MX25L6445EM [Macronix]

HIGH PERFORMANCE SERIAL FLASH SPECIFICATION; 高性能串行闪存规格
MX25L6445EM
型号: MX25L6445EM
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

HIGH PERFORMANCE SERIAL FLASH SPECIFICATION
高性能串行闪存规格

闪存
文件: 总72页 (文件大小:2176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX25L6445E  
MX25L6445E  
HIGH PERFORMANCE  
SERIAL FLASH SPECIFICATION  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
1
MX25L6445E  
Contents  
FEATURES ..................................................................................................................................................................5  
GENERAL DESCRIPTION .........................................................................................................................................7  
Table 1. Additional Features ..............................................................................................................................7  
PIN CONFIGURATION ................................................................................................................................................8  
PIN DESCRIPTION......................................................................................................................................................8  
BLOCK DIAGRAM.......................................................................................................................................................9  
DATA PROTECTION..................................................................................................................................................10  
Table 2. Protected Area Sizes.......................................................................................................................... 11  
Table 3. 4K-bit Secured OTP Definition............................................................................................................ 11  
Memory Organization...............................................................................................................................................12  
Table 4. Memory Organization .........................................................................................................................12  
DEVICE OPERATION................................................................................................................................................13  
Figure 1-1. Serial Modes Supported (for Normal Serial mode)........................................................................ 13  
Figure 1-2. Serial Modes Supported (for Double Transfer Rate serial read mode)..........................................13  
COMMAND DESCRIPTION.......................................................................................................................................14  
Table 5. Command Sets...................................................................................................................................14  
(1) Write Enable (WREN).................................................................................................................................16  
(2) Write Disable (WRDI)..................................................................................................................................16  
(3) Read Identification (RDID)..........................................................................................................................16  
(4) Read Status Register (RDSR)....................................................................................................................17  
(5) Write Status Register (WRSR)....................................................................................................................18  
Protection Modes .............................................................................................................................................18  
(6) Read Data Bytes (READ) ...........................................................................................................................19  
(7) Read Data Bytes at Higher Speed (FAST_READ) .....................................................................................19  
(8) Fast Double Transfer Rate Read (FASTDTRD)..........................................................................................19  
(9) 2 x I/O Read Mode (2READ) ......................................................................................................................19  
(10) 2 x I/O Double Transfer Rate Read Mode (2DTRD)................................................................................. 20  
(11) 4 x I/O Read Mode (4READ).....................................................................................................................20  
(12) 4 x I/O Double Transfer Rate Read Mode (4DTRD)................................................................................. 21  
(13) Sector Erase (SE).....................................................................................................................................21  
(14) Block Erase (BE).......................................................................................................................................22  
(15) Block Erase (BE32K)................................................................................................................................22  
(16) Chip Erase (CE)........................................................................................................................................22  
(17) Page Program (PP)...................................................................................................................................23  
(18) 4 x I/O Page Program (4PP).....................................................................................................................23  
Program/Erase Flow(1) with read array data ...................................................................................................24  
Program/Erase Flow(2) without read array data ..............................................................................................25  
(19) Continuously program mode (CP mode) ..................................................................................................26  
(20) Deep Power-down (DP)............................................................................................................................27  
(21) Release from Deep Power-down (RDP), Read Electronic Signature (RES) ............................................27  
(22) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4), (REMS4D)....................... 27  
Table 6. ID Definitions .....................................................................................................................................28  
(23) Enter Secured OTP (ENSO).....................................................................................................................28  
(24) Exit Secured OTP (EXSO)........................................................................................................................28  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
2
MX25L6445E  
(25) Read Security Register (RDSCUR) ..........................................................................................................28  
Security Register Definition..............................................................................................................................29  
(26) Write Security Register (WRSCUR)..........................................................................................................29  
(27) Write Protection Selection (WPSEL).........................................................................................................30  
BP and SRWD if WPSEL=0 .............................................................................................................................30  
The individual block lock mode is effective after setting WPSEL=1................................................................. 31  
WPSEL Flow ....................................................................................................................................................32  
(28) Single Block Lock/Unlock Protection (SBLK/SBULK)............................................................................... 33  
Block Lock Flow ...............................................................................................................................................33  
Block Unlock Flow............................................................................................................................................34  
(29) Read Block Lock Status (RDBLOCK).......................................................................................................35  
(30) Gang Block Lock/Unlock (GBLK/GBULK).................................................................................................35  
(31) Clear SR Fail Flags (CLSR)......................................................................................................................35  
(32) Enable SO to Output RY/BY# (ESRY)......................................................................................................35  
(33) Disable SO to Output RY/BY# (DSRY).....................................................................................................35  
(34) Read SFDP Mode (RDSFDP)...................................................................................................................36  
POWER-ON STATE...................................................................................................................................................42  
ELECTRICAL SPECIFICATIONS..............................................................................................................................43  
ABSOLUTE MAXIMUM RATINGS...................................................................................................................43  
Figure 2. Maximum Negative Overshoot Waveform ........................................................................................43  
CAPACITANCE TA = 25°C, f = 1.0 MHz...........................................................................................................43  
Figure 3. Maximum Positive Overshoot Waveform..........................................................................................43  
Figure 4. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL............................................................ 44  
Figure 5. OUTPUT LOADING .........................................................................................................................44  
Table 10. DC CHARACTERISTICS .................................................................................................................45  
Table 11. AC CHARACTERISTICS ..................................................................................................................46  
Timing Analysis........................................................................................................................................................48  
Figure 6. Serial Input Timing ............................................................................................................................48  
Figure 7. Output Timing....................................................................................................................................48  
Figure 8. Serial Input Timing for Double Transfer Rate Mode.......................................................................... 49  
Figure 9. Serial Output Timing for Double Transfer Rate Mode....................................................................... 49  
Figure 10. WP# Setup Timing and Hold Timing during WRSR when SRWD=1............................................... 50  
Figure 11. Write Enable (WREN) Sequence (Command 06) ........................................................................... 50  
Figure 12. Write Disable (WRDI) Sequence (Command 04)............................................................................ 50  
Figure 13. Read Identification (RDID) Sequence (Command 9F).................................................................... 51  
Figure 14. Read Status Register (RDSR) Sequence (Command 05).............................................................. 51  
Figure 15. Write Status Register (WRSR) Sequence (Command 01)............................................................. 51  
Figure 16. Read Data Bytes (READ) Sequence (Command 03) .................................................................... 52  
Figure 17. Read at Higher Speed (FAST_READ) Sequence (Command 0B) ................................................ 52  
Figure 18. Fast DT Read (FASTDTRD) Sequence (Command 0D)................................................................. 52  
Figure 19. 2 x I/O Read Mode Sequence (Command BB)...............................................................................53  
Figure 20. Fast Dual I/O DT Read (2DTRD) Sequence (Command BD)......................................................... 53  
Figure 21. 4 x I/O Read Mode Sequence (Command EB)...............................................................................54  
Figure 22. 4 x I/O Read Enhance Performance Mode Sequence (Command EB)..........................................54  
Figure 23. Fast Quad I/O DT Read (4DTRD) Sequence (Command ED)........................................................ 55  
Figure 24. Fast Quad I/O DT Read (4DTRD) Enhance Performance Sequence (Command ED)................... 55  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
3
MX25L6445E  
Figure 25. Sector Erase (SE) Sequence (Command 20)................................................................................56  
Figure 26. Block Erase (BE/BE32K) Sequence (Command D8/52)................................................................ 56  
Figure 27. Chip Erase (CE) Sequence (Command 60 or C7)......................................................................... 56  
Figure 28. Page Program (PP) Sequence (Command 02).............................................................................. 57  
Figure 29. 4 x I/O Page Program (4PP) Sequence (Command 38)................................................................ 57  
Figure 30. Continously Program (CP) Mode Sequence with Hardware Detection (Command AD)................. 58  
Figure 31. Deep Power-down (DP) Sequence (Command B9)....................................................................... 58  
Figure 32. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB)  
.........................................................................................................................................................................59  
Figure 33. Release from Deep Power-down (RDP) Sequence (Command AB) .............................................59  
Figure 34. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90 or EF or DF or CF)..  
.........................................................................................................................................................................60  
Figure 35. Write Protection Selection (WPSEL) Sequence (Command 68).................................................... 60  
Figure 36. Single Block Lock/Unlock Protection (SBLK/SBULK) Sequence (Command 36/39)..................... 61  
Figure 37. Read Block Protection Lock Status (RDBLOCK) Sequence (Command 3C)................................ 61  
Figure 38. Gang Block Lock/Unlock (GBLK/GBULK) Sequence (Command 7E/98)...................................... 61  
Figure 39. Power-up Timing.............................................................................................................................62  
Table 12. Power-Up Timing .............................................................................................................................62  
INITIAL DELIVERY STATE...............................................................................................................................62  
OPERATING CONDITIONS.......................................................................................................................................63  
Figure 40. AC Timing at Device Power-Up.......................................................................................................63  
Figure 41. Power-Down Sequence ..................................................................................................................64  
ERASE AND PROGRAMMING PERFORMANCE....................................................................................................65  
DATA RETENTION ....................................................................................................................................................65  
LATCH-UP CHARACTERISTICS..............................................................................................................................65  
ORDERING INFORMATION......................................................................................................................................66  
PART NAME DESCRIPTION.....................................................................................................................................67  
PACKAGE INFORMATION........................................................................................................................................68  
REVISION HISTORY .................................................................................................................................................71  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
4
MX25L6445E  
64M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY  
FEATURES  
GENERAL  
• Serial Peripheral Interface compatible -- Mode 0 and Mode 3  
64Mb: 67,108,864 x 1 bit structure or 33,554,432 x 2 bits (two I/O mode) structure or 16,777,216 x 4 bits (four I/  
O mode) structure  
• 2048 Equal Sectors with 4K bytes each  
- Any Sector can be erased individually  
• 256 Equal Blocks with 32K bytes each  
- Any Block can be erased individually  
• 128 Equal Blocks with 64K bytes each  
- Any Block can be erased individually  
• Power Supply Operation  
- 2.7 to 3.6 volt for read, erase, and program operations  
• Latch-up protected to 100mA from -1V to Vcc +1V  
PERFORMANCE  
• High Performance  
VCC = 2.7~3.6V  
- Normal read  
- 50MHz  
- Fast read (Normal Serial Mode)  
- 1 I/O: 104MHz with 8 dummy cycles  
- 2 I/O: 70MHz with 4 dummy cycles  
- 4 I/O: 70MHz with 6 dummy cycles  
- Fast read (Double Transfer Rate Mode)  
- 1 I/O: 50MHz with 6 dummy cycles  
- 2 I/O: 50MHz with 6 dummy cycles  
- 4 I/O: 50MHz with 8 dummy cycles  
- Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page)  
- Byte program time: 9us (typical)  
- Continuously Program mode (automatically increase address under word program mode)  
- Fast erase time: 60ms (typ.)/sector (4K-byte per sector) ; 0.7s(typ.) /block (64K-byte per block); 50s(typ.) /chip  
• Low Power Consumption  
- Low active read current: 19mA(max.) at 104MHz, 15mA(max.) at 66MHz and 10mA(max.) at 33MHz  
- Low active programming current: 25mA (max.)  
- Low active erase current: 25mA (max.)  
- Low standby current: 50uA (max.)  
- Deep power down current: 20uA (max.)  
• Typical 100,000 erase/program cycles  
• 20 years data retention  
SOFTWARE FEATURES  
• Input Data Format  
- 1-byte Command code  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
5
MX25L6445E  
• Advanced Security Features  
- BP0-BP3 block group protect  
- Flexible individual block protect when OTP WPSEL=1  
- Additional 4K bits secured OTP for unique identifier  
• Auto Erase and Auto Program Algorithms  
Automatically erases and verifies data at selected sector  
-
-
Automatically programs and verifies data at selected page by an internal algorithm that automatically times the  
program pulse width (Any page to be programed should have page in the erased state first.)  
Status Register Feature  
Electronic Identification  
JEDEC 1-byte Manufacturer ID and 2-byte Device ID  
- RES command for 1-byte Device ID  
-
- REMS, REMS2, REMS4 and REMS4D commands for 1-byte Manufacturer ID and 1-byte Device ID  
Support Serial Flash Discoverable Parameters (SFDP) mode  
HARDWARE FEATURES  
SCLK Input  
Serial clock input  
• SI/SIO0  
-
Serial Data Input or Serial Data Input/Output for 2 x I/O mode and 4 x I/O mode  
• SO/SIO1  
-
Serial Data Output or Serial Data Input/Output for 2 x I/O mode and 4 x I/O mode  
• WP#/SIO2  
-
Hardware write protection or serial data Input/Output for 4 x I/O mode  
• NC/SIO3  
-
NC pin or serial data Input/Output for 4 x I/O mode  
• PACKAGE  
-
16-pin SOP (300mil)  
-
-
-
8-WSON (8 x 6mm)  
8-pin SOP (200mil)  
- All devices are RoHS Compliant  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
6
MX25L6445E  
GENERAL DESCRIPTION  
MX25L6445E is 67,108,864 bits serial Flash memory, which is configured as 8,388,608 x 8 internally. When it is in  
two or four I/O mode, the structure becomes 33,554,432 bits x 2 or 16,777,216 bits x 4. The MX25L6445E features  
a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus signals  
are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access to the device is ena-  
bled by CS# input.  
MX25L6445E provides high performance read mode, which may latch address and data on both rising and falling  
edge of clock. By using this high performance read mode, the data throughput may be doubling. Moreover, the per-  
formance may reach direct code execution, the RAM size of the system may be reduced and further saving system  
cost.  
MX25L6445E, MXSMIOTM (Serial Multi I/O) flash memory, provides sequential read operation on the whole chip and  
multi-I/O features.  
When it is in dual I/O mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits input and  
data output. When it is in quad I/O mode, the SI pin, SO pin, WP# pin and NC pin become SIO0 pin, SIO1 pin, SIO2  
pin and SIO3 pin for address/dummy bits input and data Input/Output.  
After program/erase command is issued, auto program/erase algorithms which program/erase and verify the speci-  
fied page or sector/block locations will be executed. Program command is executed on byte basis, or page (256  
bytes) basis, or word basis. Continuously Program mode and erase command are executed on 4K-byte sector, 32K-  
byte/64K-byte block, or whole chip basis.  
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read  
command can be issued to detect completion status of a program or erase operation via the WIP bit.  
When the device is not in operation and CS# is high, it is put in standby mode and draws less than 100uA DC cur-  
rent.  
The MX25L6445E utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after  
100,000 program and erase cycles.  
Table 1. Additional Features  
Protection and Security  
Flexible or  
Read Performance  
1 I/O DT  
Additional  
Features  
2 I/O DT  
Read  
(50 MHz)  
4 I/O DT  
Read  
(50 MHz)  
Individual block  
(or sector)  
4K-bit  
1 I/O Read 2 I/O Read 4 I/O Read  
Part  
Read  
secured OTP (104 MHz)  
(70 MHz)  
(70 MHz)  
Name  
(50 MHz)  
protection  
MX25L6445E  
V
V
V
V
V
V
V
V
Additional  
Features  
Identifier  
RES  
(command: AB  
hex)  
REMS  
(command: 90  
hex)  
REMS2  
(command: EF  
hex)  
REMS4  
(command: DF  
hex)  
REMS4D  
(command: CF  
hex)  
RDID  
(command: 9F  
hex)  
Part  
Name  
MX25L6445E  
16 (hex)  
C2 16 (hex)  
C2 16 (hex)  
C2 16 (hex)  
C2 16 (hex)  
C2 20 17 (hex)  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
7
MX25L6445E  
PIN CONFIGURATION  
16-PIN SOP (300mil)  
PIN DESCRIPTION  
SYMBOL  
DESCRIPTION  
CS#  
Chip Select  
1
2
3
4
5
6
7
8
SCLK  
SI/SIO0  
NC  
NC/SIO3  
VCC  
NC  
16  
15  
14  
13  
12  
11  
10  
9
Serial Data Input (for 1xI/O)/ Serial Data  
Input & Output (for 2xI/O or 4xI/O mode)  
Serial Data Output (for 1xI/O)/Serial  
SI/SIO0  
NC  
NC  
NC  
NC  
NC  
NC  
SO/SIO1 Data Input & Output (for 2xI/O or 4xI/O  
mode)  
GND  
WP#/SIO2  
CS#  
SO/SIO1  
SCLK  
Clock Input  
Write protection: connect to GND or  
WP#/SIO2 Serial Data Input & Output (for 4xI/O  
mode)  
8-PIN SOP (200mil)  
NC pin (Not connect) or Serial Data  
Input & Output (for 4xI/O mode)  
+ 3.3V Power Supply  
Ground  
No Connection  
NC/SIO3  
1
2
3
4
CS#  
SO/SIO1  
WP#/SIO2  
GND  
VCC  
8
7
6
5
NC/SIO3  
SCLK  
VCC  
GND  
NC  
SI/SIO0  
8-WSON (8x6mm)  
1
2
3
4
VCC  
CS#  
SO/SIO1  
WP#/SIO2  
GND  
8
NC/SIO3  
SCLK  
7
6
5
SI/SIO0  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
8
MX25L6445E  
BLOCK DIAGRAM  
Address  
Generator  
Memory Array  
Page Buffer  
Y-Decoder  
Data  
Register  
SI/SIO0  
SRAM  
Buffer  
Sense  
Amplifier  
CS#  
WP#/SIO2  
NC/SIO3  
Mode  
Logic  
State  
Machine  
HV  
Generator  
SCLK  
Clock Generator  
Output  
Buffer  
SO/SIO1  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
9
MX25L6445E  
DATA PROTECTION  
MX25L6445E is designed to offer protection against accidental erasure or programming caused by spurious system  
level signals that may exist during power transition. During power up the device automatically resets the state ma-  
chine in the standby mode. In addition, with its control register architecture, alteration of the memory contents only  
occurs after successful completion of specific command sequences. The device also incorporates several features  
to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or system noise.  
• Valid command length checking: The command length will be checked whether it is at byte base and completed  
on byte boundary.  
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before is-  
suing other commands to change data. The WEL bit will return to reset stage under following situations:  
- Power-up  
- Write Disable (WRDI) command completion  
- Write Status Register (WRSR) command completion  
- Page Program (PP, 4PP) command completion  
- Continuously Program mode (CP) instruction completion  
- Sector Erase (SE) command completion  
- Block Erase (BE, BE32K) command completion  
- Chip Erase (CE) command completion  
- Single Block Lock/Unlock (SBLK/SBULK) instruction completion  
- Gang Block Lock/Unlock (GBLK/GBULK) instruction completion  
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from  
writing all commands except Release from Deep Power Down mode command (RDP) and Read Electronic Sig-  
nature command (RES).  
I. Block lock protection  
- The Software Protected Mode (SPM) uses (BP3, BP2, BP1, BP0) bits to allow part of memory to be protected  
as read only. The protected area definition is shown as table of "Protected Area Sizes", the protected areas are  
more flexible which may protect various area by setting value of BP0-BP3 bits. Please refer to table of "Protect-  
ed Area Sizes".  
- The Hardware Protected Mode (HPM) uses WP#/SIO2 to protect the (BP3, BP2, BP1, BP0) bits and SRWD  
bit. If the system goes into four I/O mode, the feature of HPM will be disabled.  
- MX25L6445E provides individual block (or sector) write protect & unprotect. User may enter the mode with  
WPSEL command and conduct individual block (or sector) write protect with SBLK instruction, or SBULK for  
individual block (or sector) unprotect. Under the mode, user may conduct whole chip (all blocks) protect with  
GBLK instruction and unlock the whole chip with GBULK instruction.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
10  
MX25L6445E  
Table 2. Protected Area Sizes  
Status bit  
Protection Area  
BP3  
0
BP2  
0
BP1  
0
BP0  
0
64Mb  
0 (none)  
0
0
0
1
1 (2 blocks, block 126th-127th)  
2 (4 blocks, block 124th-127th)  
3 (8 blocks, block 120th-127th)  
4 (16 blocks, block 112nd-127th)  
5 (32 blocks, block 96th-127th)  
6 (64 blocks, block 64th-127th)  
7 (128 blocks, all)  
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
8 (128 blocks, all)  
1
0
0
1
9 (128 blocks, all)  
1
0
1
0
10 (128 blocks, all)  
1
0
1
1
11 (128 blocks, all)  
1
1
0
0
12 (128 blocks, all)  
1
1
0
1
13 (128 blocks, all)  
1
1
1
0
14 (128 blocks, all)  
1
1
1
1
15 (128 blocks, all)  
Note: The device is ready to accept a Chip Erase instruction if, and only if, all Block Protect (BP3, BP2, BP1, BP0) are 0.  
II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit One-Time Program area for setting de-  
vice unique serial number - Which may be set by factory or system maker. Please refer to Table 3. 4K-bit Se-  
cured OTP Definition.  
- Security register bit 0 indicates whether the chip is locked by factory or not.  
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with ENSO command), and going  
through normal program procedure, and then exiting 4K-bit secured OTP mode by writing EXSO command.  
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register)  
command to set customer lock-down bit1 as "1". Please refer to table of "Security Register Definition" for secu-  
rity register bit definition and table of "4K-bit Secured OTP Definition" for address range definition.  
- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit Se-  
cured OTP mode, array access is not allowed.  
Table 3. 4K-bit Secured OTP Definition  
Address range  
xxx000~xxx00F  
xxx010~xxx1FF  
Size  
Standard Factory Lock  
ESN (electrical serial number)  
N/A  
Customer Lock  
128-bit  
3968-bit  
Determined by customer  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
11  
MX25L6445E  
Memory Organization  
Table 4. Memory Organization  
Block(64K-byte) Block(32K-byte) Sector (4K-byte)  
Address Range  
2047  
7FF000h  
7FFFFFh  
255  
individual 16 sectors  
lock/unlock unit:4K-byte  
2040  
2039  
7F8000h  
7F7000h  
7F8FFFh  
7F7FFFh  
127  
254  
253  
252  
251  
250  
2032  
2031  
7F0000h  
7EF000h  
7F0FFFh  
7EFFFFh  
2024  
2023  
7E8000h  
7E7000h  
7E8FFFh  
7E7FFFh  
126  
individual block  
lock/unlock unit:64K-byte  
2016  
2015  
7E0000h  
7DF000h  
7E0FFFh  
7DFFFFh  
2008  
2007  
7D8000h  
7D7000h  
7D8FFFh  
7D7FFFh  
125  
2000  
7D0000h  
7D0FFFh  
individual block  
lock/unlock unit:64K-byte  
47  
02F000h  
02FFFFh  
5
4
3
2
1
0
40  
39  
028000h  
027000h  
028FFFh  
027FFFh  
2
1
individual block  
lock/unlock unit:64K-byte  
32  
31  
020000h  
01F000h  
020FFFh  
01FFFFh  
24  
23  
018000h  
017000h  
018FFFh  
017FFFh  
16  
15  
010000h  
00F000h  
010FFFh  
00FFFFh  
8
7
008000h  
007000h  
008FFFh  
007FFFh  
individual 16 sectors  
lock/unlock unit:4K-byte  
0
0
000000h  
000FFFh  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
12  
MX25L6445E  
DEVICE OPERATION  
1. Before a command is issued, status register should be checked to ensure device is ready for the intended opera-  
tion.  
2. When incorrect command is inputted to this device, it enters standby mode and remains in standby mode until  
next CS# falling edge. In standby mode, SO pin of the device is High-Z.  
3. When correct command is inputted to this device, it enters active mode and remains in active mode until next  
CS# rising edge.  
4. For standard single data rate serial mode, input data is latched on the rising edge of Serial Clock (SCLK) and  
data is shifted out on the falling edge of SCLK. The difference of Serial mode 0 and mode 3 is shown as Figure  
1-1. For high performance (Double Transfer Rate Read serial mode), data is latched on both rising and falling  
edge of clock and data shifts out on both rising and falling edge of clock as Figure 1-2.  
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, RDSFDP, 2READ, 4READ, FAST-  
DTRD, 2DTRD, 4DTRD, RDBLOCK, RES, REMS, REMS2, REMS4, and REMS4D the shifted-in instruction se-  
quence is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the  
following instructions: WREN, WRDI, WRSR, SE, BE, BE32K, HPM, CE, PP, CP, 4PP, RDP, DP, WPSEL, SBLK,  
SBULK, GBLK, GBULK, ENSO, EXSO, WRSCUR, ENPLM, EXPLM, ESRY, DSRY and CLSR the CS# must go  
high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
6. While a Write Status Register, Program or Erase operation is in progress, access to the memory array is neglect-  
ed and will not affect the current operation of Write Status Register, Program, Erase.  
Figure 1-1. Serial Modes Supported (for Normal Serial mode)  
CPOL CPHA  
shift in  
shift out  
SCLK  
SCLK  
(Serial mode 0)  
(Serial mode 3)  
0
1
0
1
SI  
MSB  
SO  
MSB  
Note:  
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not  
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is  
supported.  
Figure 1-2. Serial Modes Supported (for Double Transfer Rate serial read mode)  
data  
in  
data  
in  
data data  
out out  
CPOL CPHA  
SCLK  
SCLK  
(Serial mode 0)  
(Serial mode 3)  
0
1
0
1
SI  
MSB  
SO  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
13  
MX25L6445E  
COMMAND DESCRIPTION  
Table 5. Command Sets  
RDSR  
WRSR  
FASTDTRD  
(fast DT  
read)  
4DTRD  
(Quad I/O DT  
Read)  
COMMAND WREN (write WRDI (write RDID (read  
2DTRD (Dual  
I/O DT Read)  
(read status (write status  
(byte)  
enable)  
disable)  
identification)  
register)  
05  
register)  
01  
Command  
(hex)  
06  
04  
9F  
0D  
ADD(12)  
6
BD  
ADD(6)  
6
ED  
ADD(3)  
1+7  
Input  
Data(8)  
Cycles  
Dummy  
Cycles  
sets the  
(WEL) write (WEL) write  
enable latch enable latch ID: 1-byte of the status the status  
resets the  
outputs  
JEDEC  
to read out to write new n bytes read n bytes read n bytes read  
the values values to out (Double out (Double out (Double  
Transfer Transfer Transfer  
Rate) until Rate) by 2xI/ Rate) by 4xI/  
bit  
bit  
Manufacturer  
ID & 2-byte  
Device ID  
register  
register  
Action  
CS# goes  
high  
O until CS# O until CS#  
goes high  
goes high  
2READ (2  
x I/O read  
(Read SFDP) command)  
Note1  
FAST READ  
(fast read  
data)  
4READ (4  
x I/O read  
command)  
4PP (quad  
page  
program)  
COMMAND READ (read  
RDSFDP  
SE (sector  
erase)  
BE (block  
erase 64KB)  
(byte)  
data)  
Command  
(hex)  
03  
0B  
ADD(24)  
8
5A  
ADD(24)  
8
BB  
ADD(12)  
4
EB  
ADD(6)  
2+4  
38  
20  
D8  
Input  
ADD(6)+  
Data(512)  
ADD(24)  
ADD(24)  
ADD(24)  
Cycles  
Dummy  
Cycles  
n bytes read n bytes read Read SFDP n bytes read n bytes read quad input to erase the to erase the  
out until CS# out until CS#  
goes high goes high  
mode  
out by 2 x I/ out by 4 x I/ to program  
O until CS# O until CS# the selected  
selected  
sector  
selected  
64KB block  
Action  
goes high  
goes high  
page  
CP  
RDP  
(Release  
REMS (read  
electronic  
COMMAND BE 32K (block CE (chip  
PP (Page (Continuously DP (Deep  
RES (read  
(byte)  
erase 32KB)  
erase)  
program)  
program  
mode)  
power down) from deep electronic ID) manufacturer  
power down)  
& device ID)  
Command  
(hex)  
52  
60 or C7  
02  
AD  
B9  
AB  
AB  
24  
90  
Input  
ADD(24)+  
Data(2048)  
ADD(24)+  
Data(16)  
ADD(24)  
ADD(24)  
Cycles  
Dummy  
Cycles  
to erase the  
selected  
32KB block  
to erase  
whole chip the selected  
page  
to program continously enters deep release from to read out  
output the  
program  
whole chip,  
the address is  
automatically  
increase  
power down deep power 1-byte Device Manufacturer  
mode  
down mode  
ID  
ID & Device  
ID  
Action  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
14  
MX25L6445E  
REMS4D  
(read ID for  
4x I/O DT  
mode)  
ESRY  
REMS2 (read REMS4 (read  
ID for 2x I/O ID for 4x I/O  
ENSO (enter EXSO (exit  
RDSCUR  
(read security (write security  
WRSCUR  
COMMAND  
(byte)  
(enable SO  
to output RY/  
BY#)  
secured  
OTP)  
secured  
OTP)  
mode)  
mode)  
register)  
2B  
register)  
2F  
Command  
(hex)  
EF  
DF  
CF  
B1  
C1  
70  
Input  
ADD(24)  
ADD(24)  
ADD(24)  
Cycles  
Dummy  
Cycles  
output the  
Manufacturer Manufact-  
output the  
output the  
Manufact-  
to enter  
the 4K-bit  
to exit the 4K- to read value to set the to enable SO  
bit Secured of security lock-down bit to output RY/  
ID & Device  
ID  
urer ID &  
device ID  
urer ID & Secured OTP OTP mode  
register  
as "1" (once BY# during  
Device ID  
mode  
lock-down,  
cannot be  
updated)  
CP mode  
Action  
DSRY  
HPM (High  
Perform-  
ance Enable  
Mode)  
CLSR (Clear  
SR Fail  
WPSEL (write SBLK (single  
SBULK  
RDBLOCK  
COMMAND (disable SO  
GBLK (gang  
block lock)  
protection  
selection)  
block lock) (single block (block protect  
*Note 2  
(byte)  
to output RY/  
BY#)  
Flags)  
unlock)  
read)  
Command  
(hex)  
80  
30  
A3  
68  
36  
39  
3C  
7E  
Input  
ADD(24)  
ADD(24)  
ADD(24)  
Cycles  
Dummy  
Cycles  
to disable SO clear security Quad I/O  
to enter  
individual  
individual  
read  
whole chip  
to output RY/ register bit 6 high Perform- and enable block (64K- block (64K-  
individual  
block or  
sector write  
write protect  
BY# during  
CP mode  
and bit 5  
ance mode  
individal  
block protect sector (4K-  
byte) or  
byte) or  
sector  
Action  
mode  
byte) write  
protect  
(4K-byte) protect status  
unprotect  
COMMAND GBULK (gang  
(byte)  
Command  
(hex)  
block unlock)  
98  
Input  
Cycles  
Dummy  
Cycles  
whole  
chip  
unprotect  
Action  
Notes:  
1. It is not recommended to adopt any other code not in the command definition table, which will potentially enter the hidden  
mode.  
2: In individual block write protection mode, all blocks/sectors are locked as defualt.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
15  
MX25L6445E  
(1) Write Enable (WREN)  
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, 4PP,  
CP, SE, BE, BE32K, CE, WRSR, SBLK, SBULK, GBLK and GBULK, which are intended to change the device con-  
tent, should be set every time after the WREN instruction setting the WEL bit.  
The sequence of issuing WREN instruction is: CS# goes low→ sending WREN instruction code→ CS# goes high.  
(Please refer to Figure 11)  
(2) Write Disable (WRDI)  
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.  
The sequence of issuing WRDI instruction is: CS# goes low→ sending WRDI instruction code→ CS# goes high. (Please  
refer to Figure 12)  
The WEL bit is reset by following situations:  
- Power-up  
- Write Disable (WRDI) instruction completion  
- Write Status Register (WRSR) instruction completion  
- Page Program (PP, 4PP) instruction completion  
- Sector Erase (SE) instruction completion  
- Block Erase (BE, BE32K) instruction completion  
- Chip Erase (CE) instruction completion  
- Continuously Program mode (CP) instruction completion  
- Single Block Lock/Unlock (SBLK/SBULK) instruction completion  
- Gang Block Lock/Unlock (GBLK/GBULK) instruction completion  
(3) Read Identification (RDID)  
The RDID instruction is for reading the Manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC  
Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte Device ID, and the individual Device ID  
of second-byte ID are listed as table of "ID Definitions". (Please refer to Table 6)  
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code → 24-bits ID data out  
on SO→ to end RDID operation can use CS# to high at any time during data out. (Please refer to Figure 13)  
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cy-  
cle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
16  
MX25L6445E  
(4) Read Status Register (RDSR)  
The RDSR instruction is for reading Status Register. The Read Status Register can be read at any time (even in  
program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP)  
bit before sending a new instruction when a program, erase, or write status register operation is in progress.  
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register  
data out on SO (Please refer to Figure 14).  
The definition of the status register bits is as below:  
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write  
status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status  
register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status  
register cycle.  
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable  
latch. When WEL bit sets to "1", which means the internal write enable latch is set, the device can accept program/  
erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the de-  
vice will not accept program/erase/write status register instruction. The program/erase command will be ignored and  
will reset WEL bit if it is applied to a protected memory area.  
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area (as  
defined in Table 2) of the device to against the program/erase instruction without hardware protection mode being  
set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to  
be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE),  
Block Erase (BE) and Chip Erase (CE) instructions (only if all Block Protect bits set to 0, the CE instruction can be  
executed).  
QE bit. The Quad Enable (QE) bit, non-volatile bit, while it is "0" (factory default), it performs non-Quad and WP# is  
enable. While QE is "1", it performs Quad I/O mode and WP# is disabled. In the other word, if the system goes into  
four I/O mode (QE=1), the feature of HPM will be disabled.  
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, default value is "0". SRWD bit is operat-  
ed together with Write Protection (WP#/SIO2) pin for providing hardware protection mode. The hardware protection  
mode requires SRWD sets to 1 and WP#/SIO2 pin signal is low stage. In the hardware protection mode, the Write  
Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and Block Protect bits (BP3,  
BP2, BP1, BP0) are read only.  
Status Register  
bit7  
bit6  
bit5  
BP3  
(level of  
protected  
block)  
bit4  
BP2  
(level of  
protected  
block)  
bit3  
BP1  
(level of  
protected  
block)  
bit2  
BP0  
(level of  
protected  
block)  
bit1  
bit0  
SRWD (status  
register write  
protect)  
QE  
(Quad  
Enable)  
WEL  
(write enable  
latch)  
WIP  
(write in  
progress bit)  
1= Quad  
Enable  
0=not Quad  
Enable  
1=write  
enable  
0=not write 0=not in write  
1=write  
operation  
1=status  
register write  
disable  
(note 1)  
(note 1)  
(note 1)  
(note 1)  
enable  
operation  
Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile  
bit bit bit bit bit bit  
volatile bit  
volatile bit  
Note: see the Table 2 "Protected Area Size" in page 11.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
17  
MX25L6445E  
(5) Write Status Register (WRSR)  
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the  
Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in ad-  
vance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the pro-  
tected area of memory (as shown in Table 2). The WRSR also can set or reset the Quad enable (QE) bit and set or  
reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#/SIO2) pin signal, but  
has no effect on bit1(WEL) and bit0 (WIP) of the status register. The WRSR instruction cannot be executed once the  
Hardware Protected Mode (HPM) is entered.  
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register  
data on SI→ CS# goes high. (Please refer to Figure 15)  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write  
in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1  
during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL)  
bit is reset.  
Protection Modes  
Mode  
Status register condition  
WP# and SRWD bit status  
Memory  
Status register can be written  
in (WEL bit is set to "1") and  
the SRWD, BP0-BP3  
Software protection  
mode(SPM)  
WP#=1 and SRWD bit=0, or  
WP#=0 and SRWD bit=0, or  
WP#=1 and SRWD=1  
The protected area  
cannot  
be program or erase.  
bits can be changed  
The SRWD, BP0-BP3 of  
status register bits cannot be  
changed  
The protected area  
cannot  
be program or erase.  
Hardware protection  
mode (HPM)  
WP#=0, SRWD bit=1  
Note: As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in Table 2.  
As the table above showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM):  
Software Protected Mode (SPM):  
-
When SRWD bit=0, no matter WP#/SIO2 is low or high, the WREN instruction may set the WEL bit and can  
change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1,  
BP0, is at software protected mode (SPM).  
-
When SRWD bit=1 and WP#/SIO2 is high, the WREN instruction may set the WEL bit can change the values of  
SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software pro-  
tected mode (SPM)  
Hardware Protected Mode (HPM):  
-
When SRWD bit=1, and then WP#/SIO2 is low (or WP#/SIO2 is low before SRWD bit=1), it enters the hardware  
protected mode (HPM). The data of the protected area is protected by software protected mode by BP3, BP2,  
BP1, BP0 and hardware protected mode by the WP#/SIO2 to against data modification.  
Note:  
To exit the hardware protected mode requires WP#/SIO2 driving high once the hardware protected mode is entered.  
If the WP#/SIO2 pin is permanently connected to high, the hardware protected mode can never be entered; only  
can use software protected mode via BP3, BP2, BP1, BP0.  
If the system goes into four I/O mode, the feature of HPM will be disabled.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
18  
MX25L6445E  
(6) Read Data Bytes (READ)  
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on  
the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address  
is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can  
be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been  
reached.  
The sequence of issuing READ instruction is: CS# goes low→ sending READ instruction code→3-byte address on  
SI →data out on SO→ to end READ operation can use CS# to high at any time during data out. (Please refer to Fig-  
ure 16)  
(7) Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and  
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at  
any location. The address is automatically increased to the next higher address after each byte data is shifted out,  
so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when  
the highest address has been reached.  
The sequence of issuing FAST_READ instruction is: CS# goes low→sending FAST_READ instruction code→3-byte  
address on SI→ 1-dummy byte (default) address on SI→data out on SO→ to end FAST_READ operation can use  
CS# to high at any time during data out. (Please refer to Figure 17)  
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
(8) Fast Double Transfer Rate Read (FASTDTRD)  
The FASTDTRD instruction is for doubling reading data out, signals are triggered on both rising and falling edge of  
clock. The address is latched on both rising and falling edge of SCLK, and data of each bit shifts out on both rising  
and falling edge of SCLK at a maximum frequency fC2. The 2-bit address can be latched-in at one clock, and 2-bit  
data can be read out at one clock, which means one bit at rising edge of clock, the other bit at falling edge of clock.  
The first address byte can be at any location.  
The address is automatically increased to the next higher address after each byte data is shifted out, so the whole  
memory can be read out at a single FASTDTRD instruction. The address counter rolls over to 0 when the highest  
address has been reached.  
The sequence of issuing FASTDTRD instruction is: CS# goes low → sending FASTDTRD instruction code (1bit  
per clock) → 3-byte address on SI (2-bit per clock) → 6-dummy clocks (default) on SI → data out on SO (2-bit per  
clock) → to end FASTDTRD operation can use CS# to high at any time during data out. (Please refer to Figure 18)  
While Program/Erase/Write Status Register cycle is in progress, FASTDTRD instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
(9) 2 x I/O Read Mode (2READ)  
The 2READ instruction enables Double Transfer Rate of Serial Flash in read mode. The address is latched on rising  
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maxi-  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
19  
MX25L6445E  
mum frequency fT. The first address byte can be at any location. The address is automatically increased to the next  
higher address after each byte data is shifted out, so the whole memory can be read out at a single 2READ instruc-  
tion. The address counter rolls over to 0 when the highest address has been reached. Once writing 2READ instruc-  
tion, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit.  
The sequence of issuing 2READ instruction is: CS# goes low→ sending 2READ instruction→ 24-bit address in-  
terleave on SIO1 & SIO0→ 4-bit dummy cycle on SIO1 & SIO0→ data out interleave on SIO1 & SIO0→ to end  
2READ operation can use CS# to high at any time during data out (Please refer to Figure 19 for 2 x I/O Read Mode  
Timing Waveform).  
While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
(10) 2 x I/O Double Transfer Rate Read Mode (2DTRD)  
The 2DTRD instruction enables Double Transfer Rate throughput on dual I/O of Serial Flash in read mode. The ad-  
dress (interleave on dual I/O pins) is latched on both rising and falling edge of SCLK, and data (interleave on dual  
I/O pins) shift out on both rising and falling edge of SCLK at a maximum frequency fT2. The 4-bit address can be  
latched-in at one clock, and 4-bit data can be read out at one clock, which means two bits at rising edge of clock,  
the other two bits at falling edge of clock. The first address byte can be at any location.  
The address is automatically increased to the next higher address after each byte data is shifted out, so the whole  
memory can be read out at a single 2DTRD instruction. The address counter rolls over to 0 when the highest ad-  
dress has been reached. Once writing 2DTRD instruction, the following address/dummy/ data out will perform as  
4-bit instead of previous 1-bit.  
The sequence of issuing 2DTRD instruction is: CS# goes low → sending 2DTRD instruction (1-bit per clock) → 24-  
bit address interleave on SIO1 & SIO0 (4-bit per clock) → 6-bit dummy clocks on SIO1 & SIO0 → data out inter-  
leave on SIO1 & SIO0 (4-bit per clock) → to end 2DTRD operation can use CS# to high at any time during data  
out (Please refer to Figure 20 for 2 x I/O Double Transfer Rate Read Mode Timing Waveform).  
While Program/Erase/Write Status Register cycle is in progress, 2DTRD instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
(11) 4 x I/O Read Mode (4READ)  
The 4READ instruction enables quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of status  
Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of SCLK,  
and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency  
fQ. The first address byte can be at any location. The address is automatically increased to the next higher address  
after each byte data is shifted out, so the whole memory can be read out at a single 4READ instruction. The ad-  
dress counter rolls over to 0 when the highest address has been reached. Once writing 4READ instruction, the fol-  
lowing address/dummy/data out will perform as 4-bit instead of previous 1-bit.  
The sequence of issuing 4READ instruction is: CS# goes low→ sending 4READ instruction→ 24-bit address in-  
terleave on SIO3, SIO2, SIO1 & SIO0→ 6 dummy cycles → data out interleave on SIO3, SIO2, SIO1 & SIO0→ to  
end 4READ operation can use CS# to high at any time during data out (Please refer to Figure 21 for 4 x I/O Read  
Mode Timing Waveform).  
Another sequence of issuing 4READ instruction especially useful in random access is : CS# goes low→ sending 4  
READ instruction→ 3-bytes address interleave on SIO3, SIO2, SIO1 & SIO0 →performance enhance toggling bit  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
20  
MX25L6445E  
P[7:0]→ 4 dummy cycles → data out still CS# goes high → CS# goes low (reduce 4Read instruction) → 24-bit ran-  
dom access address (Please refer to Figure 22 for 4x I/O Read Enhance Performance Mode timing waveform).  
In the performance-enhancing mode (Notes of Figure. 22), P[7:4] must be toggling with P[3:0]; likewise P[7:0]=A5h,  
5Ah, F0h or 0Fh can make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer  
toggling with P[3:0]; likewise P[7:0]=FFh, 00h, AAh or 55h. These commands will reset the performance enhance  
mode. And afterwards CS# is raised and then lowered, the system then will return to normal operation.  
While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
(12) 4 x I/O Double Transfer Rate Read Mode (4DTRD)  
The 4DTRD instruction enables Double Transfer Rate throughput on quad I/O of Serial Flash in read mode. A Quad  
Enable (QE) bit of status Register must be set to "1" before sending the 4DTRD instruction. The address (interleave  
on 4 I/O pins) is latched on both rising and falling edge of SCLK, and data (interleave on 4 I/O pins) shift out on  
both rising and falling edge of SCLK at a maximum frequency fQ2. The 8-bit address can be latched-in at one clock,  
and 8-bit data can be read out at one clock, which means four bits at rising edge of clock, the other four bits at fall-  
ing edge of clock. The first address byte can be at any location. The address is automatically increased to the next  
higher address after each byte data is shifted out, so the whole memory can be read out at a single 4DTRD instruc-  
tion. The address counter rolls over to 0 when the highest address has been reached. Once writing 4DTRD instruc-  
tion, the following address/dummy/data out will perform as 8-bit instead of previous 1-bit.  
The sequence of issuing 4DTRD instruction is: CS# goes low → sending 4DTRD instruction (1-bit per clock) → 24-  
bit address interleave on SIO3, SIO2, SIO1 & SIO0 (8-bit per clock) → 8 dummy clocks → data out interleave on  
SIO3, SIO2, SIO1 & SIO0 (8-bit per clock) → to end 4DTRD operation can use CS# to high at any time during data  
out (Please refer to Figure 23 for 4 x I/O Read Mode Double Transfer Rate Timing Waveform).  
Another sequence of issuing enhanced mode of 4DTRD instruction especially useful in random access is: CS# goes  
low → sending 4DTRD instruction (1-bit per clock) → 3-bytes address interleave on SIO3, SIO2, SIO1 & SIO0 (8-bit  
per clock) → performance enhance toggling bit P[7:0] → 7 dummy clocks → data out(8-bit per clock) still CS#  
goes high → CS# goes low (eliminate 4 Read instruction) → 24-bit random access address (Please refer to Figure  
24 for 4x I/O Double Transfer Rate read enhance performance mode timing waveform).  
While Program/Erase/Write Status Register cycle is in progress, 4DTRD instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
(13) Sector Erase (SE)  
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for  
any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before  
sending the Sector Erase (SE). Any address of the sector (see Table 4) is a valid address for Sector Erase (SE) in-  
struction. The CS# must go high exactly at the byte boundary (the least significant bit of the address been latched-  
in); otherwise, the instruction will be rejected and not executed.  
The sequence of issuing SE instruction is: CS# goes low → sending SE instruction code→ 3-byte address on SI  
→CS# goes high. (Please refer to Figure 25)  
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while the Sector Erase cycle is in progress. The WIP sets during the tSE  
timing, and clears when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
21  
MX25L6445E  
sector is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit still be reset.  
(14) Block Erase (BE)  
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for  
64K-byte block erase operation. A Write Enable (WREN) instruction must be executed to set the Write Enable Latch  
(WEL) bit before sending the Block Erase (BE). Any address of the block (see Table 4) is a valid address for Block  
Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the least significant bit of address byte  
been latched-in); otherwise, the instruction will be rejected and not executed.  
The sequence of issuing BE instruction is: CS# goes low → sending BE instruction code → 3-byte address on SI  
→ CS# goes high. (Please refer to Figure 26)  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while the Block Erase cycle is in progress. The WIP sets during the tBE tim-  
ing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the block  
is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no change)  
and the WEL bit still be reset.  
(15) Block Erase (BE32K)  
The Block Erase (BE32) instruction is for erasing the data of the chosen block to be "1". The instruction is used  
for 32K-byte block erase operation. A Write Enable (WREN) instruction must be executed to set the Write Enable  
Latch (WEL) bit before sending the Block Erase (BE32). Any address of the block (see Table 4) is a valid address  
for Block Erase (BE32) instruction. The CS# must go high exactly at the byte boundary (the least significant bit of  
address byte been latched-in); otherwise, the instruction will be rejected and not executed.  
The sequence of issuing BE32 instruction is: CS# goes low → sending BE32 instruction code → 3-byte address on  
SI → CS# goes high. (Please refer to Figure 26)  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while the Block Erase cycle is in progress. The WIP sets during the tBE tim-  
ing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the block  
is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no change)  
and the WEL bit still be reset.  
(16) Chip Erase (CE)  
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruc-  
tion must be executed to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must  
go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The sequence of issuing CE instruction is: CS# goes low → sending CE instruction code → CS# goes high. (Please  
refer to Figure 27)  
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while the Chip Erase cycle is in progress. The WIP sets during the tCE tim-  
ing, and clears when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the chip is  
protected, the Chip Erase (CE) instruction will not be executed, but WEL will be reset.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
22  
MX25L6445E  
(17) Page Program (PP)  
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction  
must be executed to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device  
programs only the last 256 data bytes sent to the device. If the entire 256 data bytes are going to be programmed,  
A7-A0 (the eight least significant address bits) should be set to 0. If the eight least significant address bits (A7-A0)  
are not all 0, all transmitted data going beyond the end of the current page are programmed from the start address  
of the same page (from the address A7-A0 are all 0). If more than 256 bytes are sent to the device, the data of the  
last 256-byte is programmed at the requested page and previous data will be disregarded. If less than 256 bytes  
are sent to the device, the data is programmed at the requested address of the page without effect on other address  
of the same page.  
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on SI→  
at least 1-byte on data on SI→ CS# goes high. (Please refer to Figure 28)  
The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte  
boundary( the latest eighth bit of data being latched in), otherwise, the instruction will be rejected and will not be  
executed.  
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while the Page Program cycle is in progress. The WIP sets during the tPP  
timing, and clears when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If  
the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit will still be reset.  
(18) 4 x I/O Page Program (4PP)  
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN)  
instruction must be executed to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1"  
before sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1, SIO2,  
and SIO3, which can raise programer performance and and the effectiveness of application of lower clock less  
than 20MHz. For system with faster clock, the Quad page program cannot provide more performance, because  
the required internal page program time is far more than the time data flows in. Therefore, we suggest that while  
executing this command (especially during sending data), user can slow the clock speed down to 20MHz below.  
The other function descriptions are as same as standard page program.  
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte address on  
SIO[3:0]→ at least 1-byte on data on SIO[3:0]→ CS# goes high. (Please refer to Figure 29)  
If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit will still be reset.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
23  
MX25L6445E  
The Program/Erase function instruction function flow is as follows:  
Program/Erase Flow(1) with read array data  
Start  
WREN command  
RDSR command*  
No  
WREN=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
Read array data  
(same address of PGM/ERS)  
No  
Verify OK?  
Yes  
Program/erase fail  
Program/erase successfully  
CLSR(30h) command  
Program/erase  
another block?  
Yes  
* Issue RDSR to check BP[3:0].  
* If WPSEL=1, issue RDBLOCK to check the block status.  
No  
Program/erase completed  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
24  
MX25L6445E  
Program/Erase Flow(2) without read array data  
Start  
WREN command  
RDSR command*  
No  
WREN=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
RDSCUR command  
Yes  
P_FAIL/E_FAIL=1?  
No  
Program/erase fail  
Program/erase successfully  
CLSR(30h) command  
Program/erase  
another block?  
Yes  
* Issue RDSR to check BP[3:0].  
* If WPSEL=1, issue RDBLOCK to check the block status.  
No  
Program/erase completed  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
25  
MX25L6445E  
(19) Continuously program mode (CP mode)  
The CP mode may enhance program performance by automatically increasing address to the next higher address  
after each byte data has been programmed.  
The Continuously program (CP) instruction is for multiple byte program to Flash. A write Enable (WREN) instruction  
must execute to set the Write Enable Latch (WEL) bit before sending the Continuously program (CP) instruction.  
CS# requires to go high before CP instruction is executing. After CP instruction and address input, two bytes of  
data is input sequentially from MSB(bit7) to LSB(bit0). The first byte data will be programmed to the initial address  
range with A0=0 and second byte data with A0=1. If only one byte data is input, the CP mode will not process. If  
more than two bytes data are input, the additional data will be ignored and only two byte data are valid. Any byte to  
be programmed should be in the erase state (FF) first. It will not roll over during the CP mode, once the last unpro-  
tected address has been reached, the chip will exit CP mode and reset write Enable Latch bit (WEL) as "0" and CP  
mode bit as "0". Please check the WIP bit status if it is not in write progress before entering next valid instruction.  
During CP mode, the valid commands are CP command (AD hex), WRDI command (04 hex), RDSR command (05  
hex), and RDSCUR command (2B hex). And the WRDI command is valid after completion of a CP programming cy-  
cle, which means the WIP bit=0.  
The sequence of issuing CP instruction is : CS# goes low → sending CP instruction code → 3-byte address on SI  
pin → two data bytes on SI → CS# goes high to low → sending CP instruction and then continue two data bytes  
are programmed → CS# goes high to low → till last desired two data bytes are programmed → CS# goes high to  
low →sending WRDI (Write Disable) instruction to end CP mode → send RDSR instruction to verify if CP mode  
word program ends, or send RDSCUR to check bit4 to verify if CP mode ends. (Please refer to Figure 30 of CP  
mode timing waveform)  
Two methods to detect the completion of a program cycle during CP mode:  
1) Software method-I: by checking WIP bit of Status Register to detect the completion of CP mode.  
2) Software method-II: by waiting for a tBP time out to determine if it may load next valid command or not.  
3) Hardware method: by writing ESRY (enable SO to output RY/BY#) instruction to detect the completion of a  
program cycle during CP mode. The ESRY instruction must be executed before CP mode execution. Once it is  
enable in CP mode, the CS# goes low will drive out the RY/BY# status on SO, "0" indicates busy stage, "1" indi-  
cates ready stage, SO pin outputs tri-state if CS# goes high. DSRY (disable SO to output RY/BY#) instruction to  
disable the SO to output RY/BY# and return to status register data output during CP mode. Please note that the  
ESRY/DSRY command are not accepted unless the completion of CP mode.  
If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit will still be reset.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
26  
MX25L6445E  
(20) Deep Power-down (DP)  
The Deep Power-down (DP) instruction is for setting the device to minimum power consumption (the standby cur-  
rent is reduced from ISB1 to ISB2). The Deep Power-down mode requires the Deep Power-down (DP) instruction  
to enter, during the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction are  
ignored. When CS# goes high, the device is only in standby mode, not deep power-down mode. It's different from  
Standby mode.  
The sequence of issuing DP instruction is: CS# goes low→ sending DP instruction code→ CS# goes high. (Please  
refer to Figure 31)  
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP)  
and Read Electronic Signature (RES) instruction. (those instructions allow the ID being reading out). When Power-  
down, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby  
mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction  
code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay  
of tDP is required before entering the Deep Power-down mode and reducing the current to ISB2.  
(21) Release from Deep Power-down (RDP), Read Electronic Signature (RES)  
The Release from Deep Power-down (RDP) instruction is completed by driving Chip Select (CS#) High. When Chip  
Select (CS#) is driven High, the device is put in the Standby Power mode. If the device was not previously in the  
Deep Power-down mode, the transition to the standby Power mode is immediate. If the device was previously in the  
Deep Power-down mode, though, the transition to the standby Power mode is delayed by tRES2, and Chip Select (CS#)  
must remain High for at least tRES2(max), as specified in Table 11. Once in the standby mode, the device waits to  
be selected, so that it can receive, decode and execute instructions.  
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of  
ID Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new  
design, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be  
executed, only except the device is in progress of program/erase/write cycles; there's no effect on the current pro-  
gram/erase/write cycles in progress. The sequence is shown as Figure 32, 33.  
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeat-  
edly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously  
in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in  
Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at  
least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and  
execute instruction.  
The RDP instruction is for releasing from Deep Power-down Mode.  
(22) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4), (REMS4D)  
The REMS, REMS2, REMS4 and REMS4D instruction provides both the JEDEC assigned Manufacturer ID and the  
specific Device ID.  
The instruction is initiated by driving the CS# pin low and shift the instruction code "90h", "CFh", "DFh" or "EFh" fol-  
lowed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for MXIC (C2h) and  
the Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in Figure 34.  
The Device ID values are listed in table of ID Definitions. If the one-byte address is initially set to 01h, then the De-  
vice ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read  
continuously, alternating from one to the other. The instruction is completed by driving CS# high.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
27  
MX25L6445E  
Table 6. ID Definitions  
Command Type  
RDID  
MX25L6445E  
memory type  
20  
electronic ID  
16  
manufacturer ID  
C2  
memory density  
17  
RES  
manufacturer ID  
C2  
device ID  
16  
REMS/REMS2/REMS4/REMS4D  
(23) Enter Secured OTP (ENSO)  
The ENSO instruction is for entering the additional 4K-bit Secured OTP mode. While device is in 4K-bit Secured  
OTP mode, main array access is not available. The additional 4K-bit Secured OTP is independent from main array,  
and may be used to store unique serial number for system identifier. After entering the Secured OTP mode, follow  
standard read or program procedure to read out the data or update data. The Secured OTP data cannot be updat-  
ed again once it is lock-down.  
The sequence of issuing ENSO instruction is: CS# goes low→ sending ENSO instruction to enter Secured OTP  
mode→ CS# goes high.  
Please note that WRSR/WRSCUR/WPSEL/SBLK/GBLK/SBULK/GBULK/CE/BE/SE/BE32K commands are not ac-  
ceptable during the access of secure OTP region, once Security OTP is lock down, only read related commands  
are valid.  
(24) Exit Secured OTP (EXSO)  
The EXSO instruction is for exiting the additional 4K-bit Secured OTP mode.  
The sequence of issuing EXSO instruction is: CS# goes low→ sending EXSO instruction to exit Secured OTP  
mode→ CS# goes high.  
(25) Read Security Register (RDSCUR)  
The RDSCUR instruction is for reading the value of Security Register. The Read Security Register can be read at  
any time (even in program/erase/write status register/write security register condition) and continuously.  
The sequence of issuing RDSCUR instruction is : CS# goes low→ sending RDSCUR instruction → Security Regis-  
ter data out on SO→ CS# goes high.  
The definition of the Security Register is as below:  
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory before ex- factory  
or not. When it is "0", it indicates non-factory lock; "1" indicates factory- lock.  
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for cus-  
tomer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured  
OTP area cannot be updated any more.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
28  
MX25L6445E  
Continuously Program Mode( CP mode) bit. The Continuously Program Mode bit indicates the status of CP  
mode, "0" indicates not in CP mode; "1" indicates in CP mode.  
Program Fail Flag bit. While a program failure happened, the Program Fail Flag bit would be set. This bit will also  
be set when the user attempts to program a protected main memory region or a locked OTP region. This bit can in-  
dicate whether one or more of program operations fail, and can be reset by command CLSR (30h).  
Erase Fail Flag bit. While a erase failure happened, the Erase Fail Flag bit would be set. This bit will also be set  
when the user attempts to erase a protected main memory region or a locked OTP region. This bit can indicate  
whether one or more of erase operations fail, and can be reset by command CLSR (30h).  
Write Protection Select bit. The Write Protection Select bit indicates that WPSEL has been executed successfully.  
Once this bit has been set (WPSEL=1), all the blocks or sectors will be write-protected after the power-on every  
time. Once WPSEL has been set, it cannot be changed again, which means it's only for individual WP mode.  
Under the individual block protection mode (WPSEL=1), hardware protection is performed by driving WP#=0. Once  
WP#=0 all array blocks/sectors are protected regardless of the contents of SRAM lock bits.  
Security Register Definition  
bit7  
bit6  
bit5  
bit4  
bit3  
x
bit2  
x
bit1  
bit0  
Continuously  
Program  
mode  
(CP mode)  
LDSO  
(lock-down  
4K-bit Se- Secured OTP  
cured OTP)  
4K-bit  
WPSEL  
E_FAIL  
P_FAIL  
0 = not  
0=normal  
Erase  
succeed  
1=indicate  
Erase failed  
(default=0)  
0=normal  
Program  
succeed  
1=indicate  
Program  
failed  
0=normal  
WP mode  
1=individual  
WP mode  
(default=0)  
lockdown  
1 = lock-  
down  
(cannot  
program/  
erase  
0 =  
nonfactory  
lock  
1 = factory  
lock  
0=normal  
Program  
mode  
1=CP mode  
(default=0)  
reserved  
reserved  
(default=0)  
OTP)  
non-volatile  
bit  
non-volatile non-volatile  
volatile bit  
Read Only  
volatile bit  
Read Only  
volatile bit  
Read Only  
volatile bit  
Read Only  
volatile bit  
Read Only  
bit  
bit  
OTP  
OTP  
Read Only  
(26) Write Security Register (WRSCUR)  
The WRSCUR instruction is for changing the values of Security Register Bits. Unlike write status register, the WREN  
instruction is not required before sending WRSCUR instruction. The WRSCUR instruction may change the values  
of bit1 (LDSO bit) for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Se-  
cured OTP area cannot be updated any more.  
The sequence of issuing WRSCUR instruction is :CS# goes low→ sending WRSCUR instruction → CS# goes high.  
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
29  
MX25L6445E  
(27) Write Protection Selection (WPSEL)  
There are two write protection methods, (1) BP protection mode (2) individual block protection mode. If WPSEL=0,  
flash is under BP protection mode . If WPSEL=1, flash is under individual block protection mode. The default value  
of WPSEL is “0”. WPSEL command can be used to set WPSEL=1. Please note that WPSEL is an OTP bit. Once  
WPSEL is set to 1, there is no chance to recovery WPSEL back to “0”. If the flash is put on BP mode, the indi-  
vidual block protection mode is disabled. Contrarily, if flash is on the individual block protection mode, the BP mode  
is disabled.  
Every time after the system is powered-on the Security Register bit 7 is checked. If WPSEL=1, all the blocks  
and sectors will be write protected by default. User may only unlock the blocks or sectors via SBULK and  
GBULK instructions. Program or erase functions can only be operated after the Unlock instruction is executed.  
BP protection mode, WPSEL=0:  
ARRAY is protected by BP3~BP0 and BP3~BP0 bits are protected by “SRWD=1 and WP#=0”, where SRWD is bit 7  
of status register that can be set by WRSR command.  
Individual block protection mode, WPSEL=1:  
Blocks are individually protected by their own SRAM lock bits which are set to “1” after power up. SBULK and SBLK  
command can set SRAM lock bit to “0” and “1”. When the system accepts and executes WPSEL instruction, bit 7 in  
the security register will be set. It will activate SBLK, SBULK, RDBLOCK, GBLK, GBULK etc instructions to conduct  
block lock protection and replace the original Software Protect Mode (SPM) use (BP3~BP0) indicated block meth-  
ods. Under the individual block protection mode (WPSEL=1), hardware protection is performed by driving WP#=0.  
Once WP#=0 all array blocks/sectors are protected regardless of the contents of SRAM lock bits.  
The sequence of issuing WPSEL instruction is: CS# goes low → sending WPSEL instruction to enter the individual  
block protect mode → CS# goes high.  
WPSEL instruction function flow is as follows:  
BP and SRWD if WPSEL=0  
WP# pin  
BP3 BP2 BP1 BP0  
SRWD  
64KB  
64KB  
64KB  
(1) BP3~BP0 is used to define the protection group region.  
(The protected area size see Table 2)  
(2) “SRWD=1 and WP#=0” is used to protect BP3~BP0. In this  
case, SRWD and BP3~BP0 of status register bits can not  
be changed by WRSR  
.
.
.
64KB  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
30  
MX25L6445E  
The individual block lock mode is effective after setting WPSEL=1  
4KB  
4KB  
SRAM  
SRAM  
• Power-Up: All SRAM bits=1 (all blocks are default protected).  
All array cannot be programmed/erased  
TOP 4KBx16  
Sectors  
• SBLK/SBULK(36h/39h):  
- SBLK(36h): Set SRAM bit=1 (protect): array can not be  
programmed/erased  
4KB  
SRAM  
SRAM  
- SBULK(39h): Set SRAM bit=0 (unprotect): array can be  
programmed/erased  
64KB  
- All the top 4KBx16 sectors and bottom 4KBx16 sectors  
and other 64KB uniform blocks can be protected and  
unprotected with SRAM bits individually by SBLK/SBULK  
command set.  
SRAM  
Uniform  
64KB blocks  
• GBLK/ GBULK(7Eh/98h):  
- GBLK(7Eh): Set all SRAM bits=1, the whole chip is  
protected and cannot be programmed/erased.  
- GBULK(98h): Set all SRAM bits=0, the whole chip is  
unprotected and can be programmed/erased.  
- All sectors and blocks SRAM bits of the whole chip can be  
protected and unprotected at one time by GBLK/GBULK  
command set.  
64KB  
4KB  
SRAM  
SRAM  
Bottom  
4KBx16  
Sectors  
• RDBLOCK(3Ch):  
- use RDBLOCK mode to check the SRAM bits status after  
SBULK/SBLK/GBULK/GBLK command set.  
4KB  
SBULK / SBLK / GBULK / GBLK / RDBLOCK  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
31  
MX25L6445E  
WPSEL Flow  
start  
RDSCUR(2Bh) command  
Yes  
WPSEL=1?  
No  
WPSEL disable,  
block protected by BP[3:0]  
WPSEL(68h) command  
RDSR command  
No  
WIP=0?  
Yes  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
Yes  
WPSEL set successfully  
WPSEL set fail  
WPSEL enable.  
Block protected by individual lock  
(SBLK, SBULK, … etc).  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
32  
MX25L6445E  
(28) Single Block Lock/Unlock Protection (SBLK/SBULK)  
These instructions are only effective after WPSEL was executed. The SBLK instruction is for write protection a spec-  
ified block(or sector) of memory, using A23-A16 or (A23-A12) address bits to assign a 64Kbyte block (or 4K bytes  
sector) to be protected as read only. The SBULK instruction will cancel the block (or sector) write protection state.  
This feature allows user to stop protecting the entire block (or sector) through the chip unprotect command (GBULK).  
The WREN (Write Enable) instruction is required before issuing SBLK/SBULK instruction.  
The sequence of issuing SBLK/SBULK instruction is: CS# goes low → send SBLK/SBULK (36h/39h) instruction →  
send 3 address bytes assign one block (or sector) to be protected on SI pin → CS# goes high. (Please refer to Fig-  
ure 36)  
The CS# must go high exactly at the byte boundary, otherwise the instruction will be rejected and not be executed.  
SBLK/SBULK instruction function flow is as follows:  
Block Lock Flow  
Start  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
WPSEL command  
Yes  
WREN command  
SBLK command  
( 36h + 24bit address )  
RDSR command  
No  
WIP=0?  
Yes  
RDBLOCK command  
( 3Ch + 24bit address )  
No  
Data = FFh ?  
Yes  
Block lock successfully  
Block lock fail  
Yes  
Lock another block?  
No  
Block lock completed  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
33  
MX25L6445E  
Block Unlock Flow  
start  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
Yes  
WPSEL command  
WREN command  
SBULK command  
( 39h + 24bit address )  
RDSR command  
WIP=0?  
No  
Yes  
Yes  
Unlock another block?  
Unlock block completed?  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
34  
MX25L6445E  
(29) Read Block Lock Status (RDBLOCK)  
This instruction is only effective after WPSEL was executed. The RDBLOCK instruction is for reading the status of  
protection lock of a specified block (or sector), using A23-A16 (or A23-A12) address bits to assign a 64K bytes block (4K  
bytes sector) and read protection lock status bit which the first byte of Read-out cycle. The status bit is"1" to indicate  
that this block has be protected, that user can read only but cannot write/program /erase this block. The status bit is  
"0" to indicate that this block hasn't be protected, and user can read and write this block.  
The sequence of issuing RDBLOCK instruction is: CS# goes low → send RDBLOCK (3Ch) instruction → send 3 ad-  
dress bytes to assign one block on SI pin → read block's protection lock status bit on SO pin → CS# goes high. (Please  
refer to Figure 37)  
(30) Gang Block Lock/Unlock (GBLK/GBULK)  
These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is for enable/disable  
the lock protection block of the whole chip.  
The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.  
The sequence of issuing GBLK/GBULK instruction is: CS# goes low → send GBLK/GBULK (7Eh/98h) instruction →  
CS# goes high. (Please refer to Figure 38)  
The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be executed.  
(31) Clear SR Fail Flags (CLSR)  
The CLSR instruction is for resetting the Program/Erase Fail Flag bit of Security Register. It should be executed be-  
fore program/erase another block during programming/erasing flow without read array data.  
The sequence of issuing CLSR instruction is: CS# goes low → send CLSR instruction code → CS# goes high.  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
(32) Enable SO to Output RY/BY# (ESRY)  
The ESRY instruction is for outputting the ready/busy status to SO during CP mode.  
The sequence of issuing ESRY instruction is: CS# goes low → sending ESRY instruction code → CS# goes high.  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
(33) Disable SO to Output RY/BY# (DSRY)  
The DSRY instruction is for resetting ESRY during CP mode. The ready/busy status will not output to SO after  
DSRY issued.  
The sequence of issuing DSRY instruction is: CS# goes low → send DSRY instruction code → CS# goes high.  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
35  
MX25L6445E  
(34) Read SFDP Mode (RDSFDP)  
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional  
and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables  
can be interrogated by host system software to enable adjustments needed to accommodate divergent features  
from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on  
CFI.  
The sequence of issuing RDSFDP instruction is same as FAST_READ: CS# goes low→send RDSFDP instruction  
(5Ah)→send 3 address bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP  
operation can use CS# to high at any time during data out.  
SFDP is a standard of JEDEC. JESD216. v1.0.  
Read Serial Flash Discoverable Parameter (RDSFDP) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCLK  
Command  
5Ah  
24 BIT ADDRESS  
SI  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
Dummy Cycle  
7
6
5
4
3
2
0
1
SI  
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
36  
MX25L6445E  
Table 7. Signature and Parameter Identification Data Values  
Description Comment  
Add (h) DW Add Data (h/b)  
Data  
(h)  
(Byte)  
(Bit)  
(Note1)  
00h  
07:00  
53h  
53h  
46h  
44h  
50h  
00h  
01h  
01h  
01h  
02h  
03h  
04h  
05h  
06h  
15:08  
23:16  
31:24  
07:00  
15:08  
23:16  
46h  
44h  
50h  
00h  
01h  
01h  
SFDP Signature  
Fixed: 50444653h  
SFDP Minor Revision Number  
SFDP Major Revision Number  
Number of Parameter Headers  
Start from 00h  
Start from 01h  
Start from 00h  
Contains 0xFFh and can never be  
changed  
00h: it indicates a JEDEC specified  
header.  
Unused  
07h  
08h  
09h  
0Ah  
0Bh  
31:24  
07:00  
15:08  
23:16  
31:24  
FFh  
00h  
00h  
01h  
09h  
FFh  
00h  
00h  
01h  
09h  
ID number (JEDEC)  
Parameter Table Minor Revision  
Number  
Parameter Table Major Revision  
Number  
Parameter Table Length  
(in double word)  
Start from 0x00h  
Start from 0x01h  
How many DWORDs in the  
Parameter table  
0Ch  
0Dh  
0Eh  
07:00  
15:08  
23:16  
30h  
00h  
00h  
30h  
00h  
00h  
First address of JEDEC Flash  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
Contains 0xFFh and can never be  
changed  
it indicates Macronix manufacturer  
ID  
0Fh  
10h  
11h  
12h  
13h  
31:24  
07:00  
15:08  
23:16  
31:24  
FFh  
C2h  
00h  
01h  
04h  
FFh  
C2h  
00h  
01h  
04h  
ID number  
(Macronix manufacturer ID)  
Parameter Table Minor Revision  
Number  
Parameter Table Major Revision  
Number  
Start from 0x00h  
Start from 0x01h  
Parameter Table Length  
(in double word)  
How many DWORDs in the  
Parameter table  
14h  
15h  
16h  
07:00  
15:08  
23:16  
60h  
00h  
00h  
60h  
00h  
00h  
First address of Macronix Flash  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
Contains 0xFFh and can never be  
changed  
17h  
31:24  
FFh  
FFh  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
37  
MX25L6445E  
Table 8. Parameter Table (0): JEDEC Flash Parameter Tables  
Add (h) DW Add Data (h/b)  
Data  
(h)  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
00: Reserved, 01: 4KB erase,  
10: Reserved,  
Block/Sector Erase sizes  
01:00  
01b  
11: not suport 4KB erase  
Write Granularity  
0: 1Byte, 1: 64Byte or larger  
02  
03  
1b  
0b  
Write Enable Instruction  
Requested for Writing to Volatile 1: Volatitle status bit  
0: Nonvolatitle status bit  
Status Registers  
(BP status register bit)  
30h  
E5h  
0: use 50h opcode,  
1: use 06h opcode  
Write Enable Opcode Select for  
Writing to Volatile Status Registers  
Note: If target flash status register is  
nonvolatile, then bits 3 and 4 must  
be set to 00b.  
04  
0b  
Contains 111b and can never be  
changed  
Unused  
07:05  
111b  
4KB Erase Opcode  
31h  
32h  
33h  
15:08  
16  
20h  
0b  
20h  
B8h  
FFh  
(1-1-2) Fast Read (Note2)  
0=not support 1=support  
Address Bytes Number used in  
addressing flash array  
00: 3Byte only, 01: 3 or 4Byte,  
10: 4Byte only, 11: Reserved  
18:17  
19  
00b  
1b  
Double Transfer Rate (DTR)  
Clocking  
0=not support 1=support  
(1-2-2) Fast Read  
(1-4-4) Fast Read  
(1-1-4) Fast Read  
Unused  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
20  
21  
1b  
1b  
22  
0b  
23  
1b  
Unused  
31:24  
FFh  
Flash Memory Density  
37h:34h 31:00  
03FFFFFFh  
(1-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
04:00  
38h  
0 0100b  
states (Note3)  
Clocks) not support  
44h  
EBh  
00h  
FFh  
(1-4-4) Fast Read Number of  
Mode Bits (Note4)  
000b: Mode Bits not support  
07:05  
010b  
EBh  
(1-4-4) Fast Read Opcode  
39h  
3Ah  
3Bh  
15:08  
20:16  
(1-1-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
0 0000b  
states  
Clocks) not support  
(1-1-4) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
31:24  
000b  
FFh  
(1-1-4) Fast Read Opcode  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
38  
MX25L6445E  
Add (h) DW Add Data (h/b)  
Data  
(h)  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
(1-1-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
04:00  
0 0000b  
states  
Clocks) not support  
3Ch  
00h  
0xFFh  
04h  
(1-1-2) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
07:05  
15:08  
20:16  
000b  
0xFFh  
(1-1-2) Fast Read Opcode  
3Dh  
3Eh  
3Fh  
(1-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
0 0100b  
states  
Clocks) not support  
(1-2-2) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
000b  
(1-2-2) Fast Read Opcode  
(2-2-2) Fast Read  
Unused  
31:24  
00  
BBh  
0b  
BBh  
0=not support 1=support  
0=not support 1=support  
03:01  
04  
111b  
0b  
40h  
EEh  
(4-4-4) Fast Read  
Unused  
07:05  
111b  
0xFFh  
0xFFh  
Unused  
43h:41h 31:08  
45h:44h 15:00  
0xFFh  
0xFFh  
Unused  
(2-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
20:16  
46h  
0 000b  
000b  
states  
Clocks) not support  
00h  
(2-2-2) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
(2-2-2) Fast Read Opcode  
Unused  
47h  
31:24  
FFh  
FFh  
49h:48h 15:00  
0xFFh  
0xFFh  
(4-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy  
20:16  
4Ah  
0 0000b  
states  
Clocks) not support  
00h  
(4-4-4) Fast Read Number of  
Mode Bits  
000b: Mode Bits not support  
23:21  
000b  
FFh  
0Ch  
20h  
0Fh  
52h  
10h  
D8h  
00h  
FFh  
(4-4-4) Fast Read Opcode  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
31:24  
07:00  
15:08  
23:16  
31:24  
07:00  
15:08  
23:16  
31:24  
FFh  
0Ch  
20h  
0Fh  
52h  
10h  
D8h  
00h  
FFh  
Sector/block size = 2^N bytes (Note5)  
0x00b: this sector type doesn't exist  
Sector Type 1 Size  
Sector Type 1 erase Opcode  
Sector Type 2 Size  
Sector/block size = 2^N bytes  
0x00b: this sector type doesn't exist  
Sector Type 2 erase Opcode  
Sector Type 3 Size  
Sector/block size = 2^N bytes  
0x00b: this sector type doesn't exist  
Sector Type 3 erase Opcode  
Sector Type 4 Size  
Sector/block size = 2^N bytes  
0x00b: this sector type doesn't exist  
Sector Type 4 erase Opcode  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
39  
MX25L6445E  
Table 9. Parameter Table (1): Macronix Flash Parameter Tables  
Add (h) DW Add Data (h/b)  
Data  
(h)  
Description  
Comment  
2000h=2.000V  
2700h=2.700V  
3600h=3.600V  
(Byte)  
(Bit)  
(Note1)  
07:00  
15:08  
00h  
36h  
00h  
36h  
Vcc Supply Maximum Voltage  
61h:60h  
1650h=1.650V  
2250h=2.250V  
2350h=2.350V  
2700h=2.700V  
23:16  
31:24  
00h  
27h  
00h  
27h  
Vcc Supply Minimum Voltage  
HW Reset# pin  
63h:62h  
0=not support 1=support  
00  
0b  
HW Hold# pin  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
01  
02  
03  
0b  
1b  
0b  
Deep Power Down Mode  
SW Reset  
Reset Enable (66h) should be issued  
before Reset command  
1111 1111b  
(FFh)  
65h:64h  
4FF4h  
SW Reset Opcode  
11:04  
Program Suspend/Resume  
Erase Suspend/Resume  
Unused  
0=not support 1=support  
0=not support 1=support  
12  
13  
0b  
0b  
14  
1b  
Wrap-Around Read mode  
Wrap-Around Read mode Opcode  
0=not support 1=support  
15  
0b  
66h  
67h  
23:16  
0xFFh  
0xFFh  
0xFFh  
08h:support 8B wrap-around read  
16h:8B&16B  
32h:8B&16B&32B  
Wrap-Around Read data length  
31:24  
0xFFh  
64h:8B&16B&32B&64B  
Individual block lock  
0=not support 1=support  
0=Volatile 1=Nonvolatile  
00  
01  
1b  
0b  
Individual block lock bit  
(Volatile/Nonvolatile)  
0011 0110b  
(36h)  
Individual block lock Opcode  
09:02  
10  
Individual block lock Volatile  
protect bit default protect status  
0=protect 1=unprotect  
0b  
C8D9h  
6Bh:68h  
Secured OTP  
Read Lock  
Permanent Lock  
Unused  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
11  
12  
1b  
0b  
13  
0b  
15:14  
31:16  
11b  
Unused  
0xFFh  
0xFFh  
0xFFh  
0xFFh  
Unused  
6Fh:6Ch 31:00  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
40  
MX25L6445E  
Note 1: h/b is hexadecimal or binary.  
Note 2: (x-y-z) means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x),  
address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1), (2-2-2),  
and (4-4-4)  
Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.  
Note 4: Mode Bits is optional control bits that follow the address bits. These bits are driven by the system controller  
if they are specified. (eg,read performance enhance toggling bits)  
Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h  
Note 6: Memory within the SFDP address space that has not yet been defined or used, default to all 0xFFh.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
41  
MX25L6445E  
POWER-ON STATE  
The device is at the following states after power-up:  
- Standby mode ( please note it is not Deep Power-down mode)  
- Write Enable Latch (WEL) bit is reset  
The device must not be selected during power-up and power-down stage until the VCC reaches the following levels:  
- VCC minimum at power-up stage and then after a delay of tVSL  
- GND at power-down  
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.  
An internal Power-on Reset (POR) circuit may protect the device from data corruption and inadvertent data change  
during power up state.  
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not  
guaranteed. The read, write, erase, and program command should be sent after the time delay:  
- tVSL after VCC reached VCC minimum level  
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.  
Please refer to the figure of "Power-up Timing".  
Note:  
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended.  
(generally around 0.1uF)  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
42  
MX25L6445E  
ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
RATING  
VALUE  
Ambient Operating Temperature  
Storage Temperature  
Applied Input Voltage  
Applied Output Voltage  
VCC to Ground Potential  
Industrial grade  
-40°C to 85°C  
-65°C to 150°C  
-0.5V to 4.6V  
-0.5V to 4.6V  
-0.5V to 4.6V  
NOTICE:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the  
device. This is stress rating only and functional operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended period may affect reliability.  
2. Specifications contained within the following tables are subject to change.  
3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, see Figure 2, 3.  
Figure 3. Maximum Positive Overshoot Waveform  
Figure 2. Maximum Negative Overshoot Waveform  
20ns  
20ns  
20ns  
Vss  
Vcc + 2.0V  
Vss-2.0V  
Vcc  
20ns  
20ns  
20ns  
CAPACITANCE TA = 25°C, f = 1.0 MHz  
Symbol Parameter  
Min.  
Typ.  
Max.  
10  
Unit  
pF  
Conditions  
VIN = 0V  
CIN  
Input Capacitance  
COUT Output Capacitance  
8
pF  
VOUT = 0V  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
43  
MX25L6445E  
Figure 4. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL  
Input timing reference level  
Output timing reference level  
0.8VCC  
0.2VCC  
0.7VCC  
0.3VCC  
AC  
Measurement  
Level  
0.5VCC  
Note: Input pulse rise and fall time are <5ns  
Figure 5. OUTPUT LOADING  
DEVICE UNDER  
TEST  
2.7K ohm  
+3.3V  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
CL=30/15pF Including jig capacitance  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
44  
MX25L6445E  
Table 10. DC CHARACTERISTICS  
Symbol Parameter  
Notes  
Min.  
Max.  
± 2  
Units Test Conditions  
ILI  
Input Load Current  
1
1
1
uA VCC = VCC Max, VIN = VCC or GND  
uA VCC = VCC Max, VOUT=VCC or GND  
uA VIN = VCC or GND, CS# = VCC  
ILO  
Output Leakage Current  
± 2  
ISB1 VCC Standby Current  
50  
Deep Power-down  
Current  
ISB2  
20  
22  
19  
17  
15  
10  
25  
uA VIN = VCC or GND, CS# = VCC  
fQ=70MHz (4 x I/O read)  
mA  
SCLK=0.1VCC/0.9VCC, SO=Open  
f=104MHz  
SCLK=0.1VCC/0.9VCC, SO=Open  
mA  
fT=70MHz (2 x I/O read)  
mA  
ICC1 VCC Read  
1
1
SCLK=0.1VCC/0.9VCC, SO=Open  
f=66MHz  
SCLK=0.1VCC/0.9VCC, SO=Open  
mA  
f=33MHz,  
SCLK=0.1VCC/0.9VCC, SO=Open  
mA  
VCC Program Current  
ICC2  
(PP)  
mA Program in Progress, CS# = VCC  
VCC Write Status  
ICC3  
Program status register in progress,  
CS#=VCC  
20  
25  
mA  
Register (WRSR) Current  
VCC Sector Erase  
Current (SE)  
ICC4  
1
1
mA Erase in Progress, CS#=VCC  
mA Erase in Progress, CS#=VCC  
VCC Chip Erase Current  
ICC5  
(CE)  
20  
VIL  
Input Low Voltage  
Input High Voltage  
-0.5  
0.8  
V
V
VIH  
0.7VCC VCC+0.4  
VOL  
Output Low Voltage  
0.4  
V
V
IOL = 1.6mA  
IOH = -100uA  
VOH Output High Voltage  
Notes :  
VCC-0.2  
1. Typical values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and speeds).  
2. Typical value is calculated by simulation.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
45  
MX25L6445E  
Table 11. AC CHARACTERISTICS  
Symbol Alt. Parameter  
Min.  
Typ.  
Max.  
Unit  
Clock Frequency for the following instructions:  
fSCLK  
fC FAST_READ, PP, SE, BE, CE, DP, RES, RDP,  
WREN, WRDI, RDID, RDSR, WRSR  
D.C.  
104  
MHz  
fRSCLK  
fR Clock Frequency for READ instructions  
fT Clock Frequency for 2READ instructions  
50  
70  
70  
85  
50  
50  
50  
20  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
VCC=2.7V-3.6V  
VCC=3.0V-3.6V  
fQ Clock Frequency for 4READ instructions  
fTSCLK  
fC2 Clock Frequency for FASTDTRD instructions  
fT2 Clock Frequency for 2DTRD instructions  
fQ2 Clock Frequency for 4DTRD instructions  
Clock Frequency for 4PP (Quad page program)  
f4PP  
Fast_Read  
Read  
4.5  
9
tCH(1)  
tCLH Clock High Time  
ns  
Fast_Read  
Read  
4.5  
9
0.1  
0.1  
5
ns  
ns  
V/ns  
V/ns  
ns  
tCL(1)  
tCLL Clock Low Time  
tCLCH(2)  
tCHCL(2)  
Clock Rise Time (3) (peak to peak)  
Clock Fall Time (3) (peak to peak)  
tSLCH tCSS CS# Active Setup Time (relative to SCLK)  
tCHSL CS# Not Active Hold Time (relative to SCLK)  
tDVCH tDSU Data In Setup Time  
5
2
ns  
ns  
tCHDX  
tCHSH  
tSHCH  
tDH Data In Hold Time  
5
5
5
ns  
ns  
ns  
CS# Active Hold Time (relative to SCLK)  
CS# Not Active Setup Time (relative to SCLK)  
Read  
Write/Erase/  
Program  
15  
ns  
tSHSL(3) tCSH CS# Deselect Time  
50  
ns  
VCC=2.7V-3.6V  
VCC=3.0V-3.6V  
10  
8
ns  
ns  
ns  
tSHQZ(2) tDIS Output Disable Time  
1 I/O  
9
Loading: 15pF  
Clock Low to Output Valid  
tCLQV  
tV  
2 I/O & 4 I/O  
Loading: 30pF 2 I/O & 4 I/O  
9.5  
12  
ns  
ns  
VCC=2.7V~3.6V  
Clock Low to Output Valid (DTR mode)  
VCC=2.7V~3.6V, Loading: 15pF  
1 I/O, 2 I/O &  
4 I/O  
tCLQV2 tV2  
9.5  
ns  
tCLQX  
tWHSL  
tSHWL  
tDP(2)  
tHO Output Hold Time  
2
20  
100  
ns  
ns  
ns  
us  
Write Protect Setup Time  
Write Protect Hold Time  
CS# High to Deep Power-down Mode  
10  
CS# High to Standby Mode without Electronic Signature  
Read  
CS# High to Standby Mode with Electronic Signature Read  
Write Status Register Cycle Time  
Byte-Program  
tRES1(2)  
100  
us  
tRES2(2)  
tW  
tBP  
tPP  
tSE  
tBE  
100  
100  
300  
5
300  
2
us  
ms  
us  
ms  
ms  
s
40  
9
1.4  
60  
0.5  
0.7  
Page Program Cycle Time  
Sector Erase Cycle Time (4KB)  
Block Erase Cycle Time (32KB)  
Block Erase Cycle Time (64KB)  
tBE  
2
s
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
46  
MX25L6445E  
Symbol Alt. Parameter  
Min.  
Typ.  
50  
Max.  
80  
1
Unit  
s
ms  
ms  
tCE  
Chip Erase Cycle Time  
tWPS  
tWSR  
Write Protection Selection Time  
Write Security Register Time  
1
Notes:  
1. tCH + tCL must be greater than or equal to 1/ fC.  
2. Value guaranteed by characterization, not 100% tested in production.  
3. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
47  
MX25L6445E  
Timing Analysis  
Figure 6. Serial Input Timing  
tSHSL  
tSHCH  
tCHCL  
CS#  
tCHSL  
tSLCH  
tCHSH  
SCLK  
tDVCH  
tCHDX  
tCLCH  
MSB  
LSB  
SI  
High-Z  
SO  
Figure 7. Output Timing  
CS#  
tCH  
SCLK  
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
SO  
tCLQX  
LSB  
ADDR.LSB IN  
SI  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
48  
MX25L6445E  
Figure 8. Serial Input Timing for Double Transfer Rate Mode  
tSHSL  
tSHCH  
tCHCL  
CS#  
tSLCH  
tCHSL  
tCHSH  
SCLK  
tDVCH  
tDVCH  
tCHDX  
tCHDX  
MSB  
tCLCH  
LSB  
SI  
High-Z  
SO  
Figure 9. Serial Output Timing for Double Transfer Rate Mode  
CS#  
tCH  
SCLK  
tCLQV2  
tCLQV2  
tCLQX  
tCLQV2  
tCL  
tSHQZ  
tCLQX  
LSB  
SO  
SI  
ADDR.LSB IN  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
49  
MX25L6445E  
Figure 10. WP# Setup Timing and Hold Timing during WRSR when SRWD=1  
WP#  
CS#  
tSHWL  
tWHSL  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14  
15  
SCLK  
01  
SI  
High-Z  
SO  
Figure 11. Write Enable (WREN) Sequence (Command 06)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
06  
SI  
High-Z  
SO  
Figure 12. Write Disable (WRDI) Sequence (Command 04)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
04  
SI  
High-Z  
SO  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
50  
MX25L6445E  
Figure 13. Read Identification (RDID) Sequence (Command 9F)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
28 29 30 31  
SCLK  
SI  
Command  
9F  
Manufacturer Identification  
Device Identification  
High-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13  
D3 D2 D1 D0  
MSB  
MSB  
Figure 14. Read Status Register (RDSR) Sequence (Command 05)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
SI  
command  
05  
Status Register Out  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
SO  
Figure 15. Write Status Register (WRSR) Sequence (Command 01)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
Status  
Register In  
command  
01  
SI  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
High-Z  
SO  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
51  
MX25L6445E  
Figure 16. Read Data Bytes (READ) Sequence (Command 03)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
03  
24 ADD Cycles  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
SI  
Data Out 2  
Data Out 1  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0 D7  
MSB MSB  
SO  
Figure 17. Read at Higher Speed (FAST_READ) Sequence (Command 0B)  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
28 29 30 31  
0
1
2
3
4
5
6
7
8
9
10  
SCLK  
Command  
0B  
8 Dummy Cycles  
24 ADD Cycles  
SI  
A23 A22 A21  
A3 A2 A1 A0  
Data Out 1  
Data Out 2  
High-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0 D7  
MSB  
Figure 18. Fast DT Read (FASTDTRD) Sequence (Command 0D)  
CS#  
8
7
25  
26  
27  
28  
29  
19  
0
SCLK  
6 Dummy  
Cycles  
Command  
12 ADD Cycles  
Data Out  
2
Data Out  
1
A23  
A1 A0  
A22  
0D  
SI/SIO0  
D7 D6 D5 D4 D3 D2 D1 D0 D7  
SO/SIO1  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
52  
MX25L6445E  
Figure 19. 2 x I/O Read Mode Sequence (Command BB)  
CS#  
28 29  
18 19 20 21 22 23 24 25 26 27  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data Out  
Data Out  
4 dummy  
cycle  
Command  
12 ADD Cycle  
2
1
A22 A20  
A23 A21  
A2 A0  
P0  
D4 D2  
D6 D4  
D7 D5  
P2  
BB(hex)  
D6  
D7  
D0  
D1  
SI/SIO0  
High Impedance  
A3 A1 P3  
P1  
D5 D3  
SO/SIO1  
Note: SI/SIO0 or SO/SIO1 should be kept "0h" or "Fh" in the first two dummy cycles. In other words, P2=P0 or  
P3=P1 is necessary.  
Figure 20. Fast Dual I/O DT Read (2DTRD) Sequence (Command BD)  
CS#  
0
7
8
13  
14  
19  
20  
21  
22  
23  
SCLK  
Data Out  
1
6 Dummy  
Cycles  
Command  
6 ADD Cycles  
Data Out  
2
SI/SIO0  
P2 P0  
P3 P1  
BD  
A22 A20  
A2 A0  
A3 A1  
D6 D4 D2 D0 D6 D4 D2 D0 D6  
D7 D5 D3 D1 D7 D5 D3 D1 D7  
A23 A21  
SO/SIO1  
Note: SI/SIO0 or SO/SIO1 should be kept "0h" or "Fh" in the first two dummy cycles. In other words, P2=P0 or  
P3=P1 is necessary.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
53  
MX25L6445E  
Figure 21. 4 x I/O Read Mode Sequence (Command EB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
SCLK  
4 dummy  
cycles  
Data  
Out 2  
Data  
Out 3  
Command  
EB  
6 ADD Cycles  
Data  
Out 1  
Performance  
Enhance  
Indicator  
(Note1, 2)  
A20 A16 A12 A8 A4 A0  
D4 D0 D4 D0 D4  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
SI/SIO0  
High Impedance  
High Impedance  
High Impedance  
SO/SIO1  
WP#/SIO2  
NC/SIO3  
D5 D1 D5 D1 D5  
D6 D2 D6 D2 D6  
A21 A17 A13 A9 A5 A1  
A22 A18 A14 A10 A6 A2  
A23 A19 A15 A11 A7 A3  
D7 D3 D7 D3 D7  
Notes:  
1. Hi-impedance is inhibited for the two clock cycles.  
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) will result in entering the performance enhance mode.  
Figure 22. 4 x I/O Read Enhance Performance Mode Sequence (Command EB)  
CS#  
n+1  
n+7  
n+9  
n+13  
0
1
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SCLK  
4 dummy  
cycles  
6 ADD Cycles  
Command  
6 ADD  
Cycles  
Data  
Out 2  
Data  
Out 1  
4 dummy  
cycles  
Data  
Out 3  
Data  
Out 2  
Data  
Out 1  
Performance  
enhance  
indicator (Note)  
Performance  
enhance  
indicator (Note)  
A20 A16 A12 A8 A4 A0  
D4 D0 D4 D0  
A20  
A0  
P4 P0  
P4 P0  
EB  
D4 D0 D4 D0 D4  
SI/SIO0  
SO/SIO1  
WP#/SIO2  
NC/SIO3  
High Impedance  
High Impedance  
High Impedance  
D5 D1 D5 D1  
D6 D2 D6 D2  
A21 A17 A13 A9 A5 A1  
A22 A18 A14 A10 A6 A2  
A21  
A22  
A1  
A2  
P5 P1  
P6 P2  
P7 P3  
P5 P1  
P6 P2  
P7 P3  
D5 D1 D5 D1 D5  
D6 D2 D6 D2 D6  
A23 A19 A15 A11 A7 A3  
D7 D3 D7 D3  
A23  
A3  
D7 D3 D7 D3 D7  
Notes:  
1. Performance enhance mode: if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P0 (Toggling), ex: A5, 5A, F0, 0F.  
2. Reset the performance enhance mode: if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 55, 00, FF.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
54  
MX25L6445E  
Figure 23. Fast Quad I/O DT Read (4DTRD) Sequence (Command ED)  
CS#  
0
7
8
9
10  
11  
18  
19  
20  
SCLK  
Command  
7 Dummy  
cycles  
1 cycle  
Performance  
3 ADD Cycles  
Enhance Indicator  
(Note1,2)  
SI/SIO0  
ED  
A20 A16  
A21 A17  
A4 A0 P4 P0  
D4 D0 D4 D0 D4  
D5 D1 D5 D1 D5  
P5  
A5 A1  
A6 A2  
P1  
SO/SIO1  
P2  
P3  
A22 A18  
A23 A19  
P6  
P7  
WP#/SIO2  
NC/SIO3  
D6 D2 D6 D2 D6  
D7 D3 D7 D3 D7  
A3  
A7  
Notes:  
1. Hi-impedance is inhibited for this clock cycle.  
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) will result in entering the performance enhance mode.  
Figure 24. Fast Quad I/O DT Read (4DTRD) Enhance Performance Sequence (Command ED)  
CS#  
10  
11  
18  
19  
20  
0
7
8
9
SCLK  
1 cycle  
1 cycle  
Performance  
enhance  
3 ADD Cycles  
3 ADD Cycles  
Command  
7 Dummy Data Out Data Out  
7 Dummy Data Out Data Out  
Performance  
enhance  
cycles  
1
2
cycles  
1
2
indicator (Note)  
indicator (Note)  
SI/SIO0  
A0  
A0  
A20 A16  
A21 A17  
A4  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
D4 D0 D4 D0  
D5 D1 D5 D1  
D6 D2 D6 D2  
D7 D3 D7 D3  
A20 A16  
A4  
A5  
A6  
A7  
P4 P0  
P5 P1  
P6 P2  
P7 P3  
D4 D0 D4 D0 D4  
D5 D1 D5 D1 D5  
D6 D2 D6 D2 D6  
D7 D3 D7 D3 D7  
ED (hex)  
A1  
A2  
A1  
A2  
A21 A17  
A22 A18  
A23 A19  
SO/SIO1  
A5  
A6  
A7  
WP#/SIO2  
NC/SIO3  
A22 A18  
A23 A19  
A3  
A3  
Note: Performance enhance, if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P0 (Toggle)  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
55  
MX25L6445E  
Figure 25. Sector Erase (SE) Sequence (Command 20)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
24 ADD Cycles  
Command  
20  
A23 A22  
A2 A1 A0  
SI  
MSB  
Figure 26. Block Erase (BE/BE32K) Sequence (Command D8/52)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
24 ADD Cycles  
Command  
D8/52  
A23 A22  
A2 A1 A0  
SI  
MSB  
Figure 27. Chip Erase (CE) Sequence (Command 60 or C7)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
60 or C7  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
56  
MX25L6445E  
Figure 28. Page Program (PP) Sequence (Command 02)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
02  
24 ADD Cycles  
Data Byte 1  
Data Byte 256  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2  
MSB  
D0  
D1  
D7 D6 D5 D4 D3 D2 D1 D0  
SI  
Figure 29. 4 x I/O Page Program (4PP) Sequence (Command 38)  
CS#  
524 525  
10 11 12 13 14 15 16 17  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data  
Byte 256  
Data Data  
Byte 1 Byte 2  
Command  
38  
6 ADD cycles  
D4 D0 D4 D0  
D4 D0  
A20 A16 A12 A8 A4 A0  
SI/SIO0  
D5 D1 D5 D1  
D6 D2 D6 D2  
D7 D3 D7 D3  
D5 D1  
D6 D2  
D7 D3  
SO/SIO1  
WP#/SIO2  
NC/SIO3  
A21 A17 A13 A9 A5 A1  
A22 A18 A14 A10 A6 A2  
A23 A19 A15 A11 A7 A3  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
57  
MX25L6445E  
Figure 30. Continously Program (CP) Mode Sequence with Hardware Detection (Command AD)  
CS#  
SCLK  
SI  
20 2122 23 24  
0
1
30 31 31 32  
47 48  
0
7
7
8
0
6
7 8  
0
1
6 7 8 9  
Command  
AD (hex)  
data in  
Byte n-1, Byte n  
Valid  
Command (1)  
data in  
04 (hex)  
05 (hex)  
24-bit address  
Byte 0, Byte1  
high impedance  
status (2)  
S0  
Notes:  
(1) During CP mode, the valid commands are CP command (AD hex), WRDI command (04 hex), RDSR command  
(05 hex), and RDSCUR command (2B hex).  
(2) Once an internal programming operation begins, CS# goes low will drive the status on the SO pin and CS#  
goes high will return the SO pin to tri-state.  
(3) To end the CP mode, either reaching the highest unprotected address or sending Write Disable (WRDI) com-  
mand (04 hex) may achieve it and then it is recommended to send RDSR command (05 hex) to verify if CP  
mode is ended.  
Figure 31. Deep Power-down (DP) Sequence (Command B9)  
CS#  
t
DP  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
B9  
Stand-by Mode  
Deep Power-down Mode  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
58  
MX25L6445E  
Figure 32. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38  
39  
SCLK  
Command  
AB  
24 ADD Cycles  
t
RES2  
SI  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
Electronic Signature Out  
High-Z  
D7  
D1  
D0  
D6 D5 D4 D3 D2  
SO  
MSB  
Deep Power-down Mode  
Stand-by Mode  
Figure 33. Release from Deep Power-down (RDP) Sequence (Command AB)  
CS#  
t
RES1  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
AB  
High-Z  
SO  
Deep Power-down Mode  
Stand-by Mode  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
59  
MX25L6445E  
Figure 34. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90 or EF or DF or CF)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
47  
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
28  
29  
SCLK  
Command  
90  
24 ADD Cycles  
SI  
A0  
A1  
A3 A2  
A23 A22 A21  
Manufacturer ID  
Device ID  
High-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
MSB  
MSB  
Notes:  
1. A0=0 will output the Manufacturer ID first and A0=1 will output Device ID first. A1~A23 is don't care.  
2. Instruction is either 90(hex) or EF(hex) or DF(hex) or CF(hex).  
Figure 35. Write Protection Selection (WPSEL) Sequence (Command 68)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
68  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
60  
MX25L6445E  
Figure 36. Single Block Lock/Unlock Protection (SBLK/SBULK) Sequence (Command 36/39)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
36/39  
24 Bit Address  
Cycles  
A23 A22  
A2 A1 A0  
SI  
MSB  
Figure 37. Read Block Protection Lock Status (RDBLOCK) Sequence (Command 3C)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
3C  
24 ADD Cycles  
SI  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
Block Protection Lock status out  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
SO  
Figure 38. Gang Block Lock/Unlock (GBLK/GBULK) Sequence (Command 7E/98)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
7E/98  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
61  
MX25L6445E  
Figure 39. Power-up Timing  
V
CC  
V
(max)  
CC  
Chip Selection is Not Allowed  
V
(min)  
CC  
Device is fully accessible  
tVSL  
time  
Note: VCC (max.) is 3.6V and VCC (min.) is 2.7V.  
Table 12. Power-Up Timing  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tVSL(1)  
VCC(min) to CS# low  
300  
us  
Note: The parameter is characterized only.  
INITIAL DELIVERY STATE  
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status  
Register contains 00h (all Status Register bits are 0).  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
62  
MX25L6445E  
OPERATING CONDITIONS  
At Device Power-Up and Power-Down  
AC timing illustrated in Figure 40 and Figure 41 are for the supply voltages and the control signals at device power-  
up and power-down. If the timing in the figures is ignored, the device will not operate correctly.  
During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be  
selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL.  
Figure 40. AC Timing at Device Power-Up  
VCC(min)  
VCC  
GND  
tVR  
tSHSL  
CS#  
tSHCH  
tSLCH  
tCHSL  
tCHSH  
SCLK  
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
SI  
High Impedance  
SO  
Symbol  
tVR  
Parameter  
VCC Rise Time  
Notes  
Min.  
20  
Max.  
500000  
Unit  
us/V  
1
Notes :  
1. Sampled, not 100% tested.  
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to  
"AC CHARACTERISTICS" table.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
63  
MX25L6445E  
Figure 41. Power-Down Sequence  
During power-down, CS# needs to follow the voltage drop on VCC to avoid mis-operation.  
VCC  
CS#  
SCLK  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
64  
MX25L6445E  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ. (1)  
40  
Max. (2)  
Unit  
ms  
ms  
s
Write Status Register Cycle Time  
Sector Erase Time (4KB)  
Block Erase Time (64KB)  
Block Erase Time (32KB)  
Chip Erase Time  
100  
300  
2
60  
0.7  
0.5  
2
s
50  
80  
300  
5
s
Byte Program Time (via page program command)  
Page Program Time  
9
us  
1.4  
ms  
cycles  
Erase/Program Cycle  
100,000  
Notes:  
1. Typical program and erase time assumes the following conditions: 25°C, 3.3V, and checker board pattern.  
2. Under worst conditions of 85°C and 2.7V.  
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming com-  
mand.  
DATA RETENTION  
Parameter  
Condition  
Min.  
Max.  
Unit  
Data retention  
55˚C  
20  
years  
LATCH-UP CHARACTERISTICS  
Min.  
Max.  
Input Voltage with respect to GND on all power pins, SI, CS#  
Input Voltage with respect to GND on SO  
Current  
-1.0V  
-1.0V  
-100mA  
2 VCCmax  
VCC + 1.0V  
+100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
65  
MX25L6445E  
ORDERING INFORMATION  
PART NO.  
CLOCK  
(MHz)  
TEMPERATURE  
-40°C~85°C  
-40°C~85°C  
-40°C~85°C  
PACKAGE  
Remark  
RoHS  
Compliant  
RoHS  
Compliant  
RoHS  
16-SOP  
(300mil)  
MX25L6445EMI-10G  
MX25L6445EM2I-10G  
MX25L6445EZNI-10G  
104  
104  
104  
8-SOP  
(200mil)  
8-WSON  
(8x6mm)  
Compliant  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
66  
MX25L6445E  
PART NAME DESCRIPTION  
MX 25 L 6445E  
M
I
10 G  
OPTION:  
G: RoHS Compliant  
SPEED:  
10: 104MHz  
TEMPERATURE RANGE:  
I: Industrial (-40° C to 85° C)  
PACKAGE:  
M: 300mil 16-SOP  
M2: 200mil 8-SOP  
ZN: 8x6mm 8-WSON  
DENSITY & MODE:  
6445E: 64Mb standard type  
TYPE:  
L: 3V  
DEVICE:  
25: Serial Flash  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
67  
MX25L6445E  
PACKAGE INFORMATION  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
68  
MX25L6445E  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
69  
MX25L6445E  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
70  
MX25L6445E  
REVISION HISTORY  
Revision No. Description  
Page  
P5  
Date  
MAY/19/2009  
1.0  
1. Removed "Preliminary"  
2. Merge MX25L6445E and MX25L12845E together  
3. Add CFI mode content  
4. Align waveform format  
All  
P37  
All  
5. Modify tCH/tCL value, from rev0.06 tCH/tCL=5.5ns  
to rev1.0 tCH/tCL(FAST_READ/READ)=4.5/9ns  
6. Change command table format  
7. Added "DATA RETENTION" Condition  
8. Modified sector erase time from 90ms to 60ms  
P43,45  
P15,16  
P66  
P5,43,46,  
P66  
9. Modified 128Mb chip erase time (max) from 512s to 200s  
1. Added 128M 8-WSON EPN  
2. Change RDCFI command from A5 to 5A  
1. Added DMC Code content table  
2. Removed MX25L12845EZNI-10G advanced information remark  
3. Changed the naming "CFI mode" as "DMC mode"  
1. Corrected error  
P46,66  
P67  
P16,37  
P37~39  
P69  
1.1  
1.2  
JUL/16/2009  
OCT/21/2009  
All  
1.3  
P8,43,44,54 APR/01/2010  
P68  
2. Added wording "e.g. Vcc and CS# ramp up simultaneously"  
3. Modified low active read and standby current consumption  
and deep power down current consumption  
P67  
P5,43~44,69  
4. Deleted parallel mode condition  
P43  
5. Modified table of "Read DMC mode (RDDMC)"  
6. Added "Input Test Waveforms And Measurement Level"  
7. Modified tSLCH, tSHCH from 8ns to 5ns  
P37~39  
P42  
P45,47  
1.4  
1.5  
1. Removed DMC sequence description & content table  
2. Revised low active read current spec  
P6,14,16,37 JUL/14/2010  
P5  
3. Revised Table 7-1 and Table 7-2  
P40-41  
1. Removed MX25L12845E information from the previous combined  
version of MX25L6445E/MX25L12845E  
All  
AUG/19/2011  
2. Modified description for RoHS compliance  
P6,60,61  
3. Revised Figure 18. Fast DT Read (FASTDTRD) Sequence  
Figure 20. Fast Dual I/O DT Read (2DTRD) Sequence;  
Figure 23. Fast Quad I/O DT Read (4DTRD) Sequence; and  
Figure 24. Fast Quad I/O DT Read (4DTRD) Enhance Performance.  
4. Corrected ILO TEST CONDITIONS in Table 7  
5. Revised Storage Temperature  
P46,47,49  
P39  
P37  
1.6  
1. Changed Quad I/O Read Frequency from 80MHz@VCC=3.0V~3.6V P40  
to 85MHz@VCC=3.0V~3.6V  
SEP/13/2011  
1.7  
1.8  
1. Revised the description in The individual block lock mode  
1. Modified Input Capacitance  
P31  
P43  
OCT/05/2011  
DEC/26/2011  
2. Modified Figure 41. Power-Down Sequence  
3. Added Read SFDP (RDSFDP) Mode  
P64  
P6,13,14,  
P36~41  
P66  
4. Changed ordering information format  
P/N: PM1736  
REV. 1.8, DEC. 26, 2011  
71  
MX25L6445E  
Except for customized products which has been expressly identified in the applicable agreement, Macronix's  
products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or  
household applications only, and not for use in any applications which may, directly or indirectly, cause death,  
personal injury, or severe property damages. In the event Macronix products are used in contradicted to their  
target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its  
actual use in accordance with the applicable laws and regulations; and Macronix as well as it’s suppliers and/or  
distributors shall be released from any and all liability arisen therefrom.  
Copyright© Macronix International Co., Ltd. 2009~2011. All rights reserved.  
Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, NBiit, Macronix NBit, eLiteFlash,  
XtraROM, Phines, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE are trademarks or registered  
trademarks of Macronix International Co., Ltd. The names and brands of other companies are for identification  
purposes only and may be claimed as the property of the respective companies.  
For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  
72  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY