MX29NS320E [Macronix]

128/64/32M-BIT [8/4/2M x16-bit] CMOS 1.8 Volt-only,;
MX29NS320E
型号: MX29NS320E
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

128/64/32M-BIT [8/4/2M x16-bit] CMOS 1.8 Volt-only,

文件: 总70页 (文件大小:707K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
MULTIPLEXED, Burst Mode, Flash Memory  
MX29NS320E/640E/128E  
P/N: PM1516  
REV. 1.1, APR. 26, 2011  
MULTIPLEXED, Burst Mode, Flash Memory  
Contents  
1. FEATURES........................................................................................................................................6  
2. GENERAL INFORMATION ..............................................................................................................8  
2-1. Operating Speeds..................................................................................................................8  
2-2. Ordering Information.............................................................................................................8  
2-3. Part Name Description..........................................................................................................9  
3. PIN CONFIGURATION / SYMBOL DESCRIPTION........................................................................10  
3-1. Logic Symbol.......................................................................................................................10  
3-2. Pin Descriptions..................................................................................................................11  
4. BLOCK DIAGRAM..........................................................................................................................12  
4-1. Block Structure....................................................................................................................13  
Table 1-1. Sector Address Table (MX29NS320E) ................................................................................13  
Table 1-2. Sector Address Table (MX29NS640E) ................................................................................14  
Table 1-3. Sector Address Table (MX29NS128E) ................................................................................16  
5. BUS OPERATIONS.........................................................................................................................17  
Table 2. Bus Operations.......................................................................................................................17  
5-1. Non-Burst (Asynchronous) Read Operation.....................................................................18  
5-2. Burst (Synchronous) Read Operation ..............................................................................18  
5-2-1. Continuous Burst Read..............................................................................................................18  
Table 3-1. Address Latency for 10, 9 and 8 Dummy Cycles ................................................................19  
Table 3-2. Address Latency for 7, 6, and 5 Dummy Cycles .................................................................19  
Table 3-3. Address Latency for 4 Dummy Cycles ................................................................................19  
Table 3-4. Address Latency for 3 Dummy Cycles ................................................................................19  
Table 3-5. Address/8-word Boundary Crossing Latency for 10, 9 and 8 Dummy Cycles.....................19  
Table 3-6. Address/128-word Boundary Crossing Latency for 7, 6, and 5 Dummy Cycles..................20  
Table 3-7. Address/128-word Boundary Crossing Latency for 4 Dummy Cycles.................................20  
Table 3-8. Address/128-word Boundary Crossing Latency for 3 Dummy Cycles.................................20  
5-2-2. 8-, 16-Word Modes Linear Burst with Wrap Around ..................................................................20  
Table 4. Burst Address Groups ............................................................................................................20  
5-2-3. Reading Memory Array..............................................................................................................21  
5-3. Set Configuration Register Command Sequence ............................................................21  
5-3-1. Programmable Dummy Cycle....................................................................................................22  
5-3-2. Configurable Dummy Cycle.......................................................................................................22  
5-3-3. Burst Length Configuration........................................................................................................22  
Table 5. Configurable Dummy Cycles vs. Frequency ..........................................................................23  
5-3-4. Burst Wrap Around ....................................................................................................................23  
5-3-5. Output Drive Strength................................................................................................................23  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
2
MX29NS320/640/128E  
5-4. Program Operation..............................................................................................................24  
5-4-1. Programming Commands/Command Sequences .....................................................................25  
5-4-2. Accelerated Program and Erase Operations .............................................................................25  
5-4-3. Write Buffer Programming Operation.........................................................................................25  
5-4-4. Write Buffer Programming Command Sequence.......................................................................26  
5-4-5. Buffer Write Abort.......................................................................................................................26  
Table 6. Write Buffer Command Sequence..........................................................................................26  
Figure 1. Write Buffer Programming Operation....................................................................................27  
Figure 2. Status Polling For Write Buffer Program...............................................................................28  
5-5. Erase Operation ..................................................................................................................29  
5-5-1. Sector Erase .............................................................................................................................29  
5-5-2. Chip Erase ................................................................................................................................29  
5-5-3. Sector Erase Command Sequence ...........................................................................................30  
5-5-4. Accelerated Sector Erase ..........................................................................................................30  
Figure 3. Erase Operation....................................................................................................................31  
5-6. Program/Erase Operation Status ......................................................................................32  
Table 7. Program Operation Status......................................................................................................32  
5-7. Program/Erase Suspend/Resume......................................................................................33  
5-7-1. Program Suspend......................................................................................................................33  
5-7-2. Program Resume.......................................................................................................................33  
5-7-3. Program Suspend/Program Resume Commands .....................................................................33  
5-7-4. Erase Suspend ..........................................................................................................................34  
5-7-5. Sector Erase Resume................................................................................................................34  
Figure 4. Data# Polling Timing Waveforms (During Embedded Algorithms)........................................35  
Figure 5. Data# Polling For Word Program/Erase ...............................................................................36  
Figure 6. Toggle Bit Timing Waveforms (During Embedded Algorithms) .............................................36  
Figure 7. Toggle Bit Algorithm ..............................................................................................................37  
5-8. Configuration Register .......................................................................................................38  
Table 8. Configuration Register............................................................................................................38  
5-9. Enter/Exit Secured Silicon Sector Command Sequence.................................................39  
5-9-1. Program Secured Silicon Sector Command Sequence.............................................................39  
5-10. Auto Select Operations.......................................................................................................40  
5-10-1. Auto Select Command Sequence............................................................................................40  
5-11. Handshaking Feature..........................................................................................................41  
Table 9. Dummy Cycles for Handshaking ............................................................................................41  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
3
MULTIPLEXED, Burst Mode, Flash Memory  
6. SECURITY FEATURES ..................................................................................................................42  
6-1. Lock Register ...................................................................................................................42  
6-1-1. Lock Register Bits .....................................................................................................................42  
Table 10. Lock Register bits.................................................................................................................42  
Figure 8. Lock Register Program Algorithm .........................................................................................43  
6-1-2. Dynamic Write Protection Bits (DPBS)......................................................................................44  
6-2. Hardware Data Protection Mode .......................................................................................44  
6-2-1. Write Protect (WP#)...................................................................................................................44  
6-2-2. WP# Boot Sector Protection......................................................................................................44  
6-3. Security Sector Flash Memory Region ...........................................................................45  
6-3-1. Factory Locked: Security Sector Programmed and Protected at the Factory............................45  
6-3-2. Customer Lockable: Security Sector NOT Programmed or Protected at the Factory ...............45  
7. COMMAND DEFINITIONS .............................................................................................................46  
8. ENERGY SAVING MODE ..............................................................................................................48  
8-1. Standby Mode......................................................................................................................48  
8-2. Automatic Sleep Mode........................................................................................................48  
Table 11. DC Characteristics................................................................................................................49  
8-3. Reset Commands................................................................................................................50  
8-3-1. Hardware Reset.........................................................................................................................50  
Table 12. Hardware Reset....................................................................................................................50  
Figure 9. Reset Timings .......................................................................................................................51  
8-3-2. Software Reset ..........................................................................................................................51  
9. COMMON FLASH MEMORY INTERFACE (CFI) MODE ...............................................................52  
Table 13-1. CFI Mode: Identification Data Values................................................................................52  
Table 13-2. CFI Mode: System Interface Data Values .........................................................................52  
Table 13-3. CFI Mode: Device Geometry Data Values ........................................................................53  
Table 13-4. CFI Mode: Primary Vendor-Specific Extended Query Data Values...................................54  
10. ELECTRICAL CHARACTERISTICS...............................................................................................55  
10-1. Absolute Maximum Stress Ratings ...................................................................................55  
10-2. Operating Temperatures and Voltages..............................................................................55  
10-3. Test Conditions....................................................................................................................56  
Figure 10. Test Setup...........................................................................................................................56  
Figure 11. Input Waveforms and Measurement Levels........................................................................56  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
4
MX29NS320/640/128E  
10-4. AC Characteristics ..............................................................................................................57  
Figure 12. VCC Power-up Diagram CLK Characterization ..................................................................57  
Figure 13. Deep Power Down Mode Waveform ..................................................................................58  
Figure 14. CLK Characterization..........................................................................................................58  
Table 15. Synchronous / Burst Read....................................................................................................59  
Figure 15. Burst Mode Read................................................................................................................59  
Table 16. Asynchronous Read .............................................................................................................60  
Figure 16. Asynchronous Mode Read..................................................................................................60  
Table 17. Erase/Program Operations...................................................................................................61  
Figure 17. Program Operation Timings................................................................................................62  
Figure 18. Chip/Sector Erase Operations ............................................................................................63  
Figure 19. Data# Polling Timings (During Embedded Algorithm).........................................................64  
Figure 20. Toggle Bit Timings (During Embedded Algorithm) ..............................................................64  
Figure 21. 8-, 16-Word Linear Burst Address Wrap Around.................................................................65  
Figure 22. Latency with Boundary Crossing ........................................................................................65  
10-5. Erase and Programming Performance..............................................................................66  
10-5-1. BGA Ball Capacitance .............................................................................................................67  
10-6. Low VCC Write Prohibit ......................................................................................................67  
10-6-1. Write Pulse "Glitch" Protection ................................................................................................67  
10-6-2. Logical Prohibit ........................................................................................................................67  
10-6-3. Power-up Sequence ................................................................................................................67  
10-6-4. Power-up Write Prohibit...........................................................................................................67  
10-6-5. Power Supply Decoupling........................................................................................................67  
11. PACKAGE INFORMATION.............................................................................................................68  
12. REVISION HISTORY ......................................................................................................................69  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
5
MULTIPLEXED, Burst Mode, Flash Memory  
128/64/32M-BIT [8/4/2M x16-bit] CMOS 1.8 Volt-only,  
Multiplexed Flash Memory  
1. FEATURES  
Characteristics  
Burst Length  
VI/O Feature  
• Continuous linear burst  
• Generates data output voltages  
and tolerates data input voltages as  
determined by the voltage on the VI/O pin  
• 8/16 word linear burst length with wrap  
around  
• 1.8V compatible I/O signals  
Sector Architecture  
Read Access Time  
• Single bank Architecture.  
• Burst access times: 7 ns (at industrial  
temperature range)  
• Four 8 Kword sectors in upper-most  
address range (MX29NS320E/640E)  
• 80 ns of Asynchronous random access  
times  
• Four 16Kword sectors in upper-most  
address range (MX29NS128E)  
• 80 ns of Synchronous random access times  
• MX29NS320E: Sixty-three 32 KWord  
• MX29NS640E: One hundred twenty-  
seven 32 Kword sectors  
Secured Silicon Sector Region  
• 256 words accessible through a command  
sequence  
• MX29NS128E: One hundred twenty  
seven 64 Kword sectors  
• 128 words for the factory secured silicon  
sector  
Power Supply Operations  
• 128 words for the customer secured  
silicon sector  
• 1.8V for read, program and erase  
operations (1.70V to 1.95V)  
• Deep power down mode  
Power Dissipation  
• Typical values: 8 bits switching,  
CL = 10 pF at 108 MHz, CIN excluded  
• 32 mA for Continuous burst read mode  
• 20 mA for Program/Erase Operations  
• 40 uA for Standby mode  
Performance  
High Performance  
• 40 μs - Word programming time  
• 9.4 μs - Effective word programming time  
utilizing a 32 word Write Buffer at VCC  
level  
Program/Erase Cycles  
• 4.8 μs - Effective word programming time  
of utilizing a 32 word Write Buffer at ACC  
level  
• 100,000 cycles typical  
Data Retention  
Sector Erase Time  
• 20 years  
• 600 ms for 32 Kword sectors  
• 800 ms for 64 Kword sectors  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
6
MX29NS320/640/128E  
Software Features  
Hardware Features  
• Supports multiplexing data and address  
for reduced I/O count.  
Advanced Security Features  
• Volatile Sector Protection  
• A15–A0 multiplexed as Q15–Q0 Sector  
Architecture  
• A command sector protection method  
that protects individual sectors from being  
programmed or erased.  
Hardware Sector Protection  
• Sectors can be locked or unlocked in-  
system at VCC level.  
- WP# protects two highest sectors  
-
All sectors locked when ACC = VIL  
Package  
• 56-Ball Thin FBGA (Fine-Pitch Ball Grid  
Array)  
• REACH SVHC Free and RoHS Compliant  
Handshaking Feature  
• Allows system to determine the read  
operation of burst data with minimum  
possible latency by monitoring RDY.  
Data# Polling and Toggle Bits  
• Provides a software method of detecting  
and sending signals to indicate the  
completion of program and erase  
operations.  
Erase Suspend/Erase Resume  
• Erase operation will be halted when  
the device receives an Erase Suspend  
command. And will be restarted when  
the device receives the Erase Resume  
command.  
Program Suspend/Program Resume  
• Program operation will be halted when  
the device receives a Program Suspend  
command. It will be restarted when the  
device receives the Program Resume  
command.  
Electronic Identification  
• Software command set compatible with  
JEDEC 42.4 standards  
• Common Flash Interface (CFI) supported  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
7
MULTIPLEXED, Burst Mode, Flash Memory  
2. GENERAL INFORMATION  
2-1. Operating Speeds  
Output  
Loading  
Burst Access  
Synch. Initial  
Access (ns)  
Asynch. Initial  
Access (ns)  
Clock Speed  
(ns)  
108 MHz  
7
80  
80  
10 pF  
The operating temperature range is -40°C to +85°C.  
2-2. Ordering Information  
Part Number  
Access Time (ns)  
Package  
Remark  
MX29NS320E XJI-80G  
MX29NS640E XJI-80G  
MX29NS128EXJI-80G  
80  
56 TFBGA  
VI/O=VCC  
NOTES:  
1.  
MX29NS320/640/128E have been pre-released and in mass production.  
MX29NS128E is for the validation of MCP products. Please contact Macronix  
2.  
.
local sales for discrete product support  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
8
MX29NS320/640/128E  
2-3. Part Name Description  
MX 29 NS 640 E XJ I - 80 G  
G: RoHS Compliant  
Speed:  
80: 80ns  
Temperature Range:  
I: Indsustrial  
-40°C ~ +85°C  
Package:  
XJ: TFBGA  
Revision: E  
Density & Mode:  
128: 128Mb;  
640: 64Mb  
320: 32Mb  
NS: 1.8V Burst Mode  
Device:  
29: Flash  
Brand:  
MX  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
9
MULTIPLEXED, Burst Mode, Flash Memory  
3. PIN CONFIGURATION / SYMBOL DESCRIPTION  
56-Ball Thin FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
F
A1  
A14  
NC  
NC  
C7  
NC  
C12  
NC  
C4  
NC  
C8  
NC  
C3  
NC  
C11  
NC  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
A19  
D11  
A17  
D12  
A22  
VSS  
CLK  
VCC  
WE#  
ACC  
RDY  
A21  
E3  
E4  
E5  
E6  
E7  
NC  
E8  
E9  
E10  
A18  
E11  
CE#  
E12  
VSSQ  
A20  
AVD#  
RESET#  
WP#  
VI/O  
A16  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
F10  
F11  
A/Q8  
F12  
OE#  
VSS  
A/Q7  
A/Q6  
A/Q13  
A/Q12  
A/Q3  
A/Q2  
A/Q9  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
VI/O  
G11  
A/Q1  
G12  
A/Q0  
G
H
J
A/Q15  
A/Q14  
VSSQ  
A/Q5  
A/Q4  
A/Q11  
A/Q10  
H3  
NC  
H4  
NC  
H7  
NC  
H8  
NC  
H11  
NC  
H12  
NC  
K14  
NC  
K1  
NC  
K
NOTE: A22 is for MX29NS128E;  
A21 is for MX29NS640E.  
16 I/O  
A16-Amax  
CLK  
A/Q0-15  
3-1. Logic Symbol  
CE#  
OE#  
WE#  
RESET#  
WP  
RDY  
AVD#  
VI/O  
ACC  
VSSQ  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
10  
MX29NS320/640/128E  
3-2. Pin Descriptions  
SYMBOL  
DESCRIPTIONS  
A22-A16  
A21-A16  
A20-A16  
A/Q15~  
Address Inputs for MX29NS128E  
Address Inputs for MX29NS640E  
Address Inputs for MX29NS320E  
Multiplexed Data Inputs/Outputs  
A/Q0  
CE#  
OE#  
WE#  
VCC  
VI/O  
VSS  
VSSQ  
NC  
Chip Enable Input  
Output Enable Input  
Write Enable Input  
Device Power Supply (1.70V~1.95V)  
Input/Output Power Supply (1.70V~1.95V)  
Device Ground  
Input/Output Ground  
No Connection  
RDY  
Ready output, the status of the Burst Read  
Refer to configuration register table  
The first rising edge of CLK in conjunction with AVD# low latches address input  
and activates burst mode operation.  
CLK  
Address Valid input. Indicates to device that the valid address is present on the  
address inputs (Address bits A15–A0 are multiplexed, address bits Amax–A16  
are address only).  
AVD#  
VIL= For asynchronous mode, indicates valid address; for burst mode, causes  
starting address to be latched on rising edge of CLK.  
VIH = Device ignores address inputs  
Hardware Reset Pin, Active Low  
Hardware Write Protect  
RESET#  
WP#  
ACC  
Programming Acceleration Input  
NOTES:  
1. WP# and ACC have internal pull up. WP# VIL protects the upper most two sectors from  
write; ACC=Vhv enters into the ACC programming mode. ACC=VIL, erase/program function  
disabled.  
2. VI/O Voltage must tight up with VCC.  
VI/O = VCC = 1.70V~1.95V  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
11  
MULTIPLEXED, Burst Mode, Flash Memory  
4. BLOCK DIAGRAM  
CE#  
WRITE  
STATE  
OE#  
CONTROL  
PROGRAM/ERASE  
HIGH VOLTAGE  
WE#  
INPUT  
RESET#  
ACC  
MACHINE  
(WSM)  
LOGIC  
WP#  
CLK  
AVD#  
STATE  
FLASH  
ARRAY  
ADDRESS  
LATCH  
REGISTER  
ARRAY  
AM-A16  
AND  
SOURCE  
HV  
BUFFER  
Y-PASS GATE  
COMMAND  
DATA  
DECODER  
PGM  
SENSE  
DATA  
HV  
AMPLIFIER  
COMMAND  
DATA LATCH  
PROGRAM  
DATA LATCH  
AQ[15:0]  
I/O BUFFER  
RDY  
AM: MSB address  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
12  
MX29NS320/640/128E  
4-1. Block Structure  
The main flash memory array is organized as Word mode (x16). The details of the address ranges  
and the corresponding sector addresses are shown in Table 1.  
Table 1-1. Sector Address Table (MX29NS320E)  
Sector Size  
Kwords  
32  
Sector Size  
Kwords  
32  
Sector  
Address Range  
Sector  
Address Range  
SA0  
SA1  
SA2  
000000h-007FFFh  
008000h-00FFFFh  
010000h-017FFFh  
SA41  
SA42  
SA43  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
32  
32  
32  
32  
018000h-01FFFFh  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
160000h-167FFFh  
168000h-16FFFFh  
170000h-177FFFh  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1F9FFFh  
1FA000h-1FBFFFh  
1FC000h-1FDFFFh  
1FE000h-1FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA3  
SA4  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
8
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
8
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
8
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
100000h-107FFFh  
108000h-10FFFFh  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
130000h-137FFFh  
32  
32  
32  
SA38  
SA39  
SA40  
138000h-13FFFFh  
140000h-147FFFh  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
13  
MULTIPLEXED, Burst Mode, Flash Memory  
Table 1-2. Sector Address Table (MX29NS640E)  
Sector Size  
Sector Size  
Kwords  
32  
Sector  
Address Range  
Sector  
Address Range  
Kwords  
32  
SA47  
SA48  
SA49  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
SA0  
SA1  
SA2  
SA3  
000000h-007FFFh  
008000h-00FFFFh  
010000h-017FFFh  
018000h-01FFFFh  
32  
32  
32  
32  
32  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1FFFFFh  
200000h-207FFFh  
208000h-20FFFFh  
210000h-217FFFh  
218000h-21FFFFh  
220000h-227FFFh  
228000h-22FFFFh  
230000h-237FFFh  
238000h-23FFFFh  
240000h-247FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
100000h-107FFFh  
108000h-10FFFFh  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
248000h-24FFFFh  
250000h-257FFFh  
258000h-25FFFFh  
260000h-267FFFh  
268000h-26FFFFh  
270000h-277FFFh  
278000h-2F7FFFh  
280000h-287FFFh  
288000h-28FFFFh  
290000h-297FFFh  
298000h-29FFFFh  
2A0000h-2A7FFFh  
130000h-137FFFh  
138000h-13FFFFh  
140000h-147FFFh  
32  
32  
32  
SA38  
SA39  
SA40  
SA85  
SA86  
SA87  
SA88  
SA89  
2A8000h-2AFFFFh  
2B0000h-2B7FFFh  
2B8000h-2BFFFFh  
2C0000h-2C7FFFh  
2C8000h-2CFFFFh  
32  
32  
32  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
160000h-167FFFh  
168000h-16FFFFh  
32  
SA41  
32  
32  
32  
32  
32  
SA42  
SA43  
SA44  
SA45  
32  
32  
32  
32  
SA90  
SA91  
SA92  
2D0000h-2D7FFFh  
2D8000h-2DFFFFh  
2E0000h-2E7FFFh  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
14  
MX29NS320/640/128E  
Sector Size  
Kwords  
32  
Sector  
Address Range  
SA93  
SA94  
SA95  
2E8000h-2EFFFFh  
2F0000h-2F7FFFh  
2F8000h-2FFFFFh  
32  
32  
SA96  
SA97  
300000h-307FFFh  
308000h-30FFFFh  
310000h-317FFFh  
318000h-31FFFFh  
320000h-327FFFh  
328000h-32FFFFh  
330000h-337FFFh  
338000h-33FFFFh  
340000h-347FFFh  
348000h-34FFFFh  
350000h-357FFFh  
358000h-35FFFFh  
360000h-367FFFh  
368000h-36FFFFh  
370000h-377FFFh  
378000h-37FFFFh  
380000h-387FFFh  
388000h-38FFFFh  
390000h-397FFFh  
398000h-39FFFFh  
3A0000h-3A7FFFh  
3A8000h-3AFFFFh  
3B0000h-3B7FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
32  
32  
32  
32  
32  
32  
32  
32  
32  
8
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
3B8000h-3BFFFFh  
3C0000h-3C7FFFh  
3C8000h-3CFFFFh  
3D0000h-3D7FFFh  
3D8000h-3DFFFFh  
3E0000h-3E7FFFh  
3E8000h-3EFFFFh  
3F0000h-3F7FFFh  
3F8000h-3F9FFFh  
3FA000h-3FBFFFh  
3FC000h-3FDFFFh  
3FE000h-3FFFFFh  
8
8
8
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
15  
MULTIPLEXED, Burst Mode, Flash Memory  
Table 1-3. Sector Address Table (MX29NS128E)  
Sector Size  
Kwords  
64  
Sector Size  
Kwords  
64  
Sector Size  
Kwords  
64  
Sector  
Address Range  
Sector  
Address Range  
Sector  
Address Range  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
400000h-40FFFFh  
410000h-41FFFFh  
420000h-42FFFFh  
430000h-43FFFFh  
440000h-44FFFFh  
450000h-45FFFFh  
460000h-46FFFFh  
470000h-47FFFFh  
480000h-48FFFFh  
490000h-49FFFFh  
4A0000h-4AFFFFh  
4B0000h-4BFFFFh  
4C0000h-4CFFFFh  
4D0000h-4DFFFFh  
4E0000h-4EFFFFh  
4F0000h-4FFFFFh  
500000h-50FFFFh  
510000h-51FFFFh  
520000h-52FFFFh  
530000h-53FFFFh  
540000h-54FFFFh  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
550000h-55FFFFh  
560000h-56FFFFh  
570000h-57FFFFh  
580000h-58FFFFh  
590000h-59FFFFh  
5A0000h-5AFFFFh  
5B0000h-5BFFFFh  
5C0000h-5CFFFFh  
5D0000h-5DFFFFh  
5E0000h-5EFFFFh  
5F0000h-5FFFFFh  
600000h-60FFFFh  
610000h-61FFFFh  
620000h-62FFFFh  
630000h-63FFFFh  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA0  
SA1  
SA2  
SA3  
000000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
16  
16  
16  
16  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
SA10 0A0000h-0AFFFFh  
SA11 0B0000h-0BFFFFh  
SA12 0C0000h-0CFFFFh  
SA13 0D0000h-0DFFFFh  
SA14 0E0000h-0EFFFFh  
SA15 0F0000h-0FFFFFh  
SA16 100000h-10FFFFh  
SA100 640000h-64FFFFh  
SA101 650000h-65FFFFh  
SA102 660000h-66FFFFh  
SA103 670000h-67FFFFh  
SA104 680000h-68FFFFh  
SA105 690000h-69FFFFh  
SA106 6A0000h-6AFFFFh  
SA107 6B0000h-6BFFFFh  
SA108 6C0000h-6CFFFFh  
SA109 6D0000h-6DFFFFh  
SA110 6E0000h-6EFFFFh  
SA111 6F0000h-6FFFFFh  
SA112 700000h-70FFFFh  
SA113 710000h-71FFFFh  
SA114 720000h-72FFFFh  
SA115 730000h-73FFFFh  
SA116 740000h-74FFFFh  
SA117 750000h-75FFFFh  
SA118 760000h-76FFFFh  
SA119 770000h-77FFFFh  
SA120 780000h-78FFFFh  
SA121 790000h-79FFFFh  
SA122 7A0000h-7AFFFFh  
SA123 7B0000h-7BFFFFh  
SA124 7C0000h-7CFFFFh  
SA125 7D0000h-7DFFFFh  
SA126 7E0000h-7EFFFFh  
SA127 7F0000h-7F3FFFh  
SA128 7F4000h-7F7FFFh  
SA129 7F8000h-7FBFFFh  
SA130 7FC000h-7FFFFFh  
SA17  
110000h-11FFFFh  
SA18 120000h-12FFFFh  
SA19 130000h-13FFFFh  
SA20 140000h-14FFFFh  
SA21 150000h-15FFFFh  
SA22 160000h-16FFFFh  
SA23 170000h-17FFFFh  
SA24 180000h-18FFFFh  
SA25 190000h-19FFFFh  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
SA26 1A0000h-1AFFFFh  
SA27 1B0000h-1BFFFFh  
SA28 1C0000h-1CFFFFh  
SA29 1D0000h-1DFFFFh  
SA30 1E0000h-1EFFFFh  
SA31 1F0000h-1FFFFFh  
SA32 200000h-20FFFFh  
SA33 210000h-21FFFFh  
SA34 220000h-22FFFFh  
SA35 230000h-23FFFFh  
SA36 240000h-24FFFFh  
SA37 250000h-25FFFFh  
64  
64  
64  
64  
SA38 260000h-26FFFFh  
SA39 270000h-27FFFFh  
SA40 280000h-28FFFFh  
SA41 290000h-29FFFFh  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
16  
MX29NS320/640/128E  
5. BUS OPERATIONS  
This chapter indicates the functions and utilizations of Bus Operations. Bus operations are initiated  
through the internal command register and executed by a bus interface or similar logic circuitry. The  
command register itself does not occupy any memory addresses. The register is formed of latches  
that store the commands, along with the address and data information needed for executing the  
command.  
The content of the register acts as inputs to the internal state machine. The state machine outputs  
determine the function of the device.  
Table 2. shows all the bus operations, inputs and control levels required, and the resulting output.  
All the operations are described in the following sections in details.  
NOTE: Falling edge of AVD# determines when to disable the current burst cycle while a  
new burst read cycle is started by the rising edge of CLK.  
Table 2. Bus Operations  
Operation  
CE# OE# WE# CLK AVD# Address Data RDY RESET#  
Synchronous Operations  
Output  
Invalid  
Latch Starting Burst Address by CLK  
Advance Burst Read to Next Address  
Terminate Current Burst Read Cycle  
L
L
H
L
H
H
X
X
H
R
R
X
X
R
L
H
X
X
L
Addr In  
X
H
H
H
H
L
Output  
Valid  
X
H
X
L
X
X
H
X
X
HighZ HighZ  
HighZ HighZ  
Terminate Current Burst Read Cycle  
through RESET#  
Terminate Current Burst Read Cycle  
and Start New Burst Read Cycle  
Output  
X
Addr In  
H
Invalid  
Asynchronous Operations  
Asynchronous Read - Addresses  
Latched  
L
L
L
L
H
L
H
H
L
L
L
L
L
R
H
R
H
Addr In  
X
H
H
H
H
H
H
H
H
Output  
Data  
Asynchronous Read - Data on Bus  
X
Addr In  
X
Asynchronous Program (AVD#  
Latched Addresses)  
H
H
X
Asynchronous Program (WE#  
Latched Data)  
Input  
Valid  
R
Non-Operations  
Standby (CE#)  
H
X
X
X
X
X
X
X
X
X
X
X
HighZ HighZ  
HighZ HighZ  
H
L
Hardware Reset  
Legend:  
L = 0; H = 1; X = VIL or VIH; R = Rising ege; h-l = High to low.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
17  
MULTIPLEXED, Burst Mode, Flash Memory  
NOTES:  
1. WP# protects the top two sectors.  
2. ACC low protects all sectors.  
3. Q0~Q15 are input (DIN) or output (DOUT) pins according to the requests of command  
sequence, sector protection, or data polling algorithm.  
4. In Word Mode, the addresses are AM to A0, AM: MSB of address.  
5-1. Non-Burst (Asynchronous) Read Operation  
Upon device's power-up, non-burst mode read is as the default state. To perform a read operation,  
the system addresses the desired memory array or status register location by providing its address  
on the address pins and simultaneously enabling the chip by driving AVD# & CE# LOW, and WE#  
HIGH. The CLK keeps low during asynchronous read operation. The address is latched on the  
rising edge of AVD#; OE# will be driven low afterwards. A/Q15-A/Q0 output the data after previous  
operations is complete.  
5-2. Burst (Synchronous) Read Operation  
The device supports the following burst read modes:  
- Continuous burst read  
- Linear burst reads (8/16 words) with/without wrap around  
5-2-1. Continuous Burst Read  
Burst read mode is enabled when first CLK rising edge meets AVD# low period. The AVD# keeps  
low for no more than one clock cycle.  
The number of dummy cycles should be set (for tIACC for each burst session) before the clock  
signal is being activated. Before the burst read mode is activated, the number of dummy cycle will  
be determined by the setting configuration register command.  
The process of the continuous burst read operation is as follows:  
First CLK cycle's rising edge --> Initial word output tIACC --> Wait for dummy cycle --> Rising  
rising edge of each consecutive clock, following words output (tBACC) (Automatically increase the  
internal address counter)  
1. For address boundary every 8 words, the first boundary starts with 000007h, next with 00000Fh  
by adding 8 words address; and etc.  
2. For address boundary every 128 words, the first boundary starts with 00007Fh, next with  
0000FFh by adding 128 words address; and etc.  
3. Additional dummy cycles are needed if the start address for the output cannot be divided by 4.  
RDY status indicates the condition of the device by de-asserting.  
NOTE: There is a permanent internal address boundary in the device that occurs  
8 or 128 words. Boundary crossing latency is needed when the device  
operates with dummy cycles set from 5 to 10.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
18  
MX29NS320/640/128E  
Table 3-1. Address Latency for 10, 9 and 8 Dummy Cycles  
Word  
0
1
2
3
4
5
6
7
D0 D1 D2 D3 D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15  
D1 D2 D3 1dc D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15  
D2 D3 1dc 1dc D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15  
D3 1dc 1dc 1dc D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15  
D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15 1dc D16 D17 D18  
D5 D6 D7 1dc 1dc D8 D9 D10 D11 D12 D13 D14 D15 1dc D16 D17 D18  
D6 D7 1dc 1dc 1dc D8 D9 D10 D11 D12 D13 D14 D15 1dc D16 D17 D18  
D7 1dc 1dc 1dc 1dc D8 D9 D10 D11 D12 D13 D14 D15 1dc D16 D17 D18  
10, 9  
and  
8 dc  
Table 3-2. Address Latency for 7, 6, and 5 Dummy Cycles  
Word  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D3  
D2  
D3  
1 dc  
1 dc  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
7, 6,  
1 dc  
1 dc  
1 dc  
and 5 dc  
1 dc  
Table 3-3. Address Latency for 4 Dummy Cycles  
Word  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D3  
D2  
D3  
1 dc  
1 dc  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
D9  
D9  
D9  
4 dc  
1 dc  
Table 3-4. Address Latency for 3 Dummy Cycles  
Word  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D3  
D2  
D3  
D4  
D4  
D3  
D4  
D5  
D5  
D4  
D5  
D6  
D6  
D5  
D6  
D7  
D7  
D6  
D7  
D8  
D8  
D7  
D8  
D9  
D9  
D8  
D9  
D10  
D10  
3 dc  
1 dc  
Table 3-5. Address/8-word Boundary Crossing Latency for 10, 9 and 8 Dummy Cycles  
Word  
0
1
2
3
4
5
6
7
D0 D1 D2 D3 D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15  
D1 D2 D3 1dc D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15  
D2 D3 1dc 1dc D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15  
D3 1dc 1dc 1dc D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15  
D4 D5 D6 D7 1dc D8 D9 D10 D11 D12 D13 D14 D15 1dc D16 D17 D18  
D5 D6 D7 1dc 1dc D8 D9 D10 D11 D12 D13 D14 D15 1dc D16 D17 D18  
D6 D7 1dc 1dc 1dc D8 D9 D10 D11 D12 D13 D14 D15 1dc D16 D17 D18  
D7 1dc 1dc 1dc 1dc D8 D9 D10 D11 D12 D13 D14 D15 1dc D16 D17 D18  
10, 9  
and  
8 dc  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
19  
MULTIPLEXED, Burst Mode, Flash Memory  
Table 3-6. Address/128-word Boundary Crossing Latency for 7, 6, and 5 Dummy Cycles  
Word  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D3  
D2  
D3  
1 dc  
1 dc  
D3  
1 dc  
1 dc  
1 dc  
1 dc  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
7, 6,  
1 dc  
1 dc  
1 dc  
and 5 dc  
1 dc  
Table 3-7. Address/128-word Boundary Crossing Latency for 4 Dummy Cycles  
Word  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D3  
D2  
D3  
1 dc  
1 dc  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
1 dc  
1 dc  
1 dc  
4 dc  
1 dc  
Table 3-8. Address/128-word Boundary Crossing Latency for 3 Dummy Cycles  
Word  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D3  
D2  
D3  
1 dc  
1 dc  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
D9  
D9  
D9  
3 dc  
1 dc  
5-2-2. 8-, 16-Word Modes Linear Burst with Wrap Around  
Fixed amount of data (8 or 16 words) is output from continuous address for the linear wrap around  
mode. (in the unit of words). The origin burst read address is decided by the group where the origin  
address falls. The definition of groups is as illustrated in Table 4 below.  
Table 4. Burst Address Groups  
Mode  
Group Size  
Group Address Ranges  
8-word  
8 words  
0-7h, 8-Fh, 10-17h, 18-1Fh...  
16-word  
16 words  
0-Fh, 10-1Fh, 20-2Fh, 30-3Fh...  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
20  
MX29NS320/640/128E  
5-2-3. Reading Memory Array  
Read mode is the default state after a power-up or a reset operation.  
An erase operation will be paused (after a time delay less than tESL) and the device will enter  
Erase-Suspended Read mode if the device receives an Erase Suspend command while in the  
Sector Erase state. While in the Erase-Suspended Read mode, data can be programmed or read  
from any sector which is not being erased. Reading from addresses within sector (s) being erased  
will only return the contents of the status register, which is the current status of the device.  
If a program command is issued to any inactive (not currently being erased) sector during Erase-  
Suspended Read mode, the device will perform the program operation and automatically return to  
Erase-Suspended Read mode after the program operation completes successfully.  
While in Erase-Suspended Read mode, an Erase Resume command must be issued by the system  
to reactivate the erase operation. The erase operation will resume from where it was suspended  
and will continue the operation until it completely finishes or another Erase Suspend command is  
received.  
After the memory device completes an embedded operation (automatic Chip Erase, Sector Erase,  
or Program) successfully, it will automatically return to Read mode and data can be read from any  
address in the array. If the embedded operation fails to complete, as indicated by status register  
bit Q5 (exceeds time limitation flag) going HIGH during the operations, the system must perform a  
reset operation to set the device back to Read mode.  
There are several situations requiring a reset operation to return to Read mode:  
- A program or erase failure – can be indicated by status register bit Q5 going HIGH during the  
operation. Failures happened during the both operations will not cause the device automatically  
returning to Read mode.  
- The device is in Auto Select, CFI mode or read configure register mode – All of the states will  
remain active until they are terminated by a reset operation.  
In the two situations above, if a reset operation (either hardware reset or software reset command)  
is not performed, the device will not return to Read mode and the system will not be able to read  
array data.  
5-3. Set Configuration Register Command Sequence  
The burst mode parameter is set by the configuration register. The following modes are configured:  
Burst read mode, RDY configuration, synchronous mode active & number of dummy cycles. Before  
entering burst mode, the configuration register needs to be set. It's consisted of 4 cycles. Cycle 1 & 2:  
Unlock sequences. Cycle 3: Data D0h & address 555h. Cycle 4: Configuration code with address  
(000h). To reset the device to read or suspended read, a software reset command needs to be  
issued. The device's default state after power up or hardware reset is asynchronous read mode.  
Before entering synchronous mode, the register needs to be set. During bus operation, the register  
can not be modified.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
21  
MULTIPLEXED, Burst Mode, Flash Memory  
5-3-1. Programmable Dummy Cycle  
This feature is able to indicate the device the configurable period of time for the number of  
additional clock cycles. And then address data will be available after the time elapsed and AVD#  
is driven active.The dummy cycle will be set to default value after power up. The total number of  
dummy cycles is programmable from 3rd to 10th cycles. Refer to Section 5.3 Set Configuration  
Register Command Sequence in above section for more details.  
5-3-2. Configurable Dummy Cycle  
The Configurable Dummy Cycle settings can be decided by the input frequency of the device - The  
Configuration Bit (CR14–CR11) determines the setting. Refer to Table 5. Configurable Dummy  
Cycles vs. Frequency as below.  
The certain number of cycles for original burst read is set by the dummy cycle command sequence.  
The clock frequency determines the number of dummy cycles configured.  
NOTE: After a power-up or hardware reset, the default setting of dummy cycle will be set to 10.  
In order to ensure the device is set as expected, it is recommended that dummy cycle command  
sequence should to be written even if the default dummy cycle value is desired. Default state can  
also be obtained by hardware reset.  
Other setting not listed in the table above will be reserved as invalid.  
If the setting CR[14:11] is not in legal setting as table listed, the device will output CR[14:11] to  
0001 and RDY will be disasserted.  
5-3-3. Burst Length Configuration  
Three different burst read modes are supported: 8 & 16 word linear burst read with wrap around;  
continuous burst read. The device's default burst read is continuous read. It launches with starting  
address till the burst read ends. When reaches the highest address, it wraps around to the lowest  
address. The wrap around occurs in the 8 or 16 word boundary.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
22  
MX29NS320/640/128E  
Table 5. Configurable Dummy Cycles vs. Frequency  
Freq Max  
(Mhz)  
CR [14:11]  
Dummy Cycles  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
3
4
25  
38  
50  
63  
75  
87  
98  
108  
5
6
7
8
9
10  
5-3-4. Burst Wrap Around  
CR3 is set to "1" by default. When it changes to "0", the burst warp around mode is disabled.  
5-3-5. Output Drive Strength  
User may tune the strength of output driver from full strength to half strength depends on the  
configuration bit CR7.  
The default setting is CR7=1; with full strength.  
If CR7=0, the strength of output buffer will be reduced to half strength.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
23  
MULTIPLEXED, Burst Mode, Flash Memory  
5-4. Program Operation  
All three devices provide the ability to program the memory array in Word mode. As long as users  
enter the correct cycle defined in the Chapter 7. Command Definitions (including 2 unlock  
cycles and the A0H program command), word data provided on the data lines by the system will  
automatically be programmed into the array at the specified location.  
After the program command sequence has been executed, the internal write state machine (WSM)  
automatically executes the algorithms and timings necessary for programming and verification,  
which includes generating suitable program pulses, checking cell threshold voltage margins, and  
repeating the program pulse if any cells do not pass verification or have low margins. The internal  
controller protects cells that do pass verification and margin tests from being over-programmed by  
inhibiting further program pulses to these passing cells as weaker cells continue to be programmed.  
With the internal WSM automatically controlling the programming process, users only need to enter  
the program command and data once.  
Programming will only change the bit status from "1" to "0". It is not possible to change the bit  
status from "0" to "1" by programming. This can only be done with an erase operation. Furthermore,  
the internal write verification only checks and detects errors in cases where a "1" is not successfully  
programmed to "0".  
Any commands written to the device during programming will be ignored except hardware reset  
or program suspend. Hardware reset will terminate the program operation after a period of time  
not more than tPSL. When the program is complete or the program operation is terminated by a  
hardware reset, the device will return to Read mode. When program suspend is ready, the device  
will enter program suspend read mode.  
After the embedded program operation has begun, users can check for completion by reading the  
following bits in the status register table below:  
Q7*1  
Q6  
Q5  
Q1  
Status  
Q7#  
Q7#  
Toggling  
Toggling  
0
1
0
In progress  
Exceed Time Limit  
N/A  
NOTE: DQ7 (Data# Polling bit) shows the status of on-going or completion for program and  
erase operations or in erase suspend mode.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
24  
MX29NS320/640/128E  
5-4-1. Programming Commands/Command Sequences  
To perform a program operation, the system provides the desired address on the address pins,  
enables the chip by asserting CE# & WE# LOW & OE# to HIGH, and disables the Data (I/O) pins  
by holding OE# HIGH. To Latch address, AVD# needs to be asserted LOW. On 1st falling edge of  
WE#, address latched. On 1st rising edge of WE#, data latched.  
Table2. Bus Operation on page 16, described the detail of the combinations.  
To see an example of the implementation on waveform, please refer to Figure 17. Program  
Operation Timings Waveform. The system is not allowed to write invalid commands (commands  
not defined in this datasheet) to the device. Writing an invalid command may put the device in an  
undefined state.  
5-4-2. Accelerated Program and Erase Operations  
By applying high voltage (Vhv) to the ACC pin, the device will enter the Accelerated Programming  
mode. This mode permits the system to skip the normal command unlock sequences and program  
locations directly. During accelerated programming, the current drawn from the ACC pin is no more  
than ICP1.  
5-4-3. Write Buffer Programming Operation  
The devices program 32 words in a programming operation. To trigger the Write Buffer  
Programming, start with the first two unlock cycles, then third cycle writes the Write Buffer Load  
command at the predefined programming Sector Address. The fourth cycle writes the "word  
locations subtract one" number.  
Following the above operations, system starts to write the mingling of address and data. After  
the programming of the first address or data, the "write-buffer-page" is selected. The following  
data should be within the above mentioned page. The "write-buffer-page" is selected by choosing  
address Amax-A5. "Write-Buffer-Page" address has to be the same for all address/data write into  
the write buffer. If not, operation will be aborted.  
To program the content of the write buffer page this command must be followed by a write to  
buffer Program confirm command. The operation of write-buffer can be suspended or resumed by  
the standard commands, once the write buffer programming operation is finished, it will return to  
normal READ mode.  
“Abort” will be executed for the Write Buffer Programming Sequence if the following conditions  
occurred:  
- The value loaded is bigger than the page buffer size during "Number of Locations to Program"  
- Address written in a sector is not the same as the one assigned during the Write-Buffer-Load  
command.  
- Address/ Data pair written to a different write-buffer-page than the one assigned by the  
"Starting Address" during the "write buffer data loading" operation.  
- Writing not "Confirm Command" after the assigned number of "data load" cycles.  
At Write Buffer Abort mode, the status register will be Q1=1, Q7=DATA# (last address written),  
Q6=toggle, Q5=0. A Write-to-Buffer-Abort Reset command sequence has to be written to reset the  
device for the next operation.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
25  
MULTIPLEXED, Burst Mode, Flash Memory  
Write buffer programming can be conducted in any sequence. However the CFI functions, Auto-  
select, Secured Silicon sectors are not functional when program operation is in progress. Multiple  
write buffer programming operations on the same write buffer address range without intervening  
erases is available. Any bit in a write buffer address range can not be programmed from 0 back to 1.  
5-4-4. Write Buffer Programming Command Sequence  
Write Buffer Programming Sequence is able to facilitate faster programming as compared to the  
standard Program Command Sequence.  
See Table 7. and Figure 1. below for the program command sequence.  
5-4-5. Buffer Write Abort  
In the table below, Q1 is the indicator of Buffer Write Abort. When Q1=1, the device will abort from  
buffer write and go back to read status register:  
Status  
Q7  
Q6  
Q5  
Q3  
Q2  
Q1  
Buffer Write Busy  
Q7#  
Toggle  
0
N/A  
N/A  
0
Buffer Write Abort  
Q7#  
Q7#  
Toggle  
Toggle  
0
1
N/A  
N/A  
N/A  
N/A  
1
0
Buffer Write Exceeded Time Limit  
Table 6. Write Buffer Command Sequence  
Sequence  
Command  
Address  
Data  
Remarks  
1
Unlock (1)  
555  
00AA  
0055  
2
3
4
Unlock (2)  
2AA  
Load Write Buffer  
Start Address 0025h  
Indicate # of Program  
Locations  
Word  
Start Address  
Count  
(# of locations) - 1  
Addresses need to be within write-buffer-  
page boundaries, but no need to be  
loaded in any order.  
5
Load 1st word  
Start Address  
Write  
Write Buffer  
Location  
6-X  
Load next word  
Load last word  
Write  
Write  
Same as above  
Write Buffer  
Location  
X+1  
Same as above  
This command must come after the  
0029h last write buffer location loaded, or the  
operation will ABORT.  
Write Buffer Program  
Confirm  
Sector  
Address  
X+2  
X+3  
Device goes busy  
Status monitoring  
through Q pins (Conduct  
Data Bar Polling on the  
Last Loaded Address)  
Last  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
26  
MX29NS320/640/128E  
Figure 1. Write Buffer Programming Operation  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1(DC)  
and Sector Address  
Write first address/data  
Yes  
DC = 0 ?  
Write to a different  
sector address  
No  
Yes  
Abort Write to  
Buffer Operation?  
Write to buffer ABORTED.  
Must write “Write-to-buffer  
Abort Reset” command  
sequence to return  
No  
Write next address/data pair  
to read mode.  
DC = DC - 1  
Write program buffer to  
flash sector address  
Read Q15 - Q0 at  
Last Loaded Address  
Yes  
Q7 = Data?  
No  
No  
No  
Q1 = 1?  
Q5 = 1?  
Yes  
Yes  
Read Q15 - Q0 with  
address = Last Loaded  
Address  
Yes  
Q7 = Data?  
No  
PASS  
FAIL or ABORT  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
27  
MULTIPLEXED, Burst Mode, Flash Memory  
Figure 2. Status Polling For Write Buffer Program  
Start  
Read Q7~Q0 at last write  
address (Note 1)  
No  
Q7 = Data# ?  
Yes  
Q1=1 ?  
Yes  
Only for write  
buffer program  
No  
No  
Q5=1 ?  
Write Buffer Abort  
Yes  
Read Q7~Q0 at last write  
address (Note 1)  
No  
Q7 = Data# ?  
(Note 2)  
Yes  
FAIL  
Pass  
NOTES:  
1. For programming, valid address means program address. For erasing, valid address  
means erase sectors address.  
2. Q7 should be rechecked even Q5="1" because Q7 may change simultaneously with Q5.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
28  
MX29NS320/640/128E  
5-5. Erase Operation  
There are two types of erase operations performed on the memory array -- Sector Erase and Chip  
Erase. Sector Erase operation erases one selected sector.  
Chip erase will not be conducted if any of the sectors is protected. It can be done after the sector is  
being un-protected.  
5-5-1. Sector Erase  
The sector erase operation is used to clear data within a sector by returning all the memory  
location to the “1” state. It requires six command cycles to initiate the erase operation.  
The first two are "unlock cycles", the third is a configuration cycle, the fourth and fifth ones are also  
"unlock cycles", and the last cycle is the Sector Erase command. After the sector erase command  
sequence has been issued, the embedded sector erase operation will then begin.  
After the embedded sector erase operation begins, all commands except Erase Suspend will be  
ignored. The only way to interrupt the operation is with an Erase Suspend command or with a  
hardware reset. The hardware reset will completely abort the operation and return the device to  
Read mode.  
The system can determine the status of the embedded sector erase operation by the following  
methods:  
Status  
In progress  
Q7  
Q6  
Q5  
Q3  
Q2  
0
Toggling  
0
NA  
Toggling  
Exceeded time limit  
0
Toggling  
1
NA  
Toggling  
NOTE:  
Q2 is a localized indicator showing a specified sector is undergoing erase operation or  
not. Q2 toggles when user reads at addresses where the sectors are actively being  
erased (in erase mode) or to be erased (in erase suspend mode).  
5-5-2. Chip Erase  
The Chip Erase operation is used to erase all the data within the memory array. All memory cells  
containing a "0" will be returned to the erased state of "1". This operation requires 6 write cycles  
to initiate the action. The first two cycles are "unlock" cycles, the third is a configuration cycle, the  
fourth and fifth are also "unlock" cycles, and the sixth cycle initiates the chip erase operation.  
During the chip erase operation, no other software commands will be accepted, but if a hardware  
reset is received or the working voltage is too low, that chip erase will be terminated. After Chip  
Erase operation completes, the chip will automatically return to Read mode. If any of the sectors is  
locked, chip erase will not start.  
The system is able to determine the status of the embedded chip erase operation by the following  
methods:  
Status  
Q7  
0
Q6  
Q5  
0
Q2  
In progress  
Toggling  
Toggling  
Toggling  
Toggling  
Exceed time limit  
0
1
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
29  
MULTIPLEXED, Burst Mode, Flash Memory  
5-5-3. Sector Erase Command Sequence  
There are six bus cycles in normal sector erase operation in normal mode. Sector erase command  
sequence is as follows: Write 2 unlock cycles --> Set-up command --> 2 more unlock cycles  
-->Address of sector to be erased --> sector erase command.  
Erase operation doesn't require the pre-programming in advance. An all zero data pattern before  
erase initiation will come to pass for programming & verifying the device per the Erase. No controls  
or timing is needed during sector erase operation.  
After the writing of command sequence, the erase operation will start.  
Upon completion of the erase operation, the device's address will not be latched and returns to  
read status. When Embedded Erase operation is on-going, the device cannot be read.  
When erase operation is engaged, only erase suspend can be conducted. A hardware reset will  
terminate the erase operation.  
5-5-4. Accelerated Sector Erase  
An accelerated erase function is provided to erase no more than 100 times per sector erase. ACC  
erase operation should be conducted in the range of 30C +/-10C. The ACC erase provides much  
faster erase operation compare with standard erase operations.  
Operations below are needed prior to ACC sector erase operation:  
1. Unlock the sectors should be erased with DPB before hand. Locked sectors can not be erased.  
2. Vhv must be applied to ACC input at least 1 μs before executing step 3.  
3. Chip erase command is issued.  
4. Q2/Q6 or Q7 status bits should be monitored so to verify when erase operation is complete.  
This procedure is the same as in the standard erase operation.  
5. ACC is lowered from Vhv to VCC.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
30  
MX29NS320/640/128E  
Figure 3. Erase Operation  
START  
Erase  
Command Sequence  
Poll Data  
from System  
Erase  
Operation  
on-going  
No  
Data = FFh?  
Yes  
Erase Completion  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
31  
MULTIPLEXED, Burst Mode, Flash Memory  
5-6. Program/Erase Operation Status  
Program or erase operation status is disaplayed in the following status bits: Q2, Q3, Q5, Q6, and  
Q7. Descriptions of the bits is in the following tables & sections. Q6 and Q7 indicate if program or  
erase is finished or not.  
Table 7. Program Operation Status  
Q7  
Q6  
Q5  
Q3  
Q2  
Q1  
Status  
(Note 2)  
(Note 1)  
(Note 2) (Note 4)  
Program  
Suspend  
Mode  
Read from Program Suspended Sector  
Invalid data will output from address under programming.  
Read in Non-Program Suspended Sector  
Program  
Data  
(Note 3)  
No  
Q7#  
0
Toggle  
Toggle  
0
0
0
N/A  
1
0
Standard  
Mode  
Toggle  
Erase  
Toggle  
N/A  
N/A  
Erase Suspended  
No  
1
N/A  
Toggle  
Data  
Erase  
Erase-Suspend-  
Read  
Sector  
Toggle  
Suspend  
Mode  
Non-Erase Suspended  
Sector  
Data  
Data  
Data  
Data  
Data  
Erase-Suspend-Program  
BUSY  
Exceeded Timing Limits  
Q7#  
Q7#  
Q7#  
Toggle  
Toggle  
Toggle  
0
0
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
0
Write to  
Buffer  
ABORT  
Q7#  
Toggle  
0
N/A  
N/A  
1
(Note 5)  
Legend: T - Toggle; NT - No toggle.  
NOTES:  
1. When embedded program/erase exceed max. time limit, Q5 changes to "1".  
2. A valid address is needed for reading status info from Q7 & Q2.  
3. When program is suspended, output data is invalid.  
4. During write buffer program, Q1 indicates the write to buffer abort status.  
5. During write buffer program, data-bar polling algorithm needs to be conducted.  
Data-bar of Q7 shows the last address loaded for write buffer.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
32  
MX29NS320/640/128E  
5-7. Program/Erase Suspend/Resume  
5-7-1. Program Suspend  
After a program operation begins, Program Suspend is the only valid command that can be issued.  
The system will determine if the device has entered the Program-Suspended Read mode through  
Q6.  
After the device has entered Program-Suspended mode, the system can read any sector (s)  
except that being programmed by the suspended program operation. Reading the array being  
program suspended is invalid. Whenever a suspend command is issued, user must issue a resume  
command and check Q6 toggle bit status, before issue another program command. The system  
can use the Status Register bits shown in Table 7 to determine the current state of the device:  
When the device is Program/Erase suspended, user is allowed to execute read array, Auto Select,  
read CFI, read security silicon commands.  
5-7-2. Program Resume  
The Program Resume command is valid only when the device is in Program-Suspended mode.  
After program resumes, users are allowed to issue another Program Suspend command, but there  
should be a 25us interval between Program Resume and the next Program Suspend command.  
5-7-3. Program Suspend/Program Resume Commands  
The Program suspend command is for pausing the "Write to Buffer" operation.  
The Program suspend operation is as follows: Issuing Programming Suspend Command -->  
Device's programming operation suspended paused within tPSL; Status Bits updated; Address  
defined --> Data to be read from non-suspended sectors.  
Note that when an erase suspend is in operation, program suspend can also be conducted, data  
can then be read from non-suspended sectors.  
If read from OTP sectors needed, it needs to exit the region with proper command sequences.  
Auto Select code can also be read from suspended sectors. When exit from Auto select mode, it  
returns to suspend mode.  
For Program Resume, it operates as thus: Issuing Program Resume command --> Device resumes  
programming (Status to be checked by Status bit Q7 or Q6)  
It must exit the suspend by issuing resume command. After programming being resumed, another  
program suspend can be issued.  
NOTE: While a program operation is suspended and resumed more than once, a minimum  
delay of tPRS (Program Resume to Program Suspend) is required between next  
resume and suspend command.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
33  
MULTIPLEXED, Burst Mode, Flash Memory  
5-7-4. Erase Suspend  
After a sector erase operation begins, Erase Suspend is the only valid command that can be  
issued. If the system issues an Erase Suspend command after the sector erase operation has  
already begun, the device will not enter Erase-Suspended Read mode until tESL has elapsed. The  
system is able to determine if the device has entered the Erase-Suspended Read mode through  
Q6 and Q7.  
After the device has entered Erase-Suspended Read mode, the system can read or program  
any sector (s) except that being erased by the suspended erase operation. Reading any sector  
being erased or programmed will return the contents of the status register. Whenever a suspend  
command is issued, users must issue a resume command and check Q6 toggle bit status, before  
issue another erase command.  
When the device reads from a erase suspended sector during burst read mode, the burst read  
operation will stop and RDY will be disabled when crossing the boundary to the suspended sector.  
User may restart the burst operation by issuing new address and AVD# pulse.  
The system is able to use the status register bits shown in the following table to determine the  
current state of the device:  
Status  
Q7  
Q6  
Q5  
Q3  
Q2  
Q1  
Erase suspend read in erase  
suspended sector  
1
No toggle  
0
N/A  
Toggle  
N/A  
Erase suspend read in non-erase  
suspended sector  
Data  
Q7#  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
Data  
N/A  
Erase suspend program in non-  
erase suspended sector  
Toggle  
5-7-5. Sector Erase Resume  
The Sector Erase Resume command is valid only when the device is in Erase-Suspended Read  
mode. After erase operation resumes, users can issue another Erase Suspend command, but  
there should be a 400us interval between Erase Resume and the next Erase Suspend command.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
34  
MX29NS320/640/128E  
Figure 4. Data# Polling Timing Waveforms (During Embedded Algorithms)  
High Z  
High Z  
Status Data  
Status Data  
A/Q15-A/Q0  
VA  
VA  
t
ACC  
A
A16  
max  
VA  
VA  
t
CEZ  
t
CE  
CE#  
t
CH  
AVD#  
WE#  
t
OEH  
t
OEZ  
t
OE  
OE#  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
35  
MULTIPLEXED, Burst Mode, Flash Memory  
Figure 5. Data# Polling For Word Program/Erase  
Start  
Read Q7~Q0 at valid address  
No  
Q7 = Data# ?  
Yes  
No  
Q5 = 1 ?  
Yes  
Read Q7~Q0 at valid address  
No  
Q7 = Data# ?  
Yes  
FAIL  
Pass  
Figure 6. Toggle Bit Timing Waveforms (During Embedded Algorithms)  
High Z  
High Z  
A/Q15  
A/Q0  
Status Data  
Status Data  
VA  
VA  
VA  
tACC  
A
A16  
VA  
max  
tCEZ  
tCE  
CE#  
tCH  
AVD#  
WE#  
tOEH  
tOEZ  
tOE  
OE#  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
36  
MX29NS320/640/128E  
Figure 7. Toggle Bit Algorithm  
Start  
Read Q7-Q0 Twice  
(Note 1)  
NO  
Q6 Toggle ?  
YES  
NO  
Q5 = 1?  
YES  
Read Q7~Q0 Twice  
NO  
Q6 Toggle ?  
YES  
PGM/ERS fail  
Write Reset CMD  
PGM/ERS Complete  
NOTES:  
1. Read toggle bit twice to determine whether or not it is toggling.  
2. Recheck toggle bit because it may stop toggling as Q5 changes to "1".  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
37  
MULTIPLEXED, Burst Mode, Flash Memory  
5-8. Configuration Register  
A configuration register is used to set the various burst parameters: number of dummy cycles, burst  
read mode, burst length, RDY configuration, and synchronous mode active.  
The Configuration Register Table displays the address bits of configuration register settings  
represent various device functions.  
Table 8. Configuration Register  
Function  
CR Bit  
Settings (Binary)  
Reserved  
CR15  
0 = Default  
0000 = Reserved  
0001 = Data is valid on the 3rd active CLK rising edge (Default Value)  
0010 = Data is valid on the 4th active CLK rising edge  
0011 = Data is valid on the 5th active CLK rising edge  
0100 = Data is valid on the 6th active CLK rising edge  
0101 = Data is valid on the 7th active CLK rising edge  
0110 = Data is valid on the 8th active CLK rising edge  
0111 = Data is valid on the 9th active CLK rising edge  
1000 = data is valid on the 10th active CLK rising edge  
1001 = Reserved  
CR14  
CR13  
CR12  
Programmable  
Dummy Cycles  
1010 = Reserved  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
CR11  
1110 = Reserved  
1111 = Reserved  
0 = RDY signal is active low  
RDY Polarity  
Reserved  
RDY  
CR10  
CR9  
CR8  
1 = RDY signal is active high (default)  
1 = Default  
0 = RDY active one clock cycle before data  
1 = RDY active with data (Default)  
Driver Strength  
Reserved  
CR7  
CR6  
CR5  
CR4  
1 = Full driver strength (Default) 0=Half driver strength  
1 = Default  
0 = Default  
0 = Default  
Reserved  
Reserved  
0 = No Wrap Around Burst  
Burst Wrap  
Around  
CR3  
1 = Wrap Around Burst (Default)  
000 = Continuous (Default)  
010 = 8-Word Linear Burst  
011 = 16-Word Linear Burst  
(All other bit settings are reserved)  
CR2  
CR1  
CR0  
Burst Length  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
38  
MX29NS320/640/128E  
NOTES:  
1. RDY Configuration - MX29NS320/640/128E are all able to set RDY to output VOH with  
valid data by default. RDY goes active one data cycle ahead of the active data. CR8  
sets to "1" for RDY being active; "0" for RDY being active one cycle ahead of the valid  
data to be output.  
2. RDY Polarity - All devices have this default setting to indicate if the system is  
ready for CR10 to set to "1" when RDY is high. Set to "0" will set RDY to low. When  
RDY is low, RDY shows the device is ready.  
5-9. Enter/Exit Secured Silicon Sector Command Sequence  
A 8-word, random ESN (Electronic Serial Number) is in the Secured Silicon Sector region. The  
operation of this region is thus: 3-cycle command to enter the region --> Access of the region -->  
4-cycle command to exit the region --> Return to normal operation  
Not the Secured Silicon Region cannot be accessed when program/erase is in operation.  
In the Secured Silicon Sector region, 128-word region is factory locked, while the other 128-word  
region is customer locked.  
5-9-1. Program Secured Silicon Sector Command Sequence  
Programming Secured Silicon is a two-cycle command. It is initiated by A0h command followed by  
program address with program data. The program operation then starts.  
The system can monitor Q7 or Q2/Q6 to check the status of the embedded operation as the  
system does when programming the normal array.  
Programming the Secured Silicon will only change the bit status from “1” to “0”. It is not possible  
to change the bit status from “0” to “1” by programming. Furthermore, the internal write verification  
only checks and detects errors in case where a ”1” is not successfully programmed to “0”.  
When program is complete, the device then returns to Read Secured Silicon Sector mode.  
If embedded program exceeds max. time limit (a failure occurs), Q5 changes to “1” and Q6 keeps  
toggling. Under this condition, a soft ware reset command is needed and the device returns to  
Read Secured Silicon Sector mode.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
39  
MULTIPLEXED, Burst Mode, Flash Memory  
5-10. Auto Select Operations  
Users are allowed to issue the Auto Select command (two unlock cycles followed by the Auto  
Select command 90H) to enter Auto Select mode when the device is in either:  
After entering Auto Select mode, user can query the following status multiple times without issuing  
a new Auto Select command:  
1. Manufacturer ID  
2. Device ID  
3. Security Sector locked status  
4. Sector protected status  
While In Auto Select mode, issuing a Reset command (F0H) will return the device to one of the  
following modes:  
Read mode  
Erase-Suspended Read mode (if Erase-Suspend is active)  
Program Suspended Read mode (if Program Suspend is active).  
NOTE: After entering Auto Select mode, no other commands are allowed except the  
reset command.  
5-10-1. Auto Select Command Sequence  
The Auto Select mode has four command cycles. The first two are unlock cycles, and followed by a  
specific command. The fourth cycle is a normal read cycle, and user can read at any address any  
number of times without entering another command sequence. The Reset command is necessary  
to exit the Auto Select mode and back to reading memory array. The following table shows the  
identification code with corresponding address.  
Address  
Data (Hex)  
Manufacturer ID  
X00  
C2  
Device ID  
MX29NS640E  
MX29NS320E  
MX29NS128E  
X01/0E/0F  
X01/0E/0F  
2B7E/2B33/2B00  
2A7E/2A31/2A00  
Device ID  
Device ID  
X01/0E/0F  
(Sector address)  
X02  
2C7E/2C35/2C00  
00/01  
Sector Protect Verify  
Q0-Q2 = Reserved  
Q4 & Q3 - WP# Protections Boot Code  
01 = WP# Protects only the Top Boot Sectors  
Q5 Handshake Bit  
0 = Handshake, 1 = Reserved  
Q6 - Customer Lock Bit  
Secured Silicon  
X07  
0 = Un-Locked, 1 = Locked,  
Q7 - Factory Lock Bit  
0 = Un-Locked, 1 = Locked  
Q8 - Q15 = Reserved  
NOTE: After entering Auto Select mode, no other commands are allowed except the  
reset command.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
40  
MX29NS320/640/128E  
5-11. Handshaking Feature  
By conducting the host to detect the Ready (RDY) signal, the handshaking feature enables the  
system to decide when the initial burst data is ready.  
The operation is as thus: Configure the # of dummy cycle by Configuration Register --> CE# goes  
low --> Rising edge of RDY indicates the initial burst word data indicated  
The Burst read may be optimized by configuring the setting the number of dummy cycle per clock  
frequency.  
The Auto Select Function helps the host to see if the device is ready for handshaking operation.  
Table 9. Dummy Cycles for Handshaking  
Clock Cycles after AVD# Low (Typical No.)  
Address Issuing Condition  
108 MHz  
10  
Initial address (VI/O = 1.8 V)  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
41  
MULTIPLEXED, Burst Mode, Flash Memory  
6. SECURITY FEATURES  
This device is able to provide security protection features to prevent unintentional program or  
erase operations.  
6-1. Lock Register  
A Lock Register allows the Secured Silicon Sector Protection to be configured or not.  
6-1-1. Lock Register Bits  
User can choose if Q0 = 1 with default OTP or Q0 = 0 to lock Secured Silicon Sector.  
After the Lock Register Bits Command Set Entry command sequence is issued, the read and write  
operations for normal sectors are disabled until this mode exits.  
Table 10. Lock Register bits  
Q15-Q1  
Q0  
Don't care  
Secured Silicon Sector Protection Bit  
Please refer to the command for Lock Register command set to read and program the Lock  
register.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
42  
MX29NS320/640/128E  
Figure 8. Lock Register Program Algorithm  
START  
Write Data AAH, Address 555H  
Write Data 55H, Address 2AAH  
Write Data 40H, Address 555H  
Lock register command set Entry  
Write Data A0H,  
Address don’t care  
Lock register data program  
Write Program Data,  
Address don’t care  
Data # Polling Algorithm  
YES  
Done  
NO  
Pass  
NO  
Q5 = 1  
YES  
Fail  
Exit Lock Register  
command  
Reset command  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
43  
MULTIPLEXED, Burst Mode, Flash Memory  
6-1-2. Dynamic Write Protection Bits (DPBS)  
The Dynamic Protection allows the software application to easily protect sectors against inadvertent  
change. However, the protection can be easily disabled when changes are necessary.  
All Dynamic Protection bit (DPB) are volatile and assigned to each sector. It can be modify  
individual.To modify the DPB status by issuing the DPB Set (programmed to “0”) or DPB Clear (erased  
to “1”) commands, then placing each sector in the protected or unprotected state separately. The  
DPBs are set as protected by default.  
6-2. Hardware Data Protection Mode  
Two types of hardware protections is provided:  
1. WP# low protects the top two sectors.  
2. ACC low protects all sectors.  
NOTES:  
1. Q0~Q15 are input (DIN) or output (DOUT) pins according to the requests of  
command sequence, sector protection, or data polling algorithm.  
2. In Word Mode, the addresses are AM to A0, AM: MSB of address.  
6-2-1. Write Protect (WP#)  
The hardware protection provided by WP# is by asserting the WP# to low. After WP# goes low, the  
upper two sectors will be protected. The erase & program function in these two sectors are disabled  
after WP# protection enabled. The WP# protection will override the software protection method.  
When WP# is asserted high, software protection mode determines which array to protect.  
6-2-2. WP# Boot Sector Protection  
The WP# should be asserted low on the last cycle of program or erase command so it can protect  
the top two sectors. (4th cycle in program; 6th cycle in erase).  
NOTE: The WP# should not be left floating or unconnected; or it may cause inconsistent  
behavior of the device.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
44  
MX29NS320/640/128E  
6-3. Security Sector Flash Memory Region  
The Security Sector region is an extra OTP memory space of 256 words in length. The security  
sector can be locked upon shipping from factory, or it can be locked by customer after shipping.  
Customer can issue Security Sector Factory Protect Verify and/or Security Sector Protect Verify to  
query the lock status of the device.  
In factory-locked device, security sector region is protected when shipped from factory and the  
security silicon sector indicator bit is set to "1". In customer lockable device, security sector region  
is unprotected when shipped from factory and the security silicon indicator bit is set to "0".  
6-3-1. Factory Locked: Security Sector Programmed and Protected at the Factory  
In a factory-locked device, the Security Sector is permanently locked before shipping from the  
factory. The device will have a 8-word ESN in the security region. The ESN occupies 00000h to  
00007h in word mode.  
Secured Silicon Sector  
Address Range  
Express Flash  
Factory Locked  
Standard Factory Locked  
000000h-00007Fh  
ESN  
Factory lock  
000080h-0000FFh  
Unavailable  
Determined by Customer  
6-3-2. Customer Lockable: Security Sector NOT Programmed or Protected  
at the Factory  
When the security feature is not required, the security region can act as an extra memory space.  
Security silicon sector can also be protected by two methods. Note that once the security silicon  
sector is protected, there is no way to unprotect the security silicon sector and the content of it can  
no longer be altered.  
After the security silicon is locked and verified, system must write Exit Security Sector Region, go  
through a power cycle, or issue a hardware reset to return the device to read normal array mode.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
45  
MULTIPLEXED, Burst Mode, Flash Memory  
7. COMMAND DEFINITIONS  
Command Definitions Tables shows the address and data requirements for both command  
sequences.  
Automatic Select  
Asyn.  
Read  
Reset  
Mode  
Sector  
Protect  
Verify  
Command  
Cycles  
Manuf.  
ID  
Device  
ID  
Indicator  
Bits  
1
1
1
4
6
4
4
Addr  
RA  
XXX  
555  
555  
555  
555  
1st Bus  
Cycle  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
RD  
F0  
AA  
2AA  
55  
555  
90  
AA  
2AA  
55  
555  
90  
X01  
ID1  
X0E  
ID2  
X0F  
ID3  
AA  
2AA  
55  
555  
90  
AA  
2AA  
55  
555  
90  
2nd Bus  
Cycle  
3rd Bus  
Cycle  
X00  
C2  
07  
Data  
02  
Data  
4th Bus  
Cycle  
5th Bus  
Cycle  
6th Bus  
Cycle  
Program  
Program  
Buffer to  
Flash  
Program/ Program/  
Set  
Read  
Program  
to Buffer  
to Buffer  
Abort  
Reset  
3
Chip  
Sector  
Erase  
Command  
CFI Program  
Erase  
Erase  
Config.  
Config.  
Erase  
Suspend Resume Register Register  
Cycles  
1
4
6
1
6
6
1
1
4
4
1st Bus Addr  
55  
98  
555  
AA  
2AA  
55  
555  
A0  
555  
AA  
2AA  
55  
SA  
25  
SA  
WC  
PA  
PD  
WBL  
PD  
SA  
29  
555  
AA  
2AA  
55  
555  
555  
AA  
2AA  
55  
555  
80  
555  
AA  
2AA  
55  
555  
10  
555  
AA  
2AA  
55  
555  
80  
555  
AA  
2AA  
55  
SA  
30  
XXX  
B0  
XXX  
30  
555  
AA  
2AA  
55  
555  
D0  
X00  
CR  
555  
AA  
2AA  
55  
555  
C6  
Cycle  
2nd Bus Addr  
Cycle  
3rd Bus Addr  
Cycle  
4th Bus Addr  
Cycle  
5th Bus Addr  
Cycle  
6th Bus Addr  
Data  
Data  
Data  
F0  
PA  
PD  
XX  
CR  
Data  
Data  
Cycle  
Data  
Legend:  
X = Don’t care  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE# or CE# pulse,  
whichever happens later.  
PD = Data to be programmed at location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first.  
PD(0) = Secured Silicon Sector Lock Bit. PD(0), or bit[0].  
PD(1) = Persistent Protection Mode Lock Bit. PD(1), or bit[1], must be set to ‘0’ for protection while PD(2), bit[2] must be left as ‘1’.  
PD(2) = Password Protection Mode Lock Bit. PD(2), or bit[2], must be set to ‘0’ for protection while PD(1), bit[1] must be left as ‘1’.  
PD(3) = Protection Mode OTP Bit. PD(3) or bit[3].  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
46  
MX29NS320/640/128E  
Deep Power Down  
Lock  
Command  
Sequence  
Lock Register  
Command Set  
Entry  
Lock Register  
Command Set  
Exit  
Lock Register  
Bit Program  
Enter  
Exit  
Cycles  
Word  
Word  
3
2
2
555  
AA  
XXX  
AB  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
555  
AA  
2AA  
55  
555  
40  
XXX  
A0  
00  
XX  
90  
XX  
00  
1st Bus  
Cycle  
2nd Bus  
Cycle  
3rd Bus  
Cycle  
2AA  
55  
Data  
XXX  
B9  
4thBus  
Cycle  
Addr  
Data  
Addr  
Data  
Addr  
Data  
5th Bus  
Cycle  
6th Bus  
Cycle  
7th Bus  
Cycle  
Secured Silicon Sector  
Dynamic Protection Bits  
DPB  
DPB Set DPB Clear Status  
Read  
Command  
Sector  
Entry  
Sector  
Sector  
Read  
Sector  
Exit  
Command  
Set Entry  
Command  
Set Exit  
Sequence  
Program  
3
2
1
4
3
2
2
1
2
Cycles  
Addr  
555  
AA  
2AA  
55  
555  
88  
XX  
A0  
PA  
RA  
Data  
555  
AA  
2AA  
55  
555  
90  
555  
AA  
2AA  
55  
555  
E0  
XX  
A0  
SA  
00  
XX  
A0  
SA  
01  
SA  
RD(0)  
XX  
90  
XX  
00  
1st Bus  
Cycle  
2nd Bus  
Cycle  
3rd Bus  
Cycle  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Data  
XX  
00  
4th Bus  
Cycle  
Addr  
Data  
5th Bus  
Cycle  
SA = Address of the sector to be verified (in autoselect mode) or erased.  
Address bits Amax - A13 uniquely select any sector.  
RD(0) = Q0 protection indicator bit. If protected, Q0 = 0, if unprotected, Q0 = 1.  
RD(1) = Q1 protection indicator bit. If protected, Q1 = 0, if unprotected, Q1 = 1.  
RD(2) = Q2 protection indicator bit. If protected, Q2 = 0, if unprotected, Q2 = 1.  
RD(4) = Q4 protection indicator bit. If protected, Q4 = 0, if unprotected, Q4 = 1.  
WBL = Write Buffer Location. Address must be within the same write buffer page as PA.  
WC = Word Count. Number of write buffer locations to load minus 1.  
NOTE: It is not recommended to adopt any other code not in the command definition table  
which will potentially enter the hidden mode.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
47  
MULTIPLEXED, Burst Mode, Flash Memory  
8. ENERGY SAVING MODE  
8-1. Standby Mode  
The device enters Standby mode whenever the RESET# and CE# pins are both held High except  
in the embedded mode. While in this mode, WE# and OE# will be ignored, all Data Output pins will  
be in a high impedance state, and the device will draw minimal (ICC3) current.  
8-2. Automatic Sleep Mode  
Automatic Sleep mode is able to minimize power consumption of flash device. The device  
automatically enters this mode when the addresses and clock stays stable for tACC + 20 ns. The  
automatic sleep mode will not be influenced by the CE#, WE#, and OE# control signals. Standard  
address access timings are responsible for offering new data when addresses are changed.  
Output data will be always available to the system and latched in sleep mode.  
ICC6 in the Table 11. DC Characteristics indicates the current specifications for Automatic Sleep  
mode.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
48  
MX29NS320/640/128E  
Table 11. DC Characteristics  
Parameter  
Description  
Test Conditions  
Min Typ  
Max  
Unit  
VIN = VSS to VCC,  
VCC = VCC max  
ILI  
Input Leakage Current  
±1  
uA  
VOUT = VSS to VCC,  
ILO  
Output Leakage Current  
±1  
uA  
VCC = VCC max  
High Voltage Pin Leakage  
Current  
VIN=Vhv,  
VCC=VCC max  
CE# = VIL, OE# = VIL,  
burst length = 8  
CE# = VIL, OE# = VIL,  
burst length = 16  
CE# = VIL, OE# = VIL,  
ILHV  
35  
33  
35  
39  
18  
4
uA  
mA  
mA  
mA  
mA  
mA  
108  
MHz  
108  
MHz  
108  
26  
26  
30  
15  
3
VCC Active Burst Read  
Current  
ICCB  
ICC1  
burst length = continuous MHz  
5 MHz  
CE# = VIL, OE# = VIH  
1 MHz  
VCC Active Asynchronous  
Read Current  
ICC2  
ICC3  
VCC Active Write Current CE# = VIL, OE# = VIH, ACC = VIH  
20  
40  
60  
mA  
uA  
VCC Standby Current  
CE# = VIH, RESET# = VIH (Note 8)  
100  
ICC4  
ICC6  
IDPD  
VCC Reset Current  
VCC Sleep Current  
RESET# = VIL, CLK = VIL (Note 8)  
CE# = VIL, OE# = VIH  
80  
40  
10  
150  
100  
50  
uA  
uA  
uA  
Vcc Deep Power Down  
Current  
Accelerated Program  
Current  
IPPW  
ACC = Vhv  
ACC = Vhv  
20  
30  
mA  
IPPE  
VIL  
Accelerated Erase Current  
Input Low Voltage  
20  
30  
mA  
V
-0.1  
0.3xVI/O  
0.7xVI/  
O
VIH  
VOL  
VOH  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
VI/O+0.3  
0.45  
V
V
V
IOL = 100 uA, VCC = VCC min  
IOH = –100 uA, VCC = VCC min  
0.85x  
VI/O  
Very High Voltage for  
Auto Select/Accelerated  
Program  
Vhv  
9.5  
1.0  
10.5  
1.4  
V
V
VLKO  
Low VCC Lock-out Voltage  
NOTE: Not 100% tested in production.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
49  
MULTIPLEXED, Burst Mode, Flash Memory  
8-3. Reset Commands  
Executing the Reset command is able to reset the device to the Read or Erase-Suspend-Read  
mode. For this command, address bits are don’t care.  
The reset command can be written between the sequence cycles of an erase command and before  
the erase operation begins. It resets the device back to read mode. As soon as erase operation  
begins, the reset command will be ignored until it is complete.  
The reset command can be written between the sequence cycles of an program command  
and before a program operation begins. It resets the device back to read mode. If the program  
command sequence is written when in the Erase Suspend mode, writing the reset command will  
return the device to the erase-suspend-read mode. As soon as program operation begins, the  
reset command will be ignored until it is complete.  
The reset command can be written between the sequence cycles in Auto Select command  
sequence. It resets the device back to read mode when in Auto Select mode. Writing the reset  
command will cause the device return to the erase-suspend-read mode if the device enters the  
Auto Select mode while it is in Erase Suspend mode.  
During a program or erase operation, if Q5 goes high, writing the reset command will either:  
1. Return to read mode  
2. Returns to erase-suspend-read mode (if the device was in Erase Suspend)  
NOTE: The system must write the “Write to Buffer Abort Reset” command sequence  
to reset the device to read mode if Q1 goes high during a Write Buffer  
Programming operation. The standard reset command will not function.  
8-3-1. Hardware Reset  
Driving the RESET# pin LOW for a period of Trp or more will return the device to Read mode. If  
the device is in the process of a program or erase operation, the reset operation will take at most a  
period of Tready1 before the device returns to Read mode.  
When the RESET# pin is held at GND±0.3V, the device only consumes standby (Isbr) current.  
However, the device draws larger current if the RESET# pin is held at a voltage greater than  
GND+0.3V and less than or equal to Vil.  
It is recommended to tie the system reset signal to the RESET# pin of the flash memory. This al-  
lows the device to be reset with the system and puts it in a state where the system can immedi-  
ately begin reading boot code from it.  
Table 12. Hardware Reset  
Parameter  
Description  
Speed  
Unit  
RESET at Embedded  
Program / Erase Operation  
tRP  
25  
us  
RESET# Waveform Width  
RESET at Read Operation  
5
us  
ns  
tRH  
Reset High Time Before Read  
200  
NOTE: Not 100% tested.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
50  
MX29NS320/640/128E  
Figure 9. Reset Timings  
CE#, OE#  
RESET#  
tRH  
tRP  
8-3-2. Software Reset  
Software reset is one of command in the command set (See Chapter 7. Command Definitions)  
that is able to returns the device to read array memory after reset. It must be used under the  
following conditions:  
1. Exit from the Autoselect mode.  
2. Erase or program cycle is not complete successfully that status bit Q5 goes high during write  
procedure.  
3. Return to erase-suspend-read mode if the device was previously in Erase Suspend mode.  
4. Return to initial state after any aborted operations.  
5. Exit read configuration registration mode.  
6. Exit CFI mode.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
51  
MULTIPLEXED, Burst Mode, Flash Memory  
9. COMMON FLASH MEMORY INTERFACE (CFI) MODE  
The device features CFI mode. Host system can retrieve the operating characteristics, structure  
and vendor-specified information such as identifying information, memory size, byte/word  
configuration, operating voltages and timing information of this device by CFI mode. If the system  
writes the CFI Query command "98h", to address "55h", the device will enter the CFI Query Mode.  
The system can read CFI information at the addresses given in Table 13.  
Once user enters CFI query mode, users are allowed to issue reset command to exit CFI mode  
and return to read array mode.  
Table 13-1. CFI Mode: Identification Data Values  
Address (h)  
Description  
Data (h)  
(Word Mode)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
0051h  
0052h  
0059h  
0002h  
0000h  
0040h  
0000h  
0000h  
0000h  
0000h  
0000h  
Query-unique ASCII string "QRY"  
Primary vendor command set and control interface ID code  
Address for primary algorithm extended query table  
Alternate vendor command set and control interface ID code  
Address for alternate algorithm extended query table  
Table 13-2. CFI Mode: System Interface Data Values  
Description  
Address (h)  
(Word Mode)  
1Bh  
Data (h)  
VCC Min. (program/erase) D7–D4: volt, D3–D0: 100 millivolt  
VCC Max. (program/erase) D7–D4: volt, D3–D0: 100 millivolt  
ACC Min. voltage (00h = no ACC pin present) Refer to 4Dh  
ACC Max. voltage (00h = no ACC pin present) Refer to 4Eh  
Typical timeout per single word write 2N us  
Typical timeout for Min. size buffer write 2N us (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for word write 2N times typical  
Max. timeout for buffer write 2N times typical  
0017h  
0019h  
0000h  
0000h  
0004h  
0008h  
0009h  
0010h  
0005h  
0002h  
0003h  
0002h  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
52  
MX29NS320/640/128E  
Table 13-3. CFI Mode: Device Geometry Data Values  
Data  
Description  
Address  
320E  
640E  
128E  
Device Size = 2N byte  
27h  
28h  
016h  
0017h  
0018h  
0001h  
Flash Device Interface description (refer to  
CFI publication 100)  
0000h  
0005h  
0000h  
29h  
2Ah  
Max. number of bytes in multi-byte write = 2N  
(00h = not supported)  
2Bh  
2Ch  
Number of Erase Block Regions within device  
0002h  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
003Eh  
0001h  
0040h  
007Eh  
007Eh  
0002h  
0080h  
0000h  
0000h  
Erase Block Region 1 Information (refer to the  
CFI specification or CFI publication 100)  
0001h  
0003h  
0000h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
0040h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
53  
MULTIPLEXED, Burst Mode, Flash Memory  
Table 13-4. CFI Mode: Primary Vendor-Specific Extended Query Data Values  
Address (h)  
Description  
Data (h)  
(Word Mode)  
40h  
41h  
42h  
43h  
44h  
0050h  
0052h  
0049h  
0031h  
0033h  
Query - Primary extended table, unique ASCII  
string, PRI  
Major version number, ASCII  
Minor version number, ASCII  
Unlock recognizes address (Bits 1-0)  
0= recognize, 1= don't recognize  
45h  
0014h  
Process Technology (Bits 7-2) 0101b=110nm  
Erase suspend (2= to both read and program)  
Sector protect (N= # of sectors/group)  
46h  
47h  
48h  
0002h  
0001h  
Temporary sector unprotect (1=supported)  
0000h  
49h  
4Ah  
4Bh  
Sector protect/Chip unprotect scheme  
Simultaneous R/W operation (0=not supported)  
Burst mode (0=not supported)  
0008h  
0000h  
0001h  
Page mode (0=not supported, 01 = 4 word page, 02  
= 8 word page)  
4Ch  
4Dh  
0000h  
0095h  
Minimum ACC(acceleration) supply (0= not  
supported), [D7:D4] for volt, [D3:D0] for 100mV  
Maximum ACC(acceleration) supply (0= not  
supported), [D7:D4] for volt, [D3:D0] for 100mV  
4Eh  
00A5h  
WP# Protection Flag  
4Fh  
50h  
0003h  
0001h  
Program Suspend (0=not supported, 1=supported)  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
54  
MX29NS320/640/128E  
10. ELECTRICAL CHARACTERISTICS  
10-1. Absolute Maximum Stress Ratings  
Surrounding Temperature with Bias  
Storage Temperature  
-65°C to +125°C  
-65°C to +150°C  
-0.5V to +2.0V  
VCC  
VI/O  
ACC  
-0.5V to +2.0V  
-0.5V to +10.5V  
-0.5V to Vcc +0.5V  
200 mA  
Voltage Range  
The other pins.  
Output Short Circuit Current (less than one second)  
10-2. Operating Temperatures and Voltages  
A
Commercial (C) Grade  
Industrial (I) Grade  
Surrounding Temperature (T )  
0°C to +70°C  
-40°C to +85°C  
1.7~1.95V  
A
Surrounding Temperature (T )  
range  
Full VCC  
Supply Voltages  
VCC  
range  
VI/O  
= VCC  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is stress rating only and functional operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended period may affect reliability.  
2. Specifications contained within the following tables are subject to change.  
3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods  
up to 20ns, see Figures below.  
4. Not 100% tested.  
Maximum Positive Overshoot Waveform  
Maximum Negative Overshoot Waveform  
20ns  
20ns  
20ns  
Vss  
Vcc + 2.0V  
Vss - 2.0V  
Vcc  
20ns  
20ns  
20ns  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
55  
MULTIPLEXED, Burst Mode, Flash Memory  
10-3. Test Conditions  
Figure 10. Test Setup  
1.8V  
2.7KΩ  
DEVICE UNDER  
TEST  
CL  
6.2KΩ  
Testing Conditions:  
Output Load Capacitance, CL : 1TTL gate, 10pF  
Rise/Fall Times : 2ns  
Input Pulse levels :0.0 ~ VI/O  
I/O  
In/Out reference levels :0.5V  
Figure 11. Input Waveforms and Measurement Levels  
VI/O  
VI/O/2  
Input  
Measurement Level  
Output  
VI/O /2  
0.0 V  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
56  
MX29NS320/640/128E  
10-4. AC Characteristics  
VCC Power-up and Power-down Sequencing  
Once VCC attains its operating voltage, de-assertion of RESET# to VIH is permitted. VCC power-  
up and power-down sequencing are not restricted. During the entire VCC power sequence,  
RESET# needs to be asserted to VIL until the respective supplies reach their operating voltages.  
Once VCC operating voltage has been achieved, RESET# to VIH is allowed to be de-asserted.  
Output Disable Mode  
Once OE# is input is at VIH, output from the device is disabled and placed in the state of high  
impedance.  
VCC Power-up  
Parameter  
Description  
Test Setup  
Speed  
Unit  
tVCS  
VCC Setup Time  
Min  
1
ms  
VCC Power-down  
Symbol  
Description  
Test Setup  
Speed  
Unit  
tVCS  
VCC Setup Time  
Max  
200  
us  
NOTES:  
1. VCC >+ VI/O - 100 mV  
2. VCC ramp rate is >1 V/100 us  
3. Not 100% tested.  
Figure 12. VCC Power-up Diagram CLK Characterization  
tVCS  
VCC  
VI/O  
RESET#  
Frequency  
Parameter  
Description  
Unit  
ns  
66  
15  
83  
12  
108  
9.26  
tCLK  
tCLKR  
tCLKF  
CLK Cycle  
CLK Rise Time  
CLK Fall Time  
Min  
Max  
Min  
3
7
2.5  
5.5  
1.9  
4.2  
ns  
tCLKH/L  
CLK High or Low Time  
ns  
NOTES:  
1. Clock jitter of +/- 5% permitted.  
2. Values guaranteed by characterization, not 100% tested in production.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
57  
MULTIPLEXED, Burst Mode, Flash Memory  
AC CHARACTERISTICS  
ITEM  
TYP  
100us  
10us  
MAX  
200us  
20us  
WEB high to release from deep power down mode  
WEB high to deep power down mode  
tRDP  
tDP  
NOTE: Not 100% tested.  
Figure 13. Deep Power Down Mode Waveform  
CEB  
WEB  
tDP  
tRDP  
ADD  
XX  
55  
2AA  
XX (don't care)  
DATA  
AA  
55  
B9  
AB  
Standby mode  
Standby mode  
Deep power down mode  
Figure 14. CLK Characterization  
t
CLK  
t
t
CL  
CH  
CLK  
t
t
CF  
CR  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
58  
MX29NS320/640/128E  
Table 15. Synchronous / Burst Read  
Parameter  
Description  
Speed  
Unit  
tIACC  
tBACC  
tAVDS  
tAVDH  
tAVDO  
tACS  
tACH  
tBDH  
tCEZ  
tOEZ  
Initial Access Time  
Burst Access Time Valid Clock to Output Delay  
AVD# Setup Time to CLK  
AVD# Hold Time from CLK  
AVD# High to OE# Low  
Address Setup Time to CLK  
Address Hold Time from CLK  
Data Hold Time from Next Clock Cycle  
Chip Enable to High Z (Note)  
Output Enable to High Z (Note)  
CE# Setup Time to CLK  
Ready access time from CLK  
First CLK rising to RDY de-asserted  
CLK low to AVD# low  
Max  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Max  
Min  
Max  
80  
7
4
5
4
4
5
0
10  
10  
4
7
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCES  
tRACC  
tCLKR  
tCLKS  
tOECS  
OE# Enable to First Output CLK Setup Time  
8
NOTE: Not 100% tested.  
Figure 15. Burst Mode Read  
NOTE: Chip enters burst mode when 1st CLK rises.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
59  
MULTIPLEXED, Burst Mode, Flash Memory  
Table 16. Asynchronous Read  
Parameter  
Description  
Speed  
Unit  
tCE  
tACC  
tAVDP  
tAAVDS  
tAAVDH  
tOE  
Access Time from CE# Low  
Asynchronous Access Time  
AVD# Low Time  
Address Setup Time to Rising Edge of AVD  
Address Hold Time from Rising Edge of AVD  
Output Enable to Output Valid  
Read  
Max  
Max  
Min  
Min  
Min  
Max  
Min  
80  
80  
7
3.5  
3.2  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOEH  
Output Enable Hold Time  
Toggle and Data#  
Polling  
Min  
10  
ns  
tOEZ  
tOAVD  
tAVDO  
tOEQX  
tCR  
Output Enable to High Z (See Note)  
AVDB disable to OEB enable  
OEB disable to AVDB enable  
Output Enable to Data Low Z  
CEB enable to RDY ready  
Max  
Min  
Min  
Min  
Max  
Max  
10  
10  
10  
15  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
tCEZ  
CEB disable to RDY HiZ  
NOTE: Not 100% tested.  
Figure 16. Asynchronous Mode Read  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
60  
MX29NS320/640/128E  
Table 17. Erase/Program Operations  
Parameter  
Description  
Speed  
Unit  
tWC  
tAS  
tAH  
tAVDP  
tDS  
tDH  
tGHWL  
tCS  
tCH  
tWP/tWRL  
tWPH  
tSR/W  
tACC  
tVPS  
tVCS  
tESL  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
AVD# Low Time  
Data Setup Time  
Data Hold Time  
Read Recovery Time Before Write  
CE# Setup Time to WE#  
CE# Hold Time  
Write Pulse Width  
Write Pulse Width High  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Typ  
Typ  
Min  
Min  
Min  
Min  
Max  
Max  
Min  
Min  
Min  
45  
4
6
7
25  
0
0
8
0
30  
20  
0
500  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
ms  
us  
us  
us  
us  
ns  
Latency Between Read and Write Operations  
ACC Rise and Fall Time  
ACC Setup Time (During Accelerated Programming)  
VCC Setup Time  
1
Erase Suspend Latency  
25  
25  
400  
25  
10  
tPSL  
Program Suspend Latency  
Erase Resume to Erase Suspend  
Program Resume to Program Suspend  
WEB disable to AVDB enable  
tERS  
tPRS  
tWEA  
NOTES:  
1. Not 100% tested.  
2. See the Erase and Programming Performance section for more information.  
3. Does not include the preprogramming time.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
61  
MULTIPLEXED, Burst Mode, Flash Memory  
Figure 17. Program Operation Timings  
Program Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
AVD  
V
IL  
tAVDP  
tAH  
tAS  
Amax–  
A16  
SA(55h)  
SA(55h)  
PA  
PA  
PA  
PA  
PA  
Data  
Polling  
Data  
Polling  
A/Q15–  
A/Q0  
PA  
PD  
29h  
tDS  
tDH  
CE#  
t
WEA  
tCH  
OE#  
WE  
t
WP  
tCS  
tWPH  
tWC  
tVCS  
VCC  
NOTES:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. Amax–A16 are "Don’t care" during command sequence unlock cycles.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
62  
MX29NS320/640/128E  
Figure 18. Chip/Sector Erase Operations  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAS  
AVD  
tAH  
tAVDP  
SA  
555h for  
chip erase  
VA  
VA  
VA  
AmaxA16  
10h for  
chip erase  
In  
A/Q15  
A/Q0  
2AAh  
Complete  
55h  
SA  
30h  
VA  
Progress  
tDS  
tDH  
CE#  
OE#  
tCH  
tWP  
WE#  
tWHWH2  
tCS  
tWPH  
tWC  
V
IH  
CLK  
VCC  
V
IL  
tVCS  
NOTES:  
1. SA is the sector address for Sector Erase.  
2. Address bits Amax–A16 are don’t cares during unlock cycles in the command sequence.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
63  
MULTIPLEXED, Burst Mode, Flash Memory  
Figure 19. Data# Polling Timings (During Embedded Algorithm)  
High Z  
High Z  
Status Data  
Status Data  
A/Q15-A/Q0  
VA  
VA  
t
ACC  
A
A16  
max  
VA  
VA  
t
CEZ  
t
CE  
CE#  
t
CH  
AVD#  
WE#  
t
OEH  
t
OEZ  
t
OE  
OE#  
NOTES:  
1. All status reads are asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded  
Algorithm operation is complete, and Data# Polling will output true data.  
Figure 20. Toggle Bit Timings (During Embedded Algorithm)  
AVD#  
tCEZ  
tCE  
CE#  
tOEZ  
tCH  
tOE  
OE#  
tOEH  
WE#  
tACC  
High Z  
VA  
VA  
VA  
A
A16  
max  
High Z  
Status Data  
Status Data  
VA  
A/Q15A/Q0  
NOTES:  
1. All status reads are asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded  
Algorithm operation is complete, the toggle bits will stop toggling.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
64  
MX29NS320/640/128E  
Figure 21. 8-, 16-Word Linear Burst Address Wrap Around  
Address wraps back to beginning of address group.  
Initial Access  
39  
CLK  
39  
3A  
3B  
3C  
3D  
3E  
3F  
38  
Address (hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
A/Q15A/Q0  
V
IH  
AVD#  
OE#  
V
V
IL  
IH  
(stays low)  
(stays low)  
V
IL  
V
CE#  
IL  
NOTE: 8-word linear burst mode shown. 16-word linear burst read modes behave similarly.  
D0 represents the first word of the linear burst.  
Figure 22. Latency with Boundary Crossing  
Address boundary occurs every 128 words, beginning at address  
00007Fh: (0000FFh, 00017Fh, etc.) Address 000000h is also a boundary crossing.  
C124  
C125  
7D  
C126  
7E  
C127  
7F  
C127  
7F  
C128  
80  
C129  
81  
C130  
82  
C131  
83  
CLK  
7C  
Address (hex)  
(stays high)  
AVD#  
RDY(1)  
RDY(2)  
tRACC  
tRACC  
latency  
tRACC  
tRACC  
latency  
Data  
D124  
D125  
D126  
D127  
D128  
D129  
D130  
OE#,  
CE#  
(stays low)  
NOTES:  
1. Cxx indicates the clock that triggers data Dxx on the outputs; for example, C60 triggers D60.  
2. Please reference burst read related tables for details.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
65  
MULTIPLEXED, Burst Mode, Flash Memory  
10-5. Erase and Programming Performance  
LIMITS  
TYP. (1)  
20  
PARAMETER  
UNITS  
MIN.  
MAX. (2)  
Chip Programming Time (32Mb)  
Chip Programming Time (64Mb)  
Chip Programming Time (128Mb)  
Chip Erase Time (32Mb)  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
us  
40  
80  
32  
75  
150  
300  
5
7
360  
Chip Erase Time (64Mb)  
64  
Chip Erase Time (128Mb)  
Sector Erase Time (32KW)  
Sector Erase Time (64KW)  
Word Program Time  
128  
0.6  
0.8  
40  
Total Write Buffer Time  
300  
150  
100,000  
9.4  
us  
ACC Total Write Buffer Time  
Erase/Program Cycles  
Effective Word Programming Time  
us  
cycles  
us  
NOTES:  
1. Typical program and erase times assume the following conditions: 25°C, 1.8V VCC.  
Programming specifications assume checkboard data pattern.  
2. Maximum values are measured at VCC = 1.8 V, worst case temperature. Maximum  
values are valid up to and including 100,000 program/erase cycles.  
3. Erase/Program cycles comply with JEDEC JESD-47E & A117A standard.  
4. Exclude 00h program before erase operation.  
5. Not 100% tested.  
Data Retention  
PARAMETER  
Condition  
Min.  
Max.  
UNIT  
Data retention  
55˚C  
20  
years  
Latch-up Characteristics  
MIN.  
-1.0V  
MAX.  
10.5V  
Input Voltage voltage difference with GND on ACC pins  
Input Voltage voltage difference with GND on all normal pins input  
Vcc Current  
-1.0V  
1.5Vcc  
+100mA  
-100mA  
All pins included except Vcc. Test conditions: Vcc = 1.8V, one pin per testing  
Pin  
Capacitance  
Parameter Symbol  
Parameter Description Test Setup  
TYP  
MAX  
UNIT  
CIN2  
COUT  
CIN  
Control Pin Capacitance  
Output Capacitance  
Input Capacitance  
VIN=0  
VOUT=0  
VIN=0  
7.5  
8.5  
6
9
pF  
pF  
pF  
12  
7.5  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
66  
MX29NS320/640/128E  
10-5-1. BGA Ball Capacitance  
Parameter Symbol  
Parameter Description Test Setup  
Typ  
Max  
Unit  
CIN  
COUT  
CIN2  
Input Capacitance  
Output Capacitance  
Control Pin Capacitance  
VIN = 0  
VOUT = 0  
VIN = 0  
4.2  
5.4  
3.9  
5.0  
6.5  
4.7  
pF  
pF  
pF  
NOTES:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
10-6. Low VCC Write Prohibit  
The device refuses to accept any write command when Vcc is less than VLKO. This prevents data  
from spuriously being altered during power-up, power-down, or temporary power interruptions. The  
device automatically resets itself when Vcc is lower than VLKO and write cycles are ignored until  
Vcc is greater than VLKO. The system must provide proper signals on control pins after Vcc rises  
above VLKO to avoid unintentional program or erase operations.  
10-6-1. Write Pulse "Glitch" Protection  
CE#, WE#, OE# pulses shorter than 5ns are treated as glitches and will not be regarded as an  
effective write cycle. On WE#, noise pulses of less than 5ns do not initiate a write cycle.  
10-6-2. Logical Prohibit  
A valid write cycle requires both CE# and WE# at Vil with OE# at Vih. While initiating a write cycle,  
CE# and WE# must be a logical "0" while OE# is a logical "1". Write cycle is ignored when either  
CE# at Vih, WE# at Vih, or OE# at Vil.  
10-6-3. Power-up Sequence  
Upon power-up, the device is placed in Read mode. Furthermore, program or erase operation will  
begin only after successful completion of specified command sequences.  
10-6-4. Power-up Write Prohibit  
When WE#, CE# is held at Vil and OE# is held at Vih during power up, the device ignores the first  
command on the rising edge of WE#.  
10-6-5. Power Supply Decoupling  
A 0.1uF capacitor should be connected between the Vcc and GND to reduce the noise effect.  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
67  
MULTIPLEXED, Burst Mode, Flash Memory  
11. PACKAGE INFORMATION  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
68  
MX29NS320/640/128E  
12. REVISION HISTORY  
Revision No. Description  
Page  
Date  
1.0  
1. A note added to Table 2-2 Ordering Information. P8  
2. A note added to Table 11. DC Characteristics. P49  
MAR/23/2011  
MAR/23/2011  
MAR/23/2011  
APR/26/2011  
3. A note revised for CLK Characteristics.  
P57  
P8  
1.1  
1
. Modified: MX29NS320/640/128E have been  
pre-released & in mass production.  
2. Table 17. Parameters tPSP & tASP removed  
P61  
P/N: PM1585  
REV. 1.1, APR. 26, 2011  
69  
MULTIPLEXED, Burst Mode, Flash Memory  
Except for customized products which has been expressly identified in the applicable agreement,  
Macronix's products are designed, developed, and/or manufactured for ordinary business,  
industrial, personal, and/or household applications only, and not for use in any applications which  
may, directly or indirectly, cause death, personal injury, or severe property damages. In the event  
Macronix products are used in contradicted to their target usage above, the buyer shall take any  
and all actions to ensure said Macronix's product qualified for its actual use in accordance with the  
applicable laws and regulations; and Macronix as well as it’s suppliers and/or distributors shall be  
released from any and all liability arisen therefrom.  
Copyright© Macronix International Co., Ltd. 2011. All rights reserved.  
Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, NBiit, Macronix  
NBit, eLiteFlash, XtraROM, Phines, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE are  
trademarks or registered trademarks of Macronix International Co., Ltd. The names and brands  
of other companies are for identification purposes only and may be claimed as the property of the  
respective companies.  
For more information, please visit Macronix’s Web site at http://www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD reserves the right to change product and specifications without notice.  
REV. 1.1, APR. 26, 2011  
P/N: PM1585  
70  

相关型号:

MX29NS640E

128/64/32M-BIT [8/4/2M x16-bit] CMOS 1.8 Volt-only,
Macronix

MX29SL400CBGBI-90G

Flash, 256KX16, 90ns, PBGA48, 4 X 6 MM, 0.50 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, MO-222, XFLGA-48
Macronix

MX29SL400CBTI-90G

Flash, 256KX16, 90ns, PDSO48, 12 X 20 MM, ROHS COMPLIANT, MO-142, TSOP1-48
Macronix

MX29SL400CBXBI-90G

Flash, 256KX16, 90ns, PBGA48, 6 X 8 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, MO-210, CSP-48
Macronix

MX29SL400CBXEI-90G

Flash, 256KX16, 90ns, PBGA48, 6 X 8 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, MO-219, CSP-48
Macronix

MX29SL400CBXHI-90G

Flash, 256KX16, 90ns, PBGA48, 4 X 6 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, CSP-48
Macronix
Macronix

MX29SL400CTTI-90G

Flash, 256KX16, 90ns, PDSO48, 12 X 20 MM, ROHS COMPLIANT, MO-142, TSOP1-48
Macronix

MX29SL400CTXBI-90G

Flash, 256KX16, 90ns, PBGA48, 6 X 8 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, MO-210, CSP-48
Macronix

MX29SL400CTXEI-90G

Flash, 256KX16, 90ns, PBGA48, 6 X 8 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, MO-219, CSP-48
Macronix

MX29SL400CTXHI-90G

Flash, 256KX16, 90ns, PBGA48, 4 X 6 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, CSP-48
Macronix

MX29SL402CBGBI-90G

Flash, 256KX16, 90ns, PBGA48, 4 X 6 MM, 0.50 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, MO-222, XFLGA-48
Macronix