MX29LV160CBMI-55R [Macronix]

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY; 16M - BIT [ 2Mx8 / 1Mx16 ] CMOS单电压3V仅限于Flash存储器
MX29LV160CBMI-55R
型号: MX29LV160CBMI-55R
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
16M - BIT [ 2Mx8 / 1Mx16 ] CMOS单电压3V仅限于Flash存储器

闪存 存储 内存集成电路 光电二极管
文件: 总66页 (文件大小:923K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX29LV160C T/B  
16M-BIT[2Mx8/1Mx16]CMOSSINGLEVOLTAGE  
3VONLYFLASHMEMORY  
FEATURES  
• Ready/Busy# pin (RY/BY#)  
• Extended single - supply voltage range 2.7V to 3.6V  
• 2,097,152 x 8/1,048,576 x 16 switchable  
• Singlepowersupplyoperation  
-Providesahardwaremethodofdetectingprogramor  
eraseoperationcompletion.  
• Sectorprotection  
- 3.0V only operation for read, erase and program  
operation  
Fully compatible with MX29LV160B device  
• Fast access time: 55R/70/90ns  
- Hardware method to disable any combination of  
sectors from program or erase operations  
-Temporarysectorunprotectallowscodechangesin  
previously locked sectors.  
• Lowpowerconsumption  
• CFI (Common Flash Interface) compliant  
- Flash device parameters stored on the device and  
provide the host system to access  
• 100,000minimumerase/programcycles  
• Latch-up protected to 100mA from -1V to VCC+1V  
• Boot Sector Architecture  
- T = Top Boot Sector  
- B = Bottom Boot Sector  
• Low VCC write inhibit is equal to or less than 1.4V  
• Package type:  
- 30mA maximum active current  
- 0.2uA typical standby current  
• Commandregisterarchitecture  
- Byte/word Programming (9us/11us typical)  
- Sector Erase (Sector structure 16K-Bytex1,  
8K-Bytex2, 32K-Bytex1, and 64K-Byte x31)  
• Auto Erase (chip & sector) and Auto Program  
-Automaticallyeraseanycombinationofsectorswith  
Erase Suspend capability.  
- Automatically program and verify data at specified  
address  
- 44-pin SOP  
- 48-pin TSOP  
• EraseSuspend/EraseResume  
- 48-ball CSP  
- Suspends sector erase operation to read data from,  
orprogramdatato,any sectorthatisnotbeingerased,  
then resumes the erase.  
- All Pb-free devices are RoHS Compliant  
• Compatibility with JEDEC standard  
- Pinout and software compatible with single-power  
supply Flash  
• Status Reply  
- Data# Polling & Toggle bit for detection of program  
anderaseoperationcompletion.  
• 10 years data retention  
GENERAL DESCRIPTION  
The MX29LV160C T/B is a 16-mega bit Flash memory  
organized as 2M bytes of 8 bits or 1M words of 16 bits.  
MXIC's Flash memories offer the most cost-effective  
and reliable read/write non-volatile random access  
memory. The MX29LV160C T/B is packaged in 44-pin  
SOP, 48-pinTSOP and 48-ball CSP. It is designed to be  
reprogrammed and erased in system or in standard  
EPROM programmers.  
TTL level control inputs and fixed power supply levels  
during erase and programming, while maintaining maxi-  
mum EPROM compatibility.  
MXIC Flash technology reliably stores memory contents  
even after 100,000 erase and program cycles. The MXIC  
cell is designed to optimize the erase and programming  
mechanisms. In addition, the combination of advanced  
tunnel oxide processing and low internal electric fields  
for erase and program operations produces reliable cy-  
cling. The MX29LV160C T/B uses a 2.7V~3.6V VCC  
supply to perform the High Reliability Erase and auto  
Program/Erase algorithms.  
The standard MX29LV160C T/B offers access time as  
fast as 55ns, allowing operation of high-speed micropro-  
cessors without wait states. To eliminate bus conten-  
tion, the MX29LV160C T/B has separate chip enable  
(CE#) and output enable (OE#) controls.  
The highest degree of latch-up protection is achieved  
with MXIC's proprietary non-epi process. Latch-up pro-  
tection is proved for stresses up to 100 milliamps on  
address and data pin from -1V to VCC + 1V.  
MXIC's Flash memories augment EPROM functionality  
with in-circuit electrical erasure and programming. The  
MX29LV160CT/B uses a command register to manage  
this functionality. The command register allows for 100%  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
1
MX29LV160C T/B  
PIN CONFIGURATIONS  
44 SOP(500 mil)  
PIN DESCRIPTION  
SYMBOL PIN NAME  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
WE#  
A19  
A8  
RESET#  
A18  
A17  
A7  
A0~A19 Address Input  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Q0~Q14 Data Input/Output  
Q15/A-1 Q15(Word mode)/LSB addr(Byte mode)  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
BYTE#  
GND  
Q15/A-1  
Q7  
Q14  
Q6  
Q13  
Q5  
Q12  
Q4  
VCC  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
CE#  
GND  
OE#  
Q0  
Q8  
Q1  
Q9  
Q2  
Q10  
Q3  
Q11  
CE#  
Chip Enable Input  
WE#  
Write Enable Input  
BYTE#  
Word/Byte Selection input  
RESET# Hardware Reset Pin/Sector Protect Unlock  
OE# Output Enable Input  
RY/BY# Ready/Busy Output  
VCC  
GND  
Power Supply Pin (2.7V~3.6V)  
Ground Pin  
48TSOP (StandardType) (12mm x 20mm)  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE#  
GND  
Q15/A-1  
Q7  
2
3
4
5
6
Q14  
Q6  
7
A8  
8
Q13  
Q5  
A19  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Q12  
Q4  
WE#  
RESET#  
NC  
MX29LV160C T/B  
VCC  
Q11  
Q3  
NC  
RY/BY#  
A18  
A17  
A7  
Q10  
Q2  
Q9  
Q1  
A6  
Q8  
A5  
Q0  
A4  
OE#  
GND  
CE#  
A0  
A3  
A2  
A1  
48-Ball CSP 6mm x 8mm (Ball Pitch=0.8mm)Top View, Balls Facing Down  
A
B
C
D
E
F
G
H
6
5
4
3
2
1
A13  
A9  
A12  
A8  
A14  
A10  
A15  
A11  
A19  
NC  
A5  
A16  
Q7  
Q5  
Q2  
Q0  
A0  
BYTE# Q15/A-1 GND  
Q14  
Q12  
Q10  
Q8  
Q13  
VCC  
Q11  
Q9  
Q6  
WE#  
RESET# NC  
Q4  
RY/BY# NC  
A18  
A6  
Q3  
A7  
A3  
A17  
A4  
Q1  
A2  
A1  
CE#  
OE#  
GND  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
2
MX29LV160C T/B  
BLOCK STRUCTURE  
Table 1:MX29LV160CT SECTOR ARCHITECTURE  
Sector  
Sector Size  
Address range  
Sector Address  
Byte Mode Word Mode Byte Mode(x8) Word Mode(x16) A19 A18 A17 A16 A15 A14 A13 A12  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
64Kbytes 32Kwords 000000-00FFFF 00000-07FFF  
64Kbytes 32Kwords 010000-01FFFF 08000-0FFFF  
64Kbytes 32Kwords 020000-02FFFF 10000-17FFF  
64Kbytes 32Kwords 030000-03FFFF 18000-1FFFF  
64Kbytes 32Kwords 040000-04FFFF 20000-27FFF  
64Kbytes 32Kwords 050000-05FFFF 28000-2FFFF  
64Kbytes 32Kwords 060000-06FFFF 30000-37FFF  
64Kbytes 32Kwords 070000-07FFFF 38000-3FFFF  
64Kbytes 32Kwords 080000-08FFFF 40000-47FFF  
64Kbytes 32Kwords 090000-09FFFF 48000-4FFFF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
SA10 64Kbytes 32Kwords 0A0000-0AFFFF 50000-57FFF  
SA11 64Kbytes 32Kwords 0B0000-0BFFFF 58000-5FFFF  
SA12 64Kbytes 32Kwords 0C0000-0CFFFF 60000-67FFF  
SA13 64Kbytes 32Kwords 0D0000-0DFFFF 68000-6FFFF  
SA14 64Kbytes 32Kwords 0E0000-0EFFFF 70000-77FFF  
SA15 64Kbytes 32Kwords 0F0000-0FFFFF 78000-7FFFF  
SA16 64Kbytes 32Kwords 100000-10FFFF 80000-87FFF  
SA17 64Kbytes 32Kwords 110000-11FFFF 88000-8FFFF  
SA18 64Kbytes 32Kwords 120000-12FFFF 90000-97FFF  
SA19 64Kbytes 32Kwords 130000-13FFFF 98000-9FFFF  
SA20 64Kbytes 32Kwords 140000-14FFFF A0000-A7FFF  
SA21 64Kbytes 32Kwords 150000-15FFFF A8000-AFFFF  
SA22 64Kbytes 32Kwords 160000-16FFFF B0000-B7FFF  
SA23 64Kbytes 32Kwords 170000-17FFFF B8000-BFFFF  
SA24 64Kbytes 32Kwords 180000-18FFFF C0000-C7FFF  
SA25 64Kbytes 32Kwords 190000-19FFFF C8000-CFFFF  
SA26 64Kbytes 32Kwords 1A0000-1AFFFF D0000-D7FFF  
SA27 64Kbytes 32Kwords 1B0000-1BFFFF D8000-DFFFF  
SA28 64Kbytes 32Kwords 1C0000-1CFFFF E0000-E7FFF  
SA29 64Kbytes 32Kwords 1D0000-1DFFFF E8000-EFFFF  
SA30 64Kbytes 32Kwords 1E0000-1EFFFF F0000-F7FFF  
SA31 32Kbytes 16Kwords 1F0000-1F7FFF F8000-FBFFF  
SA32  
SA33  
8Kbytes  
8Kbytes  
4Kwords 1F8000-1F9FFF FC000-FCFFF  
4Kwords 1FA000-1FBFFF FD000-FDFFF  
8Kwords 1FC000-1FFFFF FE000-FFFFF  
1
1
0
1
SA34 16Kbytes  
1
1
X
Note: Byte mode: address range A19:A-1, word mode:address range A19:A0.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
3
MX29LV160C T/B  
Table 2:MX29LV160CB SECTOR ARCHITECTURE  
Sector  
Sector Size  
Address range  
Sector Address  
Byte Mode Word Mode Byte Mode (x8) Word Mode (x16) A19 A18 A17 A16 A15 A14 A13 A12  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
16Kbytes  
8Kbytes  
8Kbytes  
8Kwords 000000-003FFF 00000-01FFF  
4Kwords 004000-005FFF 02000-02FFF  
4Kwords 006000-007FFF 03000-03FFF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
X
0
0
1
1
32Kbytes 16Kwords 008000-00FFFF 04000-07FFF  
64Kbytes 32Kwords 010000-01FFFF 08000-0FFFF  
64Kbytes 32Kwords 020000-02FFFF 10000-17FFF  
64Kbytes 32Kwords 030000-03FFFF 18000-1FFFF  
64Kbytes 32Kwords 040000-04FFFF 20000-27FFF  
64Kbytes 32Kwords 050000-05FFFF 28000-2FFFF  
64Kbytes 32Kwords 060000-06FFFF 30000-37FFF  
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SA10 64Kbytes 32Kwords 070000-07FFFF 38000-3FFFF  
SA11 64Kbytes 32Kwords 080000-08FFFF 40000-47FFF  
SA12 64Kbytes 32Kwords 090000-09FFFF 48000-4FFFF  
SA13 64Kbytes 32Kwords 0A0000-0AFFFF 50000-57FFF  
SA14 64Kbytes 32Kwords 0B0000-0BFFFF 58000-5FFFF  
SA15 64Kbytes 32Kwords 0C0000-0CFFFF 60000-67FFF  
SA16 64Kbytes 32Kwords 0D0000-0DFFFF 68000-6FFFF  
SA17 64Kbytes 32Kwords 0E0000-0EFFFF 70000-77FFF  
SA18 64Kbytes 32Kwords 0F0000-0FFFFF 78000-7FFFF  
SA19 64Kbytes 32Kwords 100000-10FFFF 80000-87FFF  
SA20 64Kbytes 32Kwords 110000-11FFFF 88000-8FFFF  
SA21 64Kbytes 32Kwords 120000-12FFFF 90000-97FFF  
SA22 64Kbytes 32Kwords 130000-13FFFF 98000-9FFFF  
SA23 64Kbytes 32Kwords 140000-14FFFF A0000-A7FFF  
SA24 64Kbytes 32Kwords 150000-15FFFF A8000-AFFFF  
SA25 64Kbytes 32Kwords 160000-16FFFF B0000-B7FFF  
SA26 64Kbytes 32Kwords 170000-17FFFF B8000-BFFFF  
SA27 64Kbytes 32Kwords 180000-18FFFF C0000-C7FFF  
SA28 64Kbytes 32Kwords 190000-19FFFF C8000-CFFFF  
SA29 64Kbytes 32Kwords 1A0000-1AFFFF D0000-D7FFF  
SA30 64Kbytes 32Kwords 1B0000-1BFFFF D8000-DFFFF  
SA31 64Kbytes 32Kwords 1C0000-1CFFFF E0000-E7FFF  
SA32 64Kbytes 32Kwords 1D0000-1DFFFF E8000-EFFFF  
SA33 64Kbytes 32Kwords 1E0000-1EFFFF F0000-FFFFF  
SA34 64Kbytes 32Kwords 1F0000-1FFFFF F8000-FFFFF  
Note: Byte mode:address range A19:A-1, word mode:address range A19:A0.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
4
MX29LV160C T/B  
BLOCK DIAGRAM  
WRITE  
CE#  
OE#  
WE#  
CONTROL  
INPUT  
PROGRAM/ERASE  
STATE  
MACHINE  
(WSM)  
HIGH VOLTAGE  
LOGIC  
RESET#  
STATE  
REGISTER  
ADDRESS  
LATCH  
FLASH  
ARRAY  
ARRAY  
A0-A19  
SOURCE  
HV  
AND  
COMMAND  
DATA  
BUFFER  
Y-PASS GATE  
DECODER  
PGM  
SENSE  
DATA  
COMMAND  
DATA LATCH  
AMPLIFIER  
HV  
PROGRAM  
DATA LATCH  
I/O BUFFER  
Q0-Q15/A-1  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
5
MX29LV160C T/B  
dard microprocessor write timings. The device will auto-  
matically pre-program and verify the entire array. Then  
the device automatically times the erase pulse width,  
provides the erase verification, and counts the number of  
sequences. A status bit toggling between consecutive  
read cycles provides feedback to the user as to the sta-  
tus of the erasing operation.  
AUTOMATIC PROGRAMMING  
The MX29LV160CT/B is byte/word programmable using  
the Automatic Programming algorithm. The Automatic  
Programming algorithm makes the external system do  
not need to have time out sequence nor to verify the  
data programmed. The typical chip programming time at  
room temperature of the MX29LV160C T/B is less than  
18 sec (byte)/12 sec (word).  
Register contents serve as inputs to an internal state-  
machine which controls the erase and programming cir-  
cuitry. During write cycles, the command register inter-  
nally latches address and data needed for the program-  
ming and erase operations. During a system write cycle,  
addresses are latched on the falling edge, and data are  
latched on the rising edge of WE# or CE#, whichever  
happens first.  
AUTOMATIC PROGRAMMING ALGORITHM  
MXIC's Automatic Programming algorithm requires the  
user to only write program set-up commands (including  
2 unlock write cycle and A0H) and a program command  
(program data and address). The device automatically  
times the programming pulse width, provides the pro-  
gram verification, and counts the number of sequences.  
A status bit similar to Data# Polling and a status bit  
toggling between consecutive read cycles, provide feed-  
back to the user as to the status of the programming  
operation.Refer to write operation status, table 7, for more  
information on these status bits.  
MXIC's Flash technology combines years of EPROM  
experience to produce the highest levels of quality, reli-  
ability, and cost effectiveness. The MX29LV160C T/B  
electrically erases all bits simultaneously using Fowler-  
Nordheim tunneling. The bytes are programmed by us-  
ing the EPROM programming mechanism of hot electron  
injection.  
During a program cycle, the state-machine will control  
the program sequences and command register will not  
respond to any command set. During a Sector Erase  
cycle, the command register will only respond to Erase  
Suspend command.After Erase Suspend is completed,  
the device stays in read mode. After the state machine  
has completed its task, it will allow the command regis-  
ter to respond to its full command set.  
AUTOMATIC CHIP ERASE  
The entire chip is bulk erased using 10 ms erase pulses  
according to MXIC's Automatic Chip Erase algorithm.  
Typical erasure at room temperature is accomplished in  
less than 25 second. The Automatic Erase algorithm  
automatically programs the entire array prior to electrical  
erase. The timing and verification of electrical erase are  
controlled internally within the device.  
AUTOMATIC SELECT  
The automatic select mode provides manufacturer and  
device identification, and sector protection verification,  
through identifier codes output on Q7~Q0.This mode is  
mainly adapted for programming equipment on the de-  
vice to be programmed with its programming algorithm.  
When programming by high voltage method, automatic  
select mode requires VID (11.5V to 12.5V) on address  
pin A9. Other address pin A6, A1 and A0 as referring to  
Table 3.In addition, to access the automatic select codes  
in-system, the host can issue the automatic select com-  
mand through the command register without requiringVID,  
as shown in table 5.  
AUTOMATIC SECTOR ERASE  
The MX29LV160CT/B is sector(s) erasable using MXIC's  
Auto Sector Erase algorithm. The Automatic Sector  
Erase algorithm automatically programs the specified  
sector(s) prior to electrical erase. The timing and verifi-  
cation of electrical erase are controlled internally within  
the device. An erase operation can erase one sector,  
multiple sectors, or the entire device.  
AUTOMATIC ERASE ALGORITHM  
To verify whether or not sector being protected, the sec-  
tor address must appear on the appropriate highest order  
MXIC's Automatic Erase algorithm requires the user to  
write commands to the command register using stan-  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
6
MX29LV160C T/B  
address bit (seeTable 1 andTable 2).The rest of address  
bits, as shown inTable 3, are don't care.Once all neces-  
sary bits have been set as required, the programming  
equipment may read the corresponding identifier code on  
Q7~Q0.  
TABLE 3. MX29LV160CT/B AUTO SELECT MODE BUS OPERATION (A9=VID)  
A19 A11  
A9 A8  
A6 A5 A1  
A0  
Description  
Mode CE# OE# WE#RESET#  
|
|
|
|
Q15~Q0  
A12 A10  
A7  
A2  
Read Silicon ID  
Manufacture Code  
Device ID  
L
L
H
H
X
X
VID  
X
L
X
L
L
C2H  
Word  
Byte  
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
X
X
X
X
X
X
X
X
VID  
VID  
VID  
VID  
X
X
X
X
L
L
L
L
X
X
X
X
L
L
L
L
H
H
H
H
22C4H  
XXC4H  
2249H  
(Top Boot Block)  
Device ID  
Word  
(Bottom Boot Block) Byte  
XX49H  
XX01H  
(protected)  
Sector Protection  
Verification  
L
L
H
H
SA  
X
VID  
X
L
X
H
L
XX00H  
(unprotected)  
NOTE: SA=Sector Address, X=Don't Care, L=Logic Low, H=Logic High  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
7
MX29LV160C T/B  
The single cycle Query command is valid only when the  
device is in the Read mode, including Erase Suspend,  
Standby mode, and Automatic Select mode; however, it  
is ignored otherwise.  
QUERY COMMAND AND COMMON FLASH  
INTERFACE (CFI) MODE  
MX29LV160CT/B is capable of operating in the CFI mode.  
This mode all the host system to determine the manu-  
facturer of the device such as operating parameters and  
configuration.Two commands are required in CFI mode.  
Query command of CFI mode is placed first, then the  
Reset command exits CFI mode.These are described in  
Table 4.  
The Reset command exits from the CFI mode to the  
Read mode, or Erase Suspend mode, or Automatic Se-  
lect mode. The command is valid only when the device  
is in the CFI mode.  
Table 4-1. CFI mode:Identification DataValues  
(All values in these tables are in hexadecimal)  
Description  
Address  
Address  
Data  
(ByteMode)  
(WordMode)  
Query-unique ASCII string "QRY"  
20  
22  
24  
26  
28  
2A  
2C  
2E  
30  
32  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
0051  
0052  
0059  
0002  
0000  
0040  
0000  
0000  
0000  
0000  
0000  
Primary vendor command set and control interface ID code  
Address for primary algorithm extended query table  
Alternate vendor command set and control interface ID code (none)  
Address for secondary algorithm extended query table (none)  
Table 4-2. CFI Mode: System Interface DataValues  
(All values in these tables are in hexadecimal)  
Description  
Address  
Address  
Data  
(ByteMode)  
(WordMode)  
VCC supply, minimum (2.7V)  
36  
38  
3A  
3C  
3E  
40  
42  
44  
46  
48  
4A  
4C  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
0027  
0036  
0000  
0000  
0004  
0000  
000A  
0000  
0005  
0000  
0004  
0000  
VCC supply, maximum (3.6V)  
VPP supply, minimum (none)  
VPP supply, maximum (none)  
Typical timeout for single word/byte write (2N us)  
Typical timeout for Minimum size buffer write (2N us) (not supported)  
Typical timeout for individual sector erase (2N ms)  
Typical timeout for full chip erase (2N ms)  
Maximum timeout for single word/byte write times (2N X Typ)  
Maximum timeout for buffer write times (2N X Typ)  
Maximum timeout for individual sector erase times (2N X Typ)  
Maximum timeout for full chip erase times (not supported)  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
8
MX29LV160C T/B  
Table 4-3. CFI Mode:Device Geometry DataValues  
(All values in these tables are in hexadecimal)  
Description  
Address  
Address  
Data  
(ByteMode)  
(WordMode)  
Device size (2N bytes)  
4E  
50  
52  
54  
56  
58  
5A  
5C  
5E  
60  
62  
64  
66  
68  
6A  
6C  
6E  
70  
72  
74  
76  
78  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
0015  
0002  
0000  
0000  
0000  
0004  
0000  
0000  
0040  
0000  
0001  
0000  
0020  
0000  
0000  
0000  
0080  
0000  
001E  
0000  
0000  
0001  
Flash device interface code (x8/x16 async.)  
Maximum number of bytes in multi-byte write (not supported)  
Number of erase sector regions  
Erase sector region 1 information (refer to the CFI publication 100)  
Erase sector region 2 information  
Erase sector region 3 information  
Erase sector region 4 information  
Table 4-4. CFI Mode:PrimaryVendor-Specific Extended Query DataValues  
(All values in these tables are in hexadecimal)  
Description  
Address  
Address  
Data  
(ByteMode)  
(WordMode)  
Query-unique ASCII string "PRI"  
80  
82  
84  
86  
88  
8A  
8C  
8E  
90  
92  
94  
96  
98  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
0050  
0052  
0049  
0031  
0030  
0000  
0002  
0001  
0001  
0004  
0000  
0000  
0000  
Major version number, ASCII  
Minor version number, ASCII  
Address sensitive unlock (0=required, 1= not required)  
Erase suspend (2= to read and write)  
Sector protect (N= # of sectors/group)  
Temporarysectorunprotect(1=supported)  
Sector protect/chip unprotect scheme  
SimultaneousR/Woperation(0=notsupported)  
Burst mode type (0=not supported)  
Page mode type (0=not supported)  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
9
MX29LV160C T/B  
in the improper sequence will reset the device to the  
read mode. Table 5 defines the valid register command  
sequences. Note that the Erase Suspend (B0H) and  
Erase Resume (30H) commands are valid only while the  
Sector Erase operation is in progress.  
COMMAND DEFINITIONS  
Device operations are selected by writing specific ad-  
dress and data sequences into the command register.  
Writing incorrect address and data values or writing them  
TABLE 5. MX29LV160CT/B COMMAND DEFINITIONS  
First Bus  
Bus Cycle  
Second Bus Third Bus  
Fourth Bus  
Cycle  
Fifth Bus  
Cycle  
Sixth Bus  
Cycle  
Command  
Cycle  
Cycle  
Cycle Addr Data Addr  
Data Addr  
Data Addr Data Addr  
Data Addr Data  
Reset  
1
1
4
4
4
XXXH F0H  
RA RD  
Read  
Read Silicon ID Word  
Byte  
555H AAH 2AAH 55H 555H 90H ADI  
AAAH AAH 555H 55H AAAH 90H ADI  
DDI  
DDI  
Sector Protect  
Verify  
Word  
555H AAH 2AAH 55H 555H 90H (SA) XX00H  
x02H XX01H  
Byte  
4
AAAH AAH 555H 55H AAAH 90H (SA) 00H  
x04H 01H  
Program  
Word  
Byte  
Word  
Byte  
Word  
Byte  
4
4
6
6
6
6
1
1
1
555H AAH 2AAH 55H 555H A0H PA  
AAAH AAH 555H 55H AAAH A0H PA  
PD  
PD  
Chip Erase  
Sector Erase  
555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H  
555H 10H  
AAAH 10H  
AAAH AAH 555H 55H AAAH 80H AAAH AAH 555H 55H  
555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H  
SA  
SA  
30H  
30H  
AAAH AAH 555H 55H AAAH 80H AAAH AAH 555H 55H  
Sector Erase Suspend  
Sector Erase Resume  
XXXH B0H  
XXXH 30H  
55H 98  
AAH  
CFI Query  
Word  
Byte  
Note:  
1. ADI = Address of Device identifier; A1=0, A0 = 0 for manufacturer code,A1=0, A0 = 1 for device code. A2-A19=do not care.  
(Refer to table 3)  
DDI = Data of Device identifier : C2H for manufacture code, C4H/49H (x8) and 22C4H/2249H (x16) for device code.  
X = X can be VIL or VIH  
RA=Address of memory location to be read. RD=Data to be read at location RA.  
2.PA = Address of memory location to be programmed. PD = Data to be programmed at location PA.  
SA = Address of the sector to be erased.  
3.The system should generate the following address patterns: 555H or 2AAH to Address A10~A0 in word mode/AAAH or  
555H to Address A10~A-1 in byte mode.  
Address bit A11~A19=X=Don't care for all address commands except for Program Address (PA) and Sector  
Address (SA). Write Sequence may be initiated with A11~A19 in either state.  
4. For Sector Protect Verify operation: If read out data is 01H, it means the sector has been protected. If read out data is 00H,  
it means the sector is still not being protected.  
5. Any number of CFI data read cycles are permitted.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
10  
MX29LV160C T/B  
TABLE 6. MX29LV160CT/B BUS OPERATION  
ADDRESS  
CE# OE# WE# RE- A19A11 A9 A8 A6 A5 A1 A0  
Q8~Q15  
DESCRIPTION  
Q0~Q7  
BYTE  
=VIH  
BYTE  
=VIL  
SET# A12 A10  
A7  
A2  
Read  
L
L
H
H
AIN  
Dout  
Dout Q8~Q14  
=High Z  
Q15=A-1  
Write  
L
X
H
X
X
H
X
L
X
X
H
X
H
L
AIN  
X
DIN(3)  
High Z  
DIN  
DIN  
Reset  
High Z High Z  
Temporary sector unlock  
Output Disable  
Standby  
X
VID  
H
AIN  
X
DIN  
High Z  
L
High Z  
High Z  
High Z High Z  
High Z High Z  
Vcc±  
0.3V  
L
Vcc±  
0.3V  
X
Sector Protect  
H
H
L
L
L
VID SA  
X
X
X
X
X
X
L
H
L
X
X
X
H
H
H
L
L
L
DIN  
DIN  
X
X
X
X
X
X
Chip Unprotect  
L
VID  
H
X
Sector Protection Verify  
L
H
SA X VID X  
CODE(5)  
NOTES:  
1. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 4.  
2. VID is the high voltage, 11.5V to 12.5V.  
3. Refer to Table 5 for valid Data-In during a write operation.  
4. X can be VIL or VIH.  
5. Code=00H/XX00H means unprotected.  
Code=01H/XX01H means protected.  
6. A19~A12=Sector address for sector protect.  
7. The sector protect and chip unprotect functions may also be implemented via programming equipment.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
11  
MX29LV160C T/B  
REQUIREMENTS FOR READING ARRAY DATA  
Characteristics" section contains timing specification  
table and timing diagrams for write operations.  
To read array data from the outputs, the system must  
drive the CE# and OE# pins to VIL. CE# is the power  
control and selects the device. OE# is the output control  
and gates array data to the output pins.WE# should re-  
main at VIH.  
STANDBY MODE  
When using both pins of CE# and RESET#, the device  
enter CMOS Standby with both pins held at Vcc ±0.3V.  
If CE# and RESET# are held at VIH, but not within the  
range ofVCC ±0.3V, the device will still be in the standby  
mode, but the standby current will be larger.During Auto  
Algorithm operation,Vcc active current (ICC2) is required  
even CE# = "H" until the operation is completed. The  
device can be read with standard access time (tCE) from  
either of these standby modes, before it is ready to read  
data.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory con-  
tent occurs during the power transition. No command is  
necessary in this mode to obtain array data. Standard  
microprocessor read cycles that assert valid address  
on the device address inputs produce valid data on the  
device data outputs.The device remains enabled for read  
access until the command register contents are altered.  
OUTPUT DISABLE  
WRITE COMMANDS/COMMAND SEQUENCES  
With the OE# input at a logic high level (VIH), output  
from the devices are disabled.This will cause the output  
pins to be in a high impedance state.  
To program data to the device or erase sectors of  
memory, the system must drive WE# and CE# to VIL,  
and OE# to VIH.  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device.Table 1 andTable 2 indicate the  
address space that each sector occupies. A "sector ad-  
dress" consists of the address bits required to uniquely  
select a sector. The Writing specific address and data  
commands or sequences into the command register ini-  
tiates device operations.Table 5 defines the valid regis-  
ter command sequences.Writing incorrect address and  
data values or writing them in the improper sequence  
resets the device to reading array data. Section has de-  
tails on erasing a sector or the entire chip, or suspend-  
ing/resuming the erase operation.  
RESET# OPERATION  
The RESET# pin provides a hardware method of reset-  
ting the device to reading array data.When the RESET#  
pin is driven low for at least a period of tRP, the device  
immediately terminates any operation in progress,  
tristates all output pins, and ignores all read/write com-  
mands for the duration of the RESET# pulse.The device  
also resets the internal state machine to reading array  
data. The operation that was interrupted should be re-  
initiated once the device is ready to accept another com-  
mand sequence, to ensure data integrity.  
After the system writes the "read silicon-ID" and "sector  
protect verify" command sequence, the device enters  
the "read silicon-ID" and "sector protect verify" mode.  
The system can then read "read silicon-ID" and "sector  
protect verify" codes from the internal register (which is  
separate from the memory array) on Q7-Q0. Standard  
read cycle timings apply in this mode. Refer to the "read  
silicon-ID" and "sector protect verify" Mode and "read  
silicon-ID" and "sector protect verify" Command Se-  
quence section for more information.  
Current is reduced for the duration of the RESET# pulse.  
When RESET# is held at VSS±0.3V, the device draws  
CMOS standby current (ICC4).If RESET# is held atVIL  
but not within VSS±0.3V, the standby current will be  
greater.  
The RESET# pin may be tied to system reset circuitry.  
A system reset would that also reset the Flash memory,  
enabling the system to read the boot-up firmware from  
the Flash memory.  
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The "AC  
If RESET# is asserted during a program or erase opera-  
tion, the RY/BY# pin remains a "0" (busy) until the inter-  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
12  
MX29LV160C T/B  
nal reset operation is complete, which requires a time of  
tREADY (during Embedded Algorithms).The system can  
thus monitor RY/BY# to determine whether the reset op-  
eration is complete. If RESET# is asserted when a pro-  
gram or erase operation is completed within a time of  
tREADY (not during Embedded Algorithms).The system  
can read data tRH after the RESET# pin returns toVIH.  
AUTOMATIC CHIP ERASE COMMANDS  
Chip erase is a six-bus cycle operation. There are two  
"unlock" write cycles. These are followed by writing the  
"set-up" command 80H. Two more "unlock" write cycles  
are then followed by the chip erase command 10H.  
The device does not require the system to entirely pre-  
program prior to executing the Automatic Chip Erase.  
Upon executing the Automatic Chip Erase, the device  
will automatically program and verify the entire memory  
for an all-zero data pattern. When the device is auto-  
matically verified to contain an all-zero pattern, a self-  
timed chip erase and verify begin. The erase and verify  
operations are completed when the data on Q7 is "1" at  
which time the device returns to the Read mode. The  
system is not required to provide any control or timing  
during these operations.  
Refer to the AC Characteristics tables for RESET# pa-  
rameters and to Figure 22 for the timing diagram.  
READ/RESET COMMAND  
The read or reset operation is initiated by writing the read/  
reset command sequence into the command register.  
Microprocessor read cycles retrieve array data. The de-  
vice remains enabled for reads until the command regis-  
ter contents are altered.  
When using the Automatic Chip Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory array  
(no erase verification command is required).  
If program-fail or erase-fail happen, the write of F0H will  
reset the device to abort the operation. A valid com-  
mand must then be written to place the device in the  
desired state.  
If the Erase operation was unsuccessful, the data on Q5  
is "1" (see Table 8), indicating the erase operation ex-  
ceed internal timing limit.  
SILICON-ID READ COMMAND  
Flash memories are intended for use in applications where  
the local CPU alters memory contents. As such, manu-  
facturer and device codes must be accessible while the  
device resides in the target system. PROM program-  
mers typically access signature codes by raising A9 to  
a high voltage (VID). However, multiplexing high voltage  
onto address lines is not generally desired system de-  
sign practice.  
The automatic erase begins on the rising edge of the last  
WE# or CE# pulse, whichever happens first in the com-  
mand sequence and terminates when either the data on  
Q7 is "1" at which time the device returns to the Read  
mode or the data on Q6 stops toggling for two consecu-  
tive read cycles at which time the device returns to the  
Read mode.  
The MX29LV160C T/B contains a Silicon-ID-Read op-  
eration to supple traditional PROM programming meth-  
odology. The operation is initiated by writing the read  
silicon ID command sequence into the command regis-  
ter. Following the command write, a read cycle with  
A1=VIL, A0=VIL retrieves the manufacturer code of C2H/  
00C2H. A read cycle with A1=VIL, A0=VIH returns the  
device code of C4H/22C4H for MX29LV160CT, 49H/2249H  
for MX29LV160CB.  
The system must write the reset command to exit the  
"Silicon-ID Read Command" code.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
13  
MX29LV160C T/B  
TABLE 7. SILICON ID CODE  
Pins  
A0  
A1  
Q15~Q8 Q7 Q6 Q5  
Q4 Q3 Q2 Q1 Q0 Code(Hex)  
Manufacturer code  
Word VIL  
Byte VIL  
VIL 00H  
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
00C2H  
VIL  
X
C2H  
Device code  
Word VIH VIL 22H  
Byte VIH VIL  
Word VIH VIL 22H  
22C4H  
for MX29LV160CT  
Device code  
X
C4H  
2249H  
for MX29LV160CB  
Sector Protection  
Verification  
Byte VIH VIL  
X
X
X
49H  
Word  
Byte  
X
X
VIH  
VIH  
01H (Protected)  
00H (Unprotected)  
READING ARRAY DATA  
RESET COMMAND  
The device is automatically set to reading array data  
after device power-up.No commands are required to re-  
trieve data.The device is also ready to read array data  
after completing an Automatic Program or Automatic  
Erase algorithm.  
Writing the reset command to the device resets the de-  
vice to reading array data.Address bits are don't care for  
this command.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to reading array  
data.Once erasure begins, however, the device ignores  
reset commands until the operation is complete.  
After the device accepts an Erase Suspend command,  
the device enters the Erase Suspend mode.The system  
can read array data using the standard read timings,  
except that if it reads at an address within erase-sus-  
pended sectors, the device outputs status data. After  
completing a programming operation in the Erase Sus-  
pend mode, the system may once again read array data  
with the same exception. See "Erase Suspend/Erase  
Resume Commands" for more information on this mode.  
The system must issue the reset command to re-en-  
able the device for reading array data if Q5 goes high, or  
while in the "read silicon-ID" and "sector protect verify"  
mode. See the "Reset Command" section, next.  
The reset command may be written between the se-  
quence cycles in a program command sequence before  
programming begins. This resets the device to reading  
array data (also applies to programming in Erase Sus-  
pend mode). Once programming begins, however, the  
device ignores reset commands until the operation is  
complete.  
The reset command may be written between the se-  
quence cycles in an Automatic Select command se-  
quence. Once in the Automatic Select mode, the reset  
command must be written to return to reading array data  
(also applies to Automatic Select during Erase Suspend).  
If Q5 goes high during a program or erase operation, writ-  
ing the reset command returns the device to reading ar-  
ray data (also applies during Erase Suspend).  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
14  
MX29LV160C T/B  
SECTOR ERASE COMMANDS  
Erase operation. When the Erase Suspend Command is  
issued during the sector erase operation, the device re-  
quires a maximum 20us to suspend the sector erase  
operation.However, when the Erase Suspend command  
is written during the sector erase time-out, the device  
immediately terminates the time-out period and suspends  
the erase operation. After this command has been ex-  
ecuted, the command register will initiate erase suspend  
mode. The state machine will return to read mode auto-  
matically after suspend is ready. At this time, state ma-  
chine only allows the command register to respond to  
Erase Resume, program data to , or read data from any  
sector not selected for erasure.The system can use Q7  
or Q6 and Q2 together, to determine if a sector is ac-  
tively erasing or is erase-suspend.  
The device does not require the system to entirely pre-  
program prior to executing the Automatic Sector Erase  
Set-up command and Automatic Sector Erase com-  
mand. Upon executing the Automatic Sector Erase com-  
mand, the device will automatically program and verify  
the sector(s) memory for an all-zero data pattern. The  
system is not required to provide any control or timing  
during these operations.  
When the sector(s) is automatically verified to contain  
an all-zero pattern, a self-timed sector erase and verify  
begin. The erase and verify operations are complete  
when either the data on Q7 is "1" at which time the de-  
vice returns to the Read mode or the data on Q6 stops  
toggling for two consecutive read cycles at which time  
the device returns to the Read mode. The system is not  
required to provide any control or timing during these  
operations.  
The system can determine the status of the program  
operation using the Q7 or Q6 status bits, just as in the  
standard program operation.After an erase-suspend pro-  
gram operation is complete, the system can once again  
read array data within non-suspended sectors.  
When using the Automatic Sector Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory array  
(no erase verification command is required). Sector  
erase is a six-bus cycle operation. There are two "un-  
lock" write cycles. These are followed by writing the  
set-up command 80H. Two more "unlock" write cycles  
are then followed by the sector erase command 30H.  
The sector address is latched on the falling edge of WE#  
or CE#, whichever happens later, while the command  
(data) is latched on the rising edge of WE# or CE#, which-  
ever happens first. Sector addresses selected are  
loaded into internal register on the sixth falling edge of  
WE# or CE#, whichever happens later. Each succes-  
sive sector load cycle started by the falling edge of WE#  
or CE#, whichever happens later must begin within 50us  
from the rising edge of the preceding WE# or CE#, which-  
ever happens first. Otherwise, the loading period ends  
and internal auto sector erase cycle starts. (Monitor Q3  
to determine if the sector erase timer window is still open,  
see section Q3, Sector EraseTimer.) Any command other  
than Sector Erase (30H) or Erase Suspend (B0H) during  
the time-out period resets the device to read mode.  
ERASE RESUME  
This command will cause the command register to clear  
the suspend state and return back to Sector Erase mode  
but only if an Erase Suspend command was previously  
issued. Erase Resume will not have any effect in all  
other conditions.Another Erase Suspend command can  
be written after the chip has resumed erasing.The mini-  
mum time from Erase Resume to next Erase Suspend  
is 400us.Repeatedly suspending the device more often  
may have undetermined effects.  
WORD/BYTE PROGRAM COMMAND SEQUENCE  
The device programs one byte of data for each program  
operation. The command sequence requires four bus  
cycles, and is initiated by writing two unlock write cycles,  
followed by the program set-up command.The program  
address and data are written next, which in turn initiate  
the Embedded Program algorithm.The system is not re-  
quired to provide further controls or timings.The device  
automatically generates the program pulses and verifies  
the programmed cell margin.Table 5 shows the address  
and data requirements for the byte program command  
sequence.  
ERASE SUSPEND  
This command only has meaning while the state ma-  
chine is executing Automatic Sector Erase operation, and  
therefore will only be responded during Automatic Sector  
When the Embedded Program algorithm is complete, the  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
15  
MX29LV160C T/B  
device then returns to reading array data and addresses  
are no longer latched. The system can determine the  
status of the program operation by using  
Q7, Q6, or RY/BY#. See "Write Operation Status" for  
information on these status bits.  
During the Automatic Erase algorithm, Data# Polling pro-  
duces a "0" on Q7.When the Automatic Erase algorithm  
is complete, or if the device enters the Erase Suspend  
mode, Data# Polling produces a "1" on Q7.This is analo-  
gous to the complement/true datum output described for  
the Automatic Program algorithm: the erase function  
changes all the bits in a sector to "1" prior to this, the  
device outputs the "complement,or "0".The system  
must provide an address within any of the sectors se-  
lected for erasure to read valid status information on Q7.  
Any commands written to the device during the Embed-  
ded Program Algorithm are ignored.Note that a hardware  
reset immediately terminates the programming  
operation.The Byte/Word Program command sequence  
should be reinitiated once the device has reset to read-  
ing array data, to ensure data integrity.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Data# Polling on  
Q7 is active for approximately 100 us, then the device  
returns to reading array data. If not all selected sectors  
are protected, the Automatic Erase algorithm erases the  
unprotected sectors, and ignores the selected sectors  
that are protected.  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed from a  
"0" back to a "1". Attempting to do so may cause the  
device to set Q5 to "1", or cause the Data# Polling algo-  
rithm to indicate the operation was successful.However,  
a succeeding read will show that the data is still "0".  
Only erase operations can convert a "0" to a "1".  
When the system detects Q7 has changed from the  
complement to true data, it can read valid data at Q7-Q0  
on the following read cycles. This is because Q7 may  
change asynchronously with Q0-Q6 while Output Enable  
(OE#) is asserted low.  
WRITE OPERATION STATUS  
The device provides several bits to determine the status  
of a write operation: Q2, Q3, Q5, Q6, Q7, and RY/BY#.  
Table 8 and the following subsections describe the func-  
tions of these bits. Q7, RY/BY#, and Q6 each offer a  
method for determining whether a program or erase op-  
eration is complete or in progress. These three bits are  
discussed first.  
RY/BY# :Ready/Busy  
The RY/BY# is a dedicated, open-drain output pin that  
indicates whether an Automatic Erase/Program algorithm  
is in progress or complete. The RY/BY# status is valid  
after the rising edge of the final WE# or CE#, whichever  
happens first, in the command sequence.Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied  
together in parallel with a pull-up resistor to Vcc.  
Q7:Data# Polling  
The Data# Polling bit, Q7, indicates to the host system  
whether an Automatic Algorithm is in progress or com-  
pleted, or whether the device is in Erase Suspend.Data#  
Polling is valid after the rising edge of the finalWE# pulse  
in the program or erase command sequence.  
If the output is low (Busy), the device is actively erasing  
or programming.(This includes programming in the Erase  
Suspend mode.) If the output is high (Ready), the device  
is ready to read array data (including during the Erase  
Suspend mode), or is in the standby mode.  
During the Automatic Program algorithm, the device out-  
puts on Q7 the complement of the datum programmed to  
Q7.This Q7 status also applies to programming during  
Erase Suspend.When the Automatic Program algorithm  
is complete, the device outputs the datum programmed  
to Q7.The system must provide the program address to  
read valid status information on Q7.If a program address  
falls within a protected sector, Data# Polling on Q7 is  
active for approximately 1 us, then the device returns to  
reading array data.  
Table 8 shows the outputs for RY/BY# during write op-  
eration.  
Q6:Toggle BIT I  
Toggle Bit I on Q6 indicates whether an Automatic Pro-  
gram or Erase algorithm is in progress or complete, or  
whether the device has entered the Erase Suspend mode.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
16  
MX29LV160C T/B  
Toggle Bit I may be read at any address, and is valid  
after the rising edge of the final WE# or CE#, whichever  
happens first, in the command sequence (prior to the  
program or erase operation), and during the sector time-  
out.  
system may use either OE# or CE# to control the read  
cycles.) But Q2 cannot distinguish whether the sector  
is actively erasing or is erase-suspended. Q6, by com-  
parison, indicates whether the device is actively eras-  
ing, or is in Erase Suspend, but cannot distinguish which  
sectors are selected for erasure. Thus, both status bits  
are required for sectors and mode information. Refer to  
Table 7 to compare outputs for Q2 and Q6.  
During an Automatic Program or Erase algorithm opera-  
tion, successive read cycles to any address cause Q6  
to toggle. The system may use either OE# or CE# to  
control the read cycles.When the operation is complete,  
Q6 stops toggling.  
ReadingToggle Bits Q6/ Q2  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Q6 toggles and  
returns to reading array data. If not all selected sectors  
are protected, the Automatic Erase algorithm erases the  
unprotected sectors, and ignores the selected sectors  
that are protected.  
Whenever the system initially begins reading toggle bit  
status, it must read Q7-Q0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit  
after the first read. After the second read, the system  
would compare the new value of the toggle bit with the  
first. If the toggle bit is not toggling, the device has com-  
pleted the program or erase operation. The system can  
read array data on Q7-Q0 on the following read cycle.  
The system can use Q6 and Q2 together to determine  
whether a sector is actively erasing or is erase sus-  
pended.When the device is actively erasing (that is, the  
Automatic Erase algorithm is in progress), Q6 toggling.  
When the device enters the Erase Suspend mode, Q6  
stops toggling. However, the system must also use Q2  
to determine which sectors are erasing or erase-sus-  
pended. Alternatively, the system can use Q7.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of Q5 is high  
(see the section on Q5). If it is, the system should then  
determine again whether the toggle bit is toggling, since  
the toggle bit may have stopped toggling just as Q5 went  
high. If the toggle bit is no longer toggling, the device  
has successfully completed the program or erase opera-  
tion. If it is still toggling, the device did not complete the  
operation successfully, and the system must write the  
reset command to return to reading array data.  
If a program address falls within a protected sector, Q6  
toggles for approximately 2 us after the program com-  
mand sequence is written, then returns to reading array  
data.  
Q6 also toggles during the erase-suspend-program mode,  
and stops toggling once the Automatic Program algorithm  
is complete.  
The remaining scenario is that system initially determines  
that the toggle bit is toggling and Q5 has not gone high.  
The system may continue to monitor the toggle bit and  
Q5 through successive read cycles, determining the sta-  
tus as described in the previous paragraph. Alternatively,  
it may choose to perform other system tasks. In this  
case, the system must start at the beginning of the al-  
gorithm when it returns to determine the status of the  
operation.  
Table 8 shows the outputs for Toggle Bit I on Q6.  
Q2:Toggle Bit II  
The "Toggle Bit II" on Q2, when used with Q6, indicates  
whether a particular sector is actively erasing (that is,  
the Automatic Erase algorithm is in process), or whether  
that sector is erase-suspended. Toggle Bit II is valid  
after the rising edge of the final WE# or CE#, whichever  
happens first, in the command sequence.  
Q5 : ExceededTiming Limits  
Q5 will indicate if the program or erase time has exceeded  
the specified limits (internal pulse count). Under these  
conditions Q5 will produce a "1". This time-out condition  
indicates that the program or erase cycle was not suc-  
Q2 toggles when the system reads at addresses within  
those sectors that have been selected for erasure. (The  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
17  
MX29LV160C T/B  
cessfully completed. Data# Polling and Toggle Bit are  
the only operating functions of the device under this con-  
dition.  
operation, it specifies that the entire chip is bad or com-  
bination of sectors are bad.  
If this time-out condition occurs during the byte/word pro-  
gramming operation, it specifies that the entire sector  
containing that byte/word is bad and this sector may not  
be reused, (other sectors are still functional and can be  
reused).  
If this time-out condition occurs during sector erase op-  
eration, it specifies that a particular sector is bad and it  
may not be reused. However, other sectors are still func-  
tional and may be used for the program or erase opera-  
tion. The device must be reset to use other sectors.  
Write the Reset command sequence to the device, and  
then execute program or erase command sequence. This  
allows the system to continue to use the other active  
sectors in the device.  
The time-out condition will not appear if a user tries to  
program a non blank location without erasing.Please note  
that this is not a device failure condition since the device  
was incorrectly used.  
If this time-out condition occurs during the chip erase  
Table 8. WRITE OPERATION STATUS  
Status  
Q7  
Q6  
Q5  
Q3  
Q2 RY/BY#  
(Note1)  
(Note2)  
Byte/Word Program in Auto Program Algorithm  
Auto Erase Algorithm  
Q7# Toggle  
0
N/A  
1
No  
0
Toggle  
0
1
Toggle  
0
0
Toggle  
0
1
Erase Suspend Read  
(Erase Suspended Sector)  
No  
Toggle  
N/A Toggle  
In Progress  
Erase Suspended Mode  
Erase Suspend Read  
Data  
Data Data Data Data  
1
0
0
(Non-Erase Suspended Sector)  
Erase Suspend Program  
Q7# Toggle  
Q7# Toggle  
0
1
N/A N/A  
Byte/Word Program in Auto Program Algorithm  
N/A  
No  
Toggle  
Exceeded  
Time Limits Auto Erase Algorithm  
0
Toggle  
1
1
1
Toggle  
0
0
Erase Suspend Program  
Q7# Toggle  
N/A N/A  
Notes:  
1. Q7 and Q2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
2. Q5 switches to '1' when an Auto Program or Auto Erase operation has exceeded the maximum timing limits.  
See "Q5: Exceeded Timing Limits " for more information.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
18  
MX29LV160C T/B  
POWER SUPPLY DECOUPLING  
Q3  
Sector EraseTimer  
In order to reduce power switching effect, each device  
should have a 0.1uF ceramic capacitor connected be-  
tween itsVCC and GND.  
After the completion of the initial sector erase command  
sequence, the sector erase time-out will begin. Q3 will  
remain low until the time-out is complete. Data# Polling  
andToggle Bit are valid after the initial sector erase com-  
mand sequence.  
POWER-UP SEQUENCE  
The MX29LV160CT/B powers up in the Read only mode.  
In addition, the memory contents may only be altered  
after successful completion of the predefined command  
sequences.  
If Data# Polling or theToggle Bit indicates the device has  
been written with a valid erase command, Q3 may be  
used to determine if the sector erase timer window is  
still open. If Q3 is high ("1") the internally controlled  
erase cycle has begun; attempts to write subsequent  
commands to the device will be ignored until the erase  
operation is completed as indicated by Data# Polling or  
Toggle Bit. If Q3 is low ("0"), the device will accept addi-  
tional sector erase commands. To insure the command  
has been accepted, the system software should check  
the status of Q3 prior to and following each subsequent  
sector erase command. If Q3 were high on the second  
status check, the command may not have been accepted.  
TEMPORARY SECTOR UNPROTECT  
This feature allows temporary unprotection of previously  
protected sector to change data in-system.TheTempo-  
rary Sector Unprotect mode is activated by setting the  
RESET# pin to VID (11.5V-12.5V). During this mode,  
formerly protected sectors can be programmed or erased  
as un-protected sector. Once VID is remove from the  
RESET# pin.All the previously protected sectors are pro-  
tected again.  
DATA PROTECTION  
The MX29LV160C T/B is designed to offer protection  
against accidental erasure or programming caused by  
spurious system level signals that may exist during power  
transition. During power up the device automatically re-  
sets the state machine in the Read mode. In addition,  
with its control register architecture, alteration of the  
memory contents only occurs after successful comple-  
tion of specific command sequences. The device also  
incorporates several features to prevent inadvertent write  
cycles resulting fromVCC power-up and power-down tran-  
sition or system noise.  
SECTOR PROTECTION  
The MX29LV160CT/B features hardware sector protec-  
tion. This feature will disable both program and erase  
operations for these sectors protected. To activate this  
mode, the programming equipment must force VID on  
address pin A9 and OE# (suggestVID = 12V). Program-  
ming of the protection circuitry begins on the falling edge  
of the WE# pulse and is terminated on the rising edge.  
Please refer to sector protect algorithm and waveform.  
To verify programming of the protection circuitry, the pro-  
gramming equipment must forceVID on address pin A9  
( with CE# and OE# at VIL and WE# at VIH). When  
A1=VIH, A0=VIL, A6=VIL, it will produce a logical "1"  
code at device output Q0 for a protected sector. Other-  
wise the device will produce 00H for the unprotected sec-  
tor. In this mode, the addresses, except for A1, are don't  
care. Address locations with A1 = VIL are reserved to  
read manufacturer and device codes.(Read Silicon ID)  
WRITE PULSE "GLITCH" PROTECTION  
Noise pulses of less than 5ns (typical) on OE#, CE# or  
WE# will not initiate a write cycle.  
LOGICAL INHIBIT  
Writing is inhibited by holding any one of OE# = VIL,  
CE# = VIH or WE# = VIH. To initiate a write cycle CE#  
and WE# must be a logical zero while OE# is a logical  
one.  
It is also possible to determine if the sector is protected  
in the system by writing a Read Silicon ID command.  
Performing a read operation with A1=VIH, it will produce  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
19  
MX29LV160C T/B  
a logical "1" at Q0 for the protected sector.  
The system must write the reset command to exit the  
"Silicon-ID Read Command" code.  
CHIP UNPROTECT  
The MX29LV160C T/B also features the chip unprotect  
mode, so that all sectors are unprotected after chip  
unprotectiscompletedtoincorporateanychangesinthe  
code. It is recommended to protect all sectors before  
activating chip unprotect mode.  
Toactivatethismode,theprogrammingequipmentmust  
force VID on control pin OE# and address pin A9. The  
CE# pinsmustbesetatVIL. PinsA6mustbesettoVIH.  
Refer to chip unprotect algorithm and waveform for the  
chip unprotect algorithm. The unprotection mechanism  
begins on the falling edge of the WE# pulse and is  
terminated on the rising edge.  
It is also possible to determine if the chip is unprotected  
in the system by writing the Read Silicon ID command.  
PerformingareadoperationwithA1=VIH,itwillproduce  
00H at data outputs(Q0-Q7) for an unprotected sector.  
It is noted that all sectors are unprotected after the chip  
unprotect algorithm is completed.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
20  
MX29LV160C T/B  
OPERATING RATINGS  
ABSOLUTE MAXIMUM RATINGS  
StorageTemperature  
Plastic Packages . . . . . . . . . . . . . ..... -65oC to +150oC  
Commercial (C) Devices  
Ambient Temperature (TA ). . . . . . . . . . . . 0° C to +70°C  
Industrial (I) Devices  
AmbientTemperature  
with Power Applied. . . . . . . . . . . . . .... -65oC to +125oC  
Voltage with Respect to Ground  
Ambient Temperature (TA ). . . . . . . . . . -40° C to +85°C  
VCC Supply Voltages  
VCC for full voltage range. . . . . . . . . . . +2.7 V to 3.6 V  
VCC (Note 1) . . . . . . . . . . . . . . . . . -0.5 V to +4.0 V  
A9, OE#, and  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
RESET# (Note 2) . . . . . . . . . . . ....-0.5 V to +12.5 V  
All other pins (Note 1) . . . . . . . -0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is -0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot VSS to -2.0 V for periods of up to 20 ns. Maxi-  
mum DC voltage on input or I/O pins is VCC +0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot to VCC +2.0 V for periods up to 20 ns.  
2. Minimum DC input voltage on pins A9, OE#, and  
RESET# is -0.5V.During voltage transitions, A9, OE#,  
and RESET# may overshootVSS to -2.0V for periods  
of up to 20 ns. Maximum DC input voltage on pin A9  
is +12.5 V which may overshoot to 14.0 V for periods  
up to 20 ns.  
3.No more than one output may be shorted to ground at  
a time. Duration of the short circuit should not be  
greater than one second.  
Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device at these or any other conditions above those in-  
dicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maxi-  
mum rating conditions for extended periods may affect  
device reliability.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
21  
MX29LV160C T/B  
CAPACITANCE TA = 25oC, f = 1.0 MHz  
SYMBOL  
CIN1  
PARAMETER  
MIN.  
TYP  
6
MAX.  
7.5  
9
UNIT  
pF  
CONDITIONS  
VIN = 0V  
Input Capacitance  
Control Pin Capacitance  
Output Capacitance  
CIN2  
7.5  
8.5  
pF  
VIN = 0V  
COUT  
12  
pF  
VOUT = 0V  
Table 9. DC CHARACTERISTICS  
Symbol PARAMETER  
TA = -40oCTO 85oC,VCC = 2.7V~3.6V  
MIN.  
TYP  
MAX.  
± 1  
35  
± 1  
16  
4
UNIT  
uA  
CONDITIONS  
ILI  
Input Leakage Current  
A9 Input Leakage Current  
Output Leakage Current  
VCC Active Read Current  
VIN = VSS to VCC, VCC=VCC max  
VCC=VCC max; A9=12.5V  
ILIT  
ILO  
ICC1  
uA  
uA  
VOUT = VSS to VCC, VCC=VCC max  
CE#=VIL, OE#=VIH @5MHz  
9
2
mA  
mA  
mA  
mA  
mA  
uA  
(Byte Mode)  
CE#=VIL, OE#=VIH @5MHz  
(Word Mode) @1MHz  
@1MHz  
9
16  
4
2
ICC2  
ICC3  
ICC4  
VCC Active write Current  
VCC Standby Current  
VCC Standby Current  
During Reset (See Conditions)  
Automatic sleep mode  
Input Low Voltage (Note 1)  
Input High Voltage  
20  
0.2  
0.2  
30  
5
CE#=VIL, OE#=VIH, WE#=VIL  
CE#; RESET#=VCC ± 0.3V  
RESET#=VSS ± 0.3V  
5
uA  
ICC5  
VIL  
0.2  
5
uA  
V
VIH=VCC ± 0.3V;VIL=VSS ± 0.3V  
-0.5  
0.8  
VIH  
VID  
0.7xVCC  
VCC+ 0.3  
V
Voltage for Automatic  
Select and Temporary  
Sector Unprotect  
11.5  
12.5  
0.45  
V
V
VCC=3.3V  
VOL  
Output Low Voltage  
Output High Voltage (TTL)  
Output High Voltage  
(CMOS)  
IOL = 4.0mA, VCC= VCC min  
IOH = -2mA, VCC=VCC min  
IOH = -100uA, VCC min  
VOH1  
VOH2  
0.85xVCC  
VCC-0.4  
VLKO  
Low VCC Lock-out  
Voltage  
1.4  
2.1  
V
NOTES:  
1.VIL min. = -1.0V for pulse width is equal to or less than 50 ns.  
VIL min. = -2.0V for pulse width is equal to or less than 20 ns.  
2.VIH max. = VCC + 1.5V for pulse width is equal to or less than 20 ns  
If VIH is over the specified maximum value, read operation cannot be guaranteed.  
3.Automatic sleep mode enable the low power mode when addresses remain stable for tACC +30ns.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
22  
MX29LV160C T/B  
AC CHARACTERISTICSTA = -40oC to 85oC,VCC = 2.7V~3.6V  
Table 10. READ OPERATIONS  
29LV160C-55R 29LV160C-70  
29LV160C-90  
SYMBOL PARAMETER  
MIN.  
MAX. MIN.  
MAX.  
MIN. MAX. UNIT CONDITIONS  
tRC  
tACC  
tCE  
Read Cycle Time (Note 1)  
Address to Output Delay  
CE# to Output Delay  
55  
70  
90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
55  
55  
30  
70  
70  
30  
25  
90  
90  
30  
25  
CE#=OE#=VIL  
OE#=VIL  
tOE  
OE# to Output Delay  
CE#=VIL  
tDF  
OE# High to Output Float (Note 2)  
Output Enable Read  
0
25  
0
0
CE#=VIL  
tOEH  
0
0
0
Hold Time  
Toggle and  
10  
10  
10  
Data# Polling  
tOH  
Address to Output hold  
0
0
0
ns  
CE#=OE#=VIL  
NOTES:  
TEST CONDITIONS:  
1. Not 100% tested.  
Input pulse levels: 0V/3.0V.  
2. tDF is defined as the time at which the output achieves  
the open circuit condition and data is no longer driven.  
Input rise and fall times is equal to or less than 5ns.  
Outputload:1TTL gate+100pF(Includingscopeand  
jig)for29LV160CT/B-90,1TTL gate+30pF(Including  
scope and jig) for 29LV160C T/B-70.  
Reference levels for measuring timing: 1.5V.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
23  
MX29LV160C T/B  
SWITCHINGTEST CIRCUITS  
DEVICE UNDER  
2.7K ohm  
+3.3V  
TEST  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
CL=100pF Including jig capacitance for MX29LV160C T/B-90  
CL=30pF Including jig capacitance for MX29LV160C T/B-70  
SWITCHINGTESTWAVEFORMS  
3.0V  
TEST POINTS  
0V  
INPUT  
OUTPUT  
AC TESTING: Inputs are driven at 3.0V for a logic "1" and 0V for a logic "0".  
Input pulse rise and fall times are < 5ns.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
24  
MX29LV160C T/B  
Figure 1. READTIMINGWAVEFORMS  
tRC  
VIH  
ADD Valid  
Addresses  
VIL  
tACC  
tCE  
VIH  
CE#  
VIL  
VIH  
WE#  
VIL  
tOE  
tDF  
tOEH  
VIH  
OE#  
VIL  
tACC  
tOH  
HIGH Z  
HIGH Z  
VOH  
VOL  
Outputs  
DATA Valid  
VIH  
VIL  
RESET#  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
25  
MX29LV160C T/B  
AC CHARACTERISTICSTA = -40oC to 85oC,VCC = 2.7V~3.6V  
Table 11. Erase/Program Operations  
29LV160C-55R  
29LV160C-70  
29LV160C-90  
SYMBOL PARAMETER  
MIN.  
55  
0
MAX.  
MIN.  
70  
0
MAX.  
MIN.  
90  
0
MAX. UNIT  
tWC  
tAS  
tAH  
tDS  
tDH  
tOES  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
45  
35  
0
45  
35  
0
45  
45  
0
Data Hold Time  
Output Enable Setup Time  
0
0
0
tGHWL Read Recovery Time Before Write  
(OE# High to WE# Low)  
0
0
0
tCS  
CE# Setup Time  
CE# Hold Time  
0
0
0
ns  
ns  
ns  
ns  
us  
tCH  
0
0
0
tWP  
tWPH  
Write Pulse Width  
Write Pulse Width High  
35  
35  
35  
30  
30  
30  
tWHWH1 ProgrammingOperation(Note2)  
(Byte/Wordprogramtime)  
9/11(typ.)  
9/11(typ.)  
9/11(typ.)  
tWHWH2 Sector Erase Operation (Note 2)  
0.7(typ.)  
0.7(typ.)  
0.7(typ.)  
sec  
us  
ns  
ns  
ns  
ns  
tVCS  
tRB  
VCC Setup Time (Note 1)  
50  
0
50  
0
50  
0
Recovery Time from RY/BY#  
Sector Erase Valid to RY/BY# Delay  
Chip Erase Valid to RY/BY# Delay  
Program Valid to RY/BY# Delay  
tBUSY  
90  
90  
90  
90  
90  
90  
90  
90  
90  
tWPP1 Write pulse width for sector  
protect (A9, OE# Control)  
100ns  
100ns  
10us  
(typ.)  
12ms  
(typ.)  
100ns  
100ns  
10us  
(typ.)  
12ms  
(typ.)  
100ns 10us  
(typ.)  
tWPP2 Write pulse width for sector  
unprotect (A9, OE# Control)  
100ns 12ms  
(typ.)  
tVLHT  
Voltage transition time  
4
4
4
4
4
4
us  
us  
tOESP OE# setup time to WE# active  
NOTES:  
1. Not 100% tested.  
2. See the "Erase and Programming Performance" section for more information.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
26  
MX29LV160C T/B  
AC CHARACTERISTICSTA = -40oC to 85oC,VCC = 2.7V~3.6V  
Table 12. Alternate CE# Controlled Erase/Program Operations  
29LV160C-55R 29LV160C-70 29LV160C-90  
SYMBOL  
tWC  
PARAMETER  
MIN.  
MAX. MIN. MAX. MIN.  
MAX. UNIT  
Write CycleTime (Note 1)  
Address SetupTime  
Address HoldTime  
Data SetupTime  
55  
70  
90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
us  
sec  
tAS  
0
0
0
tAH  
45  
45  
45  
tDS  
35  
35  
45  
tDH  
Data HoldTime  
0
0
0
tOES  
tGHEL  
tWS  
Output Enable SetupTime  
Read RecoveryTime BeforeWrite  
WE# SetupTime  
0
0
0
0
0
0
0
0
0
tWH  
WE# HoldTime  
0
0
0
tCP  
CE# PulseWidth  
35  
35  
35  
tCPH  
tWHWH1  
CE# Pulse Width High  
30  
30  
30  
Programming  
Byte  
Word  
9(Typ.)  
11(Typ.)  
0.7(Typ.)  
9(Typ.)  
11(Typ.)  
0.7(Typ.)  
9(Typ.)  
11(Typ.)  
0.7(Typ.)  
Operation(note2)  
tWHWH2  
Sector Erase Operation (note2)  
Notes:  
1. Not 100% tested.  
2. See the "Erase and Programming Performance" section for more information.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
27  
MX29LV160C T/B  
Figure 2. COMMANDWRITETIMINGWAVEFORM  
VCC  
3V  
VIH  
Addresses  
ADD Valid  
VIL  
tAH  
tAS  
VIH  
VIL  
WE#  
CE#  
tOES  
tWPH  
tWP  
tCWC  
VIH  
VIL  
tCS  
tCH  
tDH  
VIH  
VIL  
OE#  
Data  
tDS  
VIH  
VIL  
DIN  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
28  
MX29LV160C T/B  
AUTOMATIC PROGRAMMING TIMING WAVEFORM  
ing after automatic programming starts. Device outputs  
DATA# during programming and DATA# after programming  
on Q7.(Q6 is for toggle bit; see toggle bit, Data# Polling,  
timing waveform)  
One byte data is programmed. Verify in fast algorithm  
and additional verification by external control are not re-  
quired because these operations are executed automati-  
cally by internal control circuit. Programming comple-  
tion can be verified by Data# Polling or toggle bit check-  
Figure 3.AUTOMATIC PROGRAMMINGTIMINGWAVEFORM  
Program Command Sequence(last two cycle)  
Read Status Data (last two cycle)  
tWC  
tAS  
PA  
PA  
555h  
PA  
Address  
CE#  
tAH  
tCH  
tGHWL  
OE#  
WE#  
tWHWH1  
tWP  
tCS  
tWPH  
tDS tDH  
Status  
A0h  
PD  
DOUT  
Data  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
Note :  
1.PA=Program Address, PD=Program Data, DOUT is the true data the program address  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
29  
MX29LV160C T/B  
Figure 4.AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data A0H Address 555H  
Write Program Data/Address  
Data# Poll  
Increment  
Address  
from system  
No  
No  
Verify Word Ok ?  
YES  
Last Address ?  
YES  
Auto Program Completed  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
30  
MX29LV160C T/B  
Figure 5. CE# CONTROLLEDWRITETIMINGWAVEFORM  
PA for program  
555 for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Address  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tCP  
tWHWH1 or 2  
CE#  
Data  
tWS  
tDS  
tCPH  
tBUSY  
tDH  
DOUT  
Q7  
PD for program  
30 for sector erase  
10 for chip erase  
A0 for program  
55 for erase  
tRH  
RESET#  
RY/BY#  
Notes:  
1.PA=Program Address, PD=Program Data, DOUT=Data Out, Q7=complement of data written to device.  
2.Figure indicates the last two bus cycles of the command sequence.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
31  
MX29LV160C T/B  
AUTOMATIC CHIP ERASE TIMING WAVEFORM  
matic erase starts. Device outputs 0 during erasure  
and 1 after erasure on Q7.(Q6 is for toggle bit;see toggle  
bit, Data# Polling, timing waveform)  
All data in chip are erased. External erase verification is  
not required because data is verified automatically by  
internal control circuit. Erasure completion can be veri-  
fied by Data# Polling or toggle bit checking after auto-  
Figure 6.AUTOMATIC CHIP ERASETIMINGWAVEFORM  
Erase Command Sequence(last two cycle)  
Read Status Data  
VA  
tWC  
tAS  
VA  
2AAh  
555h  
Address  
CE#  
tAH  
tCH  
tGHWL  
OE#  
WE#  
tWHWH2  
tWP  
tCS  
tWPH  
tDS tDH  
In  
Progress  
55h  
10h  
Complete  
Data  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
Note :  
VA=Valid Address for reading status data(see "Write Operation Status").  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
32  
MX29LV160C T/B  
Figure 7.AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 10H Address 555H  
Data Poll from System  
NO  
Data=FFh ?  
YES  
Auto Chip Erase Completed  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
33  
MX29LV160C T/B  
AUTOMATIC SECTOR ERASE TIMING WAVEFORM  
Sector indicated by A12 to A19 are erased. External  
erase verify is not required because data are verified  
automatically by internal control circuit. Erasure comple-  
tion can be verified by Data# Polling or toggle bit check-  
ing after automatic erase starts. Device outputs 0 dur-  
ing erasure and 1 after erasure on Q7. (Q6 is for toggle  
bit; see toggle bit, Data# Polling, timing waveform)  
Figure 8. AUTOMATIC SECTOR ERASETIMINGWAVEFORM  
Erase Command Sequence(last two cycle)  
Read Status Data  
VA  
tWC  
tAS  
VA  
2AAh  
SA  
Address  
CE#  
tAH  
tCH  
tGHWL  
OE#  
WE#  
tWHWH2  
tWP  
tCS  
tWPH  
tDS tDH  
In  
Progress  
55h  
30h  
Complete  
Data  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
Note :  
SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
34  
MX29LV160C T/B  
Figure 9.AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 30H Sector Address  
NO  
Last Sector  
to Erase  
YES  
Data# Poll from System  
NO  
Data=FFh  
YES  
Auto Sector Erase Completed  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
35  
MX29LV160C T/B  
Figure 10. ERASE SUSPEND/ERASE RESUME FLOWCHART  
START  
Write Data B0H  
ERASE SUSPEND  
NO  
Toggle Bit checking Q6  
not toggled  
YES  
Read Array or  
Program  
Reading or  
NO  
Programming End  
YES  
Write Data 30H  
Delay at least  
400us (note)  
ERASE RESUME  
Continue Erase  
Another  
NO  
Erase Suspend ?  
YES  
Note:Repeatedly suspending the device more often may have undetermined effects.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
36  
MX29LV160C T/B  
Figure 11. IN-SYSTEM SECTOR PROTECT/CHIP UNPROTECTTIMINGWAVEFORM (RESET# Control)  
VID  
VIH  
RESET#  
SA, A6  
A1, A0  
Valid*  
Valid*  
Valid*  
Sector Protect or Sector Unprotect  
Verify  
40h  
Status  
Data  
60h  
60h  
Sector Protect =150us  
chip Unprotect =15ms  
1us  
CE#  
WE#  
OE#  
Note: When sector protect, A6=0, A1=1, A0=0. When chip unprotect, A6=1, A1=1, A0=0.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
37  
MX29LV160C T/B  
Figure 12. SECTOR PROTECTTIMINGWAVEFORM (A9, OE# Control)  
A1  
A6  
12V  
5V  
A9  
tVLHT  
tVLHT  
Verify  
12V  
5V  
OE#  
tVLHT  
tWPP 1  
WE#  
CE#  
tOESP  
Data  
01H  
F0H  
tOE  
Sector Address  
A19-A12  
Notes: tVLHT (Voltage transition time)=4us min.  
tOESP (OE# setup time to WE# active)=4us min.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
38  
MX29LV160C T/B  
Figure 13. SECTOR PROTECTION ALGORITHM (A9, OE# Control)  
START  
Set Up Sector Addr  
PLSCNT=1  
OE#=VID, A9=VID, CE#=VIL  
A6=VIL  
Activate WE# Pulse  
Time Out 150us  
Set WE#=VIH, CE#=OE#=VIL  
A9 should remain VID  
Read from Sector  
No  
Addr=SA, A1=1, A6=0, A0=0  
No  
Data=01H?  
PLSCNT=32?  
Yes  
Device Failed  
Yes  
Protect Another  
Sector?  
Remove VID from A9  
Write Reset Command  
Sector Protection  
Complete  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
39  
MX29LV160C T/B  
Figure 14. IN-SYSTEM SECTOR PROTECTION ALGORITHMWITH RESET#=VID  
START  
PLSCNT=1  
RESET#=VID  
Wait 1us  
No  
Temporary Sector  
Unprotect Mode  
First Write  
Cycle=60H  
Yes  
Set up sector address  
Write 60H to sector address  
with A6=0, A1=1, A0=0  
Wait 150us  
Verify sector protect :  
write 40H with A6=0,  
A1=1, A0=0  
Increment PLSCNT  
Reset PLSCNT=1  
Read from sector address  
No  
No  
PLSCNT=25?  
Data=01H ?  
Yes  
Yes  
Device failed  
Yes  
Protect another  
sector?  
No  
Remove VID from RESET#  
Write reset command  
Sector protect complete  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
40  
MX29LV160C T/B  
Figure 15. IN-SYSTEM CHIP UNPROTECTION ALGORITHM WITH RESET#=VID  
START  
PLSCNT=1  
RESET#=VID  
Wait 1us  
No  
No  
Temporary Sector  
Unprotect Mode  
First Write  
Cycle=60H ?  
Yes  
All sector  
Protect all sectors  
protected?  
Yes  
Set up first sector address  
Sector unprotect :  
write 60H with  
A6=1, A1=1, A0=0  
Wait 50ms  
Verify sector unprotect  
write 40H to sector address  
with A6=1, A1=1, A0=0  
Increment PLSCNT  
Read from sector address  
with A6=1, A1=1, A0=0  
No  
No  
Set up next sector address  
PLSCNT=1000?  
Data=00H ?  
Yes  
Yes  
Device failed  
Yes  
Last sector  
verified?  
No  
Remove VID from RESET#  
Write reset command  
Sector unprotect complete  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
41  
MX29LV160C T/B  
Figure 16.TIMINGWAVEFORM FOR CHIP UNPROTECTION (A9, OE# Control)  
A1  
12V  
VCC 3V  
A9  
A6  
tVLHT  
Verify  
12V  
VCC 3V  
OE#  
tVLHT  
tVLHT  
tWPP 2  
time out 50ms  
WE#  
CE#  
tOESP  
Data  
00H  
F0H  
tOE  
A19-A12  
Sector Address  
Note:Repeatedly suspending the device more often may have undetermined effects.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
42  
MX29LV160C T/B  
Figure 17. CHIP UNPROTECTION ALGORITHM (A9, OE# Control)  
START  
Protect All Sectors  
PLSCNT=1  
Set OE#=A9=VID  
CE#=VIL, A6=1  
Activate WE# Pulse  
Time Out 50ms  
Increment  
PLSCNT  
Set OE#=CE#=VIL  
A9=VID, A1=1, A6=0, A0=0  
Set Up First Sector Addr  
Read Data from Device  
No  
No  
Data=00H?  
Yes  
PLSCNT=1000?  
Increment  
Sector Addr  
Yes  
Device Failed  
No  
All sectors have  
been verified?  
Yes  
Remove VID from A9  
Write Reset Command  
Chip Unprotect  
Complete  
* It is recommended before unprotect whole chip, all sectors should be protected in advance.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
43  
MX29LV160C T/B  
WRITE OPERATION STATUS  
Figure 18. DATA# POLLING ALGORITHM  
Start  
Read Q7~Q0  
Add.=VA(1)  
Yes  
Q7 = Data ?  
No  
No  
Q5 = 1 ?  
Yes  
Read Q7~Q0  
Add.=VA  
Yes  
Q7 = Data ?  
(2)  
No  
FAIL  
Pass  
Notes : 1.VA=Valid address for programming or erasure.  
2.Q7 should be re-checked even Q5="1" because Q7 may change  
simultaneously with Q5.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
44  
MX29LV160C T/B  
Figure 19.TOGGLE BIT ALGORITHM  
Start  
Read Q7-Q0  
Read Q7-Q0  
(Note 1)  
NO  
Toggle Bit Q6 =  
Toggle ?  
YES  
NO  
Q5= 1?  
YES  
Read Q7~Q0 Twice  
(Note 1,2)  
NO  
Toggle bit Q6=  
Toggle?  
YES  
Program/Erase Operation  
Not Complete,Write  
Reset Command  
Program/Erase  
operation Complete  
Notes:1. Read toggle bit twice to determine whether or not it is toggling.  
2. Recheck toggle bit because it may stop toggling as Q5 change to "1".  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
45  
MX29LV160C T/B  
Figure 20. Data# PollingTimings (During Automatic Algorithms)  
tRC  
VA  
VA  
VA  
Address  
CE#  
tACC  
tCE  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
Complement  
Status Data  
Complement  
Status Data  
True  
True  
Valid Data  
Valid Data  
Q7  
Q0-Q6  
tBUSY  
RY/BY#  
Note :  
VA=Valid address. Figure shows are first status cycle after command sequence, last status read cycle, and array data read cycle.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
46  
MX29LV160C T/B  
Figure 21.TOGGLE BITTIMINGWAVEFORMS (DURING AUTOMATIC ALGORITHMS)  
tRC  
VA  
VA  
VA  
VA  
Address  
CE#  
tACC  
tCE  
tCH  
tOE  
OE#  
tDF  
tOEH  
WE#  
tOH  
High Z  
Valid Status  
(second read)  
Valid Status  
(first read)  
Valid Data  
Valid Data  
Q6/Q2  
(stops toggling)  
tBUSY  
RY/BY#  
Note:  
VA=Valid address; not required for Q6. Figure shows first two status cycle after command sequence, last status read cycle, and  
array data read cycle.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
47  
MX29LV160C T/B  
Table 13. AC CHARACTERISTICS  
Parameter Std Description  
Test Setup All Speed Options Unit  
tREADY1  
RESET# PIN Low (During Automatic Algorithms)  
MAX  
20  
us  
to Read or Write (See Note)  
tREADY2  
RESET# PIN Low (NOT During Automatic  
Algorithms) to Read or Write (See Note)  
RESET# Pulse Width (During Automatic Algorithms)  
RESET# HighTime Before Read (See Note)  
RY/BY# Recovery Time (to CE#, OE# go low)  
MAX  
500  
ns  
tRP  
tRH  
tRB  
MIN  
MIN  
MIN  
500  
70  
0
ns  
ns  
ns  
Note:Not 100% tested  
Figure 22. RESET# TIMINGWAVEFORM  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tREADY2  
Reset Timing NOT during Automatic Algorithms  
tREADY1  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Reset Timing during Automatic Algorithms  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
48  
MX29LV160C T/B  
AC CHARACTERISTICS  
WORD/BYTE CONFIGURATION (BYTE#)  
Parameter  
Description  
Speed OptionsUnit  
JEDEC Std  
-55  
-70  
5
-90  
tELFL/tELFH CE# to BYTE# Switching Low or High  
Max  
Max  
Min  
ns  
ns  
ns  
tFLQZ  
tFHQV  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
25  
55  
25  
70  
30  
90  
Figure 23. BYTE# TIMINGWAVEFORM FOR READ OPERATIONS (BYTE# switching from byte mode to word  
mode)  
CE#  
OE#  
tELFH  
BYTE#  
DOUT  
(Q0-Q7)  
DOUT  
(Q0-Q14)  
Q0~Q14  
Q15/A-1  
DOUT  
(Q15)  
VA  
tFHQV  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
49  
MX29LV160C T/B  
Figure 24. BYTE# TIMINGWAVEFORM FOR READ OPERATIONS (BYTE# switching from word mode to byte  
mode)  
CE#  
OE#  
tELFH  
BYTE#  
DOUT  
(Q0-Q14)  
DOUT  
(Q0-Q7)  
Q0~Q14  
Q15/A-1  
DOUT  
(Q15)  
VA  
tFLQZ  
Figure 25. BYTE# TIMINGWAVEFORM FOR PROGRAM OPERATIONS  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
tAS  
tAH  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
50  
MX29LV160C T/B  
Table 14.TEMPORARY SECTOR UNPROTECT  
Parameter Std. Description  
Test Setup All Speed Options Unit  
tVIDR  
tRSP  
VID Rise and Fall Time (See Note)  
Min  
Min  
500  
4
ns  
us  
RESET# SetupTime forTemporary Sector Unprotect  
Note:  
Not 100% tested  
Figure 26.TEMPORARY SECTOR UNPROTECTTIMING DIAGRAM  
12V  
RESET#  
0 or Vcc  
0 or Vcc  
Program or Erase Command Sequence  
tVIDR  
tVIDR  
CE#  
WE#  
tRSP  
RY/BY#  
Figure 27. Q6 vs Q2 for Erase and Erase Suspend Operations  
Enter Embedded  
Erasing  
Erase  
Enter Erase  
Erase  
Resume  
Suspend  
Suspend Program  
Erase  
Erase Suspend  
Read  
Erase  
Erase Suspend  
Read  
Erase  
Erase  
WE#  
Q6  
Suspend  
Program  
Complete  
Q2  
Note :  
The system can use OE# or CE# to toggle Q2/Q6, Q2 toggles only when read at an address within an erase-suspended  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
51  
MX29LV160C T/B  
Figure 28.TEMPORARY SECTOR UNPROTECT ALGORITHM  
Start  
RESET# = VID (Note 1)  
Perform Erase or Program Operation  
Operation Completed  
RESET# = VIH  
Temporary Sector Unprotect Completed(Note 2)  
Notes :  
1. All protected sectors are temporary unprotected.  
VID=11.5V~12.5V  
2. All previously protected sectors are protected again.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
52  
MX29LV160C T/B  
Figure 29. ID CODE READTIMINGWAVEFORM  
VCC  
3V  
VID  
ADD  
A9  
VIH  
VIL  
VIH  
VIL  
ADD  
A0  
tACC  
tACC  
VIH  
VIL  
A1  
ADD  
A2-A8  
VIH  
A10-A19 VIL  
CE#  
VIH  
VIL  
VIH  
VIL  
tCE  
WE#  
OE#  
tOE  
VIH  
VIL  
tDF  
tOH  
tOH  
VIH  
VIL  
DATA  
Q0-Q15  
DATA OUT  
DATA OUT  
C4H/49H (Byte)  
C2H/00C2H  
22C4H/2249H (Word)  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
53  
MX29LV160C T/B  
RECOMMENDED OPERATING CONDITIONS  
At Device Power-Up  
AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up.  
If the timing in the figure is ignored, the device may not operate correctly.  
VCC(min)  
VCC  
GND  
tVR  
tACC  
tR or tF  
tR or tF  
VIH  
VIL  
Valid  
ADDRESS  
CE#  
Address  
tF  
tCE  
tR  
VIH  
VIL  
VIH  
VIL  
WE#  
tF  
tOE  
tR  
VIH  
VIL  
OE#  
VIH  
VIL  
WP#/ACC  
DATA  
VOH  
VOL  
High Z  
Valid  
Ouput  
Figure A. ACTiming at Device Power-Up  
Notes  
Symbol  
Parameter  
Min.  
Max.  
Unit  
us/V  
us/V  
us/V  
tVR  
tR  
VCC RiseTime  
1
20  
500000  
20  
Input Signal RiseTime  
Input Signal Fall Time  
1,2  
1,2  
tF  
20  
Notes :  
1. Sampled, not 100% tested.  
2. This specification is applied for not only the device power-up but also the normal operations.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
54  
MX29LV160C T/B  
ERASE AND PROGRAMMING PERFORMANCE (1)  
LIMITS  
PARAMETER  
MIN.  
TYP.(2)  
0.7  
15  
MAX.(3)  
15  
UNITS  
sec  
Sector Erase Time  
Chip Erase Time  
30  
sec  
Byte Programming Time  
Word Programming Time  
Chip Programming Time  
9
300  
360  
54  
us  
11  
us  
Byte Mode  
Word Mode  
18  
sec  
12  
36  
sec  
Erase/Program Cycles  
100,000  
Cycles  
Note: 1. Not 100% Tested, Excludes external system level over head.  
2.Typical values measured at 25° C, 3V.  
3. Maximum values measured at 85° C, 2.7V, 100,000 cycles.  
LATCH-UP CHARACTERISTICS  
MIN.  
-1.0V  
MAX.  
Input Voltage with respect to GND on all pins except I/O pins  
Input Voltage with respect to GND on all I/O pins  
VCC Current  
12.5V  
VCC + 1.0V  
+100mA  
-1.0V  
-100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
55  
MX29LV160C T/B  
ORDERING INFORMATION  
PART NO.  
ACCESS  
OPERATING  
STANDBY  
PACKAGE  
Remark  
TIME (ns) Current MAX. (mA) Current MAX. (uA)  
MX29LV160CTMC-55R  
MX29LV160CBMC-55R  
MX29LV160CTMC-70  
MX29LV160CBMC-70  
MX29LV160CTMC-90  
MX29LV160CBMC-90  
MX29LV160CTMI-55R  
MX29LV160CBMI-55R  
MX29LV160CTMI-70  
MX29LV160CBMI-70  
MX29LV160CTMI-90  
MX29LV160CBMI-90  
MX29LV160CTTC-55R  
55  
55  
70  
70  
90  
90  
55  
55  
70  
70  
90  
90  
55  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
MX29LV160CBTC-55R  
MX29LV160CTTC-70  
MX29LV160CBTC-70  
MX29LV160CTTC-90  
MX29LV160CBTC-90  
MX29LV160CTTI-55R  
MX29LV160CBTI-55R  
MX29LV160CTTI-70  
MX29LV160CBTI-70  
MX29LV160CTTI-90  
MX29LV160CBTI-90  
MX29LV160CTXBC-55R  
MX29LV160CBXBC-55R  
MX29LV160CTXBC-70  
55  
70  
70  
90  
90  
55  
55  
70  
70  
90  
90  
55  
55  
70  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
56  
MX29LV160C T/B  
PART NO.  
ACCESS  
OPERATING  
STANDBY  
PACKAGE  
Remark  
TIME (ns) Current MAX. (mA) Current MAX. (uA)  
MX29LV160CBXBC-70  
MX29LV160CTXBC-90  
MX29LV160CBXBC-90  
MX29LV160CTXBI-55R  
MX29LV160CBXBI-55R  
MX29LV160CTXBI-70  
MX29LV160CBXBI-70  
MX29LV160CTXBI-90  
MX29LV160CBXBI-90  
MX29LV160CTXEC-55R  
MX29LV160CBXEC-55R  
MX29LV160CTXEC-70  
MX29LV160CBXEC-70  
MX29LV160CTXEC-90  
MX29LV160CBXEC-90  
MX29LV160CTXEI-55R  
MX29LV160CBXEI-55R  
MX29LV160CTXEI-70  
MX29LV160CBXEI-70  
MX29LV160CTXEI-90  
MX29LV160CBXEI-90  
70  
90  
90  
55  
55  
70  
70  
90  
90  
55  
55  
70  
70  
90  
90  
55  
55  
70  
70  
90  
90  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
57  
MX29LV160C T/B  
PART NO.  
ACCESS  
OPERATING  
STANDBY  
PACKAGE  
Remark  
TIME (ns) Current MAX. (mA) Current MAX. (uA)  
MX29LV160CTMC-55Q  
MX29LV160CBMC-55Q  
MX29LV160CTMC-70G  
MX29LV160CBMC-70G  
MX29LV160CTMC-90G  
MX29LV160CBMC-90G  
MX29LV160CTMI-55Q  
MX29LV160CBMI-55Q  
MX29LV160CTMI-70G  
MX29LV160CBMI-70G  
MX29LV160CTMI-90G  
MX29LV160CBMI-90G  
MX29LV160CTTC-55Q  
55  
55  
70  
70  
90  
90  
55  
55  
70  
70  
90  
90  
55  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
44 Pin SOP  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
MX29LV160CBTC-55Q  
MX29LV160CTTC-70G  
MX29LV160CBTC-70G  
MX29LV160CTTC-90G  
MX29LV160CBTC-90G  
MX29LV160CTTI-55Q  
MX29LV160CBTI-55Q  
MX29LV160CTTI-70G  
MX29LV160CBTI-70G  
MX29LV160CTTI-90G  
MX29LV160CBTI-90G  
MX29LV160CTXBC-55Q  
MX29LV160CBXBC-55Q  
55  
70  
70  
90  
90  
55  
55  
70  
70  
90  
90  
55  
55  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
58  
MX29LV160C T/B  
PART NO.  
ACCESS  
OPERATING  
STANDBY  
PACKAGE  
Remark  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
PB free  
TIME (ns) Current MAX. (mA) Current MAX. (uA)  
MX29LV160CTXBC-70G  
MX29LV160CBXBC-70G  
MX29LV160CTXBC-90G  
MX29LV160CBXBC-90G  
MX29LV160CTXBI-55Q  
MX29LV160CBXBI-55Q  
MX29LV160CTXBI-70G  
MX29LV160CBXBI-70G  
MX29LV160CTXBI-90G  
MX29LV160CBXBI-90G  
MX29LV160CTXEC-55Q  
MX29LV160CBXEC-55Q  
MX29LV160CTXEC-70G  
MX29LV160CBXEC-70G  
MX29LV160CTXEC-90G  
MX29LV160CBXEC-90G  
MX29LV160CTXEI-55Q  
MX29LV160CBXEI-55Q  
MX29LV160CTXEI-70G  
MX29LV160CBXEI-70G  
MX29LV160CTXEI-90G  
MX29LV160CBXEI-90G  
70  
70  
90  
90  
55  
55  
70  
70  
90  
90  
55  
55  
70  
70  
90  
90  
55  
55  
70  
70  
90  
90  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.3mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
48 Ball CSP  
(ball size:0.4mm)  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
59  
MX29LV160C T/B  
PART NAME DESCRIPTION  
MX 29 LV 160 C T T C 70 G  
OPTION:  
G: Lead-free package  
R: Restricted VCC (3.0V~3.6V)  
Q: Restricted VCC (3.0V~3.6V) with Lead-free package  
blank: normal  
SPEED:  
55: 55ns  
70: 70ns  
90: 90ns  
TEMPERATURE RANGE:  
C: Commercial (0˚C to 70˚C)  
I: Industrial (-40˚C to 85˚C)  
PACKAGE:  
M: SOP  
T: TSOP  
X: FBGA (CSP)  
XB - 0.3mm Ball  
XE - 0.4mm Ball  
BOOT BLOCK TYPE:  
T: Top Boot  
B: Bottom Boot  
REVISION:  
C
DENSITY & MODE:  
160: 16M, x8/x16 Boot Block  
TYPE:  
L, LV: 3V  
DEVICE:  
28, 29:Flash  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
60  
MX29LV160C T/B  
PACKAGE INFORMATION  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
61  
MX29LV160C T/B  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
62  
MX29LV160C T/B  
48-Ball CSP (for MX29LV160CTXBC/BTXBI/BBXBC/BBXBI)  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
63  
MX29LV160C T/B  
48-Ball CSP (for MX29LV160CTXEC/BTXEI/BBXEC/BBXEI)  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
64  
MX29LV160C T/B  
REVISION HISTORY  
Revision No. Description  
Page  
P1  
P57  
P54  
P15,36  
Date  
MAY/12/2005  
JUL/22/2005  
1.0  
1.1  
1. Removed "Preliminary"  
1. Added PB-free package information for 44-SOP  
2. Added "Recommended Operating Conditions"  
1. Modified Erase Resume from delay 10ms to delay 400us  
1.2  
JAN/19/2006  
P/N:PM1186  
REV. 1.2, JAN. 19, 2006  
65  
MX29LV160C T/B  
MACRONIX INTERNATIONALCO., LTD.  
Headquarters:  
TEL:+886-3-578-6688  
FAX:+886-3-563-2888  
Europe Office :  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
Hong Kong Office :  
TEL:+86-755-834-335-79  
FAX:+86-755-834-380-78  
Japan Office :  
Kawasaki Office :  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
Osaka Office :  
TEL:+81-6-4807-5460  
FAX:+81-6-4807-5461  
Singapore Office :  
TEL:+65-6346-5505  
FAX:+65-6348-8096  
Taipei Office :  
TEL:+886-2-2509-3300  
FAX:+886-2-2509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-262-8887  
FAX:+1-408-262-8810  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY