MX25L6439EM2I10G [Macronix]

64M-BIT [x 1 / x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY;
MX25L6439EM2I10G
型号: MX25L6439EM2I10G
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

64M-BIT [x 1 / x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY

文件: 总90页 (文件大小:1102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX25L6439E  
MX25L6439E  
HIGH PERFORMANCE  
SERIAL FLASH SPECIFICATION  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
1
MX25L6439E  
Contents  
1. FEATURES ........................................................................................................................................................ 4  
2. GENERAL DESCRIPTION ............................................................................................................................... 6  
Table 1. Additional Features ..................................................................................................................6  
3. PIN CONFIGURATION ...................................................................................................................................... 7  
4. PIN DESCRIPTION............................................................................................................................................ 7  
5. BLOCK DIAGRAM............................................................................................................................................. 8  
6. DATA PROTECTION.......................................................................................................................................... 9  
Table 2. Protected Area Sizes..............................................................................................................10  
Table 3. 4K-bit Secured OTP Definition ...............................................................................................11  
7. MEMORY ORGANIZATION............................................................................................................................. 12  
Table 4. Memory Organization .............................................................................................................12  
8. DEVICE OPERATION...................................................................................................................................... 13  
9. HOLD FEATURE.............................................................................................................................................. 14  
10. Quad Peripheral Interface (QPI) Read Mode.............................................................................................. 15  
10-1. Enable QPI mode ................................................................................................................................15  
10-2. Reset QPI mode ..................................................................................................................................15  
10-3. Fast QPI Read mode (FASTRDQ).......................................................................................................16  
11. COMMAND DESCRIPTION........................................................................................................................... 17  
Table 5. Command Sets.......................................................................................................................17  
11-1. Write Enable (WREN)..........................................................................................................................20  
11-2. Write Disable (WRDI)...........................................................................................................................21  
11-3. Read Identification (RDID)...................................................................................................................22  
11-4. Read Status Register (RDSR).............................................................................................................23  
11-5. Write Status Register (WRSR).............................................................................................................26  
Table 6. Protection Modes....................................................................................................................27  
11-6. Read Data Bytes (READ) ....................................................................................................................29  
11-7. Read Data Bytes at Higher Speed (FAST_READ) ..............................................................................30  
11-8. Quad Read Mode (QREAD) ................................................................................................................31  
11-9. 4 x I/O Read Mode (4READ) ...............................................................................................................32  
11-10. Performance Enhance Mode...............................................................................................................34  
11-11. Performance Enhance Mode Reset.....................................................................................................36  
11-12. Burst Read...........................................................................................................................................37  
11-13. Sector Erase (SE)................................................................................................................................38  
11-14. Block Erase (BE) .................................................................................................................................39  
11-15. Block Erase (BE32K)...........................................................................................................................40  
11-16. Chip Erase (CE)...................................................................................................................................41  
11-17. Page Program (PP) .............................................................................................................................42  
11-18. 4 x I/O Page Program (4PP)................................................................................................................43  
11-19. Continuous Program mode (CP mode)................................................................................................46  
11-20. Deep Power-down (DP).......................................................................................................................48  
11-21. Release from Deep Power-down (RDP), Read Electronic Signature (RES) .......................................49  
11-22. Read Electronic Signature (RES) ........................................................................................................50  
11-23. QPI ID Read (QPIID) ...........................................................................................................................51  
Table 7. ID Definitions .........................................................................................................................51  
11-24. Enter Secured OTP (ENSO)................................................................................................................51  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
2
MX25L6439E  
11-25. Exit Secured OTP (EXSO)...................................................................................................................51  
11-26. Read Security Register (RDSCUR).....................................................................................................52  
Table 8. Security Register Definition ....................................................................................................53  
11-27. Write Security Register (WRSCUR).....................................................................................................54  
11-28. Write Protection Selection (WPSEL)....................................................................................................54  
11-29. Single Block Lock/Unlock Protection (SBLK/SBULK)..........................................................................58  
11-30. Read Block Lock Status (RDBLOCK)..................................................................................................61  
11-31. Gang Block Lock/Unlock (GBLK/GBULK) ...........................................................................................62  
11-32. Program/ Erase Suspend/ Resume.....................................................................................................63  
11-33. Erase Suspend ....................................................................................................................................63  
11-34. Program Suspend................................................................................................................................64  
11-35. Write-Resume......................................................................................................................................65  
11-36. No Operation (NOP) ............................................................................................................................66  
11-37. Software Reset (Reset-Enable (RSTEN) and Reset (RST)) ...............................................................66  
11-38. Reset Quad I/O (RSTQIO)...................................................................................................................66  
11-39. Read SFDP Mode (RDSFDP)..............................................................................................................67  
Table 9. Signature and Parameter Identification Data Values .............................................................68  
Table 10. Parameter Table (0): JEDEC Flash Parameter Tables.........................................................69  
Table 11. Parameter Table (1): Macronix Flash Parameter Tables.......................................................71  
12. POWER-ON STATE....................................................................................................................................... 73  
13. ELECTRICAL SPECIFICATIONS.................................................................................................................. 74  
13-1. ABSOLUTE MAXIMUM RATINGS.......................................................................................................74  
13-2. CAPACITANCE TA = 25°C, f = 1.0 MHz..............................................................................................74  
Table 12. DC CHARACTERISTICS .....................................................................................................76  
Table 13. AC CHARACTERISTICS......................................................................................................77  
14. TIMING ANALYSIS ........................................................................................................................................ 79  
Table 14. Power-Up Timing .................................................................................................................81  
14-1. INITIAL DELIVERY STATE..................................................................................................................81  
15. OPERATING CONDITIONS........................................................................................................................... 82  
16. ERASE AND PROGRAMMING PERFORMANCE........................................................................................ 84  
17. DATA RETENTION ........................................................................................................................................ 84  
18. LATCH-UP CHARACTERISTICS.................................................................................................................. 84  
19. ORDERING INFORMATION.......................................................................................................................... 85  
20. PART NAME DESCRIPTION......................................................................................................................... 86  
21. PACKAGE INFORMATION............................................................................................................................ 87  
22. REVISION HISTORY ..................................................................................................................................... 89  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
3
MX25L6439E  
64M-BIT [x 1 / x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY  
1. FEATURES  
GENERAL  
• Serial Peripheral Interface compatible -- Mode 0 and Mode 3  
• 67,108,864 x 1 bit structure or 16,777,216 x 4 bits (four I/O mode) structure  
• 2048 Equal Sectors with 4K bytes each  
- Any Sector can be erased individually  
• 256 Equal Blocks with 32K bytes each  
- Any Block can be erased individually  
• 128 Equal Blocks with 64K bytes each  
- Any Block can be erased individually  
• Power Supply Operation  
- 2.7 to 3.6 volt for read, erase, and program operations  
• Latch-up protected to 100mA from -1V to Vcc +1V  
PERFORMANCE  
• High Performance  
VCC = 2.7~3.6V  
- Normal read  
- 50MHz  
- Fast read  
- 1 I/O: 104MHz with 8 dummy cycles  
- 4 I/O: Up to 104MHz  
- Configurable dummy cycle number for 4 I/O read operation  
- Fast read (QPI Mode)  
- 4 I/O: 54MHz with 4 dummy cycles  
- 4 I/O: 86MHz with 6 dummy cycles  
- 4 I/O: 104MHz with 8 dummy cycles  
- Fast program time: 0.7ms(typ.) and 3ms(max.)/page (256-byte per page)  
- Byte program time: 12us (typical)  
- 8/16/32/64 byte Wrap-Around Burst Read Mode  
- Fast erase time: 30ms (typ.)/sector (4K-byte per sector) ; 0.25s(typ.) /block (64K-byte per block); 20s(typ.) /  
chip  
• Low Power Consumption  
- Low active read current: 19mA(max.) at 104MHz, 10mA(max.) at 33MHz  
- Low active programming current: 15mA (typ.)  
- Low active sector erase current: 10mA (typ.)  
- Low standby current: 15uA (typ.)  
- Deep Power-down current: 1uA (typ.)  
• Typical 100,000 erase/program cycles  
• 20 years data retention  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
4
MX25L6439E  
SOFTWARE FEATURES  
• Input Data Format  
- 1-byte Command code  
• Advanced Security Features  
- BP0-BP3 block group protect  
- Flexible individual block protect when OTP WPSEL=1  
- Additional 4K bits secured OTP for unique identifier  
• Auto Erase and Auto Program Algorithms  
Automatically erases and verifies data at selected sector  
-
-
Automatically programs and verifies data at selected page by an internal algorithm that automatically times  
the program pulse width (Any page to be programmed should have page in the erased state first.)  
Status Register Feature  
Command Reset  
Program/Erase Suspend  
Program/Erase Resume  
Electronic Identification  
JEDEC 1-byte Manufacturer ID and 2-byte Device ID  
- RES command for 1-byte Device ID  
-
Support Serial Flash Discoverable Parameters (SFDP) mode  
HARDWARE FEATURES  
SCLK Input  
Serial clock input  
• SI/SIO0  
-
Serial Data Input or Serial Data Input/Output for 4 x I/O mode  
• SO/SIO1  
-
Serial Data Output or Serial Data Input/Output for 4 x I/O mode  
• WP#/SIO2  
-
Hardware write protection or serial data Input/Output for 4 x I/O mode  
• HOLD#/SIO3  
-
To pause the device without deselecting the device or serial data Input/Output for 4 x I/O mode  
• PACKAGE  
-
8-pin SOP (200mil)  
-
-
-
8-pin VSOP (200mil)  
All devices are RoHS Compliant and Halogen-free  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
5
MX25L6439E  
2. GENERAL DESCRIPTION  
MX25L6439E is 64Mb bits serial Flash memory, which is configured as 8,388,608 x 8 internally. When it is in  
four I/O mode, the structure becomes 16,777,216 bits x 4. MX25L6439E feature a serial peripheral interface and  
software protocol allowing operation on a simple 3-wire bus while it is in single I/O mode. The three bus signals  
are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access to the device is  
enabled by CS# input.  
MX25L6439E, MXSMIO® (Serial Multi I/O) flash memory, provides sequential read operation on whole chip and  
multi-I/O features.  
When it is in quad I/O mode, the SI pin, SO pin, WP# pin and HOLD# pin become SIO0 pin, SIO1 pin, SIO2 pin  
and SIO3 pin for address/dummy bits input and data Input/Output.  
After program/erase command is issued, auto program/erase algorithms which program/erase and verify the  
specified page or sector/block locations will be executed. Program command is executed on byte basis, or page (256  
bytes) basis, and erase command is executed on sector (4K-byte), block (32K-byte/64K-byte), or whole chip ba-  
sis.  
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status  
read command can be issued to detect completion status of a program or erase operation via WIP bit.  
When the device is not in operation and CS# is high, it is put in standby mode.  
The MX25L6439E utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after  
100,000 program and erase cycles.  
Table 1. Additional Features  
Numbers of Dummy Cycles  
4 I/O  
86*  
6
8
104  
Note: *means default status  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
6
MX25L6439E  
3. PIN CONFIGURATION  
8-PIN SOP (200mil)  
4. PIN DESCRIPTION  
SYMBOL  
DESCRIPTION  
CS#  
Chip Select  
Serial Data Input (for 1xI/O)/ Serial Data  
Input & Output (for 4xI/O mode)  
Serial Data Output (for 1xI/O)/Serial  
Data Input & Output (for 4xI/O mode)  
Clock Input  
1
2
3
4
CS#  
SO/SIO1  
WP#/SIO2  
GND  
VCC  
8
7
6
5
SI/SIO0  
HOLD#/SIO3  
SCLK  
SI/SIO0  
SO/SIO1  
SCLK  
Write protection or Serial Data Input &  
Output (for 4xI/O mode)  
WP#/SIO2  
8-PIN VSOP (200mil)  
To pause the device without deselecting  
the device or Serial data Input/Output  
for 4 x I/O mode  
HOLD#/  
SIO3  
1
2
3
4
CS#  
SO/SIO1  
WP#/SIO2  
GND  
VCC  
8
7
6
5
HOLD#/SIO3  
VCC  
GND  
+ 3.0V Power Supply  
Ground  
SCLK  
SI/SIO0  
Note:  
1. The HOLD# pin is internal pull high.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
7
MX25L6439E  
5. BLOCK DIAGRAM  
Address  
Generator  
Memory Array  
Page Buffer  
Y-Decoder  
Data  
Register  
SI/SIO0  
SRAM  
Buffer  
Sense  
Amplifier  
CS#  
WP#/SIO2  
HOLD#/SIO3  
Mode  
Logic  
State  
Machine  
HV  
Generator  
SCLK  
Clock Generator  
Output  
Buffer  
SO/SIO1  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
8
MX25L6439E  
6. DATA PROTECTION  
During power transition, there may be some false system level signals which result in inadvertent erasure or pro-  
gramming. The device is designed to protect itself from these accidental write cycles.  
The state machine will be reset as standby mode automatically during power up. In addition, the control register  
architecture of the device constrains that the memory contents can only be changed after specific command se-  
quences have completed successfully.  
In the following, there are several features to protect the system from the accidental write cycles during VCC  
power-up and power-down or from system noise.  
• Valid command length checking: The command length will be checked whether it is at byte base and complet-  
ed on byte boundary.  
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before  
other command to change data. The WEL bit will return to reset stage under following situation:  
- Power-up  
- WRDI command completion  
- WRSR command completion  
- PP command completion  
- 4PP command completion  
- SE command completion  
- BE32K command completion  
- BE command completion  
- CE command completion  
- PGM/ERS Suspend command completion  
- Softreset command completion  
- WRSCUR command completion  
- WPSEL command completion  
- SBLK command completion  
- SBULK command completion  
- GBLK command completion  
- GBULK command completion  
• Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from  
writing all commands except Release from Deep Power Down mode command (RDP) and Read Electronic  
Signature command (RES).  
I. Block lock protection  
- The Software Protected Mode (SPM) uses (TB, BP3, BP2, BP1, BP0) bits to allow part of memory to be  
protected as read only. The protected area definition is shown as table of "Table 2. Protected Area Sizes", the  
protected areas are more flexible which may protect various areas by setting value of TB, BP0-BP3 bits.  
- The Hardware Protected Mode (HPM) uses WP#/SIO2 to protect the (BP3, BP2, BP1, BP0) bits and SRWD  
bit. If the system goes into four I/O or QPI mode, the feature of HPM will be disabled.  
- MX25L6439E provides individual block (or sector) write protect & unprotect. User may enter the mode with  
WPSEL command and conduct individual block (or sector) write protect with SBLK instruction, or SBULK for  
individual block (or sector) unprotect. Under the mode, user may conduct whole chip (all blocks) protect with  
GBLK instruction and unlock the whole chip with GBULK instruction.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
9
MX25L6439E  
Table 2. Protected Area Sizes  
Protected Area Sizes (TB bit = 0)  
Status bit  
Protect Level  
64Mb  
BP3  
0
BP2  
0
BP1  
0
BP0  
0
0 (none)  
0
0
0
1
1 (1block, block 127th)  
0
0
1
0
2 (2blocks, block 126th-127th)  
3 (4blocks, block 124th-127th)  
4 (8blocks, block 120th-127th)  
5 (16blocks, block 112th-127th)  
6 (32blocks, block 96th-127th)  
7 (64blocks, block 64th-127th)  
8 (128blocks, protect all)  
9 (128blocks, protect all)  
10 (128blocks, protect all)  
11 (128blocks, protect all)  
12 (128blocks, protect all)  
13 (128blocks, protect all)  
14 (128blocks, protect all)  
15 (128blocks, protect all)  
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Protected Area Sizes (TB bit = 1)  
Status bit  
Protect Level  
64Mb  
BP3  
0
BP2  
0
BP1  
0
BP0  
0
0 (none)  
0
0
0
1
1 (1block, block 0th)  
0
0
1
0
2 (2blocks, block 0th-1st)  
3 (4blocks, block 0th-3rd)  
4 (8blocks, block 0th-7th)  
5 (16blocks, block 0th-15th)  
6 (32blocks, block 0th-31st)  
7 (64blocks, block 0th-63rd)  
8 (128blocks, protect all)  
9 (128blocks, protect all)  
10 (128blocks, protect all)  
11 (128blocks, protect all)  
12 (128blocks, protect all)  
13 (128blocks, protect all)  
14 (128blocks, protect all)  
15 (128blocks, protect all)  
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Note: The device is ready to accept a Chip Erase instruction if, and only if, all Block Protect (BP3, BP2, BP1,  
BP0) are 0.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
10  
MX25L6439E  
II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit One-Time Program area for setting  
device unique serial number - Which may be set by factory or system maker.  
- Security register bit 0 indicates whether the chip is locked by factory or not.  
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with ENSO command), and  
going through normal program procedure, and then exiting 4K-bit secured OTP mode by writing EXSO com-  
mand.  
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register)  
command to set customer lock-down bit1 as "1". Please refer to table of "Table 8. Security Register Defini-  
tion" for security register bit definition and table of "Table 3. 4K-bit Secured OTP Definition" for address range  
definition.  
Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit Secured  
OTP mode, array access is not allowed.  
Table 3. 4K-bit Secured OTP Definition  
Address range  
xxx000~xxx00F  
xxx010~xxx1FF  
Size  
Standard Factory Lock  
ESN (electrical serial number)  
N/A  
Customer Lock  
128-bit  
3968-bit  
Determined by customer  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
11  
MX25L6439E  
7. MEMORY ORGANIZATION  
Table 4. Memory Organization  
Block(64K-byte) Block(32K-byte) Sector (4K-byte)  
Address Range  
2047  
7FF000h  
7FFFFFh  
255  
individual 16 sectors  
lock/unlock unit:4K-byte  
2040  
2039  
7F8000h  
7F7000h  
7F8FFFh  
7F7FFFh  
127  
254  
253  
252  
251  
250  
2032  
2031  
7F0000h  
7EF000h  
7F0FFFh  
7EFFFFh  
2024  
2023  
7E8000h  
7E7000h  
7E8FFFh  
7E7FFFh  
126  
individual block  
lock/unlock unit:64K-byte  
2016  
2015  
7E0000h  
7DF000h  
7E0FFFh  
7DFFFFh  
2008  
2007  
7D8000h  
7D7000h  
7D8FFFh  
7D7FFFh  
125  
2000  
7D0000h  
7D0FFFh  
individual block  
lock/unlock unit:64K-byte  
47  
02F000h  
02FFFFh  
5
4
3
2
1
0
40  
39  
028000h  
027000h  
028FFFh  
027FFFh  
2
1
individual block  
lock/unlock unit:64K-byte  
32  
31  
020000h  
01F000h  
020FFFh  
01FFFFh  
24  
23  
018000h  
017000h  
018FFFh  
017FFFh  
16  
15  
010000h  
00F000h  
010FFFh  
00FFFFh  
8
7
008000h  
007000h  
008FFFh  
007FFFh  
individual 16 sectors  
lock/unlock unit:4K-byte  
0
0
000000h  
000FFFh  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
12  
MX25L6439E  
8. DEVICE OPERATION  
1. Before a command is issued, status register should be checked to ensure device is ready for the intended op-  
eration.  
2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby  
mode until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z.  
3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until  
next CS# rising edge.  
4. For standard single data rate serial mode, input data is latched on the rising edge of Serial Clock(SCLK) and  
data shifts out on the falling edge of SCLK. The difference of Serial mode 0 and mode 3 is shown as "Figure 1.  
Serial Modes Supported (for Normal Serial mode)".  
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, RDSFDP, W4READ, 4READ,  
QREAD, RDBLOCK, RES, and QPIID, the shifted-in instruction sequence is followed by a data-out sequence.  
After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI,  
WRSR, SE, BE, BE32K, CE, PP, 4PP, WPSEL, SBLK, SBULK, GBLK, GBULK, Suspend, Resume, NOP,  
RSTEN, RST, EQIO, RSTQIO, ENSO, EXSO, WRSCUR, the CS# must go high exactly at the byte boundary;  
otherwise, the instruction will be rejected and not executed.  
6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is ne-  
glected and not affect the current operation of Write Status Register, Program, Erase.  
Figure 1. Serial Modes Supported (for Normal Serial mode)  
CPOL CPHA  
shift in  
shift out  
SCLK  
SCLK  
(Serial mode 0)  
(Serial mode 3)  
0
1
0
1
SI  
MSB  
SO  
MSB  
Note:  
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while  
not transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial  
mode is supported.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
13  
MX25L6439E  
9. HOLD FEATURE  
HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop  
the operation of write status register, programming, or erasing in progress.  
The operation of HOLD requires Chip Select (CS#) keeping low and starts on falling edge of HOLD# pin signal  
while Serial Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not  
start until Serial Clock signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while  
Serial Clock(SCLK) signal is being low( if Serial Clock signal is not being low, HOLD operation will not end until  
Serial Clock being low).  
Figure 2. Hold Condition Operation  
CS#  
SCLK  
HOLD#  
Hold  
Hold  
Condition  
(standard)  
Condition  
(non-standard)  
The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't  
care during the HOLD operation. If Chip Select (CS#) drives high during HOLD operation, it will reset the internal  
logic of the device. To re-start communication with chip, the HOLD# must be at high and CS# must be at low.  
Note: The HOLD feature is disabled during Quad I/O mode.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
14  
MX25L6439E  
10. Quad Peripheral Interface (QPI) Read Mode  
QPI protocol enables user to take full advantage of Quad I/O Serial Flash by providing the Quad I/O interface in  
command cycles, address cycles and as well as data output cycles.  
10-1. Enable QPI mode  
By issuing 35H command, the QPI mode is enable.  
Figure 3. Enable QPI Sequence (Command 35H)  
CS#  
MODE 3  
MODE 0  
2
3
4
5
6
7
0
1
SCLK  
SIO0  
35  
SIO[3:1]  
10-2. Reset QPI mode  
By issuing F5H command, the device is reset to 1-I/O SPI mode.  
Figure 4. Reset QPI Mode (Command F5H)  
CE#  
SCLK  
SIO[3:0]  
F5  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
15  
MX25L6439E  
10-3. Fast QPI Read mode (FASTRDQ)  
To increase the code transmission speed, the device provides a "Fast QPI Read Mode" (FASTRDQ). By issuing  
command code EBH, the FASTRDQ mode is enable. The number of dummy cycle increase from 4 to 6 cycles.  
The read cycle frequency will increase from 54MHz to 86MHz.  
Figure 5. Fast QPI Read Mode (FASTRDQ) (Command EBH)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
MODE 3  
MODE 0  
MODE 3  
MODE 0  
SCLK  
EB  
SIO[3:0]  
H0 L0 H1 L1 H2 L2 H3 L3  
A5 A4 A3 A2 A1 A0  
X
X
X
X
X
X
MSB  
Data Out  
24-bit Address  
(Note)  
Data In  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
16  
MX25L6439E  
11. COMMAND DESCRIPTION  
Table 5. Command Sets  
Read Commands  
I/O  
1
1
4
4
4
4
4
Read Mode  
SPI  
SPI  
SPI  
SPI  
SPI  
QPI  
QPI  
FAST READ  
(fast read  
data)  
0B (hex)  
ADD1(8)  
ADD2(8)  
ADD3(8)  
Dummy(8)  
4READ  
QREAD  
(1I/4O read  
command)  
6B (hex)  
ADD1(8)  
ADD2(8)  
ADD3(8)  
Dummy(8)  
FAST READ  
(fast read  
data)  
4READ  
READ  
(normal read)  
Command  
W4READ  
(4 x I/O read  
command)  
EB (hex)  
ADD1(2)  
ADD2(2)  
ADD3(2)  
Dummy*  
Quad I/O  
read with  
configurable  
dummy cycles  
(4 x I/O read  
command)  
EB (hex)  
ADD1(2)  
ADD2(2)  
ADD3(2)  
Dummy*  
Quad I/O  
read with  
configurable  
dummy cycles  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
03 (hex)  
ADD1(8)  
ADD2(8)  
ADD3(8)  
E7 (hex)  
ADD1(2)  
ADD2(2)  
ADD3(2)  
Dummy(4)  
0B (hex)  
ADD1(2)  
ADD2(2)  
ADD3(2)  
Dummy(4)  
n bytes read  
out until CS#  
goes high  
n bytes read n bytes read Quad I/O read  
out until CS# out until CS# with 4 dummy  
goes high  
goes high  
cycles  
Action  
Note: *Dummy cycle number will be different, depending on the bit7 (DC) setting of Configuration Register.  
Please refer to "Configuration Register" Table.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
17  
MX25L6439E  
Other Commands  
WRSR*  
(write status/  
configuration page program) (sector erase)  
register)  
RDCR* (read  
configuration  
register)  
WREN*  
WRDI *  
RDSR * (read  
4PP (quad  
SE *  
Command  
(write enable) (write disable) status register)  
1st byte  
2nd byte  
3rd byte  
4th byte  
06 (hex)  
04 (hex)  
05 (hex)  
15 (hex)  
01 (hex)  
Values  
Values  
38 (hex)  
ADD1  
ADD2  
ADD3  
20 (hex)  
ADD1  
ADD2  
ADD3  
sets the (WEL) resets the to read out the to read out the to write new quad input to to erase the  
write enable  
latch bit  
(WEL) write values of the values of the values of the program the  
enable latch status register configuration configuration/ selected page  
selected  
sector  
Action  
bit  
register  
status register  
PGM/ERS  
RDP (Release Suspend *  
BE 32K * (block BE * (block  
erase 32KB) erase 64KB)  
CE * (chip  
erase)  
PP * (page  
program)  
DP (Deep  
power down)  
Command  
from deep  
(Suspends  
Program/  
Erase)  
power down)  
1st byte  
2nd byte  
3rd byte  
4th byte  
52 (hex)  
ADD1  
ADD2  
D8 (hex)  
ADD1  
ADD2  
60 or C7 (hex)  
02 (hex)  
ADD1  
ADD2  
ADD3  
B9 (hex)  
AB (hex)  
75 (hex)  
ADD3  
ADD3  
to erase the  
to erase the to erase whole to program the enters deep release from program/erase  
selected 32KB selected 64KB  
chip  
selected page power down  
mode  
deep power  
down mode  
operation is  
interrupted  
by suspend  
command  
block  
block  
Action  
PGM/ERS  
Resume *  
(Resumes (read identific-  
Program/  
Erase)  
RDID  
RES * (read ENSO * (enter  
electronic ID) secured OTP)  
Command  
ation)  
1st byte  
2nd byte  
3rd byte  
4th byte  
7A (hex)  
9F (hex)  
AB (hex)  
B1 (hex)  
x
x
x
to continue  
performing the  
suspended  
outputs  
JEDEC  
ID: 1-byte  
to read out  
1-byte Device 4K-bit secured  
ID OTP mode  
to enter the  
program/erase Manufacturer  
Action  
sequence  
ID & 2-byte  
Device ID  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
18  
MX25L6439E  
RDSCUR *  
(read security (write security  
WRSCUR *  
SBULK *  
(single block (block protect  
unlock)  
39 (hex)  
ADD1  
RDBLOCK *  
Command  
(byte)  
EXSO * (exit  
secured OTP)  
SBLK * (single  
block lock  
GBLK * (gang  
block lock)  
register)  
2B (hex)  
register)  
2F (hex)  
read)  
3C (hex)  
ADD1  
ADD2  
ADD3  
1st byte  
2nd byte  
3rd byte  
4th byte  
C1 (hex)  
36 (hex)  
ADD1  
ADD2  
7E (hex)  
ADD2  
ADD3  
ADD3  
to exit the  
4K-bit secured of security  
OTP mode register  
to read value to set the lock-  
down bit as  
individual  
block  
individual  
block  
(64K-byte)  
or sector  
(4K-byte)  
unprotect  
read individual whole chip  
block or sector write protect  
write protect  
"1" (once lock- (64K-byte)  
down, cannot or sector  
be update) (4K-byte) write  
protect  
Action  
status  
RST *  
RSTEN *  
EQIO  
RSTQIO  
QPIID  
COMMAND GBULK * (gang NOP * (No  
(Reset  
(Enable Quad (Reset Quad  
(byte)  
block unlock)  
Operation) (Reset Enable)  
(QPI ID Read)  
Memory)  
I/O)  
I/O)  
1st byte  
2nd byte  
3rd byte  
4th byte  
Action  
98 (hex)  
00 (hex)  
66 (hex)  
99 (hex)  
35 (hex)  
F5 (hex)  
AF (hex)  
whole chip  
unprotect  
Entering the Exiting the QPI  
QPI mode mode  
ID in QPI  
interface  
SBL *  
(Set Burst  
Length)  
77 (hex)  
Value  
WPSEL *  
(Write Protect  
Selection)  
68 (hex)  
COMMAND  
(byte)  
RDSFDP *  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
Action  
5A (hex)  
ADD1(8)  
ADD2(8)  
ADD3(8)  
Dummy(8)  
n bytes read  
out until CS#  
goes high  
to set Burst  
length  
to enter  
and enable  
individal block  
protect mode  
Note 1: Command set highlighted with (*) are supported both in SPI and QPI mode.  
Note 2: It is not recommended to adopt any other code not in the command definition table, which will potentially enter the  
hidden mode.  
Note 3: Before executing RST command, RSTEN command must be executed. If there is any other command to interfere,  
the reset operation will be disabled.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
19  
MX25L6439E  
11-1. Write Enable (WREN)  
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP,  
4PP, CP, SE, BE, BE32K, CE, WRSR, SBLK, SBULK, GBLK and GBULK, which are intended to change the de-  
vice content, should be set every time after the WREN instruction setting the WEL bit.  
The sequence of issuing WREN instruction is: CS# goes low→ sending WREN instruction code→ CS# goes  
high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
in SPI mode.  
Figure 6. Write Enable (WREN) Sequence (Command 06) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
06h  
SI  
High-Z  
SO  
Figure 7. Write Enable (WREN) Sequence (Command 06) (QPI Mode)  
CS#  
0
1
SCLK  
Command  
SIO[3:0]  
06h  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
20  
MX25L6439E  
11-2. Write Disable (WRDI)  
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.  
The sequence of issuing WRDI instruction is: CS# goes low→ sending WRDI instruction code→ CS# goes high.  
The WEL bit is reset by following situations:  
- Power-up  
- WRDI command completion  
- WRSR command completion  
- PP command completion  
- 4PP command completion  
- SE command completion  
- BE32K command completion  
- BE command completion  
- CE command completion  
- PGM/ERS Suspend command completion  
- Softreset command completion  
- WRSCUR command completion  
- WPSEL command completion  
- SBLK command completion  
- SBULK command completion  
- GBLK command completion  
- GBULK command completion  
Figure 8. Write Disable (WRDI) Sequence (Command 04) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
04h  
SI  
High-Z  
SO  
Figure 9. Write Disable (WRDI) Sequence (Command 04) (QPI Mode)  
CS#  
0
1
SCLK  
Command  
SIO[3:0]  
04h  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
21  
MX25L6439E  
11-3. Read Identification (RDID)  
The RDID instruction is for reading the Manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Ma-  
cronix Manufacturer ID is C2(hex), the memory type ID is 25(hex) as the first-byte Device ID, and the individual  
Device ID of second-byte ID are listed as table of "Table 7. ID Definitions".  
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code → 24-bits ID data  
out on SO→ to end RDID operation can use CS# to high at any time during data out.  
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the  
cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby  
stage.  
Figure 10. Read Identification (RDID) Sequence (Command 9F) (SPI mode only)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
28 29 30 31  
SCLK  
SI  
Command  
9Fh  
Manufacturer Identification  
Device Identification  
High-Z  
SO  
7
6
5
3
2
1
0
15 14 13  
MSB  
3
2
1
0
MSB  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
22  
MX25L6439E  
11-4. Read Status Register (RDSR)  
The RDSR instruction is for reading Status Register. The Read Status Register can be read at any time (even  
in program/erase/write status register condition) and continuously. It is recommended to check the Write in  
Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is  
in progress.  
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register  
data out on SO.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
Figure 11. Read Status Register (RDSR) Sequence (Command 05) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
SI  
command  
05h  
Status Register Out  
Status Register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
Figure 12. Read Status Register (RDSR) Sequence (Command 05) (QPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
N
SCLK  
SIO[3:0]  
05h  
H0 L0 H0 L0 H0 L0  
H1 L1  
MSB  
LSB  
Status Byte Status Byte Status Byte  
Status Byte  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
23  
MX25L6439E  
The definition of the status register bits is as below:  
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/  
write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write  
status register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/  
write status register cycle.  
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write en-  
able latch. When WEL bit sets to "1", which means the internal write enable latch is set, the device can accept  
program/erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable  
latch; the device will not accept program/erase/write status register instruction. The program/erase command will  
be ignored and will reset WEL bit if it is applied to a protected memory area. To ensure both WIP bit & WEL bit are  
both set to 0 and available for next program/erase/operations, WIP bit needs to be confirm to be 0 before polling  
WEL bit. After WIP bit confirmed, WEL bit needs to be confirm to be 0.  
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protect-  
ed area (as defined in "Table 2. Protected Area Sizes") of the device to against the program/erase instruction  
without hardware protection mode being set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the  
Write Status Register (WRSR) instruction to be executed. Those bits define the protected area of the memory to  
against Page Program (PP), Sector Erase (SE), Block Erase (BE) and Chip Erase (CE) instructions (only if all  
Block Protect bits set to 0, the CE instruction can be executed). The BP3, BP2, BP1, BP0 bits are "0" as default.  
Which is un-protected.  
QE bit. The Quad Enable (QE) bit, non-volatile bit, while it is "0" (factory default), it performs non-Quad and WP#  
is enable. While QE is "1", it performs Quad I/O mode and WP# is disabled. In the other word, if the system goes  
into four I/O mode (QE=1), the feature of HPM will be disabled. While in QPI mode, QE bit is not required for set-  
ting.  
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, default value is "0". SRWD bit is oper-  
ated together with Write Protection (WP#/SIO2) pin for providing hardware protection mode. The hardware pro-  
tection mode requires SRWD sets to 1 and WP#/SIO2 pin signal is low stage. In the hardware protection mode,  
the Write Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and Block  
Protect bits (BP3, BP2, BP1, BP0) are read only. The SRWD bit defaults to be "0".  
Status Register  
bit7  
SRWD  
(status  
bit6  
bit5  
BP3  
(level of  
protected  
block)  
bit4  
BP2  
(level of  
protected  
block)  
bit3  
BP1  
(level of  
protected  
block)  
bit2  
BP0  
(level of  
protected  
block)  
bit1  
bit0  
QE  
(Quad  
Enable)  
WEL  
(write enable  
latch)  
WIP  
(write in  
progress bit)  
register write  
protect)  
1= Quad  
Enable  
0=not Quad  
Enable  
1=write  
enable  
0=not write 0=not in write  
1=write  
operation  
1=status  
register write  
disable  
(note 1)  
(note 1)  
(note 1)  
(note 1)  
enable  
operation  
Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile  
bit bit bit bit bit bit  
volatile bit  
volatile bit  
Note: see the "Table 2. Protected Area Sizes".  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
24  
MX25L6439E  
Configuration Register  
The Configuration Register is able to change the default status of Flash memory. Flash memory will be configured  
after the CR bit is set.  
TB bit  
The Top/Bottom (TB) bit is a non-volatile OTP bit. The Top/Bottom (TB) bit is used to configure the Block Protect  
area by BP bit (BP3, BP2, BP1, BP0), starting from TOP or Bottom of the memory array. The TB bit is defaulted as “0”,  
which means Top area protect. When it is set as “1”, the protect area will change to Bottom area of the memory  
device. To write the TB bit requires the Write Status Register (WRSR) instruction to be executed.  
Configuration Register  
bit7  
DC  
bit6  
bit5  
bit4  
bit3  
TB  
bit2  
bit1  
bit0  
(Dummy  
Cycle)  
Reserved  
Reserved  
Reserved  
(top/bottom  
selected)  
0=Top area  
protect  
Reserved  
Reserved  
Reserved  
(Note)  
x
x
x
x
x
x
1=Bottom  
area protect  
(Default=0)  
OTP  
x
x
x
x
x
x
Volatile bit  
Note: See "Dummy Cycle and Frequency Table", with "Don't Care" on other Reserved Configuration Registers.  
Dummy Cycle and Frequency Table  
Numbers of Dummy  
DC  
Quad I/O Fast Read  
clock cycles  
1
8
6
104  
86  
0 (default)  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
25  
MX25L6439E  
11-5. Write Status Register (WRSR)  
The WRSR instruction is for changing the values of Status Register Bits and Configuration Register Bits. Be-  
fore sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the  
Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3,  
BP2, BP1, BP0) bits to define the protected area of memory (as shown in "Table 2. Protected Area Sizes"). The  
WRSR also can set or reset the Quad enable (QE) bit and set or reset the Status Register Write Disable (SRWD)  
bit in accordance with Write Protection (WP#/SIO2) pin signal, but has no effect on bit1(WEL) and bit0 (WIP) of  
the status register. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is en-  
tered.  
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Regis-  
ter data on SI→ CS# goes high.  
Figure 13. Write Status Register (WRSR) Sequence (Command 01) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
Mode 3  
Mode 0  
SCLK  
command  
01h  
Status  
Register In  
Configuration  
Register In  
SI  
4
15 14  
13  
12 11  
10 9  
8
2
1
0
7
6
5
3
MSB  
High-Z  
SO  
Note : Also supported in QPI mode with command and subsequent input/output in Quad I/O mode.  
Figure 14. Write Status Register (WRSR) Sequence (Command 01) (QPI Mode)  
CS#  
SCLK  
12  
13  
8
9
4
5
0
1
C4, C0  
C5, C1  
SIO0  
SIO1  
10  
11  
2
3
14  
15  
C6, C2  
C7, C3  
6
7
SIO2  
SIO3  
Configuration  
Register IN  
Status  
Register IN  
Command  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
26  
MX25L6439E  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The  
Write in Progress (WIP) bit still can be checked out during the Write Status Register cycle is in progress. The  
WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write En-  
able Latch (WEL) bit is reset.  
Table 6. Protection Modes  
Mode  
Status register condition  
WP# and SRWD bit status  
Memory  
Status register can be written  
in (WEL bit is set to "1") and  
the SRWD, BP0-BP3  
Software protection  
mode (SPM)  
WP#=1 and SRWD bit=0, or  
WP#=0 and SRWD bit=0, or  
WP#=1 and SRWD=1  
The protected area cannot  
be programmed or erased.  
bits can be changed  
The SRWD, BP0-BP3 of  
status register bits cannot be  
changed  
Hardware protection  
mode (HPM)  
The protected area cannot  
be programmed or erased.  
WP#=0, SRWD bit=1  
Note: As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown  
in "Table 2. Protected Area Sizes".  
As the table above showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode  
(HPM):  
Software Protected Mode (SPM):  
-
-
When SRWD bit=0, no matter WP#/SIO2 is low or high, the WREN instruction may set the WEL bit and can  
change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1,  
BP0, is at software protected mode (SPM).  
When SRWD bit=1 and WP#/SIO2 is high, the WREN instruction may set the WEL bit can change the values  
of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software  
protected mode (SPM)  
Hardware Protected Mode (HPM):  
-
When SRWD bit=1, and then WP#/SIO2 is low (or WP#/SIO2 is low before SRWD bit=1), it enters the hard-  
ware protected mode (HPM). The data of the protected area is protected by software protected mode by BP3,  
BP2, BP1, BP0 and hardware protected mode by the WP#/SIO2 to against data modification.  
Note:  
To exit the hardware protected mode requires WP#/SIO2 driving high once the hardware protected mode is  
entered. If the WP#/SIO2 pin is permanently connected to high, the hardware protected mode can never be en-  
tered; only can use software protected mode via BP3, BP2, BP1, BP0.  
If the system goes into four I/O or QPI mode, the feature of HPM will be disabled.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
27  
MX25L6439E  
Figure 15. WRSR flow  
start  
WREN command  
RDSR command  
No  
WEL=1?  
Yes  
WRSR command  
Write status register data  
RDSR command  
No  
WIP=0?  
Yes  
RDSR command  
Read WEL=0, BP[3:0], QE,  
and SRWD data  
No  
Verify OK?  
Yes  
WRSR successfully  
WRSR fail  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
28  
MX25L6439E  
11-6. Read Data Bytes (READ)  
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out  
on the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The ad-  
dress is automatically increased to the next higher address after each byte data is shifted out, so the whole  
memory can be read out at a single READ instruction. The address counter rolls over to 0 when the highest ad-  
dress has been reached.  
The sequence of issuing READ instruction is: CS# goes low→ sending READ instruction code→3-byte address  
on SI →data out on SO→ to end READ operation can use CS# to high at any time during data out.  
Figure 16. Read Data Bytes (READ) Sequence (Command 03)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
03  
24 ADD Cycles  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
SI  
Data Out 2  
Data Out 1  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0 D7  
MSB MSB  
SO  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
29  
MX25L6439E  
11-7. Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and  
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be  
at any location. The address is automatically increased to the next higher address after each byte data is shifted  
out, so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to  
0 when the highest address has been reached.  
Read on SPI Mode The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ  
instruction code→ 3-byte address on SI→1-dummy byte (default) address on SI→ data out on SO→ to end  
FAST_READ operation can use CS# to high at any time during data out. (Please refer to waveform next page)  
Read on QPI Mode The sequence of issuing FAST_READ instruction in QPI mode is: CS# goes low→ send-  
ing FAST_READ instruction, 2 cycles→ 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0→4 dummy  
cycles→data out interleave on SIO3, SIO2, SIO1 & SIO0→ to end QPI FAST_READ operation can use CS# to  
high at any time during data out. (Please refer to waveform next page)  
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any  
impact on the Program/Erase/Write Status Register current cycle.  
Figure 17. Read at Higher Speed (FAST_READ) Sequence (Command 0B) (SPI Mode) (104MHz)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCLK  
Command  
0Bh  
24 BIT ADDRESS  
SI  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
Dummy Cycle  
7
6
5
4
3
2
0
1
SI  
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
30  
MX25L6439E  
Figure 18. Read at Higher Speed (FAST_READ) Sequence (Command 0B) (QPI Mode) (54MHz)  
CS#  
MODE 3  
MODE 0  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SCLK  
Command  
Add Add Add Add Add Add  
X
X
0Bh  
SIO(3:0)  
X
X
H0 L0 H1 L1  
MSB LSB MSB LSB  
Data Out 1 Data Out 2  
24 BIT ADDRESS  
Data In  
11-8. Quad Read Mode (QREAD)  
The QREAD instruction enable quad throughput of Serial Flash in read mode. The address is latched on rising  
edge of SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a  
maximum frequency fQ. The first address byte can be at any location. The address is automatically increased  
to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single  
QREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writ-  
ing QREAD instruction, the following data out will perform as 4-bit instead of previous 1-bit.  
The sequence of issuing QREAD instruction is: CS# goes low  
sending QREAD instruction → 3-byte address  
on SI  
8-bit dummy cycle  
data out interleave on SO3, SO2, SO1 & SO0  
to end QREAD operation can  
use CS# to high at any time during data out.  
While Program/Erase/Write Status Register cycle is in progress, QREAD instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
Figure 19. Quad Read Mode Sequence (Command 6B)  
CS#  
29 30 31 32 33  
38 39 40 41 42  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data  
Out 2  
Data  
Out 3  
Command  
6B  
8 dummy cycles  
24 ADD Cycles  
Data  
Out 1  
A23A22  
A2 A1 A0  
D4 D0 D4 D0 D4  
SI/SO0  
High Impedance  
High Impedance  
High Impedance  
SO/SO1  
D5 D1 D5 D1 D5  
D6 D2 D6 D2 D6  
WP#/SO2  
HOLD#/SO3  
D7 D3 D7 D3 D7  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
31  
MX25L6439E  
11-9. 4 x I/O Read Mode (4READ)  
The 4READ instruction enables quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of sta-  
tus Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of  
SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum  
frequency fQ. The first address byte can be at any location. The address is automatically increased to the next  
higher address after each byte data is shifted out, so the whole memory can be read out at a single 4READ in-  
struction. The address counter rolls over to 0 when the highest address has been reached. Once writing 4READ  
instruction, the following address/dummy/data out will perform as 4-bit instead of previous 1-bit.  
4 x I/O Read on SPI Mode (4READ) The sequence of issuing 4READ instruction is: CS# goes low sending  
4READ instruction 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0 2+4 dummy cycles (default) data  
out interleave on SIO3, SIO2, SIO1 & SIO0 to end 4READ operation can use CS# to high at any time during  
data out. (Please refer to figure below)  
W4READ instruction (E7) is also available is SPI mode for 4 I/O read. The sequence is similar to 4READ, but  
with only 4 dummy cycles. The clock rate runs at 54MHz.  
4 x I/O Read on QPI Mode (4READ) The 4READ instruction also support on QPI command mode. The se-  
quence of issuing 4READ instruction QPI mode is: CS# goes low sending 4READ instruction 24-bit address  
interleave on SIO3, SIO2, SIO1 & SIO0 2+4 dummy cycles (default) data out interleave on SIO3, SIO2, SIO1  
& SIO0 to end 4READ operation can use CS# to high at any time during data out.  
Figure 20. 4 x I/O Read Mode Sequence (Command EB) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
n
SCLK  
Conꢀgurable  
Dummy cycles  
8 Bit Instruction  
EBh  
6 Address cycles  
Data Output  
(Note 3)  
Performance  
enhance  
indicator (Note 2)  
data  
bit4, bit0, bit4....  
address  
bit20, bit16..bit0  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
SI/SIO0  
High Impedance  
High Impedance  
High Impedance  
address  
bit21, bit17..bit1  
data  
bit5 bit1, bit5....  
SO/SIO1  
address  
bit22, bit18..bit2  
data  
bit6 bit2, bit6....  
WP#/SIO2  
HOLD#/SIO3  
address  
bit23, bit19..bit3  
data  
bit7 bit3, bit7....  
Note:  
1. Hi-impedance is inhibited for the two clock cycles.  
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.  
3. The Configurable Dummy Cycle is set by Configuration Register Bit. Please see "Dummy Cycle and Fre-  
quency Table"  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
32  
MX25L6439E  
Figure 21. 4 x I/O Read Mode Sequence (Command EB) (QPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
MODE 3  
MODE 0  
MODE 3  
MODE 0  
SCLK  
EB  
Data In  
SIO[3:0]  
X
X
X
X
H0 L0 H1 L1 H2 L2 H3 L3  
A5 A4 A3 A2 A1 A0  
X
X
MSB  
Data Out  
Configurable  
Dummy cycle  
24-bit Address  
(Note)  
Another sequence of issuing 4READ instruction especially useful in random access is : CS# goes low→ sending  
4READ instruction→ 3-bytes address interleave on SIO3, SIO2, SIO1 & SIO0 →performance enhance toggling  
bit P[7:0]→ 4 dummy cycles → data out until CS# goes high → CS# goes low (reduce 4READ instruction) →  
24-bit random access address (Please refer to "Figure 22. 4 x I/O Read enhance performance Mode Sequence  
(Command EB) (SPI Mode)").  
In the performance-enhancing mode (Notes of "Figure 22. 4 x I/O Read enhance performance Mode Sequence  
(Command EB) (SPI Mode)"), P[7:4] must be toggling with P[3:0]; likewise P[7:0]=A5h, 5Ah, F0h or 0Fh can  
make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer toggling with P[3:0];  
likewise P[7:0]=FFh, 00h, AAh or 55h. These commands will reset the performance enhance mode. And after-  
wards CS# is raised and then lowered, the system then will return to normal operation.  
While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
33  
MX25L6439E  
11-10. Performance Enhance Mode  
The device could waive the command cycle bits if the two cycle bits after address cycle toggles. (Please note  
"Figure 22. 4 x I/O Read enhance performance Mode Sequence (Command EB) (SPI Mode)")  
Performance enhance mode is supported in both SPI and QPI mode for 4READ mode.  
In QPI mode, “EBh”, “0Bh” and SPI “EBh”, “E7h” commands support enhance mode.  
After entering enhance mode, following CS# go high, the device will stay in the read mode and treat CS# go low  
of the first clock as address instead of command cycle.  
To exit enhance mode, a new fast read command whose first two dummy cycles is not toggle then exit. Or issue  
”FFh” data cycles to exit enhance mode.  
Figure 22. 4 x I/O Read enhance performance Mode Sequence (Command EB) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
n
SCLK  
Conꢀgurable  
Dummy cycles  
8 Bit Instruction  
EBh  
6 Address cycles  
Data Output  
(Note 2)  
Performance  
enhance  
indicator (Note1)  
data  
bit4, bit0, bit4....  
address  
bit20, bit16..bit0  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
SI/SIO0  
High Impedance  
High Impedance  
High Impedance  
address  
bit21, bit17..bit1  
data  
bit5 bit1, bit5....  
SO/SIO1  
address  
bit22, bit18..bit2  
data  
bit6 bit2, bit6....  
WP#/SIO2  
HOLD#/SIO3  
address  
bit23, bit19..bit3  
data  
bit7 bit3, bit7....  
CS#  
n+1  
...........  
n+7......n+9 ........... n+13  
...........  
SCLK  
Conꢀgurable  
Dummy cycles  
6 Address cycles  
address  
Data Output  
(Note 2)  
Performance  
enhance  
indicator (Note1)  
data  
bit4, bit0, bit4....  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
SI/SIO0  
bit20, bit16..bit0  
address  
bit21, bit17..bit1  
data  
bit5 bit1, bit5....  
SO/SIO1  
address  
bit22, bit18..bit2  
data  
bit6 bit2, bit6....  
WP#/SIO2  
HOLD#/SIO3  
address  
bit23, bit19..bit3  
data  
bit7 bit3, bit7....  
Note:  
1. Performance enhance mode, if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P0 (Toggling), ex: A5, 5A, 0F, if not using  
performance enhance recommend to keep 1 or 0 in performance enhance indicator.  
Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF  
2. The Configurable Dummy Cycle is set by Configuration Register Bit. Please see "Dummy Cycle and  
Frequency Table"  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
34  
MX25L6439E  
Figure 23. 4 x I/O Read enhance performance Mode Sequence (Command EB) (QPI Mode)  
CS#  
MODE 3  
MODE 0  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SCLK  
EBh  
SIO[3:0]  
X
X
X
X
H0 L0 H1 L1  
MSB LSB MSB LSB  
A5 A4 A3 A2 A1 A0  
P(7:4)P(3:0)  
Data In  
performance  
enhance  
Data Out  
indicator  
Configurable Dummy cycles  
(Note)  
CS#  
SCLK  
n+1 .............  
MODE 0  
SIO[3:0]  
X
X
X
X
H0 L0 H1 L1  
MSB LSB MSB LSB  
A5 A4 A3 A2 A1 A0  
P(7:4)P(3:0)  
6 Address cycles  
performance  
enhance  
Data Out  
indicator  
Configurable Dummy cycles  
(Note)  
Note: The Configurable Dummy Cycle is set by Configuration Register Bit. Please see "Dummy Cycle and  
Frequency Table"  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
35  
MX25L6439E  
11-11. Performance Enhance Mode Reset  
To conduct the Performance Enhance Mode Reset operation in SPI mode, FFh data cycle, 8 clocks, should be  
issued in 1I/O sequence. In QPI Mode, FFFFFFFFh data cycle, 8 clocks, in 4I/O should be issued.  
If the system controller is being Reset during operation, the flash device will return to the standard SPI operation.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
Figure 24. Performance Enhance Mode Reset for Fast Read Quad I/O (SPI Mode)  
Mode Bit Reset  
for Quad I/O  
CS#  
Mode 3  
Mode 3  
1
2
3
4
5
6
7
SCLK  
Mode  
Mode 0  
FFh  
SIO0  
SIO1  
SIO2  
Don’t Care  
Don’t Care  
Don’t Care  
SIO3  
Figure 25. Performance Enhance Mode Reset for Fast Read Quad I/O (QPI Mode)  
Mode Bit Reset  
for Quad I/O  
CS#  
Mode 3  
Mode 3  
Mode  
1
2
3
4
5
6
7
SCLK  
Mode 0  
FFFFFFFFh  
SIO[3:0]  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
36  
MX25L6439E  
11-12. Burst Read  
The device supports Burst Read in both SPI and QPI mode.  
To set the Burst length, following command operation is required  
Issuing command: “77h” in the first Byte (8-clocks), following 4 clocks defining wrap around enable with “0h” and  
disable with“1h”.  
Next 4 clocks is to define wrap around depth. Definition as following table:  
Data  
00h  
01h  
02h  
03h  
1xh  
Wrap Around  
Wrap Depth  
8-byte  
Yes  
Yes  
Yes  
Yes  
No  
16-byte  
32-byte  
64-byte  
X
The wrap around unit is defined within the 256Byte page, with random initial address. It’s defined as “wrap-  
around mode disable” for the default state of the device. To exit wrap around, it is required to issue another  
“77” command in which data=‘1xh”. Otherwise, wrap around status will be retained until power down or reset  
command. To change wrap around depth, it is requried to issue another “77” command in which data=“0xh”. QPI  
“0Bh” “EBh” and SPI “EBh” “E7h” support wrap around feature after wrap around enable. Burst read is supported  
in both SPI and QPI mode. The Device ID default without Burst read.  
SPI Mode  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Mode 3  
Mode 0  
SCLK  
SIO  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
77h  
QPI Mode  
CS#  
0
1
2
3
Mode 3  
Mode 0  
SCLK  
77h  
H0  
L0  
SIO[3:0]  
MSB LSB  
Note: MSB=Most Significant Bit  
LSB=Least Significant Bit  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
37  
MX25L6439E  
11-13. Sector Erase (SE)  
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used  
for any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)  
bit before sending the Sector Erase (SE). Any address of the sector (see "Table 4. Memory Organization" ) is a  
valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest  
eighth of address byte has been latched-in); otherwise, the instruction will be rejected and not executed.  
The sequence of issuing SE instruction is: CS# goes low → sending SE instruction code→ 3-byte address on SI  
→CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't  
care when during SPI mode.  
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked out during the Sector Erase cycle is in progress. The WIP sets 1 during  
the tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset.  
If the sector is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected  
(no change) and the WEL bit still be reset.  
Figure 26. Sector Erase (SE) Sequence (Command 20) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
20h  
24 Bit Address  
SI  
23 22  
MSB  
2
1
0
Figure 27. Sector Erase (SE) Sequence (Command 20) (QPI Mode)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
24 BIT ADDRESS  
Command  
A20 A16 A12 A8 A4 A0  
MSB LSB  
SIO[3:0]  
20h  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
38  
MX25L6439E  
11-14. Block Erase (BE)  
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for  
64K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch  
(WEL) bit before sending the Block Erase (BE). Any address of the block (see "Table 4. Memory Organization")  
is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the lat-  
est eighth of address byte has been latched-in); otherwise, the instruction will be rejected and not executed.  
The sequence of issuing BE instruction is: CS# goes low → sending BE instruction code → 3-byte address on  
SI → CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked out during the Sector Erase cycle is in progress. The WIP sets 1 during  
the tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset.  
If the block is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit still be reset.  
Figure 28. Block Erase (BE) Sequence (Command D8) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
D8h  
24 Bit Address  
SI  
23 22  
MSB  
2
0
1
Figure 29. Block Erase (BE) Sequence (Command D8) (QPI Mode)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
24 BIT ADDRESS  
Command  
A20 A16 A12 A8 A4 A0  
MSB  
SIO[3:0]  
D8h  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
39  
MX25L6439E  
11-15. Block Erase (BE32K)  
The Block Erase (BE32K) instruction is for erasing the data of the chosen block to be "1". The instruction is  
used for 32K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write En-  
able Latch (WEL) bit before sending the Block Erase (BE32K). Any address of the block (see "Table 4. Memory  
Organization" ) is a valid address for Block Erase (BE32K) instruction. The CS# must go high exactly at the byte  
boundary (the latest eighth of address byte has been latched-in); otherwise, the instruction will be rejected and  
not executed.  
The sequence of issuing BE32K instruction is: CS# goes low → sending BE32K instruction code → 3-byte ad-  
dress on SI → CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The self-timed Block Erase Cycle time (tBE32K) is initiated as soon as Chip Select (CS#) goes high. The Write  
in Progress (WIP) bit still can be checked out during the Sector Erase cycle is in progress. The WIP sets 1  
during the tBE32K timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL)  
bit is reset. If the block is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be  
protected (no change) and the WEL bit still be reset.  
Figure 30. Block Erase 32KB (BE32K) Sequence (Command 52) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
52h  
24 Bit Address  
SI  
23 22  
MSB  
2
0
1
Figure 31. Block Erase 32KB (BE32K) Sequence (Command 52) (QPI Mode)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
24 BIT ADDRESS  
Command  
A20 A16 A12 A8 A4 A0  
MSB  
SIO[3:0]  
52h  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
40  
MX25L6439E  
11-16. Chip Erase (CE)  
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) in-  
struction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS#  
must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The sequence of issuing CE instruction is: CS# goes low → sending CE instruction code → CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked out during the Chip Erase cycle is in progress. The WIP sets 1 during the  
tCE timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the  
chip is protected the Chip Erase (CE) instruction will not be executed, but WEL will be reset.  
Figure 32. Chip Erase (CE) Sequence (Command 60 or C7) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
60h or C7h  
Figure 33. Chip Erase (CE) Sequence (Command 60 or C7) (QPI Mode)  
CS#  
0
1
SCLK  
Command  
60h or C7h  
SIO[3:0]  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
41  
MX25L6439E  
11-17. Page Program (PP)  
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction  
must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device  
programs only the last 256 data bytes sent to the device. The last address byte (the 8 least significant address  
bits, A7-A0) should be set to 0 for 256 bytes page program. If A7-A0 are not all zero, transmitted data that  
exceed page length are programmed from the starting address (24-bit address that last 8 bit are all 0) of currently  
selected page. If the data bytes sent to the device exceeds 256, the last 256 data byte is programmed at the  
request page and previous data will be disregarded. If the data bytes sent to the device has not exceeded 256,  
the data will be programmed at the request address of the page. There will be no effort on the other data bytes of  
the same page.  
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on  
SI→ at least 1-byte on data on SI→ CS# goes high.  
The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte  
boundary (the latest eighth bit of data being latched in), otherwise, the instruction will be rejected and will not be  
executed.  
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write  
in Progress (WIP) bit still can be checked out during the Page Program cycle is in progress. The WIP sets 1  
during the tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit  
is reset. If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be  
protected (no change) and the WEL bit will still be reset.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
Figure 34. Page Program (PP) Sequence (Command 02) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
02h  
24-Bit Address  
Data Byte 1  
23 22 21  
MSB  
3
2
1
0
7
6
5
4
3
2
0
1
SI  
MSB  
CS#  
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  
SCLK  
Data Byte 2  
Data Byte 3  
Data Byte 256  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
7
6
5
4
3
2
0
1
1
1
SI  
MSB  
MSB  
MSB  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
42  
MX25L6439E  
Figure 36. Page Program (PP) Sequence (Command 02) (QPI Mode)  
CS#  
MODE 3  
MODE 0  
0
1
2
SCLK  
24 BIT ADDRESS  
Command  
02h  
SIO[3:0]  
H0 L0 H1 L1 H2 L2 H3 L3  
H255 L255  
A5 A4 A3 A2 A1 A0  
......  
Data Byte Data Byte Data Byte Data Byte  
Data Byte  
256  
Data In  
1
2
3
4
11-18. 4 x I/O Page Program (4PP)  
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN)  
instruction must execute to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1"  
before sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1,  
SIO2, and SIO3, which can raise programmer performance and the effectiveness of application of lower clock  
less than 104MHz. For system with faster clock, the Quad page program cannot provide more actual favors,  
because the required internal page program time is far more than the time data flows in. Therefore, we suggest  
that while executing this command (especially during sending data), user can slow the clock speed down to  
104MHz below. The other function descriptions are as same as standard page program.  
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte address on  
SIO[3:0]→ at least 1-byte on data on SIO[3:0]→ CS# goes high.  
If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit will still be reset.  
Figure 35. 4 x I/O Page Program (4PP) Sequence (Command 38)  
CS#  
524 525  
10 11 12 13 14 15 16 17  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data  
Byte 256  
Data Data  
Byte 1 Byte 2  
Command  
38  
6 ADD cycles  
D4 D0 D4 D0  
D4 D0  
A20 A16 A12 A8 A4 A0  
SI/SIO0  
D5 D1 D5 D1  
D6 D2 D6 D2  
D7 D3 D7 D3  
D5 D1  
D6 D2  
D7 D3  
SO/SIO1  
A21 A17 A13 A9 A5 A1  
A22 A18 A14 A10 A6 A2  
WP#/SIO2  
HOLD#/SIO3  
A23 A19 A15 A11 A7 A3  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
43  
MX25L6439E  
The Program/Erase function instruction function flow is as follows:  
Figure 37. Program/Erase Flow(1) with read array data  
Start  
WREN command  
RDSR command*  
No  
WEL=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
Read array data  
(same address of PGM/ERS)  
No  
Verify OK?  
Yes  
Program/erase fail  
Program/erase successfully  
Program/erase  
another block?  
Yes  
*
* Issue RDSR to check BP[3:0].  
* If WPSEL=1, issue RDBLOCK to check the block status.  
No  
Program/erase completed  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
44  
MX25L6439E  
Figure 38. Program/Erase Flow(2) without read array data  
Start  
WREN command  
RDSR command*  
No  
WEL=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
RDSCUR command  
Yes  
REGPFAIL/REGEFAIL=1?  
No  
Program/erase fail  
Program/erase successfully  
Program/erase  
another block?  
Yes  
* Issue RDSR to check BP[3:0].  
* If WPSEL=1, issue RDBLOCK to check the block status.  
No  
Program/erase completed  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
45  
MX25L6439E  
11-19. Continuous Program mode (CP mode)  
The CP mode may enhance program performance by automatically increasing address to the next higher ad-  
dress after each byte data has been programmed.  
The Continuous Program (CP) instruction is for multiple bytes program to Flash. A write Enable (WREN) in-  
struction must execute to set the Write Enable Latch (WEL) bit before sending the Continuous Program (CP)  
instruction. CS# requires to go high before CP instruction is executing. After CP instruction and address input,  
two bytes of data is input sequentially from MSB(bit7) to LSB(bit0). The first byte data will be programmed to the  
initial address range with A0=0 and second byte data with A0=1. If only one byte data is input, the CP mode will  
not process. If more than two bytes data are input, the additional data will be ignored and only two byte data are  
valid. Any byte to be programmed should be in the erase state (FF) first. It will not roll over during the CP mode,  
once the last unprotected address has been reached, the chip will exit CP mode and reset write Enable Latch bit  
(WEL) as "0" and CP mode bit as "0". Please check the WIP bit status if it is not in write progress before enter-  
ing next valid instruction. During CP mode, the valid commands are CP command (AD hex), WRDI command (04  
hex), RDSR command (05 hex), and RDSCUR command (2B hex). And the WRDI command is valid after com-  
pletion of a CP programming cycle, which means the WIP bit=0.  
The sequence of issuing CP instruction is : CS# goes low → sending CP instruction code → 3-byte address on  
SI pin → two data bytes on SI → CS# goes high to low → sending CP instruction and then continue two data  
bytes are programmed → CS# goes high to low → till last desired two data bytes are programmed → CS# goes  
high to low →sending WRDI (Write Disable) instruction to end CP mode → send RDSR instruction to verify if  
CP mode word program ends, or send RDSCUR to check bit4 to verify if CP mode ends.  
Three methods to detect the completion of a program cycle during CP mode:  
1) Software method-I: by checking WIP bit of Status Register to detect the completion of CP mode.  
2) Software method-II: by waiting for a tBP time out to determine if it may load next valid command or not.  
3) Hardware method: by writing ESRY (enable SO to output RY/BY#) instruction to detect the completion of a  
program cycle during CP mode. The ESRY instruction must be executed before CP mode execution. Once  
it is enable in CP mode, the CS# goes low will drive out the RY/BY# status on SO, "0" indicates busy stage,  
"1" indicates ready stage, SO pin outputs tri-state if CS# goes high. DSRY (disable SO to output RY/BY#)  
instruction to disable the SO to output RY/BY# and return to status register data output during CP mode.  
Please note that the ESRY/DSRY commands are not accepted unless the completion of CP mode.  
If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be pro-  
tected (no change) and the WEL bit will still be reset.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
46  
MX25L6439E  
Figure 39. Continously Program (CP) Mode Sequence with Hardware Detection (Command AD)  
CS#  
SCLK  
SI  
20 2122 23 24  
0
1
30 31 31 32  
47 48  
0
7
7
8
0
6
7 8  
0
1
6 7 8 9  
Command  
AD (hex)  
data in  
Byte n-1, Byte n  
Valid  
Command (1)  
data in  
04 (hex)  
05 (hex)  
24-bit address  
Byte 0, Byte1  
high impedance  
status (2)  
S0  
Notes:  
(1) During CP mode, the valid commands are CP command (AD hex), WRDI command (04 hex), RDSR  
command (05 hex), RDSCUR command (2B hex), RSTEN command (66 hex) and RST command (99hex).  
(2) Once an internal programming operation begins, CS# goes low will drive the status on the SO pin and CS#  
goes high will return the SO pin to tri-state.  
(3) To end the CP mode, either reaching the highest unprotected address or sending Write Disable (WRDI)  
command (04 hex) may achieve it and then it is recommended to send RDSR command (05 hex) to verify if  
CP mode is ended. Please be noticed that Software reset and Hardware reset can end the CP mode.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
47  
MX25L6439E  
11-20. Deep Power-down (DP)  
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to en-  
tering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2. The Deep Power-down  
mode requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is  
not active and all Write/Program/Erase instructions are ignored. When CS# goes high, it's only in standby mode  
not deep power-down mode. It's different from Standby mode.  
The sequence of issuing DP instruction is: CS# goes low→ sending DP instruction code→ CS# goes high.  
The SIO[3:1] are don't care when during this mode.  
Once the DP instruction is set, all instructions will be ignored except the Release from Deep Power-down mode (RDP)  
and Read Electronic Signature (RES) instruction. (those instructions allow the ID being reading out). When  
Power-down, the deep power-down mode automatically stops, and when power-up, the device automatically is  
in standby mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of  
instruction code has been latched-in); otherwise, the instruction will not be executed. As soon as Chip Select (CS#)  
goes high, a delay of tDP is required before entering the Deep Power-down mode and reducing the current to  
ISB2.  
Figure 40. Deep Power-down (DP) Sequence (Command B9)  
CS#  
tDP  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
B9h  
Stand-by Mode  
Deep Power-down Mode  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
48  
MX25L6439E  
11-21. Release from Deep Power-down (RDP), Read Electronic Signature (RES)  
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When  
Chip Select (CS#) is driven High, the device is put in the standby Power mode. If the device was not previously  
in the Deep Power-down mode, the transition to the standby Power mode is immediate. If the device was previ-  
ously in the Deep Power-down mode, though, the transition to the standby Power mode is delayed by tRES2,  
and Chip Select (CS#) must remain High for at least tRES2(max), as specified in "Table 13. AC CHARACTER-  
ISTICS". Once in the standby mode, the device waits to be selected, so that it can receive, decode and execute  
instructions.  
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as "Table 7.  
ID Definitions". This is not the same as RDID instruction. It is not recommended to use for new design. For new  
design, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to  
be executed, only except the device is in progress of program/erase/write cycles; there's no effect on the current  
program/erase/write cycles in progress.  
The SIO[3:1] are don't care when during this mode.  
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeat-  
edly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previous-  
ly in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously  
in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high  
at least tRES2(max). Once in the standby mode, the device waits to be selected, so it can receive, decode, and  
execute instruction.  
The RDP instruction is for releasing from Deep Power-down Mode.  
Figure 41. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command  
AB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38  
SCLK  
Command  
ABh  
t
3 Dummy Bytes  
RES2  
SI  
23 22 21  
MSB  
3
2
1
0
Electronic Signature Out  
High-Z  
7
6
5
4
3
2
0
1
SO  
MSB  
Deep Power-down Mode  
Stand-by Mode  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
49  
MX25L6439E  
11-22. Read Electronic Signature (RES)  
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as "Table 7.  
ID Definitions" . This is not the same as RDID instruction. It is not recommended to use for new design. For new  
design, please use RDID instruction. For RES instruction, there's no effect on the current program/erase/write  
cycles in progress.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeat-  
edly if continuously send the additional clock cycles on SCLK while CS# is at low.  
Figure 42. Read Electronic Signature (RES) Sequence (Command AB) (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38  
SCLK  
Command  
ABh  
t
3 Dummy Bytes  
RES2  
SI  
23 22 21  
MSB  
3
2
1
0
Electronic Signature Out  
High-Z  
7
6
5
4
3
2
0
1
SO  
MSB  
Stand-by Mode  
Figure 43. Read Electronic Signature (RES) Sequence (Command AB) (QPI Mode)  
CS#  
MODE 3  
tRES2  
0
1
2
3
4
5
6
7
SCLK  
MODE 0  
24 BIT ADDRESS  
Command  
ABh  
SIO[3:0]  
H0 L0  
MSB LSB  
Data Out  
A5 A4 A3 A2 A1 A0  
Data In  
Stand-by Mode  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
50  
MX25L6439E  
11-23. QPI ID Read (QPIID)  
User can execute this ID Read instruction to identify the Device ID and Manufacturer ID. The sequence of issue  
QPIID instruction is CS# goes low→sending QPI ID instruction→→Data out on SO→CS# goes high. Most  
significant bit (MSB) first.  
After the command cycle, the device will immediately output data on the falling edge of SCLK. The manufacturer  
ID, memory type, and device ID data byte will be output continuously, until the CS# goes high.  
Table 7. ID Definitions  
Command Type  
MX25L6439E  
memory type  
25  
manufacturer ID  
C2  
memory density  
37  
RDID/QPIID  
electronic ID  
37  
RES  
11-24. Enter Secured OTP (ENSO)  
The ENSO instruction is for entering the additional 4K-bit Secured OTP mode. The additional 4K-bit Secured  
OTP is independent from main array, which may use to store unique serial number for system identifier. After  
entering the Secured OTP mode, and then follow standard read or program procedure to read out the data or up-  
date data. The Secured OTP data cannot be updated again once it is lock-down.  
The sequence of issuing ENSO instruction is: CS# goes low→ sending ENSO instruction to enter Secured OTP  
mode→ CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
Please note that WRSR/WRSCUR/WPSEL/SBLK/GBLK/SBULK/GBULK/CE/BE/SE/BE32K commands are not  
acceptable during the access of secure OTP region, once Security OTP is locked down, only read related com-  
mands are valid.  
11-25. Exit Secured OTP (EXSO)  
The EXSO instruction is for exiting the additional 4K-bit Secured OTP mode.  
The sequence of issuing EXSO instruction is: CS# goes low→ sending EXSO instruction to exit Secured OTP  
mode→ CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
51  
MX25L6439E  
11-26. Read Security Register (RDSCUR)  
The RDSCUR instruction is for reading the value of Security Register. The Read Security Register can be read  
at any time (even in program/erase/write status register/write security register condition) and continuously.  
The sequence of issuing RDSCUR instruction is : CS# goes low→ sending RDSCUR instruction → Security  
Register data out on SO→ CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't  
care when during SPI mode.  
Figure 44. Read Security Register (RDSCUR) Sequence (Command 2B) (SPI mode)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
SI  
command  
2B  
Security Register Out  
Security Register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
The definition of the Security Register is as below:  
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory before ex- factory  
or not. When it is "0", it indicates non-factory lock; "1" indicates factory- lock.  
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for cus-  
tomer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured  
OTP area cannot be updated any more. While it is in 4K-bit Secured OTP mode, array access is not allowed.  
Program Suspend Status bit. Program Suspend Bit (PSB) indicates the status of Program Suspend operation.  
Users may use PSB to identify the state of flash memory. After the flash memory is suspended by Program Sus-  
pend command, PSB is set to "1". PSB is cleared to "0" after program operation resumes  
Erase Suspend Status bit. Erase Suspend Bit (ESB) indicates the status of Erase Suspend operation. Users  
may use ESB to identify the state of flash memory. After the flash memory is suspended by Erase Suspend com-  
mand, ESB is set to "1". ESB is cleared to "0" after erase operation resumes.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
52  
MX25L6439E  
Program Fail Flag bit. While a program failure happened, the Program Fail Flag bit would be set. If the program  
operation fails on a protected memory region or locked OTP region, this bit will also be set. This bit can be the  
failure indication of one or more program operations. This fail flag bit will be cleared automatically after the next  
successful program operation.  
Erase Fail Flag bit. While an erase failure happened, the Erase Fail Flag bit would be set. If the erase opera-  
tion fails on a protected memory region or locked OTP region, this bit will also be set. This bit can be the failure  
indication of one or more erase operations. This fail flag bit will be cleared automatically after the next successful  
erase operation.  
Write Protection Select bit. The Write Protection Select bit indicates that WPSEL has been executed success-  
fully. Once this bit has been set (WPSEL=1), all the blocks or sectors will be write-protected after the power-  
on every time. Once WPSEL has been set, it cannot be changed again, which means it's only for individual WP  
mode.  
Under the individual block protection mode (WPSEL=1), hardware protection is performed by driving WP#=0.  
Once WP#=0, all array blocks/sectors are protected regardless of the contents of SRAM lock bits.  
Table 8. Security Register Definition  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
LDSO  
(lock-down  
4K-bit Se- Secured OTP  
cured OTP)  
Erase  
Suspend  
status  
Program  
Suspend  
status  
4K-bit  
WPSEL  
E_FAIL  
P_FAIL  
Reserved  
0 = not  
lockdown  
0=normal  
Erase  
succeed  
0=normal  
Program  
succeed  
0=normal  
WP mode  
0 =  
nonfactory  
lock  
0=Erase  
is not  
suspended suspended  
0=Program  
is not  
1 = lock-  
down  
(cannot  
program/  
erase  
1=individual  
WP mode  
(default=0)  
Reserved  
volatile bit  
1=indicate  
Erase failed  
(default=0)  
1=indicate  
Program  
failed  
1 = factory  
lock  
1=Erase is 1=Program  
suspended is suspended  
(default=0) (default=0)  
(default=0)  
OTP)  
non-volatile  
bit  
non-volatile non-volatile  
volatile bit  
Read Only  
volatile bit  
Read Only  
volatile bit  
Read Only  
volatile bit  
Read Only  
bit  
bit  
OTP  
OTP  
Read Only  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
53  
MX25L6439E  
11-27. Write Security Register (WRSCUR)  
The WRSCUR instruction is for changing the values of Security Register Bits. Unlike write status register, the  
WREN instruction is not required before sending WRSCUR instruction. The WRSCUR instruction may change  
the values of bit1 (LDSO bit) for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set  
to "1", the Secured OTP area cannot be updated any more.  
The sequence of issuing WRSCUR instruction is :CS# goes low→ sending WRSCUR instruction → CS# goes  
high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.  
Figure 45. Write Security Register (WRSCUR) Sequence (Command 2F) (SPI mode)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
2F  
SI  
High-Z  
SO  
11-28. Write Protection Selection (WPSEL)  
There are two write protection methods, (1) BP protection mode (2) individual block protection mode. If WP-  
SEL=0, flash is under BP protection mode. If WPSEL=1, flash is under individual block protection mode. The  
default value of WPSEL is “0”. WPSEL command can be used to set WPSEL=1. Please note that WPSEL is an  
OTP bit. Once WPSEL is set to 1, there is no chance to recovery WPSEL back to “0”. If the flash is put on  
BP mode, the individual block protection mode is disabled. Contrarily, if flash is on the individual block protection  
mode, the BP mode is disabled.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't  
care when during SPI mode.  
Every time after the system is powered-on, and the Security Register bit 7 is checked to be WPSEL=1,  
all the blocks or sectors will be write protected by default. User may only unlock the blocks or sectors via  
SBULK and GBULK instruction. Program or erase functions can only be operated after the Unlock instruction is  
conducted.  
BP protection mode, WPSEL=0:  
ARRAY is protected by BP3~BP0 and BP3~BP0 bits are protected by “SRWD=1 and WP#=0”, where SRWD is  
bit 7 of status register that can be set by WRSR command.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
54  
MX25L6439E  
Individual block protection mode, WPSEL=1:  
Blocks are individually protected by their own SRAM lock bits which are set to “1” after power up. SBULK and  
SBLK command can set SRAM lock bit to “0” and “1”. When the system accepts and executes WPSEL instruc-  
tion, the bit 7 in security register will be set. It will activate SBLK, SBULK, RDBLOCK, GBLK, GBULK etc instruc-  
tions to conduct block lock protection and replace the original Software Protect Mode (SPM) use (BP3~BP0)  
indicated block methods. Under the individual block protection mode (WPSEL=1), hardware protection is per-  
formed by driving WP#=0. Once WP#=0, all array blocks/sectors are protected regardless of the contents of  
SRAM lock bits.  
Execution of WREN (Write Enable) instruction is required before issuing WPSEL instruction.  
The sequence of issuing WPSEL instruction is: CS# goes low → sending WPSEL instruction to enter the indi-  
vidual block protect mode → CS# goes high.  
Figure 46. Write Protection Selection (WPSEL) Sequence (Command 68) (SPI mode)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
68  
WPSEL instruction function flow is as follows:  
Figure 47. BP and SRWD if WPSEL=0  
WPB pin  
BP3 BP2 BP1 BP0  
SRWD  
64KB  
64KB  
(1) BP3~BP0 is used to define the protection group region.  
(The protected area size see "Table 2. Protected Area Sizes" )  
(2) “SRWD=1 and WPB=0” is used to protect BP3~BP0. In this  
case, SRWD and BP3~BP0 of status register bits can not be  
changed by WRSR  
64KB  
.
.
.
64KB  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
55  
MX25L6439E  
Figure 48. The individual block lock mode is effective after setting WPSEL=1  
4KB  
4KB  
SRAM  
SRAM  
• Power-Up: All SRAM bits=1 (all blocks are default protected).  
All arrays cannot be programmed/erased  
TOP 4KBx16  
Sectors  
• SBLK/SBULK(36h/39h):  
- SBLK(36h) : Set SRAM bit=1 (protect) : array can not be  
programmed /erased  
4KB  
SRAM  
SRAM  
- SBULK(39h): Set SRAM bit=0 (unprotect): array can be  
programmed /erased  
64KB  
- All top 4KBx16 sectors and bottom 4KBx16 sectors  
and other 64KB uniform blocks can be protected and  
unprotected SRAM bits individually by SBLK/SBULK  
command set.  
SRAM  
Uniform  
64KB blocks  
• GBLK/ GBULK(7Eh/98h):  
- GBLK(7Eh):Set all SRAM bits=1,whole chip are protected  
and cannot be programmed / erased.  
- GBULK(98h):Set all SRAM bits=0,whole chip are  
unprotected and can be programmed / erased.  
- All sectors and blocks SRAM bits of whole chip can be  
protected and unprotected at one time by GBLK/GBULK  
command set.  
64KB  
4KB  
SRAM  
SRAM  
Bottom  
4KBx16  
Sectors  
• RDBLOCK(3Ch):  
- use RDBLOCK mode to check the SRAM bits status after  
SBULK /SBLK/GBULK/GBLK command set.  
4KB  
SBULK / SBLK / GBULK / GBLK / RDBLOCK  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
56  
MX25L6439E  
Figure 49. WPSEL Flow  
start  
RDSCUR(2Bh) command  
Yes  
WPSEL=1?  
No  
WPSEL disable,  
block protected by BP[3:0]  
WPSEL(68h) command  
RDSR command  
No  
WIP=0?  
Yes  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
Yes  
WPSEL set successfully  
WPSEL set fail  
WPSEL enable.  
Block protected by individual lock  
(SBLK, SBULK, … etc).  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
57  
MX25L6439E  
11-29. Single Block Lock/Unlock Protection (SBLK/SBULK)  
These instructions are only effective after WPSEL was executed. The SBLK instruction is for write protection a  
specified block(or sector) of memory, using A23-A16 or (A23-A12) address bits to assign a 64Kbytes block (or  
4K bytes sector) to be protected as read only. The SBULK instruction will cancel the block (or sector) write pro-  
tection state. This feature allows user to stop protecting the entire block (or sector) through the chip unprotect  
command (GBULK).  
The WREN (Write Enable) instruction is required before issuing SBLK/SBULK instruction.  
The sequence of issuing SBLK/SBULK instruction is: CS# goes low → send SBLK/SBULK (36h/39h) instruction  
→ send 3 address bytes assign one block (or sector) to be protected on SI pin → CS# goes high.  
The CS# must go high exactly at the byte boundary, otherwise the instruction will be rejected and not be execut-  
ed.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't  
care when during SPI mode.  
Figure 50. Single Block Lock/Unlock Protection (SBLK/SBULK) Sequence (Command 36/39) (SPI mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
36/39  
24 Bit Address  
Cycles  
A23 A22  
A2 A1 A0  
SI  
MSB  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
58  
MX25L6439E  
SBLK/SBULK instruction function flow is as follows:  
Figure 51. Block Lock Flow  
Start  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
WPSEL command  
Yes  
WREN command  
SBLK command  
( 36h + 24bit address )  
RDSR command  
No  
WIP=0?  
Yes  
RDBLOCK command  
( 3Ch + 24bit address )  
No  
Data = FFh ?  
Yes  
Block lock successfully  
Block lock fail  
Yes  
Lock another block?  
No  
Block lock completed  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
59  
MX25L6439E  
Figure 52. Block Unlock Flow  
start  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
Yes  
WPSEL command  
WREN command  
SBULK command  
( 39h + 24bit address )  
RDSR command  
WIP=0?  
No  
Yes  
Yes  
Unlock another block?  
Unlock block completed  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
60  
MX25L6439E  
11-30. Read Block Lock Status (RDBLOCK)  
This instruction is only effective after WPSEL was executed. The RDBLOCK instruction is for reading the status  
of protection lock of a specified block(or sector), using A23-A16 (or A23-A12) address bits to assign a 64K bytes  
block (4K bytes sector) and read protection lock status bit which the first byte of Read-out cycle. The status bit  
is"1" to indicate that this block has been protected, that user can read only but cannot write/program /erase this  
block. The status bit is "0" to indicate that this block hasn't be protected, and user can read and write this block.  
The sequence of issuing RDBLOCK instruction is: CS# goes low → send RDBLOCK (3Ch) instruction → send  
3 address bytes to assign one block on SI pin → read block's protection lock status bit on SO pin → CS# goes  
high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
Figure 53. Read Block Protection Lock Status (RDBLOCK) Sequence (Command 3C) (SPI mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
3C  
24 ADD Cycles  
SI  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
Block Protection Lock status out  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
SO  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
61  
MX25L6439E  
11-31. Gang Block Lock/Unlock (GBLK/GBULK)  
These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is for enable/  
disable the lock protection block of the whole chip.  
The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.  
The sequence of issuing GBLK/GBULK instruction is: CS# goes low → send GBLK/GBULK (7Eh/98h) instruc-  
tion → CS# goes high.  
The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be ex-  
ecuted.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't  
care when during SPI mode.  
Figure 54. Gang Block Lock/Unlock (GBLK/GBULK) Sequence (Command 7E/98) (SPI mode)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
7E/98  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
62  
MX25L6439E  
11-32. Program/ Erase Suspend/ Resume  
The device allow the interruption of Sector-Erase, Block-Erase or Page-Program operations and conduct other  
operations. Details as follows.  
To enter the suspend/ resume mode: issuing 75h for suspend; 7Ah for resume (SPI/QPI all acceptable)  
Read security register bit2 (PSB) and bit3 (ESB) to check suspend ready information.  
Suspend to suspend ready timing: 20us.  
Resume to another suspend timing: 1ms.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
11-33. Erase Suspend  
Erase suspend allow the interruption of all erase operations.  
After erase suspend, WEL bit will be clear, only read related, resume command can be accepted. (including: 03h,  
0Bh, BBh, EBh, E7h, 9Fh, AFh, 90h, 05h, 2Bh, B1h, C1h, 5Ah, 3Ch, 7Ah, 66h, 77h, 35h, F5h, 00h, ABh)  
For erase suspend to program operation, a Write Enable (WREN) instruction must execute to set the Write  
Enable Latch (WEL) bit before starting the operation. Please note that the programming command (38, 02) can  
be accepted under conditions as follows:  
The bank is divided into 16 banks in this device, each bank's density is 4Mb. While conducting erase suspend in  
one bank, the programming operation that follows can only be conducted in one of the other banks and cannot  
be conducted in the bank executing the suspend operation. The boundaries of the banks are illustrated as below  
table.  
MX25L6439E  
BANK (4M bit)  
Address Range  
780000h-7FFFFFh  
700000h-77FFFFh  
680000h-6FFFFFh  
600000h-67FFFFh  
580000h-5FFFFFh  
500000h-57FFFFh  
480000h-4FFFFFh  
400000h-47FFFFh  
380000h-3FFFFFh  
300000h-37FFFFh  
280000h-2FFFFFh  
200000h-27FFFFh  
180000h-1FFFFFh  
100000h-17FFFFh  
080000h-0FFFFFh  
000000h-07FFFFh  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
63  
MX25L6439E  
Please be noticed that software reset command is not accepted after erase suspend command, but user still can  
issue hardware reset function.  
After issue erase suspend command, latency time 20us is needed before issue another command.  
Erase Suspend Bit (ESB) indicates the status of Erase Suspend operation. Users may use ESB to identify the  
state of flash memory. After the flash memory is suspended by Erase Suspend command, ESB is set to "1". ESB  
is cleared to "0" after erase operation resumes.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
When ESB is issued, the Write Enable Latch (WEL) bit will be reset. Please refer to "Figure 55. Suspend to Read  
Latency" for Suspend to Read latency.  
11-34. Program Suspend  
Program suspend allows the interruption of all program operations.  
After program suspend, WEL bit will be cleared, only read related, resume and reset command can be accepted.  
(including: 03h, 0Bh, BBh, EBh, E7h, 9Fh, AFh, 90h, 05h, 2Bh, B1h, C1h, 5Ah, 3Ch, 7Ah, 66h, 99h, 77h, 35h,  
F5h, 00h, ABh )  
After issue program suspend command, latency time 20us is needed before issue another command.  
For "Suspend to Read", "Resume to Read", "Resume to Suspend" timing specification please note.  
Program Suspend Bit (PSB) indicates the status of Program Suspend operation. Users may use PSB to identify  
the state of flash memory. After the flash memory is suspended by Program Suspend command, PSB is set to  
"1". PSB is cleared to "0" after program operation resumes  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
64  
MX25L6439E  
11-35. Write-Resume  
The Write operation is being resumed when Write-Resume instruction issued. ESB or PSB (suspend status bit)  
in Status register will be changed back to “0”  
The operation of Write-Resume is as follows: CS# drives low → send write resume command cycle (7Ah) →  
drive CS# high. By polling Busy Bit in status register, the internal write operation status could be checked to be  
completed or not. The user may also wait the time lag of tSE, tBE, tBE32K, tPP for Sector-erase, Block-erase or  
Page-programming. WREN (command "06" is not required to issue before resume. Resume to another suspend  
operation requires latency time of 1ms.  
When Erase Suspend is being resumed, the WEL bit need to be set again if user desire to conduct the program  
or erase operation.  
Please note that, if "performance enhance mode" is executed during suspend operation, the device can not  
be resume. To restart the write command, disable the "performance enhance mode" is required. After the  
"performance enhance mode" is disable, the write-resume command is effective.  
Figure 55. Suspend to Read Latency  
Program latency : 20us  
Erase latency:20us  
Suspend Command  
[75]  
Read Command  
CS#  
Figure 56. Resume to Read Latency  
tSE/tBE/tBE32K/tPP  
Resume Command  
Read Command  
CS#  
[7A]  
Figure 57. Resume to Suspend Latency  
1ms  
Suspend  
Command  
[75]  
Resume Command  
CS#  
[7A]  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
65  
MX25L6439E  
11-36. No Operation (NOP)  
The "No Operation" command is only able to terminate the Reset Enable (RSTEN) command and will not affect  
any other command.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
11-37. Software Reset (Reset-Enable (RSTEN) and Reset (RST))  
The Software Reset operation combines two instructions: Reset-Enable (RSTEN) command and Reset (RST)  
command. It returns the device to a standby mode. All the volatile bits and settings will be cleared then, which  
makes the device return to the default status as power on.  
To execute Reset command (RST), the Reset-Enable (RSTEN) command must be executed first to perform the  
Reset operation. If there is any other command to interrupt after the Reset-Enable command, the Reset-Enable  
will be invalid.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
If the Reset command is executed during program or erase operation, the operation will be disabled, the data un-  
der processing could be damaged or lost.  
The reset time is different depending on the last operation. Longer latency time is required to recover from a pro-  
gram operation than from other operations.  
Figure 58. Software Reset Recovery  
Stand-by Mode  
66  
99  
CS#  
tRCR  
tRCP  
tRCE  
Mode  
tRCR: 200ns (Recovery Time from Read)  
tRCP: 20us (Recovery Time from Program)  
tRCE: 12ms (Recovery Time from Erase)  
11-38. Reset Quad I/O (RSTQIO)  
The Reset Quad I/O instruction, F5H, resets the device to 1-bit SPI protocol operation. To execute a Reset Quad  
I/O operation, the host drives CS# low, sends the Reset Quad I/O command cycle (F5h) then, drives CS# high.  
QPI (2 clocks) command cycle can accept by this instruction.  
Note:  
For EQIO and RSTQIO commands, CS# high width has to follow "write spec" tSHSL for next instruction.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
66  
MX25L6439E  
11-39. Read SFDP Mode (RDSFDP)  
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the  
functional and feature capabilities of serial flash devices in a standard set of internal parameter tables. These  
parameter tables can be interrogated by host system software to enable adjustments needed to accommodate  
divergent features from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC  
Standard, JESD68 on CFI.  
The sequence of issuing RDSFDP instruction is same as CS# goes low→send RDSFDP instruction (5Ah)→send  
3 address bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP operation  
can use CS# to high at any time during data out.  
SFDP is a JEDEC Standard, JESD216.  
Figure 59. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCLK  
Command  
5Ah  
24 BIT ADDRESS  
SI  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
Dummy Cycle  
7
6
5
4
3
2
0
1
SI  
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
67  
MX25L6439E  
Table 9. Signature and Parameter Identification Data Values  
Description Comment  
Add (h) DW Add Data (h/b) Data  
(Byte)  
(Bit)  
(Note1)  
(h)  
00h  
07:00  
53h  
53h  
01h  
02h  
03h  
04h  
05h  
15:08  
23:16  
31:24  
07:00  
15:08  
46h  
44h  
50h  
00h  
01h  
46h  
44h  
50h  
00h  
01h  
SFDP Signature  
Fixed: 50444653h  
SFDP Minor Revision Number  
SFDP Major Revision Number  
Start from 00h  
Start from 01h  
This number is 0-based. Therefore,  
0 indicates 1 parameter header.  
Number of Parameter Headers  
Unused  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
23:16  
31:24  
07:00  
15:08  
23:16  
31:24  
01h  
FFh  
00h  
00h  
01h  
09h  
01h  
FFh  
00h  
00h  
01h  
09h  
00h: it indicates a JEDEC specified  
header.  
ID number (JEDEC)  
Parameter Table Minor Revision  
Number  
Parameter Table Major Revision  
Number  
Parameter Table Length  
(in double word)  
Start from 00h  
Start from 01h  
How many DWORDs in the  
Parameter table  
0Ch  
0Dh  
0Eh  
07:00  
15:08  
23:16  
30h  
00h  
00h  
30h  
00h  
00h  
First address of JEDEC Flash  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
0Fh  
10h  
11h  
12h  
13h  
31:24  
07:00  
15:08  
23:16  
31:24  
FFh  
C2h  
00h  
01h  
04h  
FFh  
C2h  
00h  
01h  
04h  
ID number  
(Macronix manufacturer ID)  
Parameter Table Minor Revision  
Number  
Parameter Table Major Revision  
Number  
it indicates Macronix manufacturer  
ID  
Start from 00h  
Start from 01h  
Parameter Table Length  
(in double word)  
How many DWORDs in the  
Parameter table  
14h  
15h  
16h  
07:00  
15:08  
23:16  
60h  
00h  
00h  
60h  
00h  
00h  
First address of Macronix Flash  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
17h  
31:24  
FFh  
FFh  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
68  
MX25L6439E  
Table 10. Parameter Table (0): JEDEC Flash Parameter Tables  
Add (h) DW Add Data (h/b) Data  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
(h)  
00: Reserved, 01: 4KB erase,  
10: Reserved,  
11: not support 4KB erase  
Block/Sector Erase sizes  
Write Granularity  
01:00  
01b  
0: 1Byte, 1: 64Byte or larger  
02  
03  
1b  
0b  
Write Enable Instruction Required 0: not required  
for Writing to Volatile Status  
1: required 00h to be written to the  
Registers  
status register  
30h  
E5h  
0: use 50h opcode,  
1: use 06h opcode  
Write Enable Opcode Select for  
Writing to Volatile Status Registers  
Note: If target flash status register is  
nonvolatile, then bits 3 and 4 must  
be set to 00b.  
04  
0b  
Contains 111b and can never be  
changed  
Unused  
07:05  
111b  
4KB Erase Opcode  
31h  
32h  
33h  
15:08  
16  
20h  
0b  
20h  
E0h  
FFh  
(1-1-2) Fast Read (Note2)  
0=not support 1=support  
Address Bytes Number used in  
addressing flash array  
00: 3Byte only, 01: 3 or 4Byte,  
10: 4Byte only, 11: Reserved  
18:17  
19  
00b  
0b  
Double Transfer Rate (DTR)  
Clocking  
0=not support 1=support  
(1-2-2) Fast Read  
(1-4-4) Fast Read  
(1-1-4) Fast Read  
Unused  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
20  
21  
0b  
1b  
22  
1b  
23  
1b  
Unused  
31:24  
FFh  
Flash Memory Density  
37h:34h 31:00  
03FF FFFFh  
(1-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
04:00  
38h  
0 0100b  
states (Note3)  
Clocks) not support  
44h  
(1-4-4) Fast Read Number of  
Mode Bits (Note4)  
000b: Mode Bits not support  
07:05  
010b  
EBh  
(1-4-4) Fast Read Opcode  
39h  
3Ah  
3Bh  
15:08  
20:16  
EBh  
08h  
6Bh  
(1-1-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
0 1000b  
states  
Clocks) not support  
(1-1-4) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
31:24  
000b  
6Bh  
(1-1-4) Fast Read Opcode  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
69  
MX25L6439E  
Add (h) DW Add Data (h/b) Data  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
(h)  
(1-1-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
04:00  
0 0000b  
states  
Clocks) not support  
3Ch  
00h  
(1-1-2) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
07:05  
15:08  
20:16  
000b  
FFh  
(1-1-2) Fast Read Opcode  
3Dh  
3Eh  
3Fh  
FFh  
00h  
FFh  
(1-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
0 0000b  
states  
Clocks) not support  
(1-2-2) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
000b  
(1-2-2) Fast Read Opcode  
(2-2-2) Fast Read  
Unused  
31:24  
00  
FFh  
0b  
0=not support 1=support  
0=not support 1=support  
03:01  
04  
111b  
1b  
40h  
FEh  
(4-4-4) Fast Read  
Unused  
07:05  
111b  
FFh  
FFh  
Unused  
43h:41h 31:08  
45h:44h 15:00  
FFh  
FFh  
Unused  
(2-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
20:16  
46h  
0 0000b  
000b  
states  
Clocks) not support  
00h  
(2-2-2) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
(2-2-2) Fast Read Opcode  
Unused  
47h  
31:24  
FFh  
FFh  
FFh  
FFh  
49h:48h 15:00  
(4-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
20:16  
4Ah  
0 0100b  
states  
Clocks) not support  
44h  
(4-4-4) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
010b  
EBh  
0Ch  
20h  
0Fh  
52h  
10h  
D8h  
00h  
FFh  
(4-4-4) Fast Read Opcode  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
31:24  
07:00  
15:08  
23:16  
31:24  
07:00  
15:08  
23:16  
31:24  
EBh  
0Ch  
20h  
0Fh  
52h  
10h  
D8h  
00h  
FFh  
Sector/block size = 2^N bytes (Note5)  
0x00b: this sector type doesn't exist  
Sector Type 1 Size  
Sector Type 1 erase Opcode  
Sector Type 2 Size  
Sector/block size = 2^N bytes  
0x00b: this sector type doesn't exist  
Sector Type 2 erase Opcode  
Sector Type 3 Size  
Sector/block size = 2^N bytes  
0x00b: this sector type doesn't exist  
Sector Type 3 erase Opcode  
Sector Type 4 Size  
Sector/block size = 2^N bytes  
0x00b: this sector type doesn't exist  
Sector Type 4 erase Opcode  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
70  
MX25L6439E  
Table 11. Parameter Table (1): Macronix Flash Parameter Tables  
Add (h) DW Add Data (h/b) Data  
Description  
Comment  
2000h=2.000V  
2700h=2.700V  
3600h=3.600V  
(Byte)  
(Bit)  
(Note1)  
(h)  
07:00  
15:08  
00h  
36h  
00h  
36h  
Vcc Supply Maximum Voltage  
61h:60h  
1650h=1.650V  
2250h=2.250V  
2350h=2.350V  
2700h=2.700V  
23:16  
31:24  
00h  
27h  
00h  
27h  
Vcc Supply Minimum Voltage  
H/W Reset# pin  
63h:62h  
0=not support 1=support  
00  
0b  
H/W Hold# pin  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
01  
02  
03  
1b  
1b  
1b  
Deep Power Down Mode  
S/W Reset  
Reset Enable (66h) should be  
issued before Reset Opcode  
1001 1001b  
(99h)  
65h:64h  
F99Eh  
S/W Reset Opcode  
11:04  
Program Suspend/Resume  
Erase Suspend/Resume  
Unused  
0=not support 1=support  
0=not support 1=support  
12  
13  
1b  
1b  
14  
1b  
Wrap-Around Read mode  
Wrap-Around Read mode Opcode  
0=not support 1=support  
15  
1b  
66h  
67h  
23:16  
77h  
77h  
64h  
08h:support 8B wrap-around read  
16h:8B&16B  
32h:8B&16B&32B  
Wrap-Around Read data length  
31:24  
64h  
64h:8B&16B&32B&64B  
Individual block lock  
0=not support 1=support  
00  
01  
1b  
0b  
Individual block lock bit  
(Volatile/Nonvolatile)  
0=Volatile 1=Nonvolatile  
Individual block lock Opcode  
09:02 0011 0110b  
Individual block lock Volatile  
protect bit default protect status  
0=protect 1=unprotect  
10  
0b  
C8D9h  
6Bh:68h  
Secured OTP  
Read Lock  
Permanent Lock  
Unused  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
11  
12  
1b  
0b  
13  
0b  
15:14  
31:16  
11b  
FFh  
FFh  
Unused  
FFh  
FFh  
Unused  
6Fh:6Ch 31:00  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
71  
MX25L6439E  
Note 1: h/b is hexadecimal or binary.  
Note 2: (x-y-z) means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x),  
address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1),  
(2-2-2), and (4-4-4)  
Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.  
Note 4: Mode Bits is optional control bits that follow the address bits. These bits are driven by the system  
controller if they are specified. (eg,read performance enhance toggling bits)  
Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h  
Note 6: All unused and undefined area data is blank FFh.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
72  
MX25L6439E  
12. POWER-ON STATE  
The device is at below states when power-up:  
- Standby mode  
- Write Enable Latch (WEL) bit is reset  
The device must not be selected during power-up and power-down stage unless the VCC achieves below cor-  
rect level:  
- VCC minimum at power-up stage and then after a delay of tVSL  
- GND at power-down  
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.  
An internal Power-on Reset (POR) circuit may protect the device from data corruption and inadvertent data  
change during power up state.  
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is  
not guaranteed. The read, write, erase, and program command should be sent after the time delay:  
- tVSL after VCC reached VCC minimum level  
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.  
Note:  
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommend-  
ed. (generally around 0.1uF)  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
73  
MX25L6439E  
13. ELECTRICAL SPECIFICATIONS  
13-1. ABSOLUTE MAXIMUM RATINGS  
RATING  
VALUE  
Ambient Operating Temperature  
Storage Temperature  
Applied Input Voltage  
Applied Output Voltage  
VCC to Ground Potential  
Industrial grade  
-40°C to 85°C  
-65°C to 150°C  
-0.5V to VCC+0.5V  
-0.5V to VCC+0.5V  
-0.5V to 4.0V  
NOTICE:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device. This is stress rating only and functional operational sections of this specification is not implied. Expo-  
sure to absolute maximum rating conditions for extended period may affect reliability.  
2. Specifications contained within the following tables are subject to change.  
3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, see  
the figures below.  
Figure 61. Maximum Positive Overshoot Waveform  
Figure 60. Maximum Negative Overshoot Waveform  
20ns  
20ns  
20ns  
Vcc + 2.0V  
Vcc  
Vss  
Vss-2.0V  
20ns  
20ns  
20ns  
13-2. CAPACITANCE TA = 25°C, f = 1.0 MHz  
Symbol Parameter  
Min.  
Typ.  
Max.  
Unit  
pF  
Conditions  
VIN = 0V  
CIN  
Input Capacitance  
6
8
COUT Output Capacitance  
pF  
VOUT = 0V  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
74  
MX25L6439E  
Figure 62. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL  
Input timing reference level  
Output timing reference level  
0.8VCC  
0.2VCC  
0.7VCC  
0.3VCC  
AC  
Measurement  
Level  
0.5VCC  
Note: Input pulse rise and fall time are <5ns  
Figure 63. OUTPUT LOADING  
DEVICE UNDER  
TEST  
2.7K ohm  
+3.3V  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
CL=30/15pF Including jig capacitance  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
75  
MX25L6439E  
Table 12. DC CHARACTERISTICS  
Temperature = -40°C to 85°C for Industrial grade  
Symbol Parameter  
Notes Min.  
Typ.  
Max. Units Test Conditions  
VCC = VCC Max,  
VIN = VCC or GND  
VCC = VCC Max,  
VOUT = VCC or GND  
ILI  
Input Load Current  
Output Leakage Current  
1
± 2  
uA  
uA  
ILO  
1
1
± 2  
50  
25  
ISB1 VCC Standby Current  
15  
1
uA VIN = VCC or GND, CS# = VCC  
uA VIN = VCC or GND, CS# = VCC  
Deep Power-down  
Current  
ISB2  
f=104MHz (4 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
35  
19  
25  
10  
f=104MHz (1 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
ICC1 VCC Read  
1
1
fQ=86MHz (4 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
f=33MHz,  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
VCC Program Current  
Program in Progress, CS# =  
VCC  
ICC2  
(PP)  
15  
15  
10  
15  
25  
20  
25  
25  
mA  
VCC Write Status  
ICC3  
Program status register in  
mA  
Register (WRSR) Current  
progress, CS#=VCC  
VCC Sector Erase  
ICC4  
1
1
mA Erase in Progress, CS#=VCC  
mA Erase in Progress, CS#=VCC  
Current (SE)  
VCC Chip Erase Current  
ICC5  
(CE)  
VIL  
Input Low Voltage  
Input High Voltage  
-0.5  
0.8  
V
V
VIH  
0.7VCC  
VCC+0.4  
VOL  
Output Low Voltage  
0.4  
V
V
IOL = 1.6mA  
IOH = -100uA  
VOH Output High Voltage  
Notes :  
VCC-0.2  
1. Typical values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and  
speeds).  
2. Typical value is calculated by simulation.  
3. The value guaranteed by characterization, not 100% tested in production.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
76  
MX25L6439E  
Table 13. AC CHARACTERISTICS  
Temperature = -40°C to 85°C for Industrial grade  
Symbol Alt. Parameter  
Min.  
Typ.  
Max. Unit  
Clock Frequency for the following instructions:  
fSCLK  
fC FAST_READ, PP, SE, BE, CE, RES, WREN, WRDI, RDID,  
RDSR, WRSR  
D.C.  
104  
MHz  
fRSCLK  
fTSCLK  
f4PP  
fR Clock Frequency for READ instructions  
fQ Clock Frequency for 4READ/QREAD instructions (4)  
Clock Frequency for 4PP (Quad page program)  
Others  
50  
86  
104  
MHz  
MHz  
MHz  
4.5  
9
ns  
ns  
(fSCLK: 104MHz)  
Normal Read  
(fRSCLK: 50MHz)  
tCH(1) tCLH Clock High Time  
Others (fSCLK)  
Normal Read (fRSCLK)  
4.5  
9
0.1  
0.1  
4
4
2
3
4
ns  
ns  
V/ns  
V/ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCL(1)  
tCLL Clock Low Time  
Clock Rise Time (3) (peak to peak)  
Clock Fall Time (3) (peak to peak)  
tCLCH  
tCHCL  
tSLCH tCSS CS# Active Setup Time (relative to SCLK)  
tCHSL CS# Not Active Hold Time (relative to SCLK)  
tDVCH tDSU Data In Setup Time  
tCHDX  
tCHSH  
tSHCH  
tDH Data In Hold Time  
CS# Active Hold Time (relative to SCLK)  
CS# Not Active Setup Time (relative to SCLK)  
Read  
4
15  
50  
tSHSL(3) tCSH CS# Deselect Time  
Write/Erase/Program  
2.7V-3.6V  
3.0V-3.6V  
10  
8
tSHQZ  
tDIS Output Disable Time  
tHLCH  
tCHHH  
tHHCH  
tCHHL  
HOLD# Setup Time (relative to SCLK)  
HOLD# Hold Time (relative to SCLK)  
HOLD Setup Time (relative to SCLK)  
HOLD Hold Time (relative to SCLK)  
5
5
5
5
2.7V-3.6V  
3.0V-3.6V  
2.7V-3.6V  
3.0V-3.6V  
1 I/O  
10  
8
10  
8
HOLD to Output Low-Z  
Loading=30pF  
tHHQX  
tLZ  
HOLD# to Output High-Z  
Loading=30pF  
tHLQZ  
tHZ  
tV  
5
Loading:  
10pF  
4 I/O  
7.5  
ns  
Clock Low to Output Valid  
VCC=2.7V~3.6V  
1 I/O  
4 I/O  
1 I/O  
4 I/O  
6
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
Loading:  
15pF  
tCLQV  
Loading:  
30pF  
tCLQX  
tWHSL  
tSHWL  
tDP  
tHO Output Hold Time  
Write Protect Setup Time  
Write Protect Hold Time  
CS# High to Deep Power-down Mode  
1
20  
100  
10  
CS# High to Standby Mode without Electronic Signature  
Read  
CS# High to Standby Mode with Electronic Signature Read  
tRES1  
tRES2  
100  
100  
us  
us  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
77  
MX25L6439E  
Symbol Alt. Parameter  
Min.  
Typ.  
Max.  
40  
50  
3
200  
1.6  
2
80  
1
1
Unit  
ms  
us  
ms  
ms  
s
s
s
ms  
ms  
tW  
tBP  
Write Status Register Cycle Time  
Byte-Program  
12  
0.7  
30  
0.14  
0.25  
20  
tPP  
tSE  
tBE32K  
tBE  
tCE  
Page Program Cycle Time  
Sector Erase Cycle Time (4KB)  
Block Erase Cycle Time (32KB)  
Block Erase Cycle Time (64KB)  
Chip Erase Cycle Time  
tWPS  
tWSR  
Write Protection Selection Time  
Write Security Register Time  
Notes:  
1. tCH + tCL must be greater than or equal to 1/ fC.  
2. The value guaranteed by characterization, not 100% tested in production.  
3. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.  
4. For 4READ instruction, when dummy cycle=6 (in both SPI & QPI mode), clock rate is 86MHz, and when dum-  
my cycle=8 (in both SPI & QPI mode), clock rate is 104MHz.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
78  
MX25L6439E  
14. TIMING ANALYSIS  
Figure 64. Serial Input Timing  
tSHSL  
tSHCH  
tCHCL  
CS#  
tCHSL  
tSLCH  
tCHSH  
SCLK  
tDVCH  
tCHDX  
tCLCH  
MSB  
LSB  
SI  
High-Z  
SO  
Figure 65. Output Timing  
CS#  
tCH  
SCLK  
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
SO  
tCLQX  
LSB  
ADDR.LSB IN  
SI  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
79  
MX25L6439E  
Figure 66. Hold Timing  
CS#  
tHLCH  
tCHHH  
tCHHL  
tHLQZ  
tHHCH  
tHHQX  
SCLK  
SO  
HOLD#  
Figure 67. WP# Setup Timing and Hold Timing during WRSR when SRWD=1  
WP#  
tSHWL  
tWHSL  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14  
15  
SCLK  
01  
SI  
High-Z  
SO  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
80  
MX25L6439E  
Figure 68. Power-Up Timing  
V
CC  
V
(max)  
CC  
Chip Selection is Not Allowed  
V
(min)  
CC  
Device is fully accessible  
tVSL  
time  
Note: VCC (max.) is 3.6V and VCC (min.) is 2.7V.  
Table 14. Power-Up Timing  
Symbol Parameter  
Min.  
Max.  
Unit  
tVSL(1)  
VCC(min) to CS# low  
300  
us  
Note: The parameter is characterized only.  
14-1. INITIAL DELIVERY STATE  
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status  
Register contains 00h (all Status Register bits are 0).  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
81  
MX25L6439E  
15. OPERATING CONDITIONS  
At Device Power-Up and Power-Down  
AC timing illustrated in "Figure 69. AC Timing at Device Power-Up" and "Figure 70. Power-Down Sequence"  
are for the supply voltages and the control signals at device power-up and power-down. If the timing in the fig-  
ures is ignored, the device will not operate correctly.  
During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be  
selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL.  
Figure 69. AC Timing at Device Power-Up  
VCC(min)  
VCC  
GND  
tVR  
tSHSL  
CS#  
tSHCH  
tSLCH  
tCHSL  
tCHSH  
SCLK  
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
SI  
High Impedance  
SO  
Symbol  
tVR  
Parameter  
VCC Rise Time  
Notes  
Min.  
20  
Max.  
500000  
Unit  
us/V  
1
Notes :  
1. Sampled, not 100% tested.  
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer  
to "Table 13. AC CHARACTERISTICS".  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
82  
MX25L6439E  
Figure 70. Power-Down Sequence  
During power-down, CS# needs to follow the voltage drop on VCC to avoid mis-operation.  
VCC  
CS#  
SCLK  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
83  
MX25L6439E  
16. ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ. (1)  
Max. (2)  
Unit  
ms  
ms  
s
Write Status Register Cycle Time  
Sector Erase Time (4KB)  
Block Erase Time (32KB)  
Block Erase Time (64KB)  
Chip Erase Time  
40  
200  
1.6  
2
30  
0.14  
0.25  
20  
s
80  
50  
3
s
Byte Program Time (via page program command)  
Page Program Time  
12  
us  
0.7  
ms  
cycles  
Erase/Program Cycle  
100,000  
Notes:  
1. Typical program and erase time assumes the following conditions: 25°C, 3.3V, and checker board pattern.  
2. Under worst conditions of 85°C and 2.7V.  
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming com-  
mand.  
17. DATA RETENTION  
Parameter  
Condition  
Min.  
Max.  
Unit  
Data retention  
55˚C  
20  
years  
18. LATCH-UP CHARACTERISTICS  
Min.  
Max.  
Input Voltage with respect to GND on all power pins, SI, CS#  
Input Voltage with respect to GND on SO  
Current  
-1.0V  
-1.0V  
-100mA  
2 VCCmax  
VCC + 1.0V  
+100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
84  
MX25L6439E  
19. ORDERING INFORMATION  
PART NO.  
CLOCK (MHz)  
TEMPERATURE  
PACKAGE  
8-SOP  
(200mil)  
8-VSOP  
(200mil)  
Remark  
MX25L6439EM2I-10G *  
104  
104  
-40°C~85°C  
MX25L6439EMBI-10G  
* Advanced Information  
-40°C~85°C  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
85  
MX25L6439E  
20. PART NAME DESCRIPTION  
MX M2  
25 L 6439E  
I
10 G  
OPTION:  
G: RoHS Compliant and Halogen-free  
SPEED:  
10: 104MHz  
TEMPERATURE RANGE:  
I: Industrial (-40° C to 85° C)  
PACKAGE:  
M2: 200mil 8-SOP  
MB: 200mil 8-VSOP  
DENSITY & MODE:  
6439E: 64Mb standard type  
TYPE:  
L: 3V  
DEVICE:  
25: Serial Flash  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
86  
MX25L6439E  
21. PACKAGE INFORMATION  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
87  
MX25L6439E  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
88  
MX25L6439E  
22. REVISION HISTORY  
Revision No. Description  
Page  
All  
P4  
Date  
JUN/22/2012  
OCT/09/2012  
0.00  
1.0  
1. Initial released  
1. Removed "Advanced Information" status  
2. Updated tSLCH, tCHSL, tCHSH, tSHCH value in AC  
Characteristics Table  
P75  
1.1  
1.2  
1. Modified Erase Suspend section  
P62  
JAN/23/2013  
NOV/06/2013  
1. Updated parameters for DC/AC Characteristics  
2. Updated Erase and Programming Performance  
3. Modified Absolute Maximum Ratings & Capacitance table  
P4,76,78  
P4,84  
P74  
P/N: PM1842  
REV. 1.2, NOV. 06, 2013  
89  
MX25L6439E  
Except for customized products which has been expressly identified in the applicable agreement, Macronix's  
products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or  
household applications only, and not for use in any applications which may, directly or indirectly, cause death,  
personal injury, or severe property damages. In the event Macronix products are used in contradicted to their  
target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its  
actual use in accordance with the applicable laws and regulations; and Macronix as well as it’s suppliers and/or  
distributors shall be released from any and all liability arisen therefrom.  
Copyright© Macronix International Co., Ltd. 2012~2013. All rights reserved, including the trademarks and  
tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit,  
NBiit, Macronix NBit, eLiteFlash, HybridNVM, HybridFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC,  
Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Audio, Rich Book, Rich TV, and FitCAM. The names  
and brands of third party referred thereto (if any) are for identification purposes only.  
For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  
90  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY