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data  
Byte 256  
Data Data  
Byte 1 Byte 2  
Command  
38  
6 ADD cycles  
D4 D0 D4 D0  
D4 D0  
A20 A16 A12 A8 A4 A0  
SI/SIO0  
D5 D1 D5 D1  
D6 D2 D6 D2  
D7 D3 D7 D3  
D5 D1  
D6 D2  
D7 D3  
SO/SIO1  
A21 A17 A13 A9 A5 A1  
A22 A18 A14 A10 A6 A2  
WP#/SIO2  
HOLD#/SIO3  
A23 A19 A15 A11 A7 A3  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
41  
MX25L6435E  
The Program/Erase function instruction function flow is as follows:  
Figure 23. Program/Erase Flow(1) with read array data  
Start  
WREN command  
RDSR command*  
No  
WEL=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
Read array data  
(same address of PGM/ERS)  
No  
Verify OK?  
Yes  
Program/erase fail  
Program/erase successfully  
Program/erase  
another block?  
Yes  
*
* Issue RDSR to check BP[3:0].  
* If WPSEL=1, issue RDBLOCK to check the block status.  
No  
Program/erase completed  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
42  
MX25L6435E  
Figure 24. Program/Erase Flow(2) without read array data  
Start  
WREN command  
RDSR command*  
No  
WEL=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
RDSCUR command  
Yes  
REGPFAIL/REGEFAIL=1?  
No  
Program/erase fail  
Program/erase successfully  
Program/erase  
another block?  
Yes  
* Issue RDSR to check BP[3:0].  
* If WPSEL=1, issue RDBLOCK to check the block status.  
No  
Program/erase completed  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
43  
MX25L6435E  
10-20. Continuous Program mode (CP mode)  
The CP mode may enhance program performance by automatically increasing address to the next higher ad-  
dress after each byte data has been programmed.  
The Continuous Program (CP) instruction is for multiple bytes program to Flash. A write Enable (WREN) in-  
struction must execute to set the Write Enable Latch (WEL) bit before sending the Continuous Program (CP)  
instruction. CS# requires to go high before CP instruction is executing. After CP instruction and address input,  
two bytes of data is input sequentially from MSB(bit7) to LSB(bit0). The first byte data will be programmed to the  
initial address range with A0=0 and second byte data with A0=1. If only one byte data is input, the CP mode will  
not process. If more than two bytes data are input, the additional data will be ignored and only two byte data are  
valid. Any byte to be programmed should be in the erase state (FF) first. It will not roll over during the CP mode,  
once the last unprotected address has been reached, the chip will exit CP mode and reset write Enable Latch bit  
(WEL) as "0" and CP mode bit as "0". Please check the WIP bit status if it is not in write progress before enter-  
ing next valid instruction. During CP mode, the valid commands are CP command (AD hex), WRDI command (04  
hex), RDSR command (05 hex), and RDSCUR command (2B hex). And the WRDI command is valid after com-  
pletion of a CP programming cycle, which means the WIP bit=0.  
The sequence of issuing CP instruction is : CS# goes low → sending CP instruction code → 3-byte address on  
SI pin → two data bytes on SI → CS# goes high to low → sending CP instruction and then continue two data  
bytes are programmed → CS# goes high to low → till last desired two data bytes are programmed → CS# goes  
high to low →sending WRDI (Write Disable) instruction to end CP mode → send RDSR instruction to verify if  
CP mode word program ends, or send RDSCUR to check bit4 to verify if CP mode ends.  
Three methods to detect the completion of a program cycle during CP mode:  
1) Software method-I: by checking WIP bit of Status Register to detect the completion of CP mode.  
2) Software method-II: by waiting for a tBP time out to determine if it may load next valid command or not.  
3) Hardware method: by writing ESRY (enable SO to output RY/BY#) instruction to detect the completion of a  
program cycle during CP mode. The ESRY instruction must be executed before CP mode execution. Once  
it is enable in CP mode, the CS# goes low will drive out the RY/BY# status on SO, "0" indicates busy stage,  
"1" indicates ready stage, SO pin outputs tri-state if CS# goes high. DSRY (disable SO to output RY/BY#)  
instruction to disable the SO to output RY/BY# and return to status register data output during CP mode.  
Please note that the ESRY/DSRY commands are not accepted unless the completion of CP mode.  
If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be pro-  
tected (no change) and the WEL bit will still be reset.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
44  
MX25L6435E  
Figure 25. Continously Program (CP) Mode Sequence with Hardware Detection (Command AD)  
CS#  
SCLK  
SI  
20 2122 23 24  
0
1
30 31 31 32  
47 48  
0
7
7
8
0
6
7 8  
0
1
6 7 8 9  
Command  
AD (hex)  
data in  
Byte n-1, Byte n  
Valid  
Command (1)  
data in  
04 (hex)  
05 (hex)  
24-bit address  
Byte 0, Byte1  
high impedance  
status (2)  
S0  
Notes:  
(1) During CP mode, the valid commands are CP command (AD hex), WRDI command (04 hex), RDSR  
command (05 hex), RDSCUR command (2B hex), RSTEN command (66 hex) and RST command (99hex).  
(2) Once an internal programming operation begins, CS# goes low will drive the status on the SO pin and CS#  
goes high will return the SO pin to tri-state.  
(3) To end the CP mode, either reaching the highest unprotected address or sending Write Disable (WRDI)  
command (04 hex) may achieve it and then it is recommended to send RDSR command (05 hex) to verify if  
CP mode is ended. Please be noticed that Software reset and Hardware reset can end the CP mode.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
45  
MX25L6435E  
10-21. Deep Power-down (DP)  
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to en-  
tering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down  
mode requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is  
not active and all Write/Program/Erase instructions are ignored. When CS# goes high, it's only in standby mode  
not deep power-down mode. It's different from Standby mode.  
The sequence of issuing DP instruction is: CS# goes low→ sending DP instruction code→ CS# goes high.  
The SIO[3:1] are don't care when during this mode.  
Once the DP instruction is set, all instructions will be ignored except the Release from Deep Power-down mode (RDP)  
and Read Electronic Signature (RES) instruction. (those instructions allow the ID being reading out). When  
Power-down, the deep power-down mode automatically stops, and when power-up, the device automatically is  
in standby mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of  
instruction code has been latched-in); otherwise, the instruction will not be executed. As soon as Chip Select (CS#)  
goes high, a delay of tDP is required before entering the Deep Power-down mode and reducing the current to  
ISB2.  
Figure 26. Deep Power-down (DP) Sequence (Command B9)  
CS#  
tDP  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
B9h  
Stand-by Mode  
Deep Power-down Mode  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
46  
MX25L6435E  
10-22. Release from Deep Power-down (RDP), Read Electronic Signature (RES)  
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When  
Chip Select (CS#) is driven High, the device is put in the standby Power mode. If the device was not previously in  
the Deep Power-down mode, the transition to the standby Power mode is immediate. If the device was previously  
in the Deep Power-down mode, though, the transition to the standby Power mode is delayed by tRES2, and Chip  
Select (CS#) must remain High for at least tRES2(max), as specified in "Table 13. AC Characteristics". Once in  
the standby mode, the device waits to be selected, so that it can receive, decode and execute instructions.  
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as "Table 7.  
ID Definitions". This is not the same as RDID instruction. It is not recommended to use for new design. For new  
design, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to  
be executed, only except the device is in progress of program/erase/write cycles; there's no effect on the current  
program/erase/write cycles in progress.  
The SIO[3:1] are don't care when during this mode.  
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeat-  
edly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previous-  
ly in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously  
in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high  
at least tRES2(max). Once in the standby mode, the device waits to be selected, so it can receive, decode, and  
execute instruction.  
The RDP instruction is for releasing from Deep Power-down Mode.  
Figure 27. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command  
AB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38  
SCLK  
Command  
ABh  
t
3 Dummy Bytes  
RES2  
SI  
23 22 21  
MSB  
3
2
1
0
Electronic Signature Out  
High-Z  
7
6
5
4
3
2
0
1
SO  
MSB  
Deep Power-down Mode  
Stand-by Mode  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
47  
MX25L6435E  
Figure 28. Release from Deep Power-down (RDP) Sequence (Command AB)  
CS#  
tRES1  
0
1
2
3
4
5
6
7
SCLK  
Command  
ABh  
SI  
High-Z  
SO  
Deep Power-down Mode  
Stand-by Mode  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
48  
MX25L6435E  
10-23. Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4)  
The REMS, REMS2, and REMS4 instruction provides both the JEDEC assigned Manufacturer ID and the spe-  
cific Device ID.  
The instruction is initiated by driving the CS# pin low and shift the instruction code "90h", "DFh" or "EFh" fol-  
lowed by two dummy bytes and one byte address (A7~A0). After which, the Manufacturer ID for MXIC (C2h)  
and the Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in  
the figure below. The Device ID values are listed in "Table 7. ID Definitions". If the one-byte address is initially  
set to 01h, then the Device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and  
Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving  
CS# high.  
Figure 29. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90 or EF or DF)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
47  
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
28  
29  
SCLK  
Command  
90  
24 ADD Cycles  
SI  
A0  
A1  
A3 A2  
A23 A22 A21  
Manufacturer ID  
Device ID  
High-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
MSB  
MSB  
Notes:  
1. A0=0 will output the Manufacturer ID first and A0=1 will output Device ID first. A1~A23 are don't care.  
2. Instruction is either 90(hex) or EF(hex) or DF(hex).  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
49  
MX25L6435E  
10-24. ID Read  
User can execute this ID Read instruction to identify the Device ID and Manufacturer ID. The sequence of issue  
QPIID instruction is CS# goes low→sending QPI ID instruction→→Data out on SO→CS# goes high. Most  
significant bit (MSB) first.  
After the command cycle, the device will immediately output data on the falling edge of SCLK. The manufacturer  
ID, memory type, and device ID data byte will be output continuously, until the CS# goes high.  
Table 7. ID Definitions  
Command Type  
MX25L6435E  
memory type  
20  
manufacturer ID  
C2  
memory density  
17  
RDID  
electronic ID  
16  
RES  
manufacturer ID  
C2  
device ID  
16  
REMS/REMS2/  
REMS4  
10-25. Enter Secured OTP (ENSO)  
The ENSO instruction is for entering the additional 4K-bit Secured OTP mode. The additional 4K-bit Secured  
OTP is independent from main array, which may use to store unique serial number for system identifier. After  
entering the Secured OTP mode, and then follow standard read or program procedure to read out the data or  
update data. The Secured OTP data cannot be updated again once it is lock-down.  
The sequence of issuing ENSO instruction is: CS# goes low→ sending ENSO instruction to enter Secured OTP  
mode→ CS# goes high.  
The SIO[3:1] are don't care when during this mode.  
Please note that WRSR/WRSCUR/WPSEL/SBLK/GBLK/SBULK/GBULK/CE/BE/SE/BE32K commands are not  
acceptable during the access of secure OTP region, once Security OTP is locked down, only read related com-  
mands are valid.  
10-26. Exit Secured OTP (EXSO)  
The EXSO instruction is for exiting the additional 4K-bit Secured OTP mode.  
The sequence of issuing EXSO instruction is: CS# goes low→ sending EXSO instruction to exit Secured OTP  
mode→ CS# goes high.  
The SIO[3:1] are don't care when during this mode.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
50  
MX25L6435E  
10-27. Read Security Register (RDSCUR)  
The RDSCUR instruction is for reading the value of Security Register. The Read Security Register can be read  
at any time (even in program/erase/write status register/write security register condition) and continuously.  
The sequence of issuing RDSCUR instruction is : CS# goes low→ sending RDSCUR instruction → Security  
Register data out on SO→ CS# goes high.  
The SIO[3:1] are don't care when during this mode.  
Figure 30. Read Security Register (RDSCUR) Sequence (Command 2B)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
SI  
command  
2B  
Security Register Out  
Security Register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
The definition of the Security Register is as below:  
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory before ex- factory  
or not. When it is "0", it indicates non-factory lock; "1" indicates factory- lock.  
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for cus-  
tomer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured  
OTP area cannot be updated any more. While it is in 4K-bit Secured OTP mode, array access is not allowed.  
Continuous Program Mode (CP mode) bit. The Continuous Program Mode bit indicates the status of CP mode,  
"0" indicates not in CP mode; "1" indicates in CP mode.  
Program Fail Flag bit. While a program failure happened, the Program Fail Flag bit would be set. If the program  
operation fails on a protected memory region or locked OTP region, this bit will also be set. This bit can be the  
failure indication of one or more program operations. This fail flag bit will be cleared automatically after the next  
successful program operation.  
Erase Fail Flag bit. While an erase failure happened, the Erase Fail Flag bit would be set. If the erase opera-  
tion fails on a protected memory region or locked OTP region, this bit will also be set. This bit can be the failure  
indication of one or more erase operations. This fail flag bit will be cleared automatically after the next successful  
erase operation.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
51  
MX25L6435E  
Write Protection Select bit. The Write Protection Select bit indicates that WPSEL has been executed success-  
fully. Once this bit has been set (WPSEL=1), all the blocks or sectors will be write-protected after the power-  
on every time. Once WPSEL has been set, it cannot be changed again, which means it's only for individual WP  
mode.  
Under the individual block protection mode (WPSEL=1), hardware protection is performed by driving WP#=0.  
Once WP#=0, all array blocks/sectors are protected regardless of the contents of SRAM lock bits.  
Table 8. Security Register Definition  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
Continuously  
Program  
mode  
(CP mode)  
LDSO  
4K-bit  
Secured  
OTP  
(lock-down  
4K-bit Se-  
cured OTP)  
WPSEL  
E_FAIL  
P_FAIL  
Reserved  
Reserved  
0 = not  
lockdown  
0=normal  
Erase  
succeed  
0=normal  
Program  
succeed  
0=normal  
WP mode  
0 =  
nonfactory  
lock  
0=normal  
Program  
mode  
1 = lock-  
down  
(cannot  
program/  
erase  
1=individual  
WP mode  
1=indicate  
Erase failed  
(default=0)  
1=indicate  
Program  
failed  
-
-
1 = factory  
1=CP mode  
(default=0)  
(default=0)  
lock  
(default=0)  
OTP)  
non-volatile  
bit  
non-volatile non-volatile  
volatile bit  
volatile bit  
volatile bit  
volatile bit  
volatile bit  
bit  
bit  
OTP  
Read Only Read Only Read Only Read Only Read Only  
OTP  
Read Only  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
52  
MX25L6435E  
10-28. Write Security Register (WRSCUR)  
The WRSCUR instruction is for changing the values of Security Register Bits. The WREN instruction is required  
before sending WRSCUR instruction. The WRSCUR instruction may change the values of bit1 (LDSO bit) for  
customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Secured OTP area  
cannot be updated any more.  
The sequence of issuing WRSCUR instruction is :CS# goes low→ sending WRSCUR instruction → CS# goes  
high.  
The SIO[3:1] are don't care when during this mode.  
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.  
Figure 31. Write Security Register (WRSCUR) Sequence (Command 2F)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
2F  
SI  
High-Z  
SO  
10-29. Write Protection Selection (WPSEL)  
There are two write protection methods, (1) BP protection mode (2) individual block protection mode. If  
WPSEL=0, flash is under BP protection mode. If WPSEL=1, flash is under individual block protection mode. The  
default value of WPSEL is “0”. WPSEL command can be used to set WPSEL=1. Please note that WPSEL is an  
OTP bit. Once WPSEL is set to 1, there is no chance to recovery WPSEL back to “0”. If the flash is put on  
BP mode, the individual block protection mode is disabled. Contrarily, if flash is on the individual block protection  
mode, the BP mode is disabled.  
The SIO[3:1] are don't care when during this mode.  
Every time after the system is powered-on, and the Security Register bit 7 is checked to be WPSEL=1,  
all the blocks or sectors will be write protected by default. User may only unlock the blocks or sectors via  
SBULK and GBULK instruction. Program or erase functions can only be operated after the Unlock instruction is  
conducted.  
BP protection mode, WPSEL=0:  
ARRAY is protected by BP3~BP0 and BP3~BP0 bits are protected by “SRWD=1 and WP#=0”, where SRWD is  
bit 7 of status register that can be set by WRSR command.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
53  
MX25L6435E  
Individual block protection mode, WPSEL=1:  
Blocks are individually protected by their own SRAM lock bits which are set to “1” after power up. SBULK and  
SBLK command can set SRAM lock bit to “0” and “1”. When the system accepts and executes WPSEL instruc-  
tion, the bit 7 in security register will be set. It will activate SBLK, SBULK, RDBLOCK, GBLK, GBULK, PBLK,  
RDPBLK etc instructions to conduct block lock protection and replace the original Software Protect Mode (SPM)  
use (BP3~BP0) indicated block methods. Under the individual block protection mode (WPSEL=1), hardware  
protection is performed by driving WP#=0. Once WP#=0, all array blocks/sectors are protected regardless of the  
contents of SRAM lock bits.  
The WREN (Write Enable) instruction is required before issuing WPSEL instruction.  
The sequence of issuing WPSEL instruction is: CS# goes low → sending WPSEL instruction to enter the indi-  
vidual block protect mode → CS# goes high.  
Figure 32. Write Protection Selection (WPSEL) Sequence (Command 68)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
68  
WPSEL instruction function flow is as follows:  
Figure 33. BP and SRWD if WPSEL=0  
WPB pin  
BP3 BP2 BP1 BP0  
SRWD  
64KB  
64KB  
(1) BP3~BP0 is used to define the protection group region.  
(The protected area size see "Table 2. Protected Area Sizes" )  
(2) “SRWD=1 and WPB=0” is used to protect BP3~BP0. In this  
case, SRWD and BP3~BP0 of status register bits can not be  
changed by WRSR  
64KB  
.
.
.
64KB  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
54  
MX25L6435E  
Figure 34. The individual block lock mode is effective after setting WPSEL=1  
4KB  
4KB  
SRAM  
SRAM  
• Power-Up: All SRAM bits=1 (all blocks are default protected).  
All arrays cannot be programmed/erased  
TOP 4KBx16  
Sectors  
• SBLK/SBULK(36h/39h):  
- SBLK(36h) : Set SRAM bit=1 (protect) : array can not be  
programmed /erased  
4KB  
SRAM  
SRAM  
- SBULK(39h): Set SRAM bit=0 (unprotect): array can be  
programmed /erased  
64KB  
- All top 4KBx16 sectors and bottom 4KBx16 sectors  
and other 64KB uniform blocks can be protected and  
unprotected SRAM bits individually by SBLK/SBULK  
command set.  
SRAM  
Uniform  
64KB blocks  
• GBLK/ GBULK(7Eh/98h):  
- GBLK(7Eh):Set all SRAM bits=1,whole chip are protected  
and cannot be programmed / erased.  
- GBULK(98h):Set all SRAM bits=0,whole chip are  
unprotected and can be programmed / erased.  
- All sectors and blocks SRAM bits of whole chip can be  
protected and unprotected at one time by GBLK/GBULK  
command set.  
64KB  
4KB  
SRAM  
SRAM  
Bottom  
4KBx16  
Sectors  
• RDBLOCK(3Ch):  
- use RDBLOCK mode to check the SRAM bits status after  
SBULK /SBLK/GBULK/GBLK command set.  
4KB  
SBULK / SBLK / GBULK / GBLK / RDBLOCK  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
55  
MX25L6435E  
Figure 35. WPSEL Flow  
start  
RDSCUR(2Bh) command  
Yes  
WPSEL=1?  
No  
WPSEL disable,  
block protected by BP[3:0]  
WPSEL(68h) command  
RDSR command  
No  
WIP=0?  
Yes  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
Yes  
WPSEL set successfully  
WPSEL set fail  
WPSEL enable.  
Block protected by individual lock  
(SBLK, SBULK, … etc).  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
56  
MX25L6435E  
10-30. Single Block Lock/Unlock Protection (SBLK/SBULK)  
These instructions are only effective after WPSEL was executed. The SBLK instruction is for write protection a  
specified block(or sector) of memory, using A23-A16 or (A23-A12) address bits to assign a 64Kbytes block (or  
4K bytes sector) to be protected as read only. The SBULK instruction will cancel the block (or sector) write pro-  
tection state. This feature allows user to stop protecting the entire block (or sector) through the chip unprotect  
command (GBULK).  
The WREN (Write Enable) instruction is required before issuing SBLK/SBULK instruction.  
The sequence of issuing SBLK/SBULK instruction is: CS# goes low → send SBLK/SBULK (36h/39h) instruction  
→ send 3 address bytes assign one block (or sector) to be protected on SI pin → CS# goes high.  
The CS# must go high exactly at the byte boundary, otherwise the instruction will be rejected and not be execut-  
ed.  
The SIO[3:1] are don't care when during this mode.  
Figure 36. Single Block Lock/Unlock Protection (SBLK/SBULK) Sequence (Command 36/39)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
36/39  
24 Bit Address  
Cycles  
A23 A22  
A2 A1 A0  
SI  
MSB  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
57  
MX25L6435E  
SBLK/SBULK instruction function flow is as follows:  
Figure 37. Block Lock Flow  
Start  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
WPSEL command  
Yes  
WREN command  
SBLK command  
( 36h + 24bit address )  
RDSR command  
No  
WIP=0?  
Yes  
RDBLOCK command  
( 3Ch + 24bit address )  
No  
Data = FFh ?  
Yes  
Block lock successfully  
Block lock fail  
Yes  
Lock another block?  
No  
Block lock completed  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
58  
MX25L6435E  
Figure 38. Block Unlock Flow  
start  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
Yes  
WPSEL command  
WREN command  
SBULK command  
( 39h + 24bit address )  
RDSR command  
WIP=0?  
No  
Yes  
Yes  
Unlock another block?  
Unlock block completed  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
59  
MX25L6435E  
10-31. Read Block Lock Status (RDBLOCK)  
This instruction is only effective after WPSEL was executed. The RDBLOCK instruction is for reading the status  
of protection lock of a specified block(or sector), using A23-A16 (or A23-A12) address bits to assign a 64K bytes  
block (4K bytes sector) and read protection lock status bit which the first byte of Read-out cycle. The status bit  
is"1" to indicate that this block has been protected, that user can read only but cannot write/program /erase this  
block. The status bit is "0" to indicate that this block hasn't be protected, and user can read and write this block.  
The sequence of issuing RDBLOCK instruction is: CS# goes low → send RDBLOCK (3Ch) instruction → send  
3 address bytes to assign one block on SI pin → read block's protection lock status bit on SO pin → CS# goes  
high.  
The SIO[3:1] are don't care when during this mode.  
Figure 39. Read Block Protection Lock Status (RDBLOCK) Sequence (Command 3C)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
3C  
24 ADD Cycles  
SI  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
Block Protection Lock status out  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
SO  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
60  
MX25L6435E  
10-32. Gang Block Lock/Unlock (GBLK/GBULK)  
These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is for enable/  
disable the lock protection block of the whole chip.  
The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.  
The sequence of issuing GBLK/GBULK instruction is: CS# goes low → send GBLK/GBULK (7Eh/98h) instruc-  
tion → CS# goes high.  
The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be ex-  
ecuted.  
The SIO[3:1] are don't care when during this mode.  
Figure 40. Gang Block Lock/Unlock (GBLK/GBULK) Sequence (Command 7E/98)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
7E/98  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
61  
MX25L6435E  
10-33. Enable SO to Output RY/BY# (ESRY)  
The ESRY instruction is for outputting the ready/busy status to SO during CP mode.  
The sequence of issuing ESRY instruction is: CS# goes low → sending ESRY instruction code → CS# goes  
high.  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
10-34. Disable SO to Output RY/BY# (DSRY)  
The DSRY instruction is for resetting ESRY during CP mode. The ready/busy status will not output to SO after  
DSRY issued.  
The sequence of issuing DSRY instruction is: CS# goes low → send DSRY instruction code → CS# goes high.  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
10-35. No Operation (NOP)  
The "No Operation" command is only able to terminate the Reset Enable (RSTEN) command and will not affect  
any other command.  
The SIO[3:1] are don't care when during this mode.  
10-36. Software Reset (Reset-Enable (RSTEN) and Reset (RST))  
The Software Reset operation combines two instructions: Reset-Enable (RSTEN) command and Reset (RST)  
command. It returns the device to a standby mode. All the volatile bits and settings will be cleared then, which  
makes the device return to the default status as power on.  
To execute Reset command (RST), the Reset-Enable (RSTEN) command must be executed first to perform the  
Reset operation. If there is any other command to interrupt after the Reset-Enable command, the Reset-Enable  
will be invalid.  
The SIO[3:1] are don't care when during this mode.  
If the Reset command is executed during program or erase operation, the operation will be disabled, the data un-  
der processing could be damaged or lost.  
The reset time is different depending on the last operation. Longer latency time is required to recover from a pro-  
gram operation than from other operations.  
Figure 41. Software Reset Recovery  
Stand-by Mode  
66  
99  
CS#  
tRCR  
tRCP  
tRCE  
Mode  
tRCR: 200ns (Recovery Time from Read)  
tRCP: 20us (Recovery Time from Program)  
tRCE: 12ms (Recovery Time from Erase)  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
62  
MX25L6435E  
10-37. Read SFDP Mode (RDSFDP)  
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the  
functional and feature capabilities of serial flash devices in a standard set of internal parameter tables. These  
parameter tables can be interrogated by host system software to enable adjustments needed to accommodate  
divergent features from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC  
Standard, JESD68 on CFI.  
The sequence of issuing RDSFDP instruction is same as CS# goes low→send RDSFDP instruction (5Ah)→send  
3 address bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP operation  
can use CS# to high at any time during data out.  
SFDP is a JEDEC Standard, JESD216.  
Figure 42. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCLK  
Command  
5Ah  
24 BIT ADDRESS  
SI  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
Dummy Cycle  
7
6
5
4
3
2
0
1
SI  
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
63  
MX25L6435E  
Table 9. Signature and Parameter Identification Data Values  
Add (h) DW Add Data (h/b) Data  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
(h)  
00h  
07:00  
53h  
53h  
01h  
02h  
03h  
04h  
05h  
15:08  
23:16  
31:24  
07:00  
15:08  
46h  
44h  
50h  
00h  
01h  
46h  
44h  
50h  
00h  
01h  
SFDP Signature  
Fixed: 50444653h  
SFDP Minor Revision Number  
SFDP Major Revision Number  
Start from 00h  
Start from 01h  
This number is 0-based. Therefore,  
0 indicates 1 parameter header.  
Number of Parameter Headers  
Unused  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
23:16  
31:24  
07:00  
15:08  
23:16  
31:24  
01h  
FFh  
00h  
00h  
01h  
09h  
01h  
FFh  
00h  
00h  
01h  
09h  
00h: it indicates a JEDEC specified  
header.  
ID number (JEDEC)  
Parameter Table Minor Revision  
Number  
Parameter Table Major Revision  
Number  
Parameter Table Length  
(in double word)  
Start from 00h  
Start from 01h  
How many DWORDs in the  
Parameter table  
0Ch  
0Dh  
0Eh  
07:00  
15:08  
23:16  
30h  
00h  
00h  
30h  
00h  
00h  
First address of JEDEC Flash  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
0Fh  
10h  
11h  
12h  
13h  
31:24  
07:00  
15:08  
23:16  
31:24  
FFh  
C2h  
00h  
01h  
04h  
FFh  
C2h  
00h  
01h  
04h  
ID number  
(Macronix manufacturer ID)  
Parameter Table Minor Revision  
Number  
Parameter Table Major Revision  
Number  
it indicates Macronix manufacturer  
ID  
Start from 00h  
Start from 01h  
Parameter Table Length  
(in double word)  
How many DWORDs in the  
Parameter table  
14h  
15h  
16h  
07:00  
15:08  
23:16  
60h  
00h  
00h  
60h  
00h  
00h  
First address of Macronix Flash  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
17h  
31:24  
FFh  
FFh  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
64  
MX25L6435E  
Table 10. Parameter Table (0): JEDEC Flash Parameter Tables  
Add (h) DW Add Data (h/b)  
Data  
(h)  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
00: Reserved, 01: 4KB erase,  
10: Reserved,  
11: not support 4KB erase  
Block/Sector Erase sizes  
Write Granularity  
01:00  
01b  
0: 1Byte, 1: 64Byte or larger  
02  
03  
1b  
0b  
Write Enable Instruction Required 0: not required  
for Writing to Volatile Status  
1: required 00h to be written to the  
Registers  
status register  
30h  
E5h  
0: use 50h opcode,  
1: use 06h opcode  
Write Enable Opcode Select for  
Writing to Volatile Status Registers  
Note: If target flash status register  
is nonvolatile, then bits 3 and 4  
must be set to 00b.  
04  
0b  
Contains 111b and can never be  
changed  
Unused  
07:05  
111b  
4KB Erase Opcode  
31h  
32h  
33h  
15:08  
16  
20h  
1b  
20h  
F1h  
FFh  
(1-1-2) Fast Read (Note2)  
0=not support 1=support  
Address Bytes Number used in  
addressing flash array  
00: 3Byte only, 01: 3 or 4Byte,  
10: 4Byte only, 11: Reserved  
18:17  
19  
00b  
0b  
Double Transfer Rate (DTR)  
Clocking  
0=not support 1=support  
(1-2-2) Fast Read  
(1-4-4) Fast Read  
(1-1-4) Fast Read  
Unused  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
20  
21  
1b  
1b  
22  
1b  
23  
1b  
Unused  
31:24  
FFh  
Flash Memory Density  
37h:34h 31:00  
03FF FFFFh  
(1-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
04:00  
38h  
0 0100b  
states (Note3)  
Clocks) not support  
44h  
EBh  
08h  
6Bh  
(1-4-4) Fast Read Number of  
Mode Bits (Note4)  
000b: Mode Bits not support  
07:05  
010b  
EBh  
(1-4-4) Fast Read Opcode  
39h  
3Ah  
3Bh  
15:08  
20:16  
(1-1-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
0 1000b  
states  
Clocks) not support  
(1-1-4) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
31:24  
000b  
6Bh  
(1-1-4) Fast Read Opcode  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
65  
MX25L6435E  
Add (h) DW Add Data (h/b) Data  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
(h)  
(1-1-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
04:00  
0 1000b  
states  
Clocks) not support  
3Ch  
08h  
(1-1-2) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
07:05  
15:08  
20:16  
000b  
3Bh  
(1-1-2) Fast Read Opcode  
3Dh  
3Eh  
3Fh  
3Bh  
04h  
BBh  
(1-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
0 0100b  
states  
Clocks) not support  
(1-2-2) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
000b  
(1-2-2) Fast Read Opcode  
(2-2-2) Fast Read  
Unused  
31:24  
00  
BBh  
0b  
0=not support 1=support  
0=not support 1=support  
03:01  
04  
111b  
0b  
40h  
EEh  
(4-4-4) Fast Read  
Unused  
07:05  
111b  
FFh  
FFh  
Unused  
43h:41h 31:08  
45h:44h 15:00  
FFh  
FFh  
Unused  
(2-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
20:16  
46h  
0 0000b  
000b  
states  
Clocks) not support  
00h  
(2-2-2) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
(2-2-2) Fast Read Opcode  
Unused  
47h  
31:24  
FFh  
FFh  
FFh  
FFh  
49h:48h 15:00  
(4-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
20:16  
4Ah  
0 0000b  
states  
Clocks) not support  
00h  
(4-4-4) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
000b  
FFh  
0Ch  
20h  
0Fh  
52h  
10h  
D8h  
00h  
FFh  
(4-4-4) Fast Read Opcode  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
31:24  
07:00  
15:08  
23:16  
31:24  
07:00  
15:08  
23:16  
31:24  
FFh  
0Ch  
20h  
0Fh  
52h  
10h  
D8h  
00h  
FFh  
Sector/block size = 2^N bytes (Note5)  
0x00b: this sector type doesn't exist  
Sector Type 1 Size  
Sector Type 1 erase Opcode  
Sector Type 2 Size  
Sector/block size = 2^N bytes  
0x00b: this sector type doesn't exist  
Sector Type 2 erase Opcode  
Sector Type 3 Size  
Sector/block size = 2^N bytes  
0x00b: this sector type doesn't exist  
Sector Type 3 erase Opcode  
Sector Type 4 Size  
Sector/block size = 2^N bytes  
0x00b: this sector type doesn't exist  
Sector Type 4 erase Opcode  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
66  
MX25L6435E  
Table 11. Parameter Table (1): Macronix Flash Parameter Tables  
Add (h) DW Add Data (h/b)  
Data  
(h)  
Description  
Comment  
2000h=2.000V  
2700h=2.700V  
3600h=3.600V  
(Byte)  
(Bit)  
(Note1)  
07:00  
15:08  
00h  
36h  
00h  
36h  
Vcc Supply Maximum Voltage  
61h:60h  
1650h=1.650V  
2250h=2.250V  
2350h=2.350V  
2700h=2.700V  
23:16  
31:24  
00h  
27h  
00h  
27h  
Vcc Supply Minimum Voltage  
63h:62h  
H/W Reset# pin  
0=not support 1=support  
00  
0b  
H/W Hold# pin  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
01  
02  
03  
1b  
1b  
1b  
Deep Power Down Mode  
S/W Reset  
Reset Enable (66h) should be  
issued before Reset Opcode  
1001 1001b  
(99h)  
65h:64h  
499Eh  
S/W Reset Opcode  
11:04  
Program Suspend/Resume  
Erase Suspend/Resume  
Unused  
0=not support 1=support  
0=not support 1=support  
12  
13  
0b  
0b  
14  
1b  
Wrap-Around Read mode  
Wrap-Around Read mode Opcode  
0=not support 1=support  
15  
0b  
66h  
67h  
23:16  
FFh  
FFh  
FFh  
08h:support 8B wrap-around read  
16h:8B&16B  
32h:8B&16B&32B  
Wrap-Around Read data length  
31:24  
FFh  
64h:8B&16B&32B&64B  
Individual block lock  
0=not support 1=support  
0=Volatile 1=Nonvolatile  
00  
01  
1b  
0b  
Individual block lock bit  
(Volatile/Nonvolatile)  
0011 0110b  
(36h)  
Individual block lock Opcode  
09:02  
10  
Individual block lock Volatile  
protect bit default protect status  
0=protect 1=unprotect  
0b  
C8D9h  
6Bh:68h  
Secured OTP  
Read Lock  
Permanent Lock  
Unused  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
11  
12  
1b  
0b  
13  
0b  
15:14  
31:16  
11b  
FFh  
FFh  
Unused  
FFh  
FFh  
Unused  
6Fh:6Ch 31:00  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
67  
MX25L6435E  
Note 1: h/b is hexadecimal or binary.  
Note 2: (x-y-z) means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x),  
address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1),  
(2-2-2), and (4-4-4)  
Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.  
Note 4: Mode Bits is optional control bits that follow the address bits. These bits are driven by the system  
controller if they are specified. (eg,read performance enhance toggling bits)  
Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h  
Note 6: All unused and undefined area data is blank FFh.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
68  
MX25L6435E  
11. POWER-ON STATE  
The device is at below states when power-up:  
- Standby mode (please note it is not Deep Power-down mode)  
- Write Enable Latch (WEL) bit is reset  
The device must not be selected during power-up and power-down stage unless the VCC achieves below cor-  
rect level:  
- VCC minimum at power-up stage and then after a delay of tVSL  
- GND at power-down  
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.  
An internal Power-on Reset (POR) circuit may protect the device from data corruption and inadvertent data  
change during power up state.  
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is  
not guaranteed. The read, write, erase, and program command should be sent after the time delay:  
- tVSL after VCC reached VCC minimum level  
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.  
Note:  
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommend-  
ed. (generally around 0.1uF)  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
69  
MX25L6435E  
12. ELECTRICAL SPECIFICATIONS  
12-1. Absolute Maximum Ratings  
RATING  
VALUE  
Ambient Operating Temperature  
Storage Temperature  
Applied Input Voltage  
Applied Output Voltage  
VCC to Ground Potential  
Industrial grade  
-40°C to 85°C  
-65°C to 150°C  
-0.5V to VCC+0.5V  
-0.5V to VCC+0.5V  
-0.5V to 4.0V  
NOTICE:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device. This is stress rating only and functional operational sections of this specification is not implied. Expo-  
sure to absolute maximum rating conditions for extended period may affect reliability.  
2. Specifications contained within the following tables are subject to change.  
3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, see  
the figures below.  
Figure 44. Maximum Positive Overshoot Waveform  
Figure 43. Maximum Negative Overshoot Waveform  
20ns  
20ns  
20ns  
Vcc + 2.0V  
Vcc  
Vss  
Vss-2.0V  
20ns  
20ns  
20ns  
12-2. Capacitance  
TA = 25°C, f = 1.0 MHz  
SYMBOL PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
pF  
CONDITIONS  
VIN = 0V  
CIN  
Input Capacitance  
6
8
COUT Output Capacitance  
pF  
VOUT = 0V  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
70  
MX25L6435E  
Figure 45. Input Test Waveforms and Measurement Level  
Input timing reference level  
Output timing reference level  
0.8VCC  
0.7VCC  
0.3VCC  
AC  
Measurement  
Level  
0.5VCC  
0.2VCC  
Note: Input pulse rise and fall time are <5ns  
Figure 46. Output Loading  
DEVICE UNDER  
TEST  
2.7K ohm  
+3.3V  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
CL=30/15pF Including jig capacitance  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
71  
MX25L6435E  
Table 12. DC Characteristics  
Temperature = -40°C to 85°C for Industrial grade  
Symbol Parameter  
Notes  
Min.  
Typ.  
Max. Units Test Conditions  
VCC = VCC Max,  
VIN = VCC or GND  
VCC = VCC Max,  
VOUT = VCC or GND  
ILI  
Input Load Current  
Output Leakage Current  
1
± 2  
± 2  
50  
uA  
uA  
ILO  
1
1
ISB1 VCC Standby Current  
15  
1
uA VIN = VCC or GND, CS# = VCC  
uA VIN = VCC or GND, CS# = VCC  
Deep Power-down  
Current  
ISB2  
25  
35  
f=104MHz (4 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
f=104MHz (1 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
19  
25  
20  
fQ=86MHz (4 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
ICC1 VCC Read  
1
fT=86MHz (2 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
f=33MHz,  
10  
25  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
VCC Program Current  
Program in Progress, CS# =  
ICC2  
(PP)  
1
15  
mA  
VCC  
VCC Write Status  
ICC3  
Program status register in  
mA  
15  
10  
15  
20  
25  
25  
Register (WRSR) Current  
progress, CS#=VCC  
VCC Sector Erase  
Current (SE)  
ICC4  
1
1
mA Erase in Progress, CS#=VCC  
mA Erase in Progress, CS#=VCC  
VCC Chip Erase Current  
ICC5  
(CE)  
VIL  
Input Low Voltage  
Input High Voltage  
-0.5  
0.8  
V
V
VIH  
0.7VCC  
VCC+0.4  
VOL Output Low Voltage  
VOH Output High Voltage  
0.4  
V
V
IOL = 1.6mA  
IOH = -100uA  
VCC-0.2  
Notes :  
1. Typical values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and  
speeds).  
2. Typical value is calculated by simulation.  
3. The value guaranteed by characterization, not 100% tested in production.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
72  
MX25L6435E  
Table 13. AC Characteristics  
Temperature = -40°C to 85°C for Industrial grade  
Symbol Alt. Parameter  
Min.  
Typ.  
Max. Unit  
Clock Frequency for all commands (except READ, 2READ,  
DREAD, 4READ, QREAD, 4PP instructions)  
fSCLK  
fRSCLK  
fTSCLK  
f4PP  
fC  
D.C.  
104  
MHz  
fR Clock Frequency for READ instructions  
fT Clock Frequency for 2READ/DREAD instructions  
fQ Clock Frequency for 4READ/QREAD instructions (4)  
Clock Frequency for 4PP (Quad page program)  
Others (fSCLK)  
50  
86  
86  
MHz  
MHz  
MHz  
MHz  
ns  
ns  
ns  
ns  
V/ns  
V/ns  
ns  
ns  
ns  
104  
4.5  
9
4.5  
9
0.1  
0.1  
4
tCH(1) tCLH Clock High Time  
Normal Read (fRSCLK)  
Others (fSCLK)  
Normal Read (fRSCLK)  
tCL(1)  
tCLL Clock Low Time  
Clock Rise Time (3) (peak to peak)  
Clock Fall Time (3) (peak to peak)  
tCLCH  
tCHCL  
tSLCH tCSS CS# Active Setup Time (relative to SCLK)  
tCHSL CS# Not Active Hold Time (relative to SCLK)  
tDVCH tDSU Data In Setup Time  
4
2
tCHDX  
tCHSH  
tSHCH  
tDH Data In Hold Time  
3
4
4
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS# Active Hold Time (relative to SCLK)  
CS# Not Active Setup Time (relative to SCLK)  
Read  
tSHSL(3) tCSH CS# Deselect Time  
Write/Erase/Program  
2.7V-3.6V  
3.0V-3.6V  
10  
8
tSHQZ  
tDIS Output Disable Time  
tHLCH  
tCHHH  
tHHCH  
tCHHL  
HOLD# Active Setup Time (relative to SCLK)  
HOLD# Active Hold Time (relative to SCLK)  
HOLD# Not Active Setup Time (relative to SCLK)  
HOLD# Note Active Hold Time (relative to SCLK)  
5
5
5
5
ns  
ns  
ns  
ns  
2.7V-3.6V  
3.0V-3.6V  
2.7V-3.6V  
3.0V-3.6V  
1 I/O  
10  
8
10  
8
ns  
ns  
ns  
ns  
HOLD# to Output Low-Z  
Loading=30pF  
tHHQX  
tHLQZ  
tLZ  
HOLD# to Output High-Z  
Loading=30pF  
tHZ  
5
ns  
Loading:  
10pF  
2 I/O & 4 I/O  
6
ns  
Clock Low to Output Valid  
VCC=2.7V~3.6V  
1 I/O  
6
6
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
Loading:  
15pF  
tCLQV  
tV  
2 I/O & 4 I/O  
1 I/O  
2 I/O & 4 I/O  
Loading:  
30pF  
tCLQX  
tWHSL  
tSHWL  
tDP  
tHO Output Hold Time  
Write Protect Setup Time  
Write Protect Hold Time  
CS# High to Deep Power-down Mode  
1
20  
100  
10  
CS# High to Standby Mode without Electronic Signature  
Read  
CS# High to Standby Mode with Electronic Signature Read  
tRES1  
tRES2  
100  
100  
us  
us  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
73  
MX25L6435E  
Symbol Alt. Parameter  
Min.  
Typ.  
Max.  
40  
50  
3
200  
1.6  
2
80  
1
1
Unit  
ms  
us  
ms  
ms  
s
s
s
ms  
ms  
tW  
tBP  
Write Status Register Cycle Time  
Byte-Program  
12  
0.7  
30  
0.14  
0.25  
20  
tPP  
tSE  
tBE  
tBE  
Page Program Cycle Time  
Sector Erase Cycle Time (4KB)  
Block Erase Cycle Time (32KB)  
Block Erase Cycle Time (64KB)  
Chip Erase Cycle Time  
tCE  
tWPS  
tWSR  
Write Protection Selection Time  
Write Security Register Time  
Notes:  
1. tCH + tCL must be greater than or equal to 1/ fC.  
2. The value guaranteed by characterization, not 100% tested in production.  
3. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.  
4. For 4READ instruction, when dummy cycle=6, clock rate is 86MHz (default), and when dummy cycle=8, clock  
rate is 104MHz.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
74  
MX25L6435E  
13. TIMING ANALYSIS  
Figure 47. Serial Input Timing  
tSHSL  
tSHCH  
tCHCL  
CS#  
tCHSL  
tSLCH  
tCHSH  
SCLK  
tDVCH  
tCHDX  
tCLCH  
MSB  
LSB  
SI  
High-Z  
SO  
Figure 48. Output Timing  
CS#  
tCH  
SCLK  
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
SO  
tCLQX  
LSB  
ADDR.LSB IN  
SI  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
75  
MX25L6435E  
Figure 49. Hold Timing  
CS#  
tHLCH  
tCHHH  
tCHHL  
tHLQZ  
tHHCH  
tHHQX  
SCLK  
SO  
HOLD#  
Figure 50. WP# Setup Timing and Hold Timing during WRSR when SRWD=1  
WP#  
tSHWL  
tWHSL  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14  
15  
SCLK  
01  
SI  
High-Z  
SO  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
76  
MX25L6435E  
Figure 51. Power-Up Timing  
V
CC  
V
(max)  
CC  
Chip Selection is Not Allowed  
V
(min)  
CC  
Device is fully accessible  
tVSL  
time  
Note: VCC (max.) is 3.6V and VCC (min.) is 2.7V.  
Table 14. Power-Up Timing  
Symbol Parameter  
Min.  
Max.  
Unit  
tVSL(1)  
VCC(min) to CS# low  
300  
us  
Note: The parameter is characterized only.  
13-1. Initial Delivery State  
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status  
Register contains 00h (all Status Register bits are 0).  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
77  
MX25L6435E  
14. OPERATING CONDITIONS  
At Device Power-Up and Power-Down  
AC timing illustrated in "Figure 52. AC Timing at Device Power-Up" and "Figure 53. Power-Down Sequence" are  
for the supply voltages and the control signals at device power-up and power-down. If the timing in the figures is  
ignored, the device will not operate correctly.  
During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be  
selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL.  
Figure 52. AC Timing at Device Power-Up  
VCC(min)  
VCC  
GND  
tVR  
tSHSL  
CS#  
tSHCH  
tSLCH  
tCHSL  
tCHSH  
SCLK  
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
SI  
High Impedance  
SO  
Symbol  
tVR  
Parameter  
VCC Rise Time  
Notes  
Min.  
20  
Max.  
500000  
Unit  
us/V  
1
Notes :  
1. Sampled, not 100% tested.  
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer  
to "Table 13. AC Characteristics".  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
78  
MX25L6435E  
Figure 53. Power-Down Sequence  
During power-down, CS# needs to follow the voltage drop on VCC to avoid mis-operation.  
VCC  
CS#  
SCLK  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
79  
MX25L6435E  
15. ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ. (1)  
Max. (2)  
Unit  
ms  
ms  
s
Write Status Register Cycle Time  
Sector Erase Time (4KB)  
Block Erase Time (32KB)  
Block Erase Time (64KB)  
Chip Erase Time  
40  
200  
1.6  
2
30  
0.14  
0.25  
20  
s
80  
50  
3
s
Byte Program Time (via page program command)  
Page Program Time  
12  
us  
0.7  
ms  
cycles  
Erase/Program Cycle  
100,000  
Notes:  
1. Typical program and erase time assumes the following conditions: 25°C, 3.3V, and checkerboard pattern.  
2. Under worst conditions of 85°C and 2.7V.  
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming com-  
mand.  
16. DATA RETENTION  
Parameter  
Condition  
Min.  
Max.  
Unit  
Data retention  
55˚C  
20  
years  
17. LATCH-UP CHARACTERISTICS  
Min.  
Max.  
Input Voltage with respect to GND on all power pins, SI, CS#  
Input Voltage with respect to GND on SO  
Current  
-1.0V  
-1.0V  
-100mA  
2 VCCmax  
VCC + 1.0V  
+100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
80  
MX25L6435E  
18. ORDERING INFORMATION  
PART NO.  
CLOCK  
(MHz)  
TEMPERATURE  
-40°C~85°C  
-40°C~85°C  
-40°C~85°C  
-40°C~85°C  
-40°C~85°C  
PACKAGE  
Remark  
16-SOP  
(300mil)  
8-SOP  
(200mil)  
8-WSON  
(6x5mm)  
8-WSON  
(8x6mm)  
24-TFBGA  
(6x8mm)  
MX25L6435EMI-10G  
MX25L6435EM2I-10G  
MX25L6435EZNI-10G  
MX25L6435EZ2I-10G  
MX25L6435EXCI-10G  
104  
104  
104  
104  
104  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
81  
MX25L6435E  
19. PART NAME DESCRIPTION  
M2  
MX 25 L 6435E  
I
10 G  
OPTION:  
G: RoHS Compliant and Halogen-free  
SPEED:  
10: 104MHz  
TEMPERATURE RANGE:  
I: Industrial (-40° C to 85° C)  
PACKAGE:  
M: 300mil 16-SOP  
M2: 200mil 8-SOP  
ZN: 6x5mm 8-WSON  
Z2: 8x6mm 8-WSON  
XC: 6x8mm 24-TFBGA  
DENSITY & MODE:  
6435E: 64Mb standard type  
TYPE:  
L: 3V  
DEVICE:  
25: Serial Flash  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
82  
MX25L6435E  
20. PACKAGE INFORMATION  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
83  
MX25L6435E  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
84  
MX25L6435E  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
85  
MX25L6435E  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
86  
MX25L6435E  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
87  
MX25L6435E  
21. REVISION HISTORY  
Revision No. Description  
Page  
All  
P68  
Date  
DEC/27/2011  
JAN/19/2012  
0.00  
1. Initial released  
0.01  
1. Modified TCLQV to 6ns(max.) in 2 I/O & 4 I/O modes  
(for both 15pF & 10pF Loading)  
0.02  
1. Removed FREAD function  
2. Added DC (Dummy Cycle) configuration register that Dummy P15,23,  
clock cycles are configurable for 4 I/O read operation.  
3. Modified Additional Feature table to Read Performance table  
P15,33,68  
FEB/09/2012  
MAR/12/2012  
MAR/30/2012  
32-34,89  
P6  
0.03  
1. Modified Package Code from "Z3" to "ZN" without any physical P81,82  
change.  
2. Added 300 mil 16-SOP package  
3. Added SFDP content  
P5,7,81,82  
P63~68,73  
P41,73  
0.04  
0.05  
1. Changed Quad I/O Page Program clock rate as 104MHz  
2. Change ISB1 to 80uA (max.), ISB2 to 40uA (max.)  
1. Added 6x8 mm 24-TFBGA package solution  
2. Clock Frequency for 2READ/DREAD/4READ/QREAD are all  
86MHz  
P4,72  
P5,7,81,82,86 APR/19/2012  
P73  
3. Changed from ADVANCED INFORMATION to PRELIMINARY P4  
1. Updated f4PP, tSLCH, tCHSL, tCHDX, tCHSH, tSHCH value P73  
in AC Characteristics Table  
1.0  
SEP/06/2012  
2. Updated to latest wording of SFDP Table without value change P63~68  
3. Removed "PRELIMINARY" status  
1. Add 8x6mm 8-WSON package as Advanced Information  
1. Modified Page Program Time tPP(Max.)  
P4  
P5,7,81,82,86 FEB/25/2013  
1.1  
1.2  
P4,74,80  
APR/25/2013  
2. Removed Advanced Information state of MX25L6435EZ2I-10G P81  
1.3  
1.4  
1. Modified Absolute Maximum Ratings, Capacitance  
1. Updated parameters for DC/AC Characteristics  
2. Updated Erase and Programming Performance  
P70  
P4,72,74  
P4,80  
OCT/01/2013  
NOV/05/2013  
P/N: PM1784  
REV. 1.4, NOV. 05, 2013  
88  
MX25L6435E  
Except for customized products which has been expressly identified in the applicable agreement, Macronix's  
products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or  
household applications only, and not for use in any applications which may, directly or indirectly, cause death,  
personal injury, or severe property damages. In the event Macronix products are used in contradicted to their  
target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its  
actual use in accordance with the applicable laws and regulations; and Macronix as well as it’s suppliers and/or  
distributors shall be released from any and all liability arisen therefrom.  
Copyright© Macronix International Co., Ltd. 2011~2013. All rights reserved, including the trademarks and  
tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit,  
NBiit, Macronix NBit, eLiteFlash, HybridNVM, HybridFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC,  
Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Audio, Rich Book, Rich TV, and FitCAM. The names  
and brands of third party referred thereto (if any) are for identification purposes only.  
For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  
89  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY