MX29LV640TTI-90 [Macronix]

64M-BIT [8M x 8/4M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY; 64M - BIT [ 8M ​​×8 / 4M ×16 ]单电压3V仅限于Flash存储器
MX29LV640TTI-90
型号: MX29LV640TTI-90
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

64M-BIT [8M x 8/4M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
64M - BIT [ 8M ​​×8 / 4M ×16 ]单电压3V仅限于Flash存储器

闪存 存储 内存集成电路 光电二极管
文件: 总70页 (文件大小:1166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX29LV640T/B  
64M-BIT[8Mx8/4Mx16] SINGLEVOLTAGE3VONLY  
FLASHMEMORY  
FEATURES  
GENERAL FEATURES  
SOFTWARE FEATURES  
• Single Power Supply Operation  
• Support Common Flash Interface (CFI)  
- 2.7 to 3.6 volt for read, erase, and program opera-  
tions  
• 8,388,608 x 8 / 4,194,304 x 16 switchable  
• Sector structure  
- 8KB (4KW) x 8 and 64KB(32KW) x 127  
• Sector Protection/Chip Unprotect  
- Provides sector group protect function to prevent  
program or erase operation in the protected sector  
group  
- Flash device parameters stored on the device and  
provide the host system to access.  
• Erase Suspend/ Erase Resume  
- Suspends sector erase operation to read data from  
or program data to another sector which is not being  
erased  
• Status Reply  
- Data polling & Toggle bits provide detection of pro-  
gram and erase operation completion  
- Provides chip unprotect function to allow code  
changes  
- Provides temporary sector group unprotect function  
for code changes in previously protected sector groups  
• Secured Silicon Sector  
HARDWARE FEATURES  
• Ready/Busy (RY/BY) Output  
- Provides a hardware method of detecting program  
and erase operation completion  
• Hardware Reset (RESET) Input  
- Provides a hardware method to reset the internal  
state machine to read mode  
- Provides a 128-word area for code or data that can  
be permanently protected.  
- Once this sector is protected, it is prohibited to pro-  
gram or erase within the sector again.  
• Latch-up protected to 250mA from -1V to Vcc + 1V  
• Low Vcc write inhibit is equal to or less than 1.5V  
• Compatible with JEDEC standard  
- Pin-out and software compatible to single power sup-  
ply Flash  
• WP Pin  
- Write protect (WP) function allows protection of two  
outermost boot sectors, regardless of sector protect  
status  
PACKAGE  
PERFORMANCE  
• High Performance  
• 48-pinTSOP  
• 63-ball CSP  
• 64-ball Easy BGA  
- Fast access time: 90/120ns  
- Fast program time:11us/word, 45s/chip (typical)  
- Fast erase time: 0.9s/sector, 45s/chip (typical)  
• Low Power Consumption  
- Low active read current: 10mA (typical) at 5MHz  
- Low standby current: 0.2uA (typ.)  
• Minimum 100,000 erase/program cycle  
• 20-year data retention  
GENERAL DESCRIPTION  
The standard MX29LV640T/B offers access time as fast  
as 90ns, allowing operation of high-speed microproces-  
sors without wait states. To eliminate bus contention,  
the MX29LV640T/B has separate chip enable (CE) and  
output enable (OE) controls.  
The MX29LV640T/B is a 64-mega bit Flash memory or-  
ganized as 8M bytes of 8 bits or 4M bytes of 16 bits.  
MXIC's Flash memories offer the most cost-effective and  
reliable read/write non-volatile random access memory.  
The MX29LV640T/B is packaged in 48-pin TSOP, 63-  
ball CSP and 64-ball Easy BGA. It is designed to be  
reprogrammed and erased in system or in standard  
EPROM programmers.  
MXIC's Flash memories augment EPROM functionality  
with in-circuit electrical erasure and programming. The  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
1
MX29LV640T/B  
MX29LV640T/B uses a command register to manage this  
functionality.  
AUTOMATIC SECTOR ERASE  
The MX29LV640T/B is sector(s) erasable using MXIC's  
Auto Sector Erase algorithm. Sector erase modes allow  
sectors of the array to be erased in one erase cycle. The  
Automatic Sector Erase algorithm automatically pro-  
grams the specified sector(s) prior to electrical erase.  
The timing and verification of electrical erase are con-  
trolled internally within the device.  
MXIC Flash technology reliably stores memory contents  
even after 100,000 erase and program cycles. The MXIC  
cell is designed to optimize the erase and program  
mechanisms. In addition, the combination of advanced  
tunnel oxide processing and low internal electric fields  
for erase and programming operations produces reliable  
cycling. The MX29LV640T/B uses a 2.7V to 3.6V VCC  
supply to perform the High Reliability Erase and auto  
Program/Erase algorithms.  
AUTOMATIC ERASE ALGORITHM  
The highest degree of latch-up protection is achieved  
with MXIC's proprietary non-epi process. Latch-up pro-  
tection is proved for stresses up to 100 milliamperes on  
address and data pin from -1V to VCC + 1V.  
MXIC's Automatic Erase algorithm requires the user to  
write commands to the command register using stan-  
dard microprocessor write timings. The device will auto-  
matically pre-program and verify the entire array. Then  
the device automatically times the erase pulse width,  
provides the erase verification, and counts the number  
of sequences. A status bit toggling between consecu-  
tive read cycles provides feedback to the user as to the  
status of the programming operation.  
AUTOMATIC PROGRAMMING  
The MX29LV640T/B is byte/word programmable using  
the Automatic Programming algorithm. The Automatic  
Programming algorithm makes the external system do  
not need to have time out sequence nor to verify the  
data programmed. The typical chip programming time at  
room temperature of the MX29LV640T/B is less than 50  
seconds.  
Register contents serve as inputs to an internal state-  
machine which controls the erase and programming cir-  
cuitry. During write cycles, the command register inter-  
nally latches address and data needed for the program-  
ming and erase operations. During a system write cycle,  
addresses are latched on the falling edge, and data are  
latched on the rising edge of WE .  
AUTOMATIC PROGRAMMING ALGORITHM  
MXIC's Flash technology combines years of EPROM  
experience to produce the highest levels of quality, reli-  
ability, and cost effectiveness.The MX29LV640T/B elec-  
trically erases all bits simultaneously using Fowler-  
Nordheim tunneling. The bytes are programmed by us-  
ing the EPROM programming mechanism of hot elec-  
tron injection.  
MXIC's Automatic Programming algorithm require the user  
to only write program set-up commands (including 2 un-  
lock write cycle and A0H) and a program command (pro-  
gram data and address). The device automatically times  
the programming pulse width, provides the program veri-  
fication, and counts the number of sequences. A status  
bit similar to DATA polling and a status bit toggling be-  
tween consecutive read cycles, provide feedback to the  
user as to the status of the programming operation.  
During a program cycle, the state-machine will control  
the program sequences and command register will not  
respond to any command set. During a Sector Erase  
cycle, the command register will only respond to Erase  
Suspend command. After Erase Suspend is completed,  
the device stays in read mode. After the state machine  
has completed its task, it will allow the command regis-  
ter to respond to its full command set.  
AUTOMATIC CHIP ERASE  
The entire chip is bulk erased using 50 ms erase pulses  
according to MXIC's Automatic Chip Erase algorithm.  
Typical erasure at room temperature is accomplished in  
less than 115 seconds. The Automatic Erase algorithm  
automatically programs the entire array prior to electrical  
erase. The timing and verification of electrical erase are  
controlled internally within the device.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
2
MX29LV640T/B  
PIN CONFIGURATION  
48 TSOP  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE  
GND  
Q15/A-1  
Q7  
2
3
4
5
6
Q14  
Q6  
7
A8  
8
Q13  
Q5  
A19  
A20  
WE  
RESET  
A21  
WP  
RY/BY  
A18  
A17  
A7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Q12  
Q4  
V
CC  
MX29LV640T/B  
Q11  
Q3  
Q10  
Q2  
Q9  
Q1  
A6  
Q8  
A5  
Q0  
A4  
OE  
GND  
CE  
A0  
A3  
A2  
A1  
63 Ball CSP (TopView, Ball Down)  
12.0 mm  
8
7
6
5
4
3
2
1
NC  
NC  
NC*  
NC*  
NC  
NC  
NC*  
NC*  
Q15/  
A-1  
A13  
A9  
A12  
A14  
A10  
A15  
A11  
A16  
Q7  
BYTE  
GND  
Q6  
A8  
Q14  
Q12  
Q13  
RESET  
WE  
RY/BY  
A7  
A21  
A18  
A6  
A19  
A20  
A5  
Q5  
Q2  
Q0  
A0  
VCC  
Q11  
Q9  
Q4  
Q3  
11.0 mm  
Q10  
Q8  
WP  
A17  
Q1  
NC*  
NC*  
A3  
A4  
A2  
A1  
CE  
OE  
GND  
NC*  
NC*  
NC*  
B
NC*  
M
NC*  
L
A
C
D
E
F
G
H
J
K
* Ball are shorted together via the substrate but not connected to the die.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
3
MX29LV640T/B  
64 Ball Easy BGA (TopView, Ball Down)  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
NC  
H8  
NC  
NC  
NC  
NC  
GND  
NC  
NC  
A7  
B7  
C7  
D7  
E7  
F7  
G7  
H7  
A13  
A12  
A14  
A15  
A16  
BYTE  
Q15  
GND  
A6  
A9  
B6  
A8  
C6  
D6  
E6  
Q7  
F6  
G6  
H6  
Q6  
A10  
A11  
Q14  
Q13  
A5  
B5  
C5  
D5  
E5  
Q5  
F5  
G5  
H5  
Q4  
WE  
RESET  
A21  
A19  
Q12  
VCC  
10 mm  
A4  
B4  
C4  
D4  
E4  
Q2  
F4  
G4  
H4  
Q3  
RY/BY  
WP  
A18  
A20  
Q10  
Q11  
A3  
A7  
B3  
C3  
A6  
D3  
A5  
E3  
Q0  
F3  
G3  
Q9  
H3  
Q1  
A17  
Q8  
A2  
A3  
B2  
A4  
C2  
A2  
D2  
A1  
E2  
A0  
F2  
G2  
OE  
H2  
CE  
GND  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
NC  
H1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
13mm  
LOGIC SYMBOL  
PIN DESCRIPTION  
SYMBOL PIN NAME  
22  
16 or 8  
A0~A21  
Q0~Q14  
Q15/A-1  
CE  
Address Input  
Data Inputs/Outputs  
A0-A21  
Q0-Q15  
(A-1)  
Q15(Word Mode)/LSB addr(Byte Mode)  
Chip Enable Input  
WE  
Write Enable Input  
OE  
Output Enable Input  
CE  
OE  
WE  
RESET  
WP  
Hardware Reset Pin, Active Low  
HardwareWrite Protect  
Read/Busy Output  
RY/BY  
VCC  
+3.0V single power supply  
Device Ground  
RY/BY  
GND  
RESET  
WP  
NC  
Pin Not Connected Internally  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
4
MX29LV640T/B  
BLOCK DIAGRAM  
CE  
OE  
WRITE  
STATE  
CONTROL  
INPUT  
PROGRAM/ERASE  
HIGH VOLTAGE  
WE  
MACHINE  
(WSM)  
WP  
LOGIC  
BYTE  
RESET  
STATE  
MX29LV640T/B  
FLASH  
ADDRESS  
LATCH  
REGISTER  
ARRAY  
ARRAY  
A0-A21  
AND  
SOURCE  
HV  
BUFFER  
Y-PASS GATE  
COMMAND  
DATA  
DECODER  
PGM  
SENSE  
DATA  
HV  
AMPLIFIER  
COMMAND  
DATA LATCH  
PROGRAM  
DATA LATCH  
Q0-Q15  
I/O BUFFER  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
5
MX29LV640T/B  
MX29LV640T SECTOR GROUP ARCHITECTURE  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
(x8)  
(x16)  
Group  
1
A21-A12  
Address Range  
Address Range  
SA0  
0000000xxx  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001110xxx  
0001111xxx  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011100xxx  
0011101xxx  
0011110xxx  
0011111xxx  
0100000xxx  
0100001xxx  
0100010xxx  
0100011xxx  
0100100xxx  
0100101xxx  
0100110xxx  
0100111xxx  
000000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
000000h-07FFFh  
008000h-0FFFFh  
010000h-17FFFh  
018000h-01FFFFh  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
100000h-107FFFh  
108000h-10FFFFh  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
130000h-137FFFh  
138000h-13FFFFh  
1
SA1  
1
SA2  
1
SA3  
2
SA4  
2
SA5  
2
SA6  
2
SA7  
3
SA8  
3
SA9  
3
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9
10  
10  
10  
10  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
6
MX29LV640T/B  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
(x8)  
(x16)  
Group  
11  
11  
11  
11  
12  
12  
12  
12  
13  
13  
13  
13  
14  
14  
14  
14  
15  
15  
15  
15  
16  
16  
16  
16  
17  
17  
17  
17  
18  
18  
18  
18  
19  
19  
19  
19  
20  
20  
20  
20  
A21-A12  
Address Range  
Address Range  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0110100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
400000h-40FFFFh  
410000h-41FFFFh  
420000h-42FFFFh  
430000h-43FFFFh  
440000h-44FFFFh  
450000h-45FFFFh  
460000h-46FFFFh  
470000h-47FFFFh  
480000h-48FFFFh  
490000h-49FFFFh  
4A0000h-4AFFFFh  
4B0000h-4BFFFFh  
4C0000h-4CFFFFh  
4D0000h-4DFFFFh  
4E0000h-4EFFFFh  
4F0000h-4FFFFFh  
140000h-147FFFh  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
160000h-147FFFh  
168000h-14FFFFh  
170000h-177FFFh  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1FFFFFh  
200000h-207FFFh  
208000h-20FFFFh  
210000h-217FFFh  
218000h-21FFFFh  
220000h-227FFFh  
228000h-22FFFFh  
230000h-237FFFh  
238000h-23FFFFh  
240000h-247FFFh  
248000h-24FFFFh  
250000h-257FFFh  
258000h-25FFFFh  
260000h-247FFFh  
268000h-24FFFFh  
270000h-277FFFh  
278000h-27FFFFh  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
7
MX29LV640T/B  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
(x8)  
(x16)  
Group  
21  
21  
21  
21  
22  
22  
22  
22  
23  
23  
23  
23  
24  
24  
24  
24  
25  
25  
25  
25  
26  
26  
26  
26  
27  
27  
27  
27  
28  
28  
28  
28  
29  
29  
29  
29  
30  
30  
30  
30  
A21-A12  
Address Range  
Address Range  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
1011101xxx  
1011110xxx  
1011111xxx  
1100000xxx  
1100001xxx  
1100010xxx  
1100011xxx  
500000h-50FFFFh  
510000h-51FFFFh  
520000h-52FFFFh  
530000h-53FFFFh  
540000h-54FFFFh  
550000h-55FFFFh  
560000h-56FFFFh  
570000h-57FFFFh  
580000h-58FFFFh  
590000h-59FFFFh  
5A0000h-5AFFFFh  
5B0000h-5BFFFFh  
5C0000h-5CFFFFh  
5D0000h-5DFFFFh  
5E0000h-5EFFFFh  
5F0000h-5FFFFFh  
600000h-60FFFFh  
610000h-61FFFFh  
620000h-62FFFFh  
630000h-63FFFFh  
640000h-64FFFFh  
650000h-65FFFFh  
660000h-66FFFFh  
670000h-67FFFFh  
680000h-68FFFFh  
690000h-69FFFFh  
6A0000h-6AFFFFh  
6B0000h-6BFFFFh  
6C0000h-6CFFFFh  
6D0000h-6DFFFFh  
6E0000h-6EFFFFh  
6F0000h-6FFFFFh  
700000h-70FFFFh  
710000h-71FFFFh  
720000h-72FFFFh  
730000h-73FFFFh  
740000h-74FFFFh  
750000h-75FFFFh  
760000h-76FFFFh  
770000h-77FFFFh  
280000h-287FFFh  
288000h-28FFFFh  
290000h-297FFFh  
298000h-29FFFFh  
2A0000h-2A7FFFh  
2A8000h-2AFFFFh  
2B0000h-2B7FFFh  
2B8000h-2BFFFFh  
2C0000h-2C7FFFh  
2C8000h-2CFFFFh  
2D0000h-2D7FFFh  
2D8000h-2DFFFFh  
2E0000h-2E7FFFh  
2E8000h-2EFFFFh  
2F0000h-2F7FFFh  
2F8000h-2FFFFFh  
300000h-307FFFh  
308000h-30FFFFh  
310000h-317FFFh  
318000h-31FFFFh  
320000h-327FFFh  
328000h-32FFFFh  
330000h-337FFFh  
338000h-33FFFFh  
340000h-347FFFh  
348000h-34FFFFh  
350000h-357FFFh  
358000h-35FFFFh  
360000h-347FFFh  
368000h-34FFFFh  
370000h-377FFFh  
378000h-37FFFFh  
380000h-387FFFh  
388000h-38FFFFh  
390000h-397FFFh  
398000h-39FFFFh  
3A0000h-3A7FFFh  
3A8000h-3AFFFFh  
3B0000h-3B7FFFh  
3B8000h-3BFFFFh  
SA100 1100100xxx  
SA101 1100101xxx  
SA102 1100110xxx  
SA103 1100111xxx  
SA104 1101000xxx  
SA105 1101001xxx  
SA106 1101010xxx  
SA107 1101011xxx  
SA108 1101100xxx  
SA109 1101101xxx  
SA110 1101110xxx  
SA111 1101111xxx  
SA112 1110000xxx  
SA113 1110001xxx  
SA114 1110010xxx  
SA115 1110011xxx  
SA116 1110100xxx  
SA117 1110101xxx  
SA118 1110110xxx  
SA119 1110111xxx  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
8
MX29LV640T/B  
Sector Sector Sector Address  
Sector Size  
(x8)  
(x16)  
Group  
31  
A21-A12  
(Kbytes/Kwords)  
Address Range  
Address Range  
SA120 1111000xxx  
SA121 1111001xxx  
SA122 1111010xxx  
SA123 1111011xxx  
SA124 1111100xxx  
SA125 1111101xxx  
SA126 1111110xxx  
SA127 1111111000  
SA128 1111111001  
SA129 1111111010  
SA130 1111111011  
SA131 1111111100  
SA132 1111111101  
SA133 1111111110  
SA134 1111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
780000h-78FFFFh  
790000h-79FFFFh  
7A0000h-7AFFFFh  
7B0000h-7BFFFFh  
7C0000h-7CFFFFh  
7D0000h-7DFFFFh  
7E0000h-7EFFFFh  
7F0000h-7F1FFFh  
7F2000h-7F3FFFh  
7F4000h-7F5FFFh  
7F6000h-7F7FFFh  
7F8000h-7F9FFFh  
7FA000h-7FBFFFh  
7FC000h-7FDFFFh  
7FE000h-7FFFFFh  
3C0000h-3C7FFFh  
3C8000h-3CFFFFh  
3D0000h-3D7FFFh  
3D8000h-3DFFFFh  
3E0000h-3E7FFFh  
3E8000h-3EFFFFh  
3F0000h-3F7FFFh  
3F8000h-3FFFFFh  
3F9000h-3F9FFFh  
3FA000h-3FAFFFh  
3FB000h-3FBFFFh  
3FC000h-3FCFFFh  
3FD000h-3FDFFFh  
3FE000h-3FEFFFh  
3FF000h-3FFFFFh  
31  
31  
31  
32  
32  
32  
33  
34  
8/4  
35  
8/4  
36  
8/4  
37  
8/4  
38  
8/4  
39  
8/4  
40  
8/4  
Note:The address range is A21:A-1 in byte mode (BYTE=VIL) or A20:A0 in word mode (BYTE=VIH)  
Top Boot Security Sector Addresses  
Sector Address  
A21~A12  
Sector Size  
(bytes/words)  
256/128  
(x8)  
(x16)  
Address Range  
7FFF00h-7FFFFFh  
Address Range  
3FFF70h-3FFFFFh  
1111111111  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
9
MX29LV640T/B  
MX29LV640B SECTOR GROUP ARCHITECTURE  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
8/4  
(x8)  
(x16)  
Group  
1
A21-A12  
Address Range  
Address Range  
SA0  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001110xxx  
0001111xxx  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011100xxx  
0011101xxx  
0011110xxx  
0011111xxx  
000000h-001FFFh  
002000h-003FFFh  
004000h-005FFFh  
006000h-007FFFh  
008000h-009FFFh  
00A000h-00BFFFh  
00C000h-00DFFFh  
00E000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
000000h-000FFFh  
001000h-001FFFh  
002000h-002FFFh  
003000h-003FFFh  
004000h-004FFFh  
005000h-005FFFh  
006000h-006FFFh  
007000h-007FFFh  
008000h-00FFFFh  
010000h-017FFFh  
018000h-01FFFFh  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
2
SA1  
8/4  
3
SA2  
8/4  
4
SA3  
8/4  
5
SA4  
8/4  
6
SA5  
8/4  
7
SA6  
8/4  
8
SA7  
8/4  
9
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
9
SA9  
9
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
10  
10  
10  
10  
11  
11  
11  
11  
12  
12  
12  
12  
13  
13  
13  
13  
14  
14  
14  
14  
15  
15  
15  
15  
16  
16  
16  
16  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
10  
MX29LV640T/B  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
(x8)  
(x16)  
Group  
17  
17  
17  
17  
18  
18  
18  
18  
19  
19  
19  
19  
20  
20  
20  
20  
21  
21  
21  
21  
22  
22  
22  
22  
23  
23  
23  
23  
24  
24  
24  
24  
25  
25  
25  
25  
26  
26  
26  
26  
A21-A12  
Address Range  
Address Range  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
0100000xxx  
0100001xxx  
0100010xxx  
0100011xxx  
0100100xxx  
0100101xxx  
0100110xxx  
0100111xxx  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0110100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
400000h-40FFFFh  
410000h-41FFFFh  
420000h-42FFFFh  
430000h-43FFFFh  
440000h-44FFFFh  
450000h-45FFFFh  
460000h-46FFFFh  
470000h-47FFFFh  
100000h-107FFFh  
108000h-10FFFFh  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
130000h-137FFFh  
138000h-13FFFFh  
140000h-147FFFh  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
160000h-167FFFh  
168000h-16FFFFh  
170000h-177FFFh  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1FFFFFh  
200000h-207FFFh  
208000h-20FFFFh  
210000h-217FFFh  
218000h-21FFFFh  
220000h-227FFFh  
228000h-22FFFFh  
230000h-237FFFh  
238000h-23FFFFh  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
11  
MX29LV640T/B  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
(x8)  
(x16)  
Group  
27  
27  
27  
27  
28  
28  
28  
28  
29  
29  
29  
29  
30  
30  
30  
30  
31  
31  
31  
31  
32  
32  
32  
32  
33  
33  
33  
33  
34  
34  
34  
34  
35  
35  
35  
35  
36  
36  
36  
36  
A21-A12  
Address Range  
Address Range  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
480000h-48FFFFh  
490000h-49FFFFh  
4A0000h-4AFFFFh  
4B0000h-4BFFFFh  
4C0000h-4CFFFFh  
4D0000h-4DFFFFh  
4E0000h-4EFFFFh  
4F0000h-4FFFFFh  
500000h-50FFFFh  
510000h-51FFFFh  
520000h-52FFFFh  
530000h-53FFFFh  
540000h-54FFFFh  
550000h-55FFFFh  
560000h-56FFFFh  
570000h-57FFFFh  
580000h-58FFFFh  
590000h-59FFFFh  
5A0000h-5AFFFFh  
5B0000h-5BFFFFh  
5C0000h-5CFFFFh  
5D0000h-5DFFFFh  
5E0000h-5EFFFFh  
5F0000h-5FFFFFh  
600000h-60FFFFh  
610000h-61FFFFh  
620000h-62FFFFh  
630000h-63FFFFh  
640000h-64FFFFh  
650000h-65FFFFh  
660000h-66FFFFh  
670000h-67FFFFh  
680000h-68FFFFh  
690000h-69FFFFh  
6A0000h-6AFFFFh  
6B0000h-6BFFFFh  
6C0000h-6CFFFFh  
6D0000h-6DFFFFh  
6E0000h-6EFFFFh  
6F0000h-6FFFFFh  
240000h-247FFFh  
248000h-24FFFFh  
250000h-257FFFh  
258000h-25FFFFh  
260000h-267FFFh  
268000h-26FFFFh  
270000h-277FFFh  
278000h-27FFFFh  
280000h-287FFFh  
288000h-28FFFFh  
290000h-297FFFh  
298000h-29FFFFh  
2A0000h-2A7FFFh  
2A8000h-2AFFFFh  
2B0000h-2B7FFFh  
2B8000h-2BFFFFh  
2C0000h-2C7FFFh  
2C8000h-2CFFFFh  
2D0000h-2D7FFFh  
2D8000h-2DFFFFh  
2E0000h-2E7FFFh  
2E8000h-2EFFFFh  
2F0000h-2F7FFFh  
2F8000h-2FFFFFh  
300000h-307FFFh  
308000h-30FFFFh  
310000h-317FFFh  
318000h-31FFFFh  
320000h-327FFFh  
328000h-32FFFFh  
330000h-337FFFh  
338000h-33FFFFh  
340000h-347FFFh  
348000h-34FFFFh  
350000h-357FFFh  
358000h-35FFFFh  
360000h-367FFFh  
368000h-36FFFFh  
370000h-377FFFh  
378000h-37FFFFh  
SA100 1011101xxx  
SA101 1011110xxx  
SA102 1011111xxx  
SA103 1100000xxx  
SA104 1100001xxx  
SA105 1100010xxx  
SA106 1100011xxx  
SA107 1100100xxx  
SA108 1100101xxx  
SA109 1100110xxx  
SA110 1100111xxx  
SA111 1101000xxx  
SA112 1101001xxx  
SA113 1101010xxx  
SA114 1101011xxx  
SA115 1101100xxx  
SA116 1101101xxx  
SA117 1101110xxx  
SA118 1101111xxx  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
12  
MX29LV640T/B  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
64/32  
(x8)  
(x16)  
Group  
37  
A21-A12  
Address Range  
Address Range  
SA119 1110000xxx  
SA120 1110001xxx  
SA121 1110010xxx  
SA122 1110011xxx  
SA123 1110100xxx  
SA124 1110101xxx  
SA125 1110110xxx  
SA126 1110111xxx  
SA127 1111000xxx  
SA128 1111001xxx  
SA129 1111010xxx  
SA130 1111011xxx  
SA131 1111100xxx  
SA132 1111101xxx  
SA133 1111110xxx  
SA134 1111111xxx  
700000h-70FFFFh  
710000h-71FFFFh  
720000h-72FFFFh  
730000h-73FFFFh  
740000h-74FFFFh  
750000h-75FFFFh  
760000h-76FFFFh  
770000h-77FFFFh  
780000h-78FFFFh  
790000h-79FFFFh  
7A0000h-7AFFFFh  
7B0000h-7BFFFFh  
7C0000h-7CFFFFh  
7D0000h-7DFFFFh  
7E0000h-7EFFFFh  
7F0000h-7FFFFFh  
380000h-387FFFh  
388000h-38FFFFh  
390000h-397FFFh  
398000h-39FFFFh  
3A0000h-3A7FFFh  
3A8000h-3AFFFFh  
3B0000h-3B7FFFh  
3B8000h-3BFFFFh  
3C0000h-3C7FFFh  
3C8000h-3CFFFFh  
3D0000h-3D7FFFh  
3D8000h-3DFFFFh  
3E0000h-3E7FFFh  
3E8000h-3EFFFFh  
3F0000h-3F7FFFh  
3F8000h-3FFFFFh  
37  
64/32  
37  
64/32  
37  
64/32  
38  
64/32  
38  
64/32  
38  
64/32  
38  
64/32  
39  
64/32  
39  
64/32  
39  
64/32  
39  
64/32  
40  
64/32  
40  
64/32  
40  
64/32  
40  
64/32  
Note:The address range is A20:A-1 in byte mode (BYTE=VIL) or A20:A0 in word mode (BYTE=VIH)  
Bottom Boot Security Sector Addresses  
Sector Address  
A21~A12  
Sector Size  
(bytes/words)  
256/128  
(x8)  
(x16)  
Address Range  
000000h-0000FFh  
Address Range  
000000-00007Fh  
0000000000  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
13  
MX29LV640T/B  
Table 1  
BUS OPERATION (1)  
Operation  
CE  
OE WE  
RESET  
WP  
L/H  
Address  
Q15~Q0  
DOUT  
Read  
L
L
H
X
H
X
H
H
L
H
AIN  
AIN  
X
Write (Program/Erase)  
Standby  
L
H
(Note 2)  
H
DIN  
VCC±0.3V  
X
H
X
L
VCC±0.3V  
High-Z  
High-Z  
High-Z  
Output Disable  
Reset  
L
X
L
H
L
L/H  
X
L/H  
X
Sector Group Protect  
(Note 2)  
VID  
L/H  
Sector Addresses, DIN, DOUT  
A6=L, A1=H, A0=L  
Chip unprotect  
(Note 2)  
L
H
X
L
VID  
VID  
(Note 2)  
(Note 2)  
Sector Addresses, DIN, DOUT  
A6=H, A1=H, A0=L  
Temporary Sector Group  
Unprotect  
X
X
AIN  
DIN  
Legend:  
L=Logic LOW=VIL, H=Logic High=VIH, VID=12.0±0.5V, X=Don't Care, AIN=Address IN, DIN=Data IN, DOUT=Data OUT  
Notes:  
1. The sector group protect and chip unprotect functions may also be implemented via programming equipment. See  
the "Sector Group Protection and Chip Unprotect" section.  
2. If WP=VIL, the two outermost boot sectors remain protected. If WP=VIH, the two outermost boot sector protec-  
tion depends on whether they were last protected or unprotect using the method described in "Sector/ Sector Block  
Protection and Unprotect".  
3. DIN or DOUT as required by command sequence, Data polling or sector protect algorithm (see Figure 2).  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
14  
MX29LV640T/B  
AUTOSELECT CODES (High Voltage Method)  
Operation  
CE OE WE A0 A1 A5 A6 A8 A9 A14 A15  
Q0~Q15  
to  
A2  
X
to  
A7  
X
to to  
A10 A21  
Manufactures Code  
Read Device Code  
Silicon (Top Boot Block)  
L
L
L
L
H
H
L
L
L
X
X
VID  
VID  
X
X
X
X
XXC2H  
22C9H (word)  
XXC9H (byte)  
22CBH (word)  
XXCBH (byte)  
Code(1)  
H
X
X
ID  
Device Code  
L
L
L
L
L
L
H
H
H
H
X
H
L
X
X
X
X
X
L
X
X
X
VID  
VID  
VID  
X
X
X
X
SA  
X
(Bottom Boot Block)  
Sector Protect Verify  
Secured Silicon Sector  
Indicator Bit (Q7)  
H
H
xx88h  
(factory locked)  
xx08h  
(non-factory locked)  
Notes:  
1.code=xx00h means unprotected, or code=xx01h means protected, SA=Sector Address, X=Don't care.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
15  
MX29LV640T/B  
REQUIREMENTS FOR READING ARRAY  
DATA  
STANDBY MODE  
MX29LV640T/B can be set into Standby mode with two  
different approaches. One is using both CE and RESET  
pins and the other one is using RESET pin only.  
To read array data from the outputs, the system must  
drive the CE and OE pins toVIL.CE is the power control  
and selects the device. OE is the output control and gates  
array data to the output pins.WE should remain at VIH.  
When using both pins of CE and RESET, a CMOS  
Standby mode is achieved with both pins held at Vcc ±  
0.3V. Under this condition, the current consumed is less  
than 0.2uA (typ.). If both of the CE and RESET are held  
atVIH, but not within the range ofVCC ± 0.3V, the device  
will still be in the standby mode, but the standby current  
will be larger. During Auto Algorithm operation, Vcc ac-  
tive current (Icc2) is required even CE = "H" until the  
operation is completed.The device can be read with stan-  
dard access time (tCE) from either of these standby  
modes.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory content  
occurs during the power transition. No command is  
necessary in this mode to obtain array data. Standard  
microprocessor read cycles that assert valid address on  
the device address inputs produce valid data on the device  
data outputs.The device remains enabled for read access  
until the command register contents are altered.  
When using only RESET, a CMOS standby mode is  
achieved with RESET input held at Vss ±0.3V, Under  
this condition the current is consumed less than 1uA  
(typ.). Once the RESET pin is taken high, the device is  
back to active without recovery delay.  
WRITE COMMANDS/COMMAND  
SEQUENCES  
To program data to the device or erase sectors of memory  
, the system must drive WE and CE to VIL, and OE to  
VIH.  
In the standby mode the outputs are in the high imped-  
ance state, independent of the OE input.  
An erase operation can erase one sector, multiple sectors  
, or the entire device.Table indicates the address space  
that each sector occupies. A "sector address" consists  
of the address bits required to uniquely select a sector.  
The "Writing specific address and data commands or  
sequences into the command register initiates device  
operations. Table 1 defines the valid register command  
sequences.Writing incorrect address and data values or  
writing them in the improper sequence resets the device  
to reading array data. Section has details on erasing a  
sector or the entire chip, or suspending/resuming the erase  
operation.  
MX29LV640T/B is capable to provide the Automatic  
Standby Mode to restrain power consumption during read-  
out of data. This mode can be used effectively with an  
application requested low power consumption such as  
handy terminals.  
To active this mode, MX29LV640T/B automatically switch  
themselves to low power mode when MX29LV640T/B  
addresses remain stable during access time of  
tACC+30ns. It is not necessary to control CE, WE, and  
OE on the mode. Under the mode, the current consumed  
is typically 0.2uA (CMOS level).  
After the system writes the Automatic Select command  
sequence, the device enters the Automatic Select mode.  
The system can then read Automatic Select codes from  
the internal register (which is separate from the memory  
array) on Q7-Q0. Standard read cycle timings apply in  
this mode. Refer to the Automatic Select Mode and  
Automatic Select Command Sequence section for more  
information.  
AUTOMATIC SLEEP MODE  
The automatic sleep mode minimizes Flash device en-  
ergy consumption.The device automatically enables this  
mode when address remain stable for tACC+30ns.The  
automatic sleep mode is independent of the CE, WE,  
and OE control signals. Standard address access tim-  
ings provide new data when addresses are changed.While  
in sleep mode, output data is latched and always avail-  
able to the system. ICC4 in the DC Characteristics table  
represents the automatic sleep mode current specifica-  
tion.  
ICC2 in the DC Characteristics table represents the active  
current specification for the write mode. The "AC  
Characteristics" section contains timing specification  
table and timing diagrams for write operations.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
16  
MX29LV640T/B  
which are protected or unprotected at the same time.To  
activate this mode, the programming equipment must  
force VID on address pin A9 and control pin OE, (sug-  
gest VID = 12V) A6 = VIL and CE = VIL. (see Table 2)  
Programming of the protection circuitry begins on the  
falling edge of the WE pulse and is terminated on the  
rising edge. Please refer to sector group protect algo-  
rithm and waveform.  
OUTPUT DISABLE  
With the OE input at a logic high level (VIH), output from  
the devices are disabled.This will cause the output pins  
to be in a high impedance state.  
RESET OPERATION  
The RESET pin provides a hardware method of resetting  
the device to reading array data.When the RESET pin is  
driven low for at least a period of tRP, the device  
immediately terminates any operation in progress,  
tristates all output pins, and ignores all read/write  
commands for the duration of the RESET pulse. The  
device also resets the internal state machine to reading  
array data.The operation that was interrupted should be  
reinitiated once the device is ready to accept another  
command sequence, to ensure data integrity  
MX29LV640T/B also provides another method.Which re-  
quiresVID on the RESET only.This method can be imple-  
mented either in-system or via programming equipment.  
This method uses standard microprocessor bus cycle  
timing.  
To verify programming of the protection circuitry, the pro-  
gramming equipment must forceVID on address pin A9  
( with CE and OE at VIL and WE at VIH). When A1=1, it  
will produce a logical "1" code at device output Q0 for a  
protected sector. Otherwise the device will produce 00H  
for the unprotected sector. In this mode, the addresses,  
except for A1, are don't care. Address locations with A1  
=VIL are reserved to read manufacturer and device codes.  
(Read Silicon ID)  
Current is reduced for the duration of the RESET pulse.  
When RESET is held at VSS±0.3V, the device draws  
CMOS standby current (ICC4). If RESET is held at VIL  
but not within VSS±0.3V, the standby current will be  
greater.  
It is also possible to determine if the group is protected  
in the system by writing a Read Silicon ID command.  
Performing a read operation with A1=VIH, it will produce  
a logical "1" at Q0 for the protected sector.  
The RESET pin may be tied to system reset circuitry. A  
system reset would that also reset the Flash memory,  
enabling the system to read the boot-up firmware from  
the Flash memory.  
If RESET is asserted during a program or erase  
operation, the RY/BY pin remains a "0" (busy) until the  
internal reset operation is complete, which requires a time  
of tREADY (during Embedded Algorithms).The system  
can thus monitor RY/BY to determine whether the reset  
operation is complete. If RESET is asserted when a  
program or erase operation is completed within a time of  
tREADY (not during Embedded Algorithms).The system  
can read data tRH after the RESET pin returns to VIH.  
CHIP UNPROTECT OPERATION  
The MX29LV640T/B also features the chip unprotect  
mode, so that all sectors are unprotected after chip  
unprotect is completed to incorporate any changes in  
the code. It is recommended to protect all sectors before  
activating chip unprotect mode.  
To activate this mode, the programming equipment must  
forceVID on control pin OE and address pin A9. The CE  
pins must be set at VIL. Pins A6 must be set to VIH.  
(seeTable 2) Refer to chip unprotect algorithm and wave-  
form for the chip unprotect algorithm. The unprotect  
mechanism begins on the falling edge of the WE pulse  
and is terminated on the rising edge.  
Refer to the AC Characteristics tables for RESET  
parameters and to Figure 14 for the timing diagram.  
SECTOR GROUP PROTECT OPERATION  
The MX29LV640T/B features hardware sector group pro-  
tection. This feature will disable both program and erase  
operations for these sector group protected. In this de-  
vice, a sector group consists of four adjacent sectors  
MX29LV640T/B also provides another method.Which re-  
quiresVID on the RESET only.This method can be imple-  
mented either in-system or via programming equipment.  
This method uses standard microprocessor bus cycle  
timing.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
17  
MX29LV640T/B  
It is also possible to determine if the chip is unprotect in  
the system by writing the Read Silicon ID command.  
Performing a read operation with A1=VIH, it will produce  
00H at data outputs (Q0-Q7) for an unprotect sector.It is  
noted that all sectors are unprotected after the chip  
unprotect algorithm is completed.  
SILICON ID READ OPERATION  
Flash memories are intended for use in applications where  
the local CPU alters memory contents. As such, manu-  
facturer and device codes must be accessible while the  
device resides in the target system. PROM program-  
mers typically access signature codes by raising A9 to  
a high voltage. However, multiplexing high voltage onto  
address lines is not generally desired system design prac-  
tice.  
WRITE PROTECT (WP)  
The write protect function provides a hardware method  
to protect boot sectors without using VID.  
MX29LV640T/B provides hardware method to access the  
silicon ID read operation.Which method requiresVID on  
A9 pin, VIL on CE, OE, A6, and A1 pins. Which apply  
VIL on A0 pin, the device will output MXIC's manufac-  
ture code of C2H.Which applyVIH on A0 pin, the device  
will output MX29LV640T/B device code of C9H/CBH.  
If the system asserts VIL on the WP pin, the device  
disables program and erase functions in the two "outer-  
most" 8 Kbyte boot sectors independently of whether  
those sectors were protected or unprotect using the  
method described in Sector/Sector Group Protection and  
Chip Unprotect". The two outermost 8 Kbyte boot sec-  
tors are the two sectors containing the lowest addresses  
in a bottom-boot-configured device, or the two sectors  
containing the highest addresses in a top-boot-config-  
ured device.  
VERIFY SECTOR GROUP PROTECT STATUS  
OPERATION  
MX29LV640T/B provides hardware method for sector  
group protect status verify. Which method requires VID  
on A9 pin, VIH on WE and A1 pins, VIL on CE, OE, A6,  
and A0 pins, and sector address on A16 to A21 pins.  
Which the identified sector is protected, the device will  
output 01H. Which the identified sector is not protect,  
the device will output 00H.  
If the system asserts VIH on the WP pin, the device  
reverts to whether the two outermost 8K Byte boot sec-  
tors were last set to be protected or unprotect. That is,  
sector protection or unprotection for these two sectors  
depends on whether they were last protected or unprotect  
using the method described in "Sector/Sector Group Pro-  
tection and Chip Unprotect".  
DATA PROTECTION  
Note that the WP pin must not be left floating or uncon-  
nected; inconsistent behavior of the device may result.  
The MX29LV640T/B is designed to offer protection  
against accidental erasure or programming caused by  
spurious system level signals that may exist during power  
transition. During power up the device automatically re-  
sets the state machine in the Read mode. In addition,  
with its control register architecture, alteration of the  
memory contents only occurs after successful comple-  
tion of specific command sequences. The device also  
incorporates several features to prevent inadvertent write  
cycles resulting fromVCC power-up and power-down tran-  
sition or system noise.  
TEMPORARY SECTOR GROUP UNPROTECT  
OPERATION  
This feature allows temporary unprotect of previously  
protected sector to change data in-system.TheTempo-  
rary Sector Unprotect mode is activated by setting the  
RESET pin toVID(11.5V-12.5V). During this mode, for-  
merly protected sectors can be programmed or erased  
as unprotect sector. Once VID is remove from the RE-  
SET pin, all the previously protected sectors are pro-  
tected again.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
18  
MX29LV640T/B  
SECURED SILICON SECTOR  
LOW VCC WRITE INHIBIT  
The MX29LV640T/B features a OTP memory region  
where the system may access through a command se-  
quence to create a permanent part identification as so  
called Electronic Serial Number (ESN) in the device.  
Once this region is programmed, any further modifica-  
tion on the region is impossible.The secured silicon sector  
is a 128 words in length, and uses a Secured Silicon  
Sector Indicator Bit (Q7) to indicate whether or not the  
Secured Silicon Sector is locked when shipped from the  
factory. This bit is permanently set at the factory and  
cannot be changed, which prevent duplication of a fac-  
tory locked part. This ensures the security of the ESN  
once the product is shipped to the field.  
When VCC is less than VLKO the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down.The command register and  
all internal program/erase circuits are disabled, and the  
device resets. Subsequent writes are ignored until VCC  
is greater thanVLKO. The system must provide the proper  
signals to the control pins to prevent unintentional write  
whenVCC is greater thanVLKO.  
WRITE PULSE "GLITCH" PROTECTION  
Noise pulses of less than 5ns (typical) on CE or WE will  
not initiate a write cycle.  
The MX29LV640T/B offers the device with Secured Sili-  
con Sector either factory locked or customer lockable.  
The factory-locked version is always protected when  
shipped from the factory , and has the Secured Silicon  
Sector Indicator Bit permanently set to a "1". The cus-  
tomer-lockable version is shipped with the Secured Sili-  
con Sector unprotected, allowing customers to utilize  
that sector in any form they prefer. The customer-lock-  
able version has the secured sector Indicator Bit perma-  
nently set to a "0". Therefore, the Secured Silicon Sec-  
tor Indicator Bit prevents customer, lockable device from  
being used to replace devices that are factory locked.  
LOGICAL INHIBIT  
Writing is inhibited by holding any one of OE =VIL, CE =  
VIH or WE = VIH. To initiate a write cycle CE and WE  
must be a logical zero while OE is a logical one.  
POWER-UP SEQUENCE  
The MX29LV640T/B powers up in the Read only mode.  
In addition, the memory contents may only be altered  
after successful completion of the predefined command  
sequences.  
The system access the Secured Silicon Sector through  
a command sequence (refer to "Enter Secured Silicon/  
Exit Secured Silicon Sector command Sequence). After  
the system has written the Enter Secured Silicon Sector  
command sequence, it may read the Secured Silicon  
Sector by using the address normally occupied by the  
last sector SA134 (for MX29LV640T) or first sector SA0  
(for MX29LV640B). Once entry the Secured Silicon Sec-  
tor the operation of boot sectors is disabled but the op-  
eration of main sectors is as normally.This mode of op-  
eration continues until the system issues the Exit Se-  
cured Silicon Sector command sequence, or until power  
is removed from the device. On power-up, or following a  
hardware reset, the device reverts to sending command  
to sector SA0.  
POWER-UP WRITE INHIBIT  
IfWE=CE=VIL and OE=VIH during power up, the device  
does not accept commands on the rising edge of WE.  
The internal state machine is automatically reset to the  
read mode on power-up.  
POWER SUPPLY DE COUPLING  
In order to reduce power switching effect, each device  
should have a 0.1uF ceramic capacitor connected be-  
tween itsVCC and GND.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
19  
MX29LV640T/B  
FACTORY LOCKED:Secured Silicon Sector  
Programmed and Protected At the Factory  
In device with an ESN, the Secured Silicon Sector is  
protected when the device is shipped from the factory.  
The Secured Silicon Sector cannot be modified in any  
way.A factory locked device has an 8-word random ESN  
at address 3FFF70h-3FFF77h (for MX29LV640T) or  
000000h-000007h (for MX29LV640B).  
CUSTOMER LOCKABLE:Secured Silicon  
Sector NOT Programmed or Protected At the  
Factory  
As an alternative to the factory-locked version, the device  
may be ordered such that the customer may program  
and protect the 128-word Secured Silicon Sector.  
Programming and protecting the Secured Silicon Sector  
must be used with caution since, once protected, there  
is no procedure available for unprotected the Secured  
Silicon Sector area and none of the bits in the Secured  
Silicon Sector memory space can be modified in any  
way.  
The Secured Silicon Sector area can be protected using  
one of the following procedures:  
Write the three-cycle Enter Secured Silicon Sector Region  
command sequence, and then follow the in-system  
sector protect algorithm as shown in Figure 2, except  
that RESET may be at either VIH or VID.This allows in-  
system protection of the Secured Silicon Sector without  
raising any device pin to a high voltage. Note that method  
is only applicable to the Secured Silicon Sector.  
Write the three-cycle Enter Secured Silicon Sector Region  
command sequence, and then alternate method of sector  
protection described in the :Sector Group Protection and  
Unprotect" section.  
Once the Secured Silicon Sector is programmed, locked  
and verified, the system must write the Exit Secured  
Silicon Sector Region command sequence to return to  
reading and writing the remainder of the array.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
20  
MX29LV640T/B  
Erase Resume (30H) commands are valid only while the  
Sector Erase operation is in progress. Either of the two  
reset command sequences will reset the device (when  
applicable).  
SOFTWARE COMMAND DEFINITIONS  
Device operations are selected by writing specific ad-  
dress and data sequences into the command register.  
Writing incorrect address and data values or writing them  
in the improper sequence will reset the device to the  
read mode. Table 2 defines the valid register command  
sequences. Note that the Erase Suspend (B0H) and  
All addresses are latched on the falling edge of WE or  
CE, whichever happens later.All data are latched on ris-  
ing edge of WE or CE, whichever happens first.  
TABLE 2. MX29LV640T/B COMMAND DEFINITIONS  
First Bus  
Cycle  
Second Bus Third Bus  
Cycle Cycle  
Fourth Bus  
Cycle  
Fifth Bus Sixth Bus  
Cycle Cycle  
Command  
Bus  
Cycles Addr Data Addr Data Addr Data Addr  
Data Addr Data Addr Data  
Read (Note 5)  
1
1
RA  
RD  
Reset (Note 6)  
XXX F0  
Automatic Select (Note 7)  
Manufacturer ID  
Word  
Byte  
Word  
Byte  
4
4
4
4
4
4
4
4
3
3
4
4
4
4
6
6
6
6
1
1
1
1
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
555 90  
AAA 90  
555 90  
AAA 90  
555 90  
AAA 90  
555 90  
AAA 90  
555 88  
AAA 88  
555 90  
AAA 90  
555 A0  
AAA A0  
555 80  
AAA 80  
555 80  
AAA 80  
X00  
X00  
X01  
X02  
X03  
X06  
C2H  
C2H  
DDI  
Device ID  
Secured Sector Fact- Word  
see  
ory Protect (Note 9)  
Sector Group Protect  
Verify (Note 8)  
Enter Secured Silicon  
Sector  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
note 9  
(SA)X02 xx00/  
(SA)X04 xx01  
Exit Secured Silicon  
Sector  
XXX  
XXX  
PA  
00  
00  
Program  
PD  
PD  
AA  
AA  
AA  
AA  
PA  
Chip Erase  
555  
AAA  
555  
AAA  
2AA 55 555 10  
555 55 AAA 10  
2AA 55 SA 30  
555 55 SA 30  
Sector Erase  
CFI Query (Note 12)  
55  
98  
98  
B0  
30  
AA  
BA  
BA  
Erase Suspend (Note 10)  
Erase Resume (Note 11)  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
21  
MX29LV640T/B  
Legend:  
X=Don't care  
PD=Data to be programmed at location PA. Data is  
latched on the rising edge of WE or CE pulse.  
SA=Address of the sector to be erase or verified (in  
autoselect mode).  
RA=Address of the memory location to be read.  
RD=Data read from location RA during read operation.  
PA=Address of the memory location to be programmed.  
Addresses are latched on the falling edge of the WE or  
CE pulse, whichever happen later.  
DDI=Data of device identifier  
Address bits A21-A12 uniquely select any sector.  
C2H for manufacture code  
C9/CBH (Top/Bottom) for device code  
Notes:  
1. See Table 1 for descriptions of bus operations.  
2. All values are in hexadecimal.  
3. Except when reading array or automatic select data, all bus cycles are write operation.  
4. Address bits are don't care for unlock and command cycles, except when PA or SA is required.  
5. No unlock or command cycles required when device is in read mode.  
6. The Reset command is required to return to the read mode when the device is in the automatic select mode or if  
Q5 goes high.  
7. The fourth cycle of the automatic select command sequence is a read cycle.  
8. The data is 00h for an unprotected sector/sector block and 01h for a protected sector/sector block. In the third  
cycle of the command sequence, address bit A21=0 to verify sectors 0~63, A21=1 to verify sectors 64~134 for  
Top Boot device.  
9. The data is 88h for factory locked and 08h for not factory locked.  
10.The system may read and program functions in non-erasing sectors, or enter the automatic select mode, when in  
the erase Suspend mode.The Erase Suspend command is valid only during a sector erase operation.  
11.The Erase Resume command is valid only during the Erase Suspend mode.  
12.Command is valid when device is ready to read array data or when device is in automatic select mode.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
22  
MX29LV640T/B  
READING ARRAY DATA  
SILICON ID READ COMMAND SEQUENCE  
The SILICON ID READ command sequence allows the  
host system to access the manufacturer and devices  
codes, and determine whether or not a sector is protected.  
Table 2 shows the address and data requirements.  
This method is an alternative to that shown in Table 1,  
which is intended for PROM programmers and requires  
VID on address bit A9.  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data.The device is also ready to read array data  
after completing an Automatic Program or Automatic  
Erase algorithm.  
After the device accepts an Erase Suspend command,  
the device enters the Erase Suspend mode. The sys-  
tem can read array data using the standard read tim-  
ings, except that if it reads at an address within erase-  
suspended sectors, the device outputs status data. After  
completing a programming operation in the Erase  
Suspend mode, the system may once again read array  
data with the same exception. See Erase Suspend/Erase  
Resume Commands for more information on this mode.  
The system must issue the reset command to re-en-  
able the device for reading array data if Q5 goes high, or  
while in the automatic select mode. See the "Reset  
Command" section, next.  
The SILICON ID READ command sequence is initiated  
by writing two unlock cycles, followed by the SILICON  
ID READ command.The device then enters the SILICON  
ID READ mode, and the system may read at any address  
any number of times, without initiating another command  
sequence. A read cycle at address XX00h retrieves the  
manufacturer code. A read cycle at address XX01h  
returns the device code. A read cycle containing a sector  
address (SA) and the address 02h returns 01h if that  
sector is protected, or 00h if it is unprotected. Refer to  
Table for valid sector addresses.  
The system must write the reset command to exit the  
automatic select mode and return to reading array data.  
RESET COMMAND  
Writing the reset command to the device resets the  
device to reading array data. Address bits are don't care  
for this command.  
Byte/Word PROGRAM COMMAND SEQUENCE  
The command sequence requires four bus cycles, and  
is initiated by writing two unlock write cycles, followed  
by the program set-up command. The program address  
and data are written next, which in turn initiate the  
Embedded Program algorithm.The system is not required  
to provide further controls or timings. The device  
automatically generates the program pulses and verifies  
the programmed cell margin. Table 1 shows the address  
and data requirements for the byte program command  
sequence.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to reading array  
data. Once erasure begins, however, the device ignores  
reset commands until the operation is complete.  
The reset command may be written between the se-  
quence cycles in a program command sequence before  
programming begins. This resets the device to reading  
array data (also applies to programming in Erase Suspend  
mode). Once programming begins, however, the device  
ignores reset commands until the operation is complete.  
When the Embedded Program algorithm is complete, the  
device then returns to reading array data and addresses  
are no longer latched. The system can determine the  
status of the program operation by using Q7, Q6, or RY/  
BY. See "Write Operation Status" for information on these  
status bits.  
The reset command may be written between the  
sequence cycles in an SILICON ID READ command  
sequence. Once in the SILICON ID READ mode, the  
reset command must be written to return to reading array  
data (also applies to SILICON ID READ during Erase  
Suspend).  
Any commands written to the device during the  
Embedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the programming  
operation. The Byte/Word Program command sequence  
should be reinitiated once the device has reset to reading  
array data, to ensure data integrity.  
If Q5 goes high during a program or erase operation,  
writing the reset command returns the device to reading  
array data (also applies during Erase Suspend).  
Programming is allowed in any sequence and across  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
23  
MX29LV640T/B  
sector boundaries. A bit cannot be programmed from a  
"0" back to a "1". Attempting to do so may halt the  
operation and set Q5 to "1" ,” or cause the Data Polling  
algorithm to indicate the operation was successful.  
However, a succeeding read will show that the data is  
still "0". Only erase operations can convert a "0" to a  
"1".  
The MX29LV640T/B contains a Silicon-ID-Read opera-  
tion to supplement traditional PROM programming meth-  
odology. The operation is initiated by writing the read  
silicon ID command sequence into the command regis-  
ter. Following the command write, a read cycle with  
A1=VIL,A0=VIL retrieves the manufacturer code of C2H.  
A read cycle with A1=VIL, A0=VIH returns the device  
code of 22C9H/22CBH for MX29LV640T/B.  
SETUP AUTOMATIC CHIP/SECTOR ERASE  
Chip erase is a six-bus cycle operation. There are two  
"unlock" write cycles. These are followed by writing the  
"set-up" command 80H. Two more "unlock" write cycles  
are then followed by the chip erase command 10H, or  
the sector erase command 30H.  
TABLE 3. SILICON ID CODE  
Pins  
A0 A1  
Q7  
1
Q6  
1
Q5  
0
Q4  
0
Q3  
0
Q2  
0
Q1  
1
Q0  
0
Code(Hex)  
C2H  
Manufacturecode  
VIL VIL  
Device code for MX29LV640T VIH VIL  
1
1
0
0
1
0
0
1
22C9H(word)  
XXC9H(byte)  
22CBH(word)  
XXCBH(byte)  
Device code for MX29LV640B VIH VIL  
1
1
0
0
1
0
1
1
returns to reading array data and addresses are no longer  
latched.  
AUTOMATIC CHIP/SECTOR ERASE COM-  
MAND  
Figure 3 illustrates the algorithm for the erase operation.  
See the Erase/Program Operations tables in "AC Char-  
acteristics" for parameters, and to Figure 16 for timing  
diagrams.  
The device does not require the system to preprogram  
prior to erase.The Automatic Erase algorithm automati-  
cally pre-program and verifies the entire memory for an  
all zero data pattern prior to electrical erase.The system  
is not required to provide any controls or timings during  
these operations. Table 2 shows the address and data  
requirements for the chip erase command sequence.  
Any commands written to the chip during the Automatic  
Erase algorithm are ignored. Note that a hardware reset  
during the chip erase operation immediately terminates  
the operation.The Chip Erase command sequence should  
be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
The system can determine the status of the erase op-  
eration by using Q7, Q6, Q2, or RY/BY. See "Write Op-  
eration Status" for information on these status bits.When  
the Automatic Erase algorithm is complete, the device  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
24  
MX29LV640T/B  
mand is issued during the sector erase operation, the  
device requires a maximum 20us to suspend the sector  
erase operation.However,When the Erase Suspend com-  
mand is written during the sector erase time-out, the  
device immediately terminates the time-out period and  
suspends the erase operation. After this command has  
been executed, the command register will initiate erase  
suspend mode. The state machine will return to read  
mode automatically after suspend is ready. At this time,  
state machine only allows the command register to re-  
spond to the Erase Resume, program data to, or read  
data from any sector not selected for erasure.  
SECTOR ERASE COMMANDS  
The Automatic Sector Erase does not require the device  
to be entirely pre-programmed prior to executing the  
Automatic Set-up Sector Erase command and  
Automatic Sector Erase command. Upon executing the  
Automatic Sector Erase command, the device will  
automatically program and verify the sector(s) memory  
for an all-zero data pattern. The system is not required  
to provide any control or timing during these operations.  
When the sector(s) is automatically verified to contain  
an all-zero pattern, a self-timed sector erase and verify  
begin. The erase and verify operations are complete  
when the data on Q7 is "1" and the data on Q6 stops  
toggling for two consecutive read cycles, at which time  
the device returns to the Read mode. The system is not  
required to provide any control or timing during these  
operations.  
The system can determine the status of the program  
operation using the Q7 or Q6 status bits, just as in the  
standard program operation. After an erase-suspend pro-  
gram operation is complete, the system can once again  
read array data within non-suspended blocks.  
When using the Automatic Sector Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory array  
(no erase verification command is required). Sector  
erase is a six-bus cycle operation. There are two  
"unlock" write cycles. These are followed by writing the  
set-up command 80H. Two more "unlock" write cycles  
are then followed by the sector erase command 30H.  
The sector address is latched on the falling edge of WE  
or CE, whichever happens later , while the command  
(data) is latched on the rising edge of WE or CE,  
whichever happens first. Sector addresses selected are  
loaded into internal register on the sixth falling edge of  
WE or CE, whichever happens later. Each successive  
sector load cycle started by the falling edge of WE or  
CE, whichever happens later must begin within 50us  
from the rising edge of the preceding WE or CE,  
whichever happens first. Otherwise, the loading period  
ends and internal auto sector erase cycle starts.  
(Monitor Q3 to determine if the sector erase timer  
window is still open, see section Q3, Sector Erase  
Timer.) Any command other than Sector Erase(30H) or  
Erase Suspend(B0H) during the time-out period resets  
the device to read mode.  
ERASE RESUME  
This command will cause the command register to clear  
the suspend state and return back to Sector Erase mode  
but only if an Erase Suspend command was previously  
issued. Erase Resume will not have any effect in all  
other conditions. Another Erase Suspend command can  
be written after the chip has resumed erasing.  
QUERY COMMAND AND COMMON FLASH  
INTERFACE (CFI) MODE  
MX29LV640T/B is capable of operating in the CFI mode.  
This mode all the host system to determine the manu-  
facturer of the device such as operating parameters and  
configuration.Two commands are required in CFI mode.  
Query command of CFI mode is placed first, then the  
Reset command exits CFI mode.These are described in  
Table 3.  
The single cycle Query command is valid only when the  
device is in the Read mode, including Erase Suspend,  
Standby mode, and Read ID mode;however, it is ignored  
otherwise.  
ERASE SUSPEND  
The Reset command exits from the CFI mode to the  
Read mode, or Erase Suspend mode, or read ID mode.  
The command is valid only when the device is in the CFI  
mode.  
This command only has meaning while the state ma-  
chine is executing Automatic Sector Erase operation,  
and therefore will only be responded during Automatic  
Sector Erase operation. When the Erase Suspend com-  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
25  
MX29LV640T/B  
Table 4-1. CFI mode: Identification Data Values  
(All values in these tables are in hexadecimal)  
Description  
Addressh Addressh  
Datah  
(x16)  
10  
(x8)  
20  
22  
24  
26  
28  
2A  
2C  
2E  
30  
32  
34  
Query-unique ASCII string "QRY"  
0051  
0052  
0059  
0002  
0000  
0040  
0000  
0000  
0000  
0000  
0000  
11  
12  
Primary vendor command set and control interface ID code  
Address for primary algorithm extended query table  
13  
14  
15  
16  
Alternate vendor command set and control interface ID code (none)  
Address for secondary algorithm extended query table (none)  
17  
18  
19  
1A  
Table 4-2. CFI Mode: System Interface Data Values  
Description  
Addressh Addressh  
Datah  
(x16)  
1B  
1C  
1D  
1E  
1F  
20  
(x8)  
36  
VCC supply, minimum (2.7V)  
0027  
0036  
0000  
0000  
0004  
0000  
000A  
0000  
0005  
0000  
0004  
0000  
VCC supply, maximum (3.6V)  
38  
VPP supply, minimum (none)  
3A  
3C  
3E  
40  
VPP supply, maximum (none)  
Typical timeout for single word/byte write (2N us)  
Typical timeout for maximum size buffer write (2N us)  
Typical timeout for individual block erase (2N ms)  
Typical timeout for full chip erase (2N ms)  
Maximum timeout for single word/byte write times (2N X Typ)  
Maximum timeout for maximum size buffer write times (2N X Typ)  
Maximum timeout for individual block erase times (2N X Typ)  
Maximum timeout for full chip erase times (not supported)  
21  
42  
22  
44  
23  
46  
24  
48  
25  
4A  
4C  
26  
Table 4-3. CFI Mode: Device Geometry Data Values  
Description  
Addressh Addressh  
Datah  
(x16)  
27  
(x8)  
4E  
50  
Device size (2n bytes)  
0017  
0002  
0000  
0000  
0000  
Flash device interface code (02=asynchronous x8/x16)  
28  
29  
52  
Maximum number of bytes in multi-byte write (not supported)  
2A  
2B  
54  
56  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
26  
MX29LV640T/B  
Number of erase block regions  
2C  
2D  
58  
5A  
5C  
5E  
60  
62  
64  
66  
68  
6A  
6C  
6E  
70  
72  
74  
76  
78  
0002  
0007  
Erase block region 1 information  
[2E,2D] = # of blocks in region -1  
[30, 2F] = size in multiples of 256-bytes  
2E  
0000  
2F  
0020  
30  
0000  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
007Eh  
0000h  
0000h  
0001h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 2 Information (refer to CFI publication 100)  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
Table 4-4. CFI Mode: Primary Vendor-Specific Extended Query Data Values  
Description  
Addressh Addressh  
Datah  
(x16)  
40  
(x8)  
80  
82  
84  
86  
88  
8A  
8C  
8E  
90  
92  
94  
96  
98  
9A  
Query-unique ASCII string "PRI"  
0050  
0052  
0049  
0031  
0031  
0000  
0002  
0004  
0001  
0004  
0000  
0000  
0000  
00h  
41  
42  
Major version number, ASCII  
43  
Minor version number, ASCII  
44  
Address sensitive unlock (0=required, 1= not required)  
Erase suspend (2= to read and write)  
Sector protect (N= # of sectors/group)  
Temporarysectorunprotect(1=supported)  
Sector protect/unprotect scheme  
45  
46  
47  
48  
49  
SimultaneousR/Woperation(0=notsupported)  
Burst mode type (0=not supported)  
4A  
4B  
4C  
4Dh  
Page mode type (0=not supported)  
ACC (Acceleration) Supply Minimum  
00h=NotSupported,D7-D4:Volt,D3-D0:100mV  
ACC (Acceleration) Supply Maximum  
00h=NotSupported,D7-D4:Volt,D3-D0:100mV  
Top/Bottom Boot Sector Flag  
4Eh  
4Fh  
9C  
9E  
00h  
0002h/  
0003h  
02h=Bottom Boot Device, 03h=Top Boot Device  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
27  
MX29LV640T/B  
WRITE OPERATION STATUS  
The device provides several bits to determine the status  
of a write operation: Q2, Q3, Q5, Q6, Q7, and RY/BY.  
Table 10 and the following subsections describe the func-  
tions of these bits. Q7, RY/BY, and Q6 each offer a  
method for determining whether a program or erase op-  
eration is complete or in progress. These three bits are  
discussed first.  
Table 5. Write Operation Status  
Status  
Q7  
Q6  
Q5  
Q3  
Q2 RY/BY  
Note1  
Note2  
Byte/Word Program in Auto Program Algorithm  
Auto Erase Algorithm  
Q7  
Toggle  
Toggle  
0
N/A  
1
No  
0
Toggle  
0
1
0
0
Toggle  
0
1
Erase Suspend Read  
(Erase Suspended Sector)  
No  
Toggle  
N/A Toggle  
In Progress  
Erase Suspended Mode  
Erase Suspend Read  
Data  
Q7  
Data Data Data Data  
1
0
0
(Non-Erase Suspended Sector)  
Erase Suspend Program  
Toggle  
Toggle  
0
1
N/A N/A  
Byte/Word Program in Auto Program Algorithm  
Q7  
N/A  
1
No  
Toggle  
Exceeded  
Time Limits Auto Erase Algorithm  
0
Toggle  
Toggle  
1
1
Toggle  
0
0
Erase Suspend Program  
Q7  
N/A N/A  
Notes:  
1. Performing successive read operations from the erase-suspended sector will cause Q2 to toggle.  
2. Performing successive read operations from any address will cause Q6 to toggle.  
3. Reading the byte address being programmed while in the erase-suspend program mode will indicate logic "1" at the  
Q2 bit.  
However, successive reads from the erase-suspended sector will cause Q2 to toggle.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
28  
MX29LV640T/B  
after the rising edge of the final WE or CE, whichever  
happens first pulse in the command sequence (prior to  
the program or erase operation), and during the sector  
time-out.  
Q7: Data Polling  
The Data Polling bit, Q7, indicates to the host system  
whether an Automatic Algorithm is in progress or com-  
pleted, or whether the device is in Erase Suspend. Data  
Polling is valid after the rising edge of the finalWE pulse  
in the program or erase command sequence.  
During an Automatic Program or Erase algorithm opera-  
tion, successive read cycles to any address cause Q6  
to toggle. The system may use either OE or CE to con-  
trol the read cycles.When the operation is complete, Q6  
stops toggling.  
During the Automatic Program algorithm, the device out-  
puts on Q7 the complement of the datum programmed  
to Q7.This Q7 status also applies to programming dur-  
ing Erase Suspend.When the Automatic Program algo-  
rithm is complete, the device outputs the datum pro-  
grammed to Q7.The system must provide the program  
address to read valid status information on Q7. If a pro-  
gram address falls within a protected sector, Data Poll-  
ing on Q7 is active for approximately 1 us, then the de-  
vice returns to reading array data.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Q6 toggles for  
100us and returns to reading array data. If not all se-  
lected sectors are protected, the Automatic Erase algo-  
rithm erases the unprotected sectors, and ignores the  
selected sectors that are protected.  
The system can use Q6 and Q2 together to determine  
whether a sector is actively erasing or is erase suspended.  
When the device is actively erasing (that is, the Auto-  
matic Erase algorithm is in progress), Q6 toggling.When  
the device enters the Erase Suspend mode, Q6 stops  
toggling. However, the system must also use Q2 to de-  
termine which sectors are erasing or erase-suspended.  
Alternatively, the system can use Q7.  
During the Automatic Erase algorithm, Data Polling pro-  
duces a "0" on Q7.When the Automatic Erase algorithm  
is complete, or if the device enters the Erase Suspend  
mode, Data Polling produces a "1" on Q7.This is analo-  
gous to the complement/true datum output described for  
the Automatic Program algorithm: the erase function  
changes all the bits in a sector to "1" prior to this, the  
device outputs the "complement,or "0".The system  
must provide an address within any of the sectors se-  
lected for erasure to read valid status information on Q7.  
If a program address falls within a protected sector, Q6  
toggles for approximately 2us after the program com-  
mand sequence is written, then returns to reading array  
data.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Data Polling on  
Q7 is active for approximately 100 us, then the device  
returns to reading array data. If not all selected sectors  
are protected, the Automatic Erase algorithm erases the  
unprotected sectors, and ignores the selected sectors  
that are protected.  
Q6 also toggles during the erase-suspend-program mode,  
and stops toggling once the Automatic Program algo-  
rithm is complete.  
Table 4 shows the outputs for Toggle Bit I on Q6.  
When the system detects Q7 has changed from the  
complement to true data, it can read valid data at Q7-Q0  
on the following read cycles. This is because Q7 may  
change asynchronously with Q0-Q6 while Output Enable  
(OE) is asserted low.  
Q2:Toggle Bit II  
The "Toggle Bit II" on Q2, when used with Q6, indicates  
whether a particular sector is actively erasing (that is,  
the Automatic Erase algorithm is in process), or whether  
that sector is erase-suspended. Toggle Bit II is valid  
after the rising edge of the final WE or CE, whichever  
happens first pulse in the command sequence.  
Q6:Toggle BIT I  
Toggle Bit I on Q6 indicates whether an Automatic Pro-  
gram or Erase algorithm is in progress or complete, or  
whether the device has entered the Erase Suspend mode.  
Toggle Bit I may be read at any address, and is valid  
Q2 toggles when the system reads at addresses within  
those sectors that have been selected for erasure. (The  
system may use either OE or CE to control the read  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
29  
MX29LV640T/B  
cycles.) But Q2 cannot distinguish whether the sector  
is actively erasing or is erase-suspended. Q6, by com-  
parison, indicates whether the device is actively eras-  
ing, or is in Erase Suspend, but cannot distinguish which  
sectors are selected for erasure. Thus, both status bits  
are required for sectors and mode information. Refer to  
Table 4 to compare outputs for Q2 and Q6.  
only operating functions of the device under this condi-  
tion.  
If this time-out condition occurs during sector erase op-  
eration, it specifies that a particular sector is bad and it  
may not be reused. However, other sectors are still func-  
tional and may be used for the program or erase opera-  
tion. The device must be reset to use other sectors.  
Write the Reset command sequence to the device, and  
then execute program or erase command sequence. This  
allows the system to continue to use the other active  
sectors in the device.  
Reading Toggle Bits Q6/ Q2  
Whenever the system initially begins reading toggle bit  
status, it must read Q7-Q0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit  
after the first read. After the second read, the system  
would compare the new value of the toggle bit with the  
first. If the toggle bit is not toggling, the device has  
completed the program or erase operation. The system  
can read array data on Q7-Q0 on the following read cycle.  
If this time-out condition occurs during the chip erase  
operation, it specifies that the entire chip is bad or com-  
bination of sectors are bad.  
If this time-out condition occurs during the byte/word pro-  
gramming operation, it specifies that the entire sector  
containing that byte is bad and this sector may not be  
reused, (other sectors are still functional and can be re-  
used).  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of Q5 is high  
(see the section on Q5). If it is, the system should then  
determine again whether the toggle bit is toggling, since  
the toggle bit may have stopped toggling just as Q5 went  
high. If the toggle bit is no longer toggling, the device  
has successfully completed the program or erase opera-  
tion. If it is still toggling, the device did not complete the  
operation successfully, and the system must write the  
reset command to return to reading array data.  
The time-out condition may also appear if a user tries to  
program a non blank location without erasing. In this  
case the device locks out and never completes the Au-  
tomatic Algorithm operation. Hence, the system never  
reads a valid data on Q7 bit and Q6 never stops toggling.  
Once the Device has exceeded timing limits, the Q5 bit  
will indicate a "1". Please note that this is not a device  
failure condition since the device was incorrectly used.  
The Q5 failure condition may appear if the system tries  
to program a to a "1" location that is previously pro-  
grammed to "0". Only an erase operation can change a  
"0" back to a "1".Under this condition, the device halts  
the operation, and when the operation has exceeded the  
timing limits, Q5 produces a "1".  
The remaining scenario is that system initially determines  
that the toggle bit is toggling and Q5 has not gone high.  
The system may continue to monitor the toggle bit and  
Q5 through successive read cycles, determining the sta-  
tus as described in the previous paragraph. Alternatively,  
it may choose to perform other system tasks. In this  
case, the system must start at the beginning of the al-  
gorithm when it returns to determine the status of the  
operation.  
Q3:Sector Erase Timer  
After the completion of the initial sector erase command  
sequence, the sector erase time-out will begin. Q3 will  
remain low until the time-out is complete. Data Polling  
andToggle Bit are valid after the initial sector erase com-  
mand sequence.  
Q5:Program/Erase Timing  
Q5 will indicate if the program or erase time has exceeded  
the specified limits (internal pulse count). Under these  
conditions Q5 will produce a "1". This time-out condition  
indicates that the program or erase cycle was not suc-  
cessfully completed. Data Polling andToggle Bit are the  
If Data Polling or the Toggle Bit indicates the device has  
been written with a valid erase command, Q3 may be  
used to determine if the sector erase timer window is  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
30  
MX29LV640T/B  
still open. If Q3 is high ("1") the internally controlled  
erase cycle has begun; attempts to write subsequent  
commands to the device will be ignored until the erase  
operation is completed as indicated by Data Polling or  
Toggle Bit. If Q3 is low ("0"), the device will accept addi-  
tional sector erase commands. To insure the command  
has been accepted, the system software should check  
the status of Q3 prior to and following each subsequent  
sector erase command. If Q3 were high on the second  
status check, the command may not have been accepted.  
If the time between additional erase commands from the  
system can be less than 50us, the system need not to  
monitor Q3.  
RY/BY:READY/BUSY OUTPUT  
The RY/BY is a dedicated, open-drain output pin that  
indicates whether an Embedded Algorithm is in progress  
or complete. The RY/BY status is valid after the rising  
edge of the final WE pulse in the command sequence.  
Since RY/BY is an open-drain output, several RY/BY pins  
can be tied together in parallel with a pull-up resistor to  
VCC .  
If the output is low (Busy), the device is actively erasing  
or programming. (This includes programming in the Erase  
Suspend mode.) If the output is high (Ready), the device  
is ready to read array data (including during the Erase  
Suspend mode), or is in the standby mode.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
31  
MX29LV640T/B  
OPERATING RATINGS  
ABSOLUTE MAXIMUM RATINGS  
StorageTemperature  
Commercial (C) Devices  
Plastic Packages . . . . . . . . . . . . . ..... -65oC to +150oC  
Ambient Temperature (TA ). . . . . . . . . . . . 0°C to +70°C  
Industrial (I) Devices  
AmbientTemperature  
with Power Applied. . . . . . . . . . . . . .... -65oC to +125oC  
Voltage with Respect to Ground  
Ambient Temperature (TA ). . . . . . . . . . -40°C to +85°C  
VCC Supply Voltages  
VCC for full voltage range. . . . . . . . . . . +2.7 V to 3.6 V  
VCC (Note 1) . . . . . . . . . . . . . . . . . -0.5 V to +4.0 V  
A9, OE, and  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
RESET (Note 2) . . . . . . . . . . . ....-0.5 V to +12.5 V  
All other pins (Note 1) . . . . . . . -0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is -0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot VSS to -2.0 V for periods of up to 20 ns. See  
Figure 6. Maximum DC voltage on input or I/O pins is  
VCC +0.5 V. During voltage transitions, input or I/O  
pins may overshoot to VCC +2.0 V for periods up to  
20 ns. See Figure 7.  
2. Minimum DC input voltage on pins A9, OE, and  
RESET is -0.5 V. During voltage transitions, A9, OE,  
and RESET may overshoot VSS to -2.0 V for periods  
of up to 20 ns. See Figure 6. Maximum DC input volt-  
age on pin A9 is +12.5V which may overshoot to 14.0  
V for periods up to 20 ns.  
3.No more than one output may be shorted to ground at  
a time. Duration of the short circuit should not be  
greater than one second.  
Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device at these or any other conditions above those in-  
dicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maxi-  
mum rating conditions for extended periods may affect  
device reliability.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
32  
MX29LV640T/B  
DC CHARACTERISTICS  
TA=-40°C to 85°C, VCC=2.7V~3.6V  
Para-  
meter Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
I LI  
Input Load Current (Note 1)  
VIN = VSS to VCC ,  
VCC = VCC max  
±1.0  
uA  
I LIT A9 Input Leakage Current  
I LO Output Leakage Current  
VCC=VCC max; A9 = 12.5V  
VOUT = VSS to VCC ,  
VCC= VCC max  
35  
uA  
uA  
±1.0  
ICC1 VCC Active Read Current  
(Notes 2,3)  
CE= VIL, OE = VIH 5 MHz  
1 MHz  
9
2
16  
4
mA  
mA  
mA  
ICC2 VCC Active Write Current  
(Notes 2,4,6)  
CE= V IL , OE = V IH  
26  
30  
ICC3 VCC Standby Current  
(Note 2)  
CE,RESET=VCC±0.3V  
WP=VIH  
0.2  
0.2  
0.2  
15  
15  
15  
uA  
uA  
uA  
ICC4 VCC Reset Current  
(Note 2)  
RESET=VSS±0.3V  
WP=VIH  
ICC5 Automatic Sleep Mode  
(Note 2,5)  
VIL = V SS ±0.3 V,  
VIH = VCC ±0.3 V,  
WP=VIH  
VIL  
Input Low Voltage  
-0.5  
0.7xVcc  
11.5  
0.8  
Vcc+0.3  
12.5  
V
V
V
VIH Input High Voltage  
VID Voltage for Autoselect and  
Temporary Sector Unprotect  
VOL Output Low Voltage  
VOH1 Output High Voltage  
VOH2  
VCC = 3.0 V ±10%  
IOL= 4.0mA,VCC=VCC min  
IOH=-2.0mA,VCC=VCC min  
IOH=-100uA,VCC=VCC min  
0.45  
V
V
V
V
0.85VCC  
VCC-0.4  
1.5  
VLKO Low VCC Lock-Out Voltage  
(Note 4)  
Notes:  
1. On the WP pin only, the maximum input load current when WP = VIL is ±5.0uA  
2. Maximum ICC specifications are tested with VCC = VCC max.  
3. The ICC current listed is typically is less than 2 mA/MHz, with OE at VIH . Typical specifications are for VCC =  
3.0V.  
4. ICC active while Embedded Erase or Embedded Program is in progress.  
5. Automatic sleep mode enables the low power mode when addresses remain stable for t ACC + 30 ns.Typical sleep  
mode current is 200 nA.  
6. Not 100% tested.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
33  
MX29LV640T/B  
SWITCHING TEST CIRCUITS  
TEST SPECIFICATIONS  
Test Condition  
Output Load  
90  
1 TTL gate  
100  
120  
Unit  
pF  
DEVICE UNDER  
TEST  
2.7K ohm  
Output Load Capacitance, CL 30  
(including jig capacitance)  
Input Rise and Fall Times  
Input Pulse Levels  
3.3V  
5
ns  
V
0.0-3.0  
1.5  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
Input timing measurement  
reference levels  
V
Output timing measurement  
reference levels  
1.5  
V
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don't Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State(High Z)  
SWITCHING TEST WAVEFORMS  
3.0V  
Measurement Level  
1.5V  
1.5V  
0.0V  
INPUT  
OUTPUT  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
34  
MX29LV640T/B  
AC CHARACTERISTICS  
Read-Only Operations  
Parameter  
TA=-40°C to 85°C, VCC=2.7V~3.6V  
Speed Options  
90 120 Unit  
Std.  
tRC  
tACC  
tCE  
tOE  
tDF  
Description  
Test Setup  
Read CycleTime (Note 1)  
Address to Output Delay  
Min  
CE, OE=VIL Max  
90  
90  
90  
35  
30  
30  
120  
120  
120  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to Output Delay  
Output Enable to Output Delay  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
Output Hold Time From Address, CE or OE,  
whichever Occurs First  
OE=VIL  
Max  
Max  
Max  
Max  
Min  
30  
tDF  
30  
tOH  
0
Read  
Min  
Min  
0
ns  
ns  
tOEH  
Output Enable HoldTime Toggle and  
10  
(Note 1)  
Data Polling  
Notes:  
1. Not 100% tested.  
2. See SWITCHING TEST CIRCUITS and TEST SPECIFICATIONS TABLE for test specifications.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
35  
MX29LV640T/B  
Fig 1. COMMAND WRITE OPERATION  
VCC  
5V  
VIH  
Addresses  
ADD Valid  
VIL  
tAH  
tAS  
VIH  
VIL  
WE  
tOES  
tWPH  
tWP  
tCWC  
VIH  
VIL  
CE  
OE  
tCS  
tCH  
tDH  
VIH  
VIL  
tDS  
VIH  
VIL  
Data  
DIN  
READ/RESET OPERATION  
Fig 2. READ TIMING WAVEFORMS  
tRC  
VIH  
ADD Valid  
Addresses  
VIL  
tCE  
VIH  
CE  
tRH  
VIL  
tRH  
VIH  
WE  
tDF  
VIL  
VIH  
VIL  
tOEH  
tOE  
OE  
tOH  
tACC  
HIGH Z  
HIGH Z  
VOH  
VOL  
Outputs  
DATA Valid  
VIH  
VIL  
RESET  
RY/BY  
0V  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
36  
MX29LV640T/B  
AC CHARACTERISTICS  
Parameter  
Description  
Test Setup All Speed Options Unit  
tREADY1  
RESET PIN Low (During Automatic Algorithms)  
to Read orWrite (See Note)  
MAX  
20  
us  
tREADY2  
RESET PIN Low (NOT During Automatic  
Algorithms) to Read orWrite (See Note)  
MAX  
500  
ns  
tRP  
RESET PulseWidth (NOT During Automatic Algorithms) MIN  
500  
50  
0
ns  
ns  
ns  
us  
tRH  
RESET HighTime Before Read(See Note)  
RY/BY Recovery Time(to CE, OE go low)  
RESET Low to Standby Mode  
MIN  
MIN  
MIN  
tRB  
tRPD  
20  
Note:Not 100% tested  
Fig 3. RESET TIMING WAVEFORM  
RY/BY  
CE, OE  
RESET  
tRH  
tRP  
tReady2  
Reset Timing NOT during Automatic Algorithms  
tReady1  
RY/BY  
tRB  
CE, OE  
RESET  
tRP  
Reset Timing during Automatic Algorithms  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
37  
MX29LV640T/B  
ERASE/PROGRAM OPERATION  
Fig 4. AUTOMATIC CHIP/SECTOR ERASE TIMING WAVEFORM  
Erase Command Sequence(last two cycle)  
Read Status Data  
tWC  
tAS  
VA  
VA  
2AAh  
SA  
Address  
555h for chip erase  
tAH  
CE  
tCH  
OE  
tWHWH2  
tWP  
WE  
tCS  
tWPH  
tDS tDH  
In  
Progress  
55h  
30h  
Complete  
Data  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY  
tVCS  
VCC  
NOTES:  
1.SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
38  
MX29LV640T/B  
Fig 5. AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 10H Address 555H  
Data Poll  
from system  
YES  
No  
DATA = FFh ?  
YES  
Auto Erase Completed  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
39  
MX29LV640T/B  
Fig 6. AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 30H Sector Address  
NO  
Last Sector  
to Erase ?  
YES  
Data Poll from System  
NO  
Data=FFh?  
YES  
Auto Sector Erase Completed  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
40  
MX29LV640T/B  
Fig 7. ERASE SUSPEND/RESUME FLOWCHART  
START  
Write Data B0H  
ERASE SUSPEND  
NO  
Toggle Bit checking Q6  
not toggled  
YES  
Read Array or  
Program  
Reading or  
NO  
Programming End  
YES  
Write Data 30H  
ERASE RESUME  
Continue Erase  
Another  
NO  
Erase Suspend ?  
YES  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
41  
MX29LV640T/B  
Fig 8. SECURED SILICON SECTOR PROTECTED ALGORITHMS FLOWCHART  
START  
Enter Secured Silicon Sector  
Wait 1us  
First Wait Cycle Data=60h  
Second Wait Cycle Data=60h  
A6=0, A1=1, A0=0  
Wait 300us  
No  
Data = 01h ?  
Yes  
Device Failed  
Write Reset Command  
Secured Sector Protect Complete  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
42  
MX29LV640T/B  
AC CHARACTERISTICS  
Erase and Program Operations  
Parameter  
TA=-40°C to 85°C, VCC=2.7V~3.6V  
Speed Options  
90 120 Unit  
Std.  
tWC  
tAS  
Description  
Write CycleTime (Note 1)  
Address SetupTime  
Min  
Min  
Min  
Min  
Min  
90  
45  
45  
120  
ns  
ns  
ns  
ns  
ns  
0
tASO  
tAH  
Address SetupTime to OE low during toggle bit polling  
Address HoldTime  
15  
50  
tAHT  
Address HoldTime From CE or OE high during toggle  
bit polling  
0
tDS  
Data SetupTime  
Min  
Min  
Min  
Min  
50  
ns  
ns  
ns  
ns  
tDH  
Data HoldTime  
0
20  
0
tOEPH  
tGHWL  
Output Enable High during toggle bit polling  
Read RecoveryTime BeforeWrite  
(OE High to WE Low)  
tGHEL  
tCS  
Read RecoveryTime BeforeWrite  
CE Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Min  
0
0
0
ns  
ns  
ns  
ns  
ns  
us  
us  
sec  
us  
ns  
ns  
tCH  
CE HoldTime  
tWP  
Write Pulse Width  
35  
50  
tWPH  
tWHWH1  
Write PulseWidth High  
30  
9
Programming Operation  
Byte  
Word  
11  
1.6  
50  
0
tWHWH2  
tVCS  
Sector Erase Operation (Note 2)  
VCC SetupTime (Note 1)  
tRB  
Write Recovery Time from RY/BY  
Program/Erase Valid to RY/BY Delay  
tBUSY  
90  
Notes:  
1. Not 100% tested.  
2. See the "Erase And Programming Performance" section for more information.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
43  
MX29LV640T/B  
Fig 9. AUTOMATIC PROGRAM TIMING WAVEFORMS  
Program Command Sequence(last two cycle)  
Read Status Data (last two cycle)  
tWC  
tAS  
PA  
PA  
XXXh  
PA  
Address  
tAH  
CE  
tCH  
OE  
tWP  
tWHWH1  
WE  
tCS  
tWPH  
tDS tDH  
Status  
A0h  
PD  
DOUT  
Data  
tBUSY  
tRB  
RY/BY  
tVCS  
VCC  
NOTES:  
1.PA=Program Address, PD=Program Data, DOUT is the true data the program address  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
44  
MX29LV640T/B  
AC CHARACTERISTICS  
Alternate CE Controlled Erase and Program Operations  
Parameter  
Speed Options  
Std.  
tWC  
tAS  
Description  
90  
120 Unit  
Write CycleTime (Note 1)  
Address SetupTime  
Address HoldTime  
Data SetupTime  
Min  
Min  
Min  
Min  
Min  
Min  
90  
120  
ns  
ns  
ns  
ns  
ns  
ns  
0
tAH  
45  
45  
50  
50  
tDS  
tDH  
Data HoldTime  
0
0
tGHEL  
Read RecoveryTime BeforeWrite  
(OE High to WE Low)  
WE Setup Time  
tWS  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
0
0
ns  
ns  
tWH  
WE HoldTime  
tCP  
CE Pulse Width  
45  
50  
ns  
tCPH  
tWHWH1  
CE Pulse Width High  
Programming Operation  
30  
9
ns  
Byte  
us  
Word  
11  
1.6  
us  
tWHWH2  
Sector Erase Operation (Note 2)  
sec  
Notes:  
1. Not 100% tested.  
2.See the "Erase And Programming Performance" section for more information.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
45  
MX29LV640T/B  
Fig 10. CE CONTROLLED PROGRAM TIMING WAVEFORM  
PA for program  
555 for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data Polling  
Address  
PA  
tWC  
tWH  
tAS  
tAH  
WE  
OE  
tGHEL  
tCP  
tWHWH1 or 2  
CE  
tWS  
tDS  
tCPH  
tBUSY  
tDH  
DOUT  
Q7  
Data  
PD for program  
30 for sector erase  
10 for chip erase  
A0 for program  
55 for erase  
tRH  
RESET  
RY/BY  
NOTES:  
1.PA=Program Address, PD=Program Data, DOUT=Data Out, Q7=complement of data written to device.  
2.Figure indicates the last two bus cycles of the command sequence.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
46  
MX29LV640T/B  
Fig 11. AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data A0H Address 555H  
Write Program Data/Address  
Data Poll  
Increment  
Address  
from system  
No  
No  
Verify Word Ok ?  
YES  
Last Address ?  
YES  
Auto Program Completed  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
47  
MX29LV640T/B  
SECTOR GROUP PROTECT/CHIP UNPROTECT  
Fig 12. Sector Group Protect / Chip Unprotect Waveform (RESET Control)  
VID  
VIH  
RESET  
SA, A6  
A1, A0  
Valid*  
Valid*  
Valid*  
Sector Group Protect or Chip Unprotect  
Verify  
40h  
Status  
Data  
60h  
60h  
Sector Group Protect:150us  
Chip Unprotect:15ms  
1us  
CE  
WE  
OE  
Note: For sector group protect A6=0, A1=1, A0=0. For chip unprotect A6=1, A1=1, A0=0  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
48  
MX29LV640T/B  
Fig 13. IN-SYSTEM SECTOR GROUP PROTECT/CHIP UNPROTECT ALGORITHMS WITH  
RESET=VID  
START  
START  
Protect all sectors:  
PLSCNT=1  
The indicated portion of  
PLSCNT=1  
the sector protect algorithm  
must be performed  
RESET=VID  
for all unprotected sectors  
RESET=VID  
prior to issuing the first  
sector unprotect address  
Wait 1us  
Wait 1us  
No  
First Write  
Temporary Sector  
Unprotect Mode  
Cycle=60h?  
First Write  
No  
Temporary Sector  
Unprotect Mode  
Cycle=60h?  
Yes  
Yes  
Set up sector address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6=0, A1=1, A0=0  
Yes  
Set up first sector address  
Wait 150us  
Sector Unprotect:  
Write 60h to sector  
address with  
Verify Sector Protect:  
Write 40h to sector  
address with  
Reset  
PLSCNT=1  
A6=1, A1=1, A0=0  
A6=0, A1=1, A0=0  
Increment PLSCNT  
Wait 15 ms  
Read from  
sector address  
with  
A6=0, A1=1, A0=0  
Verify Sector Unprotect:  
Write 40h to sector  
address with  
No  
Increment PLSCNT  
A6=1, A1=1, A0=0  
No  
Data=01h?  
Yes  
PLSCNT=25?  
Read from  
sector address  
with  
Yes  
A6=1, A1=1, A0=0  
No  
Device failed  
Reset  
Yes  
Protect another  
sector?  
PLSCNT=1  
No  
PLSCNT=1000?  
Data=00h?  
Yes  
No  
Sector Protect  
Algorithm  
Yes  
Remove VID from RESET  
Device failed  
No  
Last sector  
verified?  
Write reset command  
Yes  
Chip Unprotect  
Algorithm  
Sector Protect complete  
Remove VID from RESET  
Write reset command  
Sector Unprotect complete  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
49  
MX29LV640T/B  
AC CHARACTERISTICS  
Parameter  
tVLHT  
Description  
Test Setup  
Min.  
All Speed Options Unit  
Voltage transition time  
4
100  
4
us  
ns  
us  
tWPP1  
Write pulse width for sector group protect  
OE setup time to WE active  
Min.  
tOESP  
Min.  
Fig 14. SECTOR GROUP PROTECT TIMING WAVEFORM (A9, OE Control)  
A1  
A6  
12V  
3V  
A9  
tVLHT  
Verify  
12V  
3V  
OE  
tVLHT  
tVLHT  
tWPP 1  
WE  
tOESP  
CE  
Data  
01H  
F0H  
tOE  
Sector Address  
A21-A16  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
50  
MX29LV640T/B  
Fig 15. SECTOR GROUP PROTECTION ALGORITHM (A9, OE Control)  
START  
Set Up Sector Addr  
PLSCNT=1  
OE=VID,A9=VID,CE=VIL  
A6=VIL  
Activate WE Pulse  
Time Out 150us  
Set WE=VIH, CE=OE=VIL  
A9 should remain VID  
.
Read from Sector  
Addr=SA, A1=1  
No  
No  
Data=01H?  
PLSCNT=32?  
Yes  
Device Failed  
Yes  
Protect Another  
Sector?  
Remove VID from A9  
Write Reset Command  
Sector Protection  
Complete  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
51  
MX29LV640T/B  
Fig 16. CHIP UNPROTECT TIMING WAVEFORM (A9, OE Control)  
A1  
12V  
3V  
A9  
A6  
tVLHT  
Verify  
12V  
3V  
OE  
tVLHT  
tVLHT  
tWPP 2  
WE  
CE  
tOESP  
Data  
00H  
F0H  
tOE  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
52  
MX29LV640T/B  
Fig 17. CHIP UNPROTECT FLOWCHART (A9, OE Control)  
START  
Protect All Sectors  
PLSCNT=1  
Set OE=A9=VID  
CE=VIL,A6=1  
Activate WE Pulse  
Time Out 15ms  
Increment  
PLSCNT  
Set OE=CE=VIL  
A9=VID,A1=1  
Set Up First Sector Addr  
Read Data from Device  
No  
No  
Data=00H?  
Increment  
PLSCNT=1000?  
Sector Addr  
Yes  
Yes  
Device Failed  
No  
All sectors have  
been verified?  
Yes  
Remove VID from A9  
Write Reset Command  
Chip Unprotect  
Complete  
* It is recommended before unprotect whole chip, all sectors should be protected in advance.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
53  
MX29LV640T/B  
AC CHARACTERISTICS  
Parameter Description  
Test  
Setup  
Min  
All Speed Options Unit  
tVIDR  
tRSP  
tRRB  
VID Rise and Fall Time (see Note)  
500  
4
ns  
us  
us  
RESET SetupTime forTemporary Sector Unprotect  
RESET Hold Time from RY/BY High forTemporary  
Sector Group Unprotect  
Min  
Min  
4
Fig 18. TEMPORARY SECTOR GROUP UNPROTECT WAVEFORMS  
12V  
RESET  
0 or 3V  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE  
WE  
tRSP  
tRRB  
RY/BY  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
54  
MX29LV640T/B  
Fig 19. TEMPORARY SECTOR GROUP UNPROTECT FLOWCHART  
Start  
RESET = VID (Note 1)  
Perform Erase or Program Operation  
Operation Completed  
RESET = VIH  
Temporary Sector Unprotect Completed(Note 2)  
Note :  
1. All protected sectors are temporary unprotected.  
VID=11.5V~12.5V  
2. All previously protected sectors are protected again.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
55  
MX29LV640T/B  
Fig 20. SILICON ID READ TIMING WAVEFORM  
VCC  
3V  
VID  
ADD  
A9  
VIH  
VIL  
VIH  
VIL  
ADD  
A0  
tACC  
tACC  
VIH  
VIL  
A1  
VIH  
VIL  
ADD  
CE  
VIH  
VIL  
VIH  
VIL  
tCE  
WE  
OE  
tOE  
VIH  
VIL  
tDF  
tOH  
tOH  
VIH  
VIL  
DATA  
Q0-Q15  
DATA OUT  
00C2H  
DATA OUT  
22C9H for Top  
22CBH for Bottom  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
56  
MX29LV640T/B  
WRITE OPERATION STATUS  
Fig 21. DATA POLLING TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)  
tRC  
VA  
VA  
VA  
Address  
CE  
tACC  
tCE  
tCH  
tOE  
OE  
tOEH  
tDF  
WE  
tOH  
High Z  
High Z  
Complement  
Status Data  
Status Data  
Status Data  
True  
Valid Data  
Valid Data  
Q7  
Q0-Q6  
True  
tBUSY  
RY/BY  
NOTES:  
VA=Valid address. Figure shows are first status cycle after command sequence, last status read cycle, and array data raed cycle.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
57  
MX29LV640T/B  
Fig 22. DATA POLLING ALGORITHM  
Start  
Read Q7~Q0  
Add.=VA(1)  
Yes  
Q7 = Data ?  
No  
No  
Q5 = 1 ?  
Yes  
Read Q7~Q0  
Add.=VA  
Yes  
Q7 = Data ?  
(2)  
No  
FAIL  
Pass  
Notes:  
1.VA=valid address for programming.  
2.Q7 should be rechecked even Q5="1" because Q7 may change simultaneously with Q5.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
58  
MX29LV640T/B  
Fig 23. TOGGLE BIT TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)  
tRC  
VA  
VA  
VA  
VA  
Address  
CE  
tACC  
tCE  
tCH  
tOE  
OE  
tOEH  
tDF  
WE  
tOH  
tDH  
Valid Status  
(second read)  
Valid Status  
(first read)  
Valid Data  
Valid Data  
Q6/Q2  
Valid Status  
(stops toggling)  
RY/BY  
NOTES:  
VA=Valid address; not required for Q6. Figure shows first two status cycle after command sequence, last status read cycle, and  
array data read cycle.  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
59  
MX29LV640T/B  
Fig 24. TOGGLE BIT ALGORITHM  
START  
Read Q7~Q0  
Read Q7~Q0  
(Note 1)  
NO  
Toggle Bit Q6  
=Toggle?  
YES  
NO  
Q5=1?  
YES  
(Note 1,2)  
Read Q7~Q0 Twice  
Toggle Bit Q6=  
Toggle?  
YES  
Program/Erase Operation Not  
Program/Erase Operation Complete  
Complete, Write Reset Command  
Note:  
1. Read toggle bit twice to determine whether or not it is toggling.  
2. Recheck toggle bit because it may stop toggling as Q5 changes to "1".  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
60  
MX29LV640T/B  
Fig 25. Q6 versus Q2  
Enter Embedded  
Erasing  
Erase  
Enter Erase  
Erase  
Suspend  
Suspend Program  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Erase Suspend  
Read  
Erase  
Erase  
WE  
Q6  
Suspend  
Program  
Complete  
Q2  
NOTES:  
The system can use OE or CE to toggle Q2/Q6, Q2 toggles only when read at an address within an erase-suspended  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
61  
MX29LV640T/B  
ERASE AND PROGRAMMING PERFORMANCE (1)  
LIMITS  
PARAMETER  
MIN.  
TYP.(2)  
0.9  
45  
MAX.  
15  
UNITS  
sec  
Sector Erase Time  
Chip Erase Time  
65  
sec  
Byte Programming Time  
Word Programming Time  
Chip Programming Time  
9
300  
360  
160  
140  
us  
11  
us  
Byte Mode  
Word Mode  
50  
sec  
45  
sec  
Erase/Program Cycles  
100,000  
Cycles  
Note: 1. Not 100% Tested, Excludes external system level over head.  
2.Typical program and erase times assume the following condition= 25°C,3.0V VCC.  
Additionally, programming typicals assume checkerboard pattern.  
LATCH-UP CHARACTERISTICS  
MIN.  
MAX.  
Input Voltage with respect to GND on all pins except I/O pins  
Input Voltage with respect to GND on all I/O pins  
Current  
-1.0V  
-1.0V  
13.5V  
Vcc + 1.0V  
+100mA  
-100mA  
Includes all pins except Vcc. Test conditions: Vcc = 3.0V, one pin at a time.  
TSOP PIN CAPACITANCE  
Parameter Symbol  
Parameter Description  
Input Capacitance  
Test Set  
VIN=0  
TYP  
MAX  
7.5  
12  
UNIT  
pF  
CIN  
6
COUT  
CIN2  
Output Capacitance  
Control Pin Capacitance  
VOUT=0  
VIN=0  
8.5  
7.5  
pF  
9
pF  
Notes:  
1. Sampled, not 100% tested.  
2.Test conditions TA=25°C, f=1.0MHz  
DATA RETENTION  
Parameter  
Test Conditions  
Min  
10  
Unit  
Minimum Pattern Data Retention Time  
150  
125  
Years  
Years  
20  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
62  
MX29LV640T/B  
ORDERING INFORMATION  
PLASTIC PACKAGE  
PART NO.  
ACCESS TIME  
Ball Pitch/  
Ball size  
PACKAGE  
Remark  
(ns)  
MX29LV640TTC-90  
MX29LV640TTC-12  
MX29LV640BTC-90  
MX29LV640BTC-12  
MX29LV640TTI-90  
MX29LV640TTI-12  
MX29LV640BTI-90  
MX29LV640BTI-12  
90  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
63 Ball CSP  
64 Ball CSP  
64 Ball CSP  
64 Ball CSP  
64 Ball CSP  
64 Ball CSP  
64 Ball CSP  
64 Ball CSP  
64 Ball CSP  
120  
90  
120  
90  
120  
90  
120  
MX29LV640TXBC-90  
MX29LV640TXBC-12  
MX29LV640BXBC-90  
MX29LV640BXBC-12  
MX29LV640TXBI-90  
MX29LV640TXBI-12  
MX29LV640BXBI-90  
MX29LV640BXBI-12  
MX29LV640TXEC-90  
MX29LV640TXEC-12  
MX29LV640BXEC-90  
MX29LV640BXEC-12  
MX29LV640TXEI-90  
MX29LV640TXEI-12  
MX29LV640BXEI-90  
MX29LV640BXEI-12  
MX29LV640TXCC-90  
MX29LV640TXCC-12  
MX29LV640BXCC-90  
MX29LV640BXCC-12  
MX29LV640TXCI-90  
MX29LV640TXCI-12  
MX29LV640BXCI-90  
MX29LV640BXCI-12  
90  
120  
90  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
1mm/0.4mm  
120  
90  
120  
90  
120  
90  
120  
90  
120  
90  
120  
90  
120  
90  
120  
90  
1mm/0.4mm  
1mm/0.4mm  
120  
90  
1mm/0.4mm  
1mm/0.4mm  
120  
90  
1mm/0.4mm  
1mm/0.4mm  
120  
1mm/0.4mm  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
63  
MX29LV640T/B  
PART NO.  
ACCESS TIME  
Ball Pitch/  
Ball size  
PACKAGE  
Remark  
PB-free  
PB-free  
PB-free  
PB-free  
PB-free  
PB-free  
PB-free  
PB-free  
(ns)  
MX29LV640TTC-90G  
MX29LV640TTC-12G  
MX29LV640BTC-90G  
MX29LV640BTC-12G  
MX29LV640TTI-90G  
MX29LV640TTI-12G  
MX29LV640BTI-90G  
MX29LV640BTI-12G  
90  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
48 Pin TSOP  
(Normal Type)  
120  
90  
120  
90  
120  
90  
120  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
64  
MX29LV640T/B  
PACKAGE INFORMATION  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
65  
MX29LV640T/B  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
66  
MX29LV640T/B  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
67  
MX29LV640T/B  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
68  
MX29LV640T/B  
REVISION HISTORY  
Revision No. Description  
Page  
P33  
P63,66  
P27  
P64  
P1  
Date  
JUL/22/2003  
1.0  
1.1  
1.2  
1. To modified the max. ICC current from 5uA to 15uA  
2. To added 63CSP with 0.4mm ball size package information  
1. To corrected CFI code in table 4-3 device geometry data values  
2. To added pb-free part no. for 48-TSOP package  
1. Removed "Preliminary" from title  
OCT/28/2003  
NOV/05/2003  
P/N:PM0920  
REV. 1.2, NOV. 05, 2003  
69  
MX29LV640T/B  
MACRONIX INTERNATIONAL CO., LTD.  
HEADQUARTERS:  
TEL:+886-3-578-6688  
FAX:+886-3-563-2888  
EUROPE OFFICE:  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
JAPAN OFFICE:  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
SINGAPORE OFFICE:  
TEL:+65-348-8385  
FAX:+65-348-8096  
TAIPEI OFFICE:  
TEL:+886-2-2509-3300  
FAX:+886-2-2509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-453-8088  
FAX:+1-408-453-8488  
CHICAGO OFFICE:  
TEL:+1-847-963-1900  
FAX:+1-847-963-1909  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY