MX29F805BPC-90 [Macronix]

Flash, 512KX16, 90ns, PDIP42;
MX29F805BPC-90
型号: MX29F805BPC-90
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

Flash, 512KX16, 90ns, PDIP42

光电二极管
文件: 总34页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCED INFORMATION  
MX29F805T/B  
8M-BIT [1Mx8/512Kx16] CMOS FLASH MEMORY  
FEATURES  
• 1,048,576 x 8/524,288 x 16 switchable  
• Dual power supply operation  
• Erase suspend/Erase Resume  
- Suspends an erase operation to read data from, or  
- 5.0V only operation for read, 10.0V for erase and  
program operations  
• Fast access time: 90/120ns  
program data to, another sector that is not being  
erased, then resumes the erase.  
• Status Reply  
• Low power consumption  
- Data polling & Toggle bit for detection of program  
and erase cycle completion.  
- 30mA maximum active current  
- 1uA typical standby current  
• Sector protection  
• Command register architecture  
- Word Programming (14us typical)  
- Sector Erase (Sector structure 16K-Bytex1,  
8K-Bytex2, 32K-Bytex1, and 64K-Byte x15)  
• Auto Erase (chip & sector) and Auto Program  
-Automaticallyeraseanycombinationofsectorswith  
Erase Suspend capability.  
• 100 minimum erase/program cycles  
• Latch-up protected to 100mA from -1V to VCC+1V  
• Boot Code Sector Architecture  
- T = Top Boot Sector  
- B = Bottom Boot Sector  
• Low VCC write inhibit is equal to or less than 3.2V  
• Package type:  
- Automatically program and verify data at specified  
address  
- 42-pin PDIP  
GENERAL DESCRIPTION  
The MX29F805T/B is a 8-mega bit Flash memory or-  
ganized as 1M bytes of 8 bits or 512K words of 16 bits.  
MXIC's Flash memories offer the most cost-effective and  
reliable read/write non-volatile random access memory.  
The MX29F805T/B is packaged in 42-pin PDIP. It is  
designed to be reprogrammed and erased in system or  
in standard EPROM programmers.  
TTL level control inputs and fixed power supply levels  
during erase and programming, while maintaining maxi-  
mum EPROM compatibility.  
MXIC Flash technology reliably stores memory contents  
even after 100 erase and program cycles. The MXIC  
cell is designed to optimize the erase and programming  
mechanisms. In addition, the combination of advanced  
tunnel oxide processing and low internal electric fields  
for erase and program operations produces reliable cy-  
cling. The MX29F805T/B needs 10V power supply to  
perform the High Reliability Erase and auto Program/  
Erase algorithms.  
The standard MX29F805T/B offers access time as fast  
as 90ns, allowing operation of high-speed microproces-  
sors without wait states. To eliminate bus contention,  
the MX29F805T/B has separate chip enable (CE) and  
output enable (OE) controls.  
MXIC's Flash memories augment EPROM functionality  
with electrical erasure and programming. The  
MX29F805T/B uses a command register to manage this  
functionality. The command register allows for 100%  
The highest degree of latch-up protection is achieved  
with MXIC's proprietary non-epi process. Latch-up pro-  
tection is proved for stresses up to 100 milliamps on  
address and data pin from -1V to VCC + 1V.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
1
MX29F805T/B  
PIN CONFIGURATIONS  
42 PDIP(600 mil)  
PIN DESCRIPTION  
SYMBOL PIN NAME  
A0~A18  
Q0~Q14  
Q15/A-1  
Address Input  
Data Input/Output  
DU  
A18  
A17  
A7  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
1
A8  
2
Q15(Word mode)/LSB addr(Byte mode, for  
read operation only)  
A9  
3
A10  
A11  
A12  
A13  
A14  
A15  
A16  
BYTE/VPP  
GND  
Q15/A-1  
Q7  
A6  
4
A5  
5
CE  
Chip Enable Input  
A4  
6
A3  
7
BYTE/VPP Word/Byte Selction input, for read operation  
only.VPP=VHH for Erase/Program operation.  
A2  
8
A1  
9
A0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
CE  
GND  
OE  
Q0  
Q8  
Q1  
Q9  
Q2  
Q10  
Q3  
Q11  
OE  
Output Enable Input  
Power Supply Pin (+5V)  
Ground Pin  
VCC  
GND  
DU  
Q14  
Q6  
Do Not Use  
Q13  
Q5  
Q12  
Q4  
VCC  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
2
MX29F805T/B  
BLOCK STRUCTURE  
MX29F805T TOP BOOT SECTOR ADDRESS TABLE  
Sector Size  
(Kbytes/  
Address Range (in hexadecimal)  
(x16)  
(x8)  
Sector A18 A17 A16 A15 A14 A13 A12  
Kwords)  
Address Range  
Address Range  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
32/16  
8/4  
00000h-07FFFh  
08000h-0FFFFh  
10000h-17FFFh  
18000h-1FFFFh  
20000h-27FFFh  
28000h-2FFFFh  
30000h-37FFFh  
38000h-3FFFFh  
40000h-47FFFh  
48000h-4FFFFh  
50000h-57FFFh  
58000h-5FFFFh  
60000h-67FFFh  
68000h-6FFFFh  
70000h-77FFFh  
78000h-7BFFFh  
7C000h-7CFFFh  
7D000h-7DFFFh  
7E000h-7FFFFh  
00000h-0FFFFh  
10000h-1FFFFh  
20000h-2FFFFh  
30000h-3FFFFh  
40000h-4FFFFh  
50000h-5FFFFh  
60000h-6FFFFh  
70000h-7FFFFh  
80000h-8FFFFh  
90000h-9FFFFh  
A0000h-AFFFFh  
B0000h-BFFFFh  
C0000h-CFFFFh  
D0000h-DFFFFh  
E0000h-EFFFFh  
F0000h-F7FFFh  
F8000h-F9FFFh  
FA000h-FBFFFh  
FC000h-FFFFFh  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
1
1
0
1
1
X
8/4  
16/8  
MX29F805B BOTTOM BOOT SECTOR ADDRESS TABLE  
Sector Size  
(Kbytes/  
Address Range (in hexadecimal)  
(x16)  
(x8)  
Sector A18 A17 A16 A15 A14 A13 A12  
Kwords)  
Address Range  
Address Range  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
1
1
X
0
1
16/8  
8/4  
8/4  
00000h-01FFFh  
02000h-02FFFh  
03000h-03FFFh  
04000h-07FFFh  
08000h-0FFFFh  
10000h-17FFFh  
18000h-1FFFFh  
20000h-27FFFh  
28000h-2FFFFh  
30000h-37FFFh  
38000h-3FFFFh  
40000h-47FFFh  
48000h-4FFFFh  
50000h-57FFFh  
58000h-5FFFFh  
60000h-67FFFh  
68000h-6FFFFh  
70000h-77FFFh  
78000h-7FFFFh  
00000h-03FFFh  
04000h-05FFFh  
06000h-07FFFh  
08000h-0FFFFh  
10000h-1FFFFh  
20000h-2FFFFh  
30000h-3FFFFh  
40000h-4FFFFh  
50000h-5FFFFh  
60000h-6FFFFh  
70000h-7FFFFh  
80000h-8FFFFh  
90000h-9FFFFh  
A0000h-AFFFFh  
B0000h-BFFFFh  
C0000h-CFFFFh  
D0000h-DFFFFh  
E0000h-EFFFFh  
F0000h-FFFFFh  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
32/16  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
Note: Address range is A18:A-1 in byte mode and A18:A0 in word mode.(for read operation only)  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
3
MX29F805T/B  
BLOCK DIAGRAM  
WRITE  
CONTROL  
INPUT  
PROGRAM/ERASE  
STATE  
MACHINE  
(WSM)  
CE  
OE  
BYTE/VPP  
HIGH VOLTAGE  
LOGIC  
STATE  
MX29F805T/B  
REGISTER  
ADDRESS  
LATCH  
FLASH  
ARRAY  
ARRAY  
A0-A18  
SOURCE  
HV  
AND  
COMMAND  
DATA  
BUFFER  
Y-PASS GATE  
DECODER  
PGM  
SENSE  
DATA  
COMMAND  
DATA LATCH  
AMPLIFIER  
HV  
PROGRAM  
DATA LATCH  
I/O BUFFER  
Q0-Q15/A-1  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
4
MX29F805T/B  
AUTOMATIC PROGRAMMING  
AUTOMATIC ERASE ALGORITHM  
The MX29F805T/B is word programmable using the Au-  
tomatic Programming algorithm. The Automatic Pro-  
gramming algorithm makes the external system do not  
need to have time out sequence nor to verify the data  
programmed. The typical chip programming time at  
room temperature of the MX29F805T/B is less than 4  
seconds.  
MXIC's Automatic Erase algorithm requires the user to  
write commands to the command register using stan-  
dard microprocessor write timings. The device will au-  
tomatically pre-program and verify the entire array. Then  
the device automatically times the erase pulse width,  
provides the erase verification, and counts the number  
of sequences. A status bit toggling between consecu-  
tive read cycles provides feedback to the user as to the  
status of the programming operation.  
AUTOMATIC CHIP ERASE  
The entire chip is bulk erased using 10 ms erase pulses  
according to MXIC's Automatic Chip Erase algorithm.  
Typical erasure at room temperature is accomplished  
in less than 4 second. The Automatic Erase algorithm  
automatically programs the entire array prior to electri-  
cal erase. The timing and verification of electrical erase  
are controlled internally within the device.  
Register contents serve as inputs to an internal state-  
machine which controls the erase and programming cir-  
cuitry. During write cycles, the command register inter-  
nally latches address and data needed for the program-  
ming and erase operations. During a system write cycle,  
addresses are latched on the falling edge, and data are  
latched on the rising edge of CE .  
MXIC's Flash technology combines years of EPROM  
experience to produce the highest levels of quality, reli-  
ability, and cost effectiveness.The MX29F805T/B elec-  
trically erases all bits simultaneously using Fowler-  
Nordheim tunneling. The bytes are programmed by us-  
ing the EPROM programming mechanism of hot elec-  
tron injection.  
AUTOMATIC SECTOR ERASE  
The MX29F805T/B is sector(s) erasable using MXIC's  
Auto Sector Erase algorithm. Sector erase modes al-  
low sectors of the array to be erased in one erase cycle.  
The Automatic Sector Erase algorithm automatically  
programs the specified sector(s) prior to electrical erase.  
The timing and verification of electrical erase are con-  
trolled internally within the device.  
During a program cycle, the state-machine will control  
the program sequences and command register will not  
respond to any command set. During a Sector Erase  
cycle, the command register will only respond to Erase  
Suspend command.After Erase Suspend is completed,  
the device stays in read mode. After the state machine  
has completed its task, it will allow the command regis-  
ter to respond to its full command set.  
AUTOMATIC PROGRAMMING ALGORITHM  
MXIC's Automatic Programming algorithm requires the  
user to only write program set-up commands (including  
2 unlock write cycle and A0H) and a program command  
(program data and address). The device automatically  
times the programming pulse width, provides the pro-  
gram verification, and counts the number of sequences.  
A status bit similar to DATA polling and a status bit tog-  
gling between consecutive read cycles, provide feed-  
back to the user as to the status of the programming  
operation.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
5
MX29F805T/B  
TABLE1. SOFTWARE COMMAND DEFINITIONS(BYTE/VPP=VHH)  
First Bus  
Bus Cycle  
Second Bus Third Bus  
Cycle Cycle  
Fourth Bus  
Cycle  
Fifth Bus  
Cycle  
Sixth Bus  
Cycle  
Command  
Cycle Addr Data Addr Data Addr  
Data Addr Data Addr  
Data Addr Data  
Reset  
1
1
4
4
XXXH F0H  
RA RD  
555H AAH 2AAH 55H 555H 90H ADI  
Read  
Read Silicon ID Word  
Sector Protect Word  
Verify  
DDI  
555H AAH 2AAH 55H 555H 90H (SA) XX00H  
x02H XX01H  
Porgram  
Word  
Word  
Word  
4
6
6
1
1
555H AAH 2AAH 55H 555H A0H PA  
PD  
Chip Erase  
Sector Erase  
555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H  
555H 10H  
SA 30H  
555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H  
Sector Erase Suspend  
Sector Erase Resume  
XXXH B0H  
XXXH 30H  
Note:  
1. ADI = Address of Device identifier; A1=0, A0 = 0 for manufacture code,A1=0, A0 = 1 for device code. A2 to A18=Do not care.  
(Refer to table 3)  
DDI = Data of Device identifier : C2H for manufacture code, C4H/4AH (x8) and 22C4/224AH (x16) for device code.  
X = X can be VIL or VIH  
RA=Address of memory location to be read.  
RD=Data to be read at location RA.  
2.PA = Address of memory location to be programmed.  
PD = Data to be programmed at location PA.  
SA = Address to the sector to be erased.  
3.The system should generate the following address patterns: 555H or 2AAH to Address A10~A0 in word mode.  
Address bit A11~A18=X=Don't care for all address commands except for Program Address (PA) and Sector  
Address (SA). Write Sequence may be initiated with A11~A18 in either state.  
4. For Sector Protect Verify operation:If read out data is 01H, it means the sector has been protected. If read out data is 00H,  
it means the sector is still not being protected.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
6
MX29F805T/B  
COMMAND DEFINITIONS  
sequences. Note that the Erase Suspend (B0H) and  
Erase Resume (30H) commands are valid only while  
the Sector Erase operation is in progress. Either of the  
two reset command sequences will reset the  
device(when applicable).  
Device operations are selected by writing specific ad-  
dress and data sequences into the command register.  
Writing incorrect address and data values or writing them  
in the improper sequence will reset the device to the  
read mode. Table 1 defines the valid register command  
TABLE 2. MX29F805T/B BUS OPERATION  
Pins  
CE OE BYTE/VPP A0  
A1  
L
A6  
X
A9  
Q0 ~ Q15  
Mode  
Read Silicon ID  
L
L
L
L
H/L  
H/L  
L
VID(2)  
VID(2)  
C2H (Byte mode)  
Manfacturer Code(1)  
Read Silicon ID  
Device Code(1)  
Read  
00C2H (Word mode)  
H
L
X
C4H/4AH (Byte mode)  
22C4H/224AH (Word mode)  
L
H
L
L
L
L
L
X
L
H/L  
X
A0  
X
A1  
X
A6  
X
A9  
DOUT  
Standby  
X
H
H
X
HIGH Z  
HIGH Z  
DIN(3)  
X
Output Disable  
Write(6)  
H/L  
VHH  
X
X
X
X
A0  
X
A1  
X
A6  
L
A9  
Sector Protect  
Chip Unprotect  
Verify Sector Protect  
Reset  
VID(2) VHH  
VID(2) VHH  
VID(2)  
VID(2)  
VID(2)  
X
X
X
H
X
L
H/L  
X
X
H
X
Code(5)  
HIGH Z  
X
X
X
X
NOTES:  
1. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 1.  
2. VID is the Silicon-ID-Read high voltage, 11.5V to 12.5V.  
3. Refer to Table 1 for valid Data-In during a write operation.  
4. X can be VIL or VIH.  
5. Code=00H/0000H means unprotected.  
Code=01H/0001H means protected.  
A18~A12=Sector address for sector protect.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
7
MX29F805T/B  
SET-UP AUTOMATIC CHIP/SECTOR ERASE  
COMMANDS  
READ/RESET COMMAND  
The read or reset operation is initiated by writing the  
read/reset command sequence into the command reg-  
ister. Microprocessor read cycles retrieve array data.  
The device remains enabled for reads until the com-  
mand register contents are altered.  
Chip erase is a six-bus cycle operation. There are two  
"unlock" write cycles. These are followed by writing the  
"set-up" command 80H. Two more "unlock" write cy-  
cles are then followed by the chip erase command 10H.  
If program-fail or erase-fail happen, the write of F0H will  
reset the device to abort the operation. A valid com-  
mand must then be written to place the device in the  
desired state.  
The Automatic Chip Erase does not require the device  
to be entirely pre-programmed prior to executing the  
Automatic Chip Erase. Upon executing the Automatic  
Chip Erase, the device will automatically program and  
verify the entire memory for an all-zero data pattern.  
When the device is automatically verified to contain an  
all-zero pattern, a self-timed chip erase and verify be-  
gin. The erase and verify operations are completed when  
the data on Q7 is "1" at which time the device returns to  
the Read mode. The system is not required to provide  
any control or timing during these operations.  
SILICON-ID-READ COMMAND  
Flash memories are intended for use in applications  
where the local CPU alters memory contents. As such,  
manufacturer and device codes must be accessible while  
the device resides in the target system. PROM pro-  
grammers typically access signature codes by raising  
A9 to a high voltage(VID). However, multiplexing high  
voltage onto address lines is not generally desired sys-  
tem design practice.  
When using the Automatic Chip Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory  
array(no erase verification command is required).  
The MX29F805T/B contains a Silicon-ID-Read opera-  
tion to supplement traditional PROM programming meth-  
odology. The operation is initiated by writing the read  
silicon ID command sequence into the command reg-  
ister. Following the command write, a read cycle with  
A1=VIL, A0=VIL retrieves the manufacturer code of C2H/  
00C2H. A read cycle with A1=VIL, A0=VIH returns the  
device code of C4H/22C4H for MX29F805T, 4AH/224AH  
for MX29F805B.  
If the Erase operation was unsuccessful, the data on  
Q5 is "1"(see Table 4), indicating the erase operation  
exceed internal timing limit.  
The automatic erase begins on the rising edge of the  
last CE pulse in the command sequence and terminates  
when the data on Q7 is "1" and the data on Q6 stops  
toggling for two consecutive read cycles, at which time  
the device returns to the Read mode.  
TABLE 3. EXPANDED SILICON ID CODE  
Pins  
A0  
A1  
Q15~Q8 Q7 Q6 Q5  
Q4 Q3 Q2 Q1 Q0 Code(Hex)  
Manufacture code Word VIL  
Byte VIL  
VIL 00H  
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
00C2H  
VIL  
X
C2H  
Device code  
Word VIH VIL 22H  
Byte VIH VIL  
Word VIH VIL 22H  
22C4H  
for MX29F805T  
Device code  
X
C4H  
224AH  
for MX29F805B  
Sector Protection  
Verification  
Byte VIH VIL  
X
X
X
4AH  
X
X
VIH  
VIH  
01H (Protected)  
00H (Unprotected)  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
8
MX29F805T/B  
SECTOR ERASE COMMANDS  
The Automatic Sector Erase does not require the de-  
vice to be entirely pre-programmed prior to executing  
the Automatic Set-up Sector Erase command and Au-  
tomatic Sector Erase command. Upon executing the  
Automatic Sector Erase command, the device will auto-  
matically program and verify the sector(s) memory for  
an all-zero data pattern. The system is not required to  
provide any control or timing during these operations.  
When using the Automatic sector Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory array  
(no erase verification command is required). Sector  
erase is a six-bus cycle operation. There are two "un-  
lock" write cycles. These are followed by writing the  
set-up command 80H. Two more "unlock" write cycles  
are then followed by the sector erase command 30H.  
The sector address is latched on the falling edge of CE,  
while the command(data) is latched on the rising edge  
of CE. Sector addresses selected are loaded into in-  
ternal register on the sixth falling edge of CE. Each  
successive sector load cycle started by the falling edge  
of CE must begin within 80us from the rising edge of  
the preceding CE. Otherwise, the loading period ends  
and internal auto sector erase cycle starts. (Monitor Q3  
to determine if the sector erase timer window is still open,  
see section Q3, Sector Erase Timer.) Any command  
other than Sector Erase(30H) or Erase Suspend(B0H)  
during the time-out period resets the device to read  
mode.  
When the sector(s) is automatically verified to contain  
an all-zero pattern, a self-timed sector erase and verify  
begin. The erase and verify operations are complete  
when the data on Q7 is "1" and the data on Q6 stops  
toggling for two consecutive read cycles, at which time  
the device returns to the Read mode. The system is not  
required to provide any control or timing during these  
operations.  
Table 4.Write Operation Status  
Status  
Q7  
Q7  
0
Q6  
Toggle  
Toggle  
1
Q5  
0
Q3  
0
Q2  
1
Byte Program in Auto Program Algorithm  
Auto Erase Algorithm  
0
1
Toggle  
Toggle  
(Note1)  
Erase Suspend Read  
1
0
0
In Progress  
(Erase Suspended Sector)  
Erase Suspend Read  
Erase Suspended Mode  
Data  
Q7  
Data  
Data Data Data  
(Non-Erase Suspended Sector)  
Erase Suspend Program  
Toggle  
(Note2)  
Toggle  
Toggle  
Toggle  
0
0
1
(Note3)  
1
(Non-Erase Suspended Sector)  
Byte Program in Auto Program Algorithm  
Program/Erase in Auto Erase Algorithm  
Q7  
0
1
1
1
0
1
0
Exceeded  
N/A  
N/A  
Time Limits Erase Suspended Mode  
Erase Suspend Program  
Q7  
(Non-Erase Suspended Sector)  
Notes:  
1.Performing successive read operations from the erase-suspended sector will cause Q2 to toggle.  
2.Performing successive read operations from any address will cause Q6 to toggle.  
3.Reading the byte address being programmed while in the erase-suspend program mode will indicate logic "1" at the Q2 bit.  
However, successive reads from the erase-suspended sector will cause Q2 to toggle.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
9
MX29F805T/B  
operation is completed when the data read on Q6 stops  
toggling for two consecutive read cycles and the data  
on Q7 and Q6 are equivalent to data written to these  
two bits, at which time the device returns to the Read  
mode(no program verify command is required).  
ERASE SUSPEND  
This command only has meaning while the state ma-  
chine is executing Automatic Block Erase operation, and  
therefore will only be responded during Automatic Block  
Erase operation. However, When the Erase Suspend  
command is written during the sector erase time-out,  
the device immediately terminates the time-out period  
and suspends the erase operation. After this command  
has been executed, the command register will initiate  
erase suspend mode. The state machine will return to  
read mode automatically after suspend is ready. At this  
time, state machine only allows the command register  
to respond to the Read Memory Array, Erase Resume  
and program commands.  
DATA POLLING-Q7  
The MX29F805T/B also features Data Polling as a  
method to indicate to the host system that the Auto-  
matic Program or Erase algorithms are either in progress  
or completed.  
While the Automatic Programming algorithm is in op-  
eration, an attempt to read the device will produce the  
complement data of the data last written to Q7. Upon  
completion of the Automatic Program Algorithm an at-  
tempt to read the device will produce the true data last  
written to Q7. The Data Polling feature is valid after the  
rising edge of the fourth CE pulse of the four write pulse  
sequences for automatic program.  
The system can determine the status of the program  
operation using the Q7 or Q6 status bits, just as in the  
standard program operation. After an erase-suspend  
program operation is complete, the system can once  
again read array data within non-suspended blocks.  
While the Automatic Erase algorithm is in operation, Q7  
will read "0" until the erase operation is competed. Upon  
completion of the erase operation, the data on Q7 will  
read "1". The Data Polling feature is valid after the ris-  
ing edge of the sixth CE pulse of six write pulse se-  
quences for automatic chip/sector erase.  
ERASE RESUME  
This command will cause the command register to clear  
the suspend state and return back to Sector Erase mode  
but only if an Erase Suspend command was previously  
issued. Erase Resume will not have any effect in all  
other conditions.Another Erase Suspend command can  
be written after the chip has resumed erasing.  
The Data Polling feature is active during Automatic Pro-  
gram/Erase algorithm or sector erase time-out.(see sec-  
tion Q3 Sector Erase Timer)  
SET-UP AUTOMATIC PROGRAM COMMANDS  
To initiate Automatic Program mode, A three-cycle com-  
mand sequence is required. There are two "unlock" write  
cycles. These are followed by writing the Automatic Pro-  
gram command A0H.  
Once the Automatic Program command is initiated, the  
next CE pulse causes a transition to an active program-  
ming operation. Addresses are latched on the falling  
edge, and data are internally latched on the rising  
edge of the CE pulse. The rising edge of CE also be-  
gins the programming operation. The system is not re-  
quired to provide further controls or timings. The device  
will automatically provide an adequate internally gener-  
ated program pulse and verify margin.  
If the program opetation was unsuccessful, the data on  
Q5 is "1"(seeTable 4), indicating the program operation  
exceed internal timing limit.The automatic programming  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
10  
MX29F805T/B  
Q2:Toggle Bit II  
Q6:Toggle BIT I  
The "Toggle Bit II" on Q2, when used with Q6, indicates  
whether a particular sector is actively eraseing (that is,  
the Automatic Erase alorithm is in process), or whether  
that sector is erase-suspended. Toggle Bit I is valid af-  
ter the rising edge of the final CE pulse in the command  
sequence.  
Toggle Bit I on Q6 indicates whether an Automatic Pro-  
gram or Erase algorithm is in progress or complete, or  
whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is  
valid after the rising edge of the final CE pulse in the  
command sequence(prior to the program or erase op-  
eration), and during the sector time-out.  
Q2 toggles when the system reads at addresses within  
those sectors that have been selected for erasure. (The  
system may use either OE or CE to control the read  
cycles.) But Q2 cannot distinguish whether the sector  
is actively erasing or is erase-suspended. Q6, by com-  
parison, indicates whether the device is actively eras-  
ing, or is in Erase Suspend, but cannot distinguish which  
sectors are selected for erasure. Thus, both status bits  
are required for sectors and mode information. Refer to  
Table 4 to compare outputs for Q2 and Q6.  
During an Automatic Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
Q6 to toggle. The system may use either OE or CE to  
control the read cycles.When the operation is complete,  
Q6 stops toggling.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Q6 toggles and  
returns to reading array data. If not all selected sectors  
are protected, the Automatic Erase algorithm erases the  
unprotected sectors, and ignores the selected sectors  
that are protected.  
Reading Toggle Bits Q6/ Q2  
Whenever the system initially begins reading toggle bit  
status, it must read Q7-Q0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit  
after the first read. After the second read, the system  
would compare the new value of the toggle bit with the  
first. If the toggle bit is not toggling, the device has com-  
pleted the program or erase operation. The system can  
read array data on Q7-Q0 on the following read cycle.  
The system can use Q6 and Q2 together to determine  
whether a sector is actively erasing or is erase sus-  
pended.When the device is actively erasing (that is, the  
Automatic Erase algorithm is in progress), Q6 toggling.  
When the device enters the Erase Suspend mode, Q6  
stops toggling. However, the system must also use Q2  
to determine which sectors are erasing or erase-sus-  
pended. Alternatively, the system can use Q7.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of Q5 is high  
(see the section on Q5). If it is, the system should then  
determine again whether the toggle bit is toggling, since  
the toggle bit may have stopped toggling just as Q5 went  
high. If the toggle bit is no longer toggling, the device  
has successfuly completed the program or erase op-  
eration. If it is still toggling, the device did not complete  
the operation successfully, and the system must write  
the reset command to return to reading array data.  
If a program address falls within a protected sector, Q6  
toggles for approximately 2 us after the program com-  
mand sequence is written, then returns to reading array  
data.  
Q6 also toggles during the erase-suspend-program  
mode, and stops toggling once the Automatic Program  
algorithm is complete.  
The remaining scenario is that system initially deter-  
mines that the toggle bit is toggling and Q5 has not gone  
high. The system may continue to monitor the toggle bit  
and Q5 through successive read cycles, determining  
the status as described in the previous paragraph. Al-  
ternatively, it may choose to perform other system tasks.  
In this case, the system must start at the beginning of  
the algorithm when it returns to determine the status of  
the operation.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
11  
MX29F805T/B  
Q3  
Q5  
Sector Erase Timer  
Exceeded Timing Limits  
After the completion of the initial sector erase command  
sequence, the sector erase time-out will begin. Q3 will  
remain low until the time-out is complete. Data Polling  
andToggle Bit are valid after the initial sector erase com-  
mand sequence.  
Q5 will indicate if the program or erase time has ex-  
ceeded the specified limits(internal pulse count). Un-  
der these conditions Q5 will produce a "1". This time-  
out condition indicates that the program or erase cycle  
was not successfully completed. Data Polling andToggle  
Bit are the only operating functions of the device under  
this condition.  
If Data Polling or theToggle Bit indicates the device has  
been written with a valid erase command, Q3 may be  
used to determine if the sector erase timer window is  
still open. If Q3 is high ("1") the internally controlled  
erase cycle has begun; attempts to write subsequent  
commands to the device will be ignored until the erase  
operation is completed as indicated by Data Polling or  
Toggle Bit. If Q3 is low ("0"), the device will accept addi-  
tional sector erase commands. To insure the command  
has been accepted, the system software should check  
the status of Q3 prior to and following each subsequent  
sector erase command. If Q3 were high on the second  
status check, the command may not have been ac-  
cepted.  
If this time-out condition occurs during sector erase op-  
eration, it specifies that a particular sector is bad and it  
may not be reused. However, other sectors are still func-  
tional and may be used for the program or erase opera-  
tion. The device must be reset to use other sectors.  
Write the Reset command sequence to the device, and  
then execute program or erase command sequence.  
This allows the system to continue to use the other ac-  
tive sectors in the device.  
If this time-out condition occurs during the chip erase  
operation, it specifies that the entire chip is bad or com-  
bination of sectors are bad.  
WRITE PULSE "GLITCH" PROTECTION  
If this time-out condition occurs during the byte program-  
ming operation, it specifies that the entire sector con-  
taining that byte is bad and this sector maynot be re-  
used, (other sectors are still functional and can be re-  
used).  
Noise pulses of less than 5ns(typical) on CE will not  
initiate a write cycle.  
LOGICAL INHIBIT  
Writing is inhibited by holding any one of OE = VIL, CE  
= VIH or BYTE/VPP=VIH/VIL To initiate a write cycle  
CE and WE must be a logical zero while OE is a logical  
one.  
The time-out condition may also appear if a user tries to  
program a non blank location without erasing. In this  
case the device locks out and never completes the Au-  
tomatic Algorithm operation. Hence, the system never  
reads a valid data on Q7 bit and Q6 never stops tog-  
gling. Once the Device has exceeded timing limits, the  
Q5 bit will indicate a "1". Please note that this is not a  
device failure condition since the device was incorrectly  
used.  
POWER SUPPLY DECOUPLING  
In order to reduce power switching effect, each device  
should have a 0.1uF ceramic capacitor connected be-  
tween its VCC and GND.  
DATA PROTECTION  
The MX29F805T/B is designed to offer protection  
against accidental erasure or programming caused by  
spurious system level signals that may exist during  
power transition. During power up the device automati-  
cally resets the state machine in the Read mode. In  
addition, with its control register architecture, alteration  
of the memory contents only occurs after successful  
completion of specific command sequences. The de-  
vice also incorporates several features to prevent inad-  
vertent write cycles resulting from VCC power-up and  
power-down transition or system noise.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
12  
MX29F805T/B  
SECTOR PROTECTION  
POWER-UP SEQUENCE  
The MX29F805T/B features hardware sector protection.  
This feature will disable both program and erase opera-  
tions for these sectors protected. To activate this mode,  
the programming equipment must forceVID on address  
pin A9 and control pin OE, (suggest VID = 12V) A6 =  
VIL and CE = VIL.(see Table 2) Programming of the  
protection circuitry begins on the falling edge of the CE  
pulse and is terminated on the rising edge. Please refer  
to sector protect algorithm and waveform.  
The MX29F805T/B powers up in the Read only mode.  
In addition, the memory contents may only be altered  
after successful completion of the predefined command  
sequences.  
ABSOLUTE MAXIMUM RATINGS  
RATING  
VALUE  
Ambient OperatingTemperature  
StorageTemperature  
Applied Input Voltage  
Applied Output Voltage  
VCC to Ground Potential  
A9,OE  
0oC to 70oC  
-65oC to 125oC  
-0.5V to 7.0V  
-0.5V to 7.0V  
-0.5V to 7.0V  
-0.5V to 13.5V  
-0.5V to 10.5V  
To verify programming of the protection circuitry, the pro-  
gramming equipment must forceVID on address pin A9  
( with CE and OE at VIL and BYTE/VPP at VIH/VIL).  
When A1=1, it will produce a logical "1" code at device  
output Q0 for a protected sector. Otherwise the device  
will produce 00H for the unprotected sector. In this mode,  
the addresses,except for A1, are don't care. Address  
locations with A1 = VIL are reserved to read manufac-  
turer and device codes.(Read Silicon ID)  
BYTE/VPP  
NOTICE:  
It is also possible to determine if the sector is protected  
in the system by writing a Read Silicon ID command.  
Performing a read operation with A1=VIH, it will pro-  
duce a logical "1" at Q0 for the protected sector.  
Stresses greater than those listed under ABSOLUTE MAXI-  
MUM RATINGS may cause permanent damage to the de-  
vice. This is a stress rating only and functional operational  
sections of this specification is not implied. Exposure to ab-  
solute maximum rating conditions for extended period may  
affect reliability.  
CHIP UNPROTECT  
NOTICE:  
The MX29F805T/B also features the chip unprotect  
mode, so that all sectors are unprotected after chip  
unprotect is completed to incorporate any changes in  
thecode.Itisrecommendedtoprotectallsectorsbefore  
activating chip unprotect mode.  
Specifications contained within the following tables are sub-  
ject to change.  
To activate this mode, the programming equipment  
must force VID on control pin OE and address pin A9.  
The CE pins must be set at VIL. Pins A6 must be set to  
VIH.(seeTable2) Refertochipunprotect algorithmand  
waveform for the chip unprotect algorithm. The  
unprotection mechanism begins on the falling edge of  
the CE pulse and is terminated on the rising edge.  
It is also possible to determine if the chip is unprotected  
in the system by writing the Read Silicon ID command.  
PerformingareadoperationwithA1=VIH,itwillproduce  
00H at data outputs(Q0-Q7) for an unprotected sector.  
It is noted that all sectors are unprotected after the chip  
unprotect algorithm is completed.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
13  
MX29F805T/B  
CAPACITANCE TA = 25oC, f = 1.0 MHz  
SYMBOL  
CIN  
PARAMETER  
MIN.  
TYP  
MAX.  
8
UNIT  
pF  
CONDITIONS  
VIN = 0V  
Input Capacitance  
Output Capacitance  
COUT  
12  
pF  
VOUT = 0V  
READ OPERATION  
DC CHARACTERISTICS TA = 0oCTO 70oC, VCC = 5V±10%  
SYMBOL  
ILI  
PARAMETER  
MIN.  
TYP  
MAX.  
UNIT  
uA  
uA  
mA  
uA  
mA  
mA  
V
CONDITIONS  
Input Leakage Current  
Output Leakage Current  
Standby VCC current  
1
VIN = GND to VCC  
VOUT = GND to VCC  
CE = VIH  
ILO  
±1  
ISB1  
ISB2  
ICC1  
ICC2  
VIL  
1
0.2  
5
CE = VCC + 0.3V  
IOUT = 0mA, f=1MHz  
IOUT= 0mA, f=10MHz  
Operating VCC current  
30  
50  
Input Low Voltage  
-0.3(NOTE 1)  
2.0  
0.8  
VIH  
Input High Voltage  
VCC + 0.3  
0.45  
V
VOL  
Output Low Voltage  
Output High Voltage(TTL)  
V
IOL = 2.1mA  
IOH = -2mA  
VOH1  
VOH2  
2.4  
V
Output High Voltage(CMOS) VCC-0.4  
V
IOH = -100uA,  
VCC=VCC MIN.  
NOTES:  
1.VIL min. = -1.0V for pulse width is equal to or less than 50 ns.  
VIL min. = -2.0V for pulse width is equal to or less than 20 ns.  
2.VIH max. = VCC + 1.5V for pulse width is equal to or less than 20 ns  
If VIH is over the specified maximum value, read operation cannot be guaranteed.  
AC CHARACTERISTICS TA = 0oC to 70oC, VCC = 5V ±10%  
29F805T/B-90  
29F805T/B-12  
SYMBOL PARAMETER  
MIN. MAX.  
MIN. MAX. UNIT CONDITIONS  
tACC  
tCE  
tOE  
tDF  
Address to Output Delay  
90  
90  
40  
120  
120  
50  
ns  
ns  
ns  
ns  
ns  
CE=OE=VIL  
OE=VIL  
CE to Output Delay  
OE to Output Delay  
CE=VIL  
OE High to Output Float (Note1)  
Address to Output hold  
0
0
20  
0
0
30  
CE=VIL  
tOH  
CE=OE=VIL  
NOTE:  
TEST CONDITIONS:  
1. tDF is defined as the time at which the output achieves the  
open circuit condition and data is no longer driven.  
• Input pulse levels: 0.45V/2.4V  
• Input rise and fall times is equal to or less than 10ns  
• Outputload:1TTLgate+100pF(Includingscopeand  
jig)  
• Reference levels for measuring timing: 0.8V, 2.0V  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
14  
MX29F805T/B  
READ TIMING WAVEFORMS  
VIH  
ADD Valid  
Addresses  
VIL  
tCE  
VIH  
CE  
VIL  
VIH/VIL  
BYTE/VPP  
tDF  
tOE  
VIH  
OE  
tACC  
VIL  
tOH  
HIGH Z  
HIGH Z  
VOH  
VOL  
Outputs  
DATA Valid  
COMMAND PROGRAMMING/DATA PROGRAMMING/ERASE OPERATION  
DC CHARACTERISTICSTA = 0oC to 70oC, VCC = 5V ±10%  
SYMBOL  
ICC1 (Read)  
ICC2  
PARAMETER  
MIN.  
TYP  
MAX. UNIT CONDITIONS  
Operating VCC Current  
30  
50  
50  
50  
mA  
mA  
mA  
mA  
mA  
IOUT=0mA, f=1MHz  
IOUT=0mA, F=10MHz  
In Programming  
ICC3 (Program)  
ICC4 (Erase)  
ICCES  
In Erase  
VCC Erase Suspend Current  
2
CE=VIH, Erase Suspended  
NOTES:  
1. VIL min. = -0.6V for pulse width is equal to or less than 20ns.  
2. If VIH is over the specified maximum value, programming operation cannot be guranteed.  
3. ICCES is specified with the device de-selected. If the device is read during erase suspend mode, current draw is the sum of  
ICCES and ICC1 or ICC2.  
4. All current are in RMS unless otherwise noted.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
15  
MX29F805T/B  
AC CHARACTERISTICS WORD/BYTE CONFIGURATION (BYTE/VPP)  
Speed Options  
SYMBOL  
tELFL/tELFH  
tFLQZ  
Description  
90  
5
120  
5
unit  
ns  
CE to BYTE/VPP Switching Low or High  
MAX  
BYTE/VPP Switching Low to Output HIHG Z Max  
BYTE/VPP Switching High to Output Active Min  
30  
90  
30  
ns  
tFHQV  
120  
ns  
Figure 6. BYTE/VPP TIMING WAVEFORMS  
CE  
OE  
VIH  
BYTE/VPP  
VIL  
tELFL  
BYTE/VPP  
Q0~Q14  
Data Output  
(Q0~Q14)  
Data Output  
(Q0~Q7)  
Switching  
from word  
to byte  
mode read  
Q15/A-1  
Q15  
Output  
Address Input  
tFLQZ  
tELFL  
VIH  
BYTE/VPP VIL  
Data Output  
(Q0~Q7)  
Data Output  
(Q0~Q14)  
BYTE/VPP  
Switching  
Q0~Q14  
from byte  
to word  
Q15  
Output  
mode read  
Address Input  
tFHQV  
Q15/A-1  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
16  
MX29F805T/B  
AC CHARACTERISTICS TA = 0oC to 70oC,VCC = 5V ±10%  
29F805T/B-90 29F805T/B-12  
SYMBOL PARAMETER  
MIN. MAX.  
MIN. MAX. UNIT CONDITIONS  
tOES  
tCWC  
tAS  
OE setup time  
50  
50  
120  
0
ns  
ns  
ns  
ns  
us  
us  
ns  
ns  
s
Command programming cycle  
Address setup time  
90  
0
tAH  
Address hold time  
45  
50  
2
tVPS  
tVPH  
tCESC  
tDF  
BYTE/Vpp Setup Time  
2
BYTE/Vpp Hold Time  
2
2
CE setup time before command write  
Output disable time (Note 1)  
Total erase time in auto chip erase  
Total erase time in auto block erase  
Total programming time in auto verify  
( word program time)  
0
0
20  
30  
tAETC  
tAETB  
tAVT  
8(TYP.)  
1(TYP.)  
14(TYP.)  
8(TYP.)  
1(TYP.)  
s
14(TYP.)  
us  
tBAL  
tCH  
Block address load time  
CE Hold Time  
80  
0
80  
0
us  
ns  
ns  
us  
us  
tCS  
CE setup to WE going low  
Voltge Transition Time  
0
0
tVLHT  
tWPP1  
4
4
Write pulse width for sector protect  
10  
10  
tWPP2  
tOESP  
Write pulse width for sector unprotect  
OE Setup Time to BYTE/VPP Active  
12  
4
12  
4
ms  
us  
NOTES:  
1. tDF defined as the time at which the output achieves the open circuit condition and data is no longer driven.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
17  
MX29F805T/B  
SWITCHINGTEST CIRCUITS  
DEVICE UNDER  
TEST  
1.6K ohm  
+5V  
CL  
1.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
CL=100pF Including jig capacitance  
SWITCHING TEST WAVEFORMS  
2.4V  
2.0V  
0.8V  
2.0V  
TEST POINTS  
0.8V  
0.45V  
INPUT  
OUTPUT  
AC TESTING: Inputs are driven at 2.4V for a logic "1" and 0.45V for a logic "0".  
Input pulse rise and fall times are <20ns.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
18  
MX29F805T/B  
COMMAND WRITE TIMING WAVEFORM  
CE  
tOES  
OE  
tVPH  
tVPS  
10V  
BYTE/VPP  
tAS  
tAH  
ADDRESSES  
VALID  
tDH  
HIGH Z  
DIN  
DATA  
VCC  
tDS  
tVCS  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
19  
MX29F805T/B  
AUTOMATIC PROGRAMMING TIMING  
WAVEFORM  
One byte data is programmed. Verify in fast algorithm  
and additional programming by external control are not  
required because these operations are executed auto-  
matically by internal control circuit. Programming  
completion can be verified by DATA polling and toggle  
bit checking after automatic verification starts. Device  
outputs DATA during programming and DATA after pro-  
gramming on Q7.(Q6 is for toggle bit; see toggle bit,  
DATA polling, timing waveform)  
AUTOMATIC PROGRAMMING TIMING WAVEFORM (WORD MODE)  
Vcc 5V  
A11~A18  
ADD Valid  
ADD Valid  
2AAH  
555H  
A0~A10  
BYTE/VPP  
CE  
555H  
tAS  
10V  
tVPH  
tVPS  
tCESC  
tAVT  
tCEP  
OE  
tDS tDH  
tDF  
Q0,Q1,  
DATA  
DATA  
Command In  
Command In  
Command In  
Data In  
DATA polling  
Q4(Note 1)  
DATA  
Command In  
Command In  
Command In  
Data In  
Q7  
Command #A0H  
Command #55H  
Command #AAH  
(Q0~Q7)  
tOE  
Notes:  
(1). Q6:Toggle bit, Q5:Timing-limit bit, Q3: Time-out bit, Q2: Toggle bit  
(2). BYTE/VPP must not be VHH while reading status.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
20  
MX29F805T/B  
AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART (WORD MODE)  
START  
BYTE/VPP=VHH  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data A0H Address 555H  
Write Program Data/Address  
BYTE/VPP=VIH/VIL  
NO  
Toggle Bit Checking  
Q6 not Toggled  
YES  
NO  
Invalid  
Verify Word Ok  
Command  
YES  
NO  
Q5 = 1  
Reset  
Auto Program Completed  
YES  
Auto Program Exceed  
Timing Limit  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
21  
MX29F805T/B  
AUTOMATIC CHIP ERASE TIMING WAVEFORM  
All data in chip are erased. External erase verification  
is not required because data is erased automatically  
by internal control circuit. Erasure completion can be  
verified by DATA polling and toggle bit checking after  
automatic erase starts. Device outputs 0 during era-  
sure and 1 after erasure on Q7.(Q6 is for toggle bit; see  
toggle bit, DATA polling, timing waveform)  
AUTOMATIC CHIP ERASE TIMING WAVEFORM (WORD MODE)  
Vcc 5V  
A11~A18  
2AAH  
555H  
555H  
2AAH  
A0~A10  
BYTE/VPP  
CE  
555H  
555H  
tAS  
10V  
tVPS  
tVPH  
tCESC  
tCEP  
OE  
tDS tDH  
Q0,Q1,  
Command In  
Command In  
Command In  
Command In  
Command In  
Command In  
Q4(Note 1)  
DATA polling  
Command In  
Command In  
Command In  
Command In  
Command In  
Command In  
Q7  
Command #80H  
Command #AAH  
Command #55H  
Command #10H  
Command #AAH  
Command #55H  
(Q0~Q7)  
Notes:  
(1). Q6:Toggle bit, Q5:Timing-limit bit, Q3: Time-out bit, Q2: Toggle bit  
(2). BYTE/VPP must not be VHH while reading status.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
22  
MX29F805T/B  
AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART (WORD MODE)  
START  
Byte/VPP=VHH  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 10H Address 555H  
BYTE/VPP=VIH/VIL  
NO  
Toggle Bit Checking  
Q6 not Toggled  
YES  
NO  
Invalid  
DATA Polling  
Command  
Q7 = 1  
YES  
NO  
Q5 = 1  
Reset  
Auto Chip Erase Completed  
YES  
Auto Chip Erase Exceed  
Timing Limit  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
23  
MX29F805T/B  
AUTOMATIC SECTOR ERASE TIMING WAVEFORM  
Sector data indicated by A12 to A18 are erased. Exter-  
nal erase verify is not required because data are erased  
automatically by internal control circuit. Erasure comple-  
tion can be verified by DATA polling and toggle bit check-  
ing after automatic erase starts. Device outputs 0 dur-  
ing erasure and 1 after erasure on Q7.(Q6 is for toggle  
bit; see toggle bit, DATA polling, timing waveform)  
AUTOMATIC SECTOR ERASE TIMING WAVEFORM (WORD MODE)  
Vcc 5V  
Sector  
Address 1  
Sector  
Address 0  
Sector  
Address N  
A12~A18  
555H  
2AAH  
555H  
A0~A10  
555H  
tAS  
2AAH  
BYTE/VPP  
tVPS  
tVPH  
tBAL  
tAETB  
CE  
OE  
tCEP  
tDS tDH  
Command In  
Q0,Q1,  
Command In  
Command In  
Command In  
Command In  
Command In  
Command In  
Command In  
Command In  
Command In  
Command In  
Q4(Note 1)  
DATA polling  
Command In  
Command In  
Command In  
Command In  
Command In  
Q7  
Command #30H  
Command #80H  
Command #AAH  
Command #55H  
Command #30H  
Command #30H  
Command #AAH  
(Q0~Q7)  
Command #55H  
Notes:  
(1). Q6:Toggle bit, Q5:Timing-limit bit, Q3: Time-out bit, Q2: Toggle bit  
(2).BYTE/VPP must not be VHH while reading ststus  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
24  
MX29F805T/B  
AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART (WORD MODE)  
START  
BYTE/VPP=VHH  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 30H Sector Address  
Write Data 30H Sector Address  
NO  
Toggle Bit Checking  
Q6 Toggled ?  
Invalid Command  
YES  
Load Other Sector Addrss If Necessary  
(Load Other Sector Address), BYTE/VPP=VHH  
NO  
Last Sector  
to Erase  
YES  
BYTE/VPP=VIH/VIL  
NO  
NO  
Time-out Bit  
Checking Q3=1 ?  
YES  
Toggle Bit Checking  
Q6 not Toggled  
YES  
NO  
Q5 = 1  
Reset  
DATA Polling  
Q7 = 1  
YES  
Auto Sector Erase Completed  
Auto Sector Erase Exceed  
Timing Limit  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
25  
MX29F805T/B  
ERASE SUSPEND/ERASE RESUME FLOWCHART  
START  
BYTE/VPP=VHH  
Write Data B0H  
BYTE/VPP=VIH/VIL  
NO  
Toggle Bit checking Q6  
not toggled  
YES  
Read Array or  
Program  
Reading or  
NO  
Programming End  
YES  
BYTE/VPP=VHH  
Write Data 30H  
Continue Erase  
Another  
NO  
Erase Suspend ?  
YES  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
26  
MX29F805T/B  
TIMING WAVEFORM FOR SECTOR PROTECTION  
A1  
A6  
12V  
5V  
A9  
tVLHT  
Verify  
12V  
5V  
OE  
tVLHT  
tVLHT  
tWPP 1  
10V  
BYTE/VPP  
tOESP  
CE  
Data  
01H  
tOE  
A18-A12  
Sector Address  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
27  
MX29F805T/B  
TIMING WAVEFORM FOR CHIP UNPROTECTION  
A1  
12V  
5V  
A9  
tVLHT  
A6  
Verify  
12V  
5V  
OE  
tVLHT  
tVLHT  
tWPP 2  
10V  
BYTE/VPP  
tOESP  
CE  
Data  
00H  
tOE  
A18-A12  
Sector Address  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
28  
MX29F805T/B  
SECTOR PROTECTION ALGORITHM  
START  
Set Up Sector Addr  
(A18,A16,A15,A14,A13,A12)  
PLSCNT=1  
OE=VID,A9=VID,CE=VIL  
A6=VIL  
BYTE/VPP=VHH  
Time Out 10us  
BYTE/VPP=VIH/VIL  
Set CE=OE=VIL  
A9 should remain VID  
Read from Sector  
Addr=SA, A1=1  
No  
No  
Data=01H?  
Yes  
PLSCNT=32?  
Yes  
Device Failed  
Yes  
Protect Another  
Sector?  
No  
Remove VID from A9  
Write Reset Command  
Sector Protection  
Complete  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
29  
MX29F805T/B  
CHIP UNPROTECTION ALGORITHM FOR SYSTEM  
START  
Protect All Sectors  
PLSCNT=1  
Set OE=A9=VID  
CE=VIL,A6=1  
BYTE/VPP=VHH  
Time Out 12ms  
Increment  
PLSCNT  
BYTE/VPP=VIH/VIL  
Set OE=CE=VIL  
A9=VID,A1=1  
Set Up First Sector Addr  
Read Data from Device  
No  
No  
Data=00H?  
Yes  
PLSCNT=1000?  
Increment  
Sector Addr  
Yes  
Device Failed  
No  
All sectors have  
been verified?  
Yes  
Remove VID from A9  
Write Reset Command  
Chip Unprotect  
Complete  
* It is recommended before unprotect whole chip, all sectors should be protected in advance.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
30  
MX29F805T/B  
ID CODE READ TIMING WAVEFORM  
VCC  
5V  
VID  
ADD  
A9  
VIH  
VIL  
VIH  
VIL  
ADD  
A0  
tACC  
tACC  
ADD  
A1-A8  
VIH  
A10-A18 VIL  
CE  
VIH  
VIL  
VIH  
VIL  
tCE  
BYTE/VPP  
OE  
tOE  
VIH  
VIL  
tDF  
tOH  
tOH  
VIH  
VIL  
DATA  
Q0-Q15  
DATA OUT  
DATA OUT  
C4/4A (Byte)  
C2H/00C2H  
22C4/224A (Word)  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
31  
MX29F805T/B  
ORDERING INFORMATION  
PLASTIC PACKAGE (Top Boot Sector as an sample. For Bottom Boot Sector ones,MX29F805Txx will  
change to MX29F805Bxx)  
PART NO.  
ACCESSTIME OPERATING CURRENT STANDBY CURRENT PACKAGE  
(ns)  
90  
MAX.(mA, at10MHz)  
MAX.(uA)  
MX29F805TPC-90  
MX29F805TPC-12  
50  
50  
5
5
42 Pin PDIP  
42 Pin PDIP  
120  
ERASE AND PROGRAMMING PERFORMANCE  
LIMITS  
TYP.  
PARAMETER  
MIN.  
MAX.  
UNITS  
Sector Erase Time  
1.3  
16  
14  
7
10.4  
128  
21  
sec  
sec  
Chip Erase Time  
Word Programming Time  
Chip Programming Time  
Erase/Program Cycles  
us  
21  
sec  
100  
Cycles  
LATCHUP CHARACTERISTICS  
MIN.  
-1.0V  
MAX.  
13.5V  
Input Voltage with respect to GND on all pins except I/O pins  
Input Voltage with respect to GND on all I/O pins  
Current  
-1.0V  
Vcc + 1.0V  
+100mA  
-100mA  
Includes all pins except Vcc. Test conditions: Vcc = 5.0V, one pin at a time.  
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
32  
MX29F805T/B  
PACKAGE INFORMATION  
42-PIN PLASTIC DIP(600 mil)  
ITEM  
A
MILLIMETERS INCHES  
42  
22  
52.54 max.  
0.76 [REF]  
2.54 [TP]  
.46 [Typ.]  
50.76  
2.070 max.  
.030 [REF]  
.100 [TP]  
B
C
D
E
.018 [Typ.]  
2.000  
1
21  
F
1.27 [Typ.]  
3.30 ±. 25  
.51 [REF]  
3.94 ±. 25  
5.33 max.  
15.22 ±.25  
13.97± .25  
.25 [Typ.]  
.050 [Typ.]  
.130 ±.010  
.020 [REF]  
.155 ±.010  
.210 max.  
.600 ±.010  
.550 ±.010  
.010 [Typ.]  
A
G
H
I
K
L
I
J
J
K
H
G
L
F
B
M
0~15¡  
C
M
D
NOTE: Each lead centerline is located within .25  
mm[.01 inch] of its true position [TP] at  
maximum material condition.  
E
P/N:PM0614  
REV. 0.0, MAR. 31, 1999  
33  
MX29F805T/B  
MACRONIX INTERNATIONAL CO., LTD.  
HEADQUARTERS:  
TEL:+886-3-578-8888  
FAX:+886-3-578-8887  
EUROPE OFFICE:  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
JAPAN OFFICE:  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
SINGAPORE OFFICE:  
TEL:+65-747-2309  
FAX:+65-748-4090  
TAIPEI OFFICE:  
TEL:+886-3-509-3300  
FAX:+886-3-509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-453-8088  
FAX:+1-408-453-8488  
CHICAGO OFFICE:  
TEL:+1-847-963-1900  
FAX:+1-847-963-1909  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the rignt to change product and specifications without notice.  
34  

相关型号:

MX29F805PC-90

Flash, 512KX16, 90ns, PDIP42, 0.600 INCH, PLASTIC, DIP-42
Macronix

MX29F8100

8M-BIT [1M x 8/512K x 16] CMOS SINGLE VOLTAGE FLASH MEMORY
Macronix

MX29F8100-12

Memory IC
Macronix

MX29F8100-15

Memory IC
Macronix

MX29F8100MC-10C3

x8/x16 Flash EEPROM
ETC

MX29F8100MC-10C4

x8/x16 Flash EEPROM
ETC

MX29F8100MC-12

Flash, 512KX16, 120ns, PDSO44, 0.500 INCH, PLASTIC, SOP-44
Macronix

MX29F8100MC-12C3

x8/x16 Flash EEPROM
ETC

MX29F8100MC-12C4

x8/x16 Flash EEPROM
ETC

MX29F8100MC-12CY

Flash, 1MX8, 120ns, PDSO44, 0.500 INCH, PLASTIC, SOP-44
Macronix

MX29F8100MC-15

Flash, 512KX16, 150ns, PDSO44, 0.500 INCH, PLASTIC, SOP-44
Macronix

MX29F8100MC-15C3

x8/x16 Flash EEPROM
ETC