NM14F8KSLAXAQ-3BNA [NANYA]

MCP Specification;
NM14F8KSLAXAQ-3BNA
型号: NM14F8KSLAXAQ-3BNA
厂家: Nanya Technology Corporation.    Nanya Technology Corporation.
描述:

MCP Specification

文件: 总122页 (文件大小:6131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MCP Specification  
4Gb SLC NAND Flash (X16) + 4Gb LPDDR2 (X32)  
4Gb SLC NAND Flash (X16) + 8Gb LPDDR2 (X32)  
4Gb SLC NAND Flash (X8) + 4Gb LPDDR2 (X32)  
Nanya Technology Corporation  
Version 1.5  
1
Nanya Technology Corp.  
05/2018  
NTC has the rights to change any specifications or product without notification.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Ordering Information  
MCP  
NAND  
DRAM  
Density  
(Org.)  
Program Erase  
Time Time  
Density  
(Org.)  
Part Number  
Package  
Type  
Type  
Speed RL  
4Gb  
(256Mb X16)  
4Gb  
1066  
NM14F4KSLAXAQ-3B 168b FBGA(-Q) SLC  
NM14F4KSLAXA3-3B 240b FBGA(-3) SLC  
NM14F8KSLAXA3-3B 240b FBGA(-3) SLC  
NM1484KSLAXAJ-3B 162b FBGA(-J) SLC  
300μs 3.5ms LPDDR2  
300μs 3.5ms LPDDR2  
300μs 3.5ms LPDDR2  
300μs 3.5ms LPDDR2  
8
8
8
8
(X 32, SDP) Mbps  
4Gb  
(256Mb X 16)  
4Gb  
1066  
(X 32, SDP) Mbps  
4Gb  
(256Mb X 16)  
8Gb  
1066  
(X 32, DDP) Mbps  
4Gb  
(512Mb X8)  
4Gb  
1066  
(X 32, SDP) Mbps  
Version 1.5  
2
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
NANYA MCP Part Numbering Guide  
NM  
1
4F  
4K  
S
L
AX  
A
Q
3
B
Grade  
NA = Commercial Grade  
NANYA  
MCP  
DRAM Speed  
Product Family  
B = 1066Mbps @ RL=8  
1 =SLC NAND + LPDDR2  
NAND Organization  
(Density, Config)  
4F= 4Gb x16  
NAND Speed  
3 = 300μs  
DRAM Organization  
(Density, Config)  
4K= 4Gb x32 (SDP)  
8K= 8Gb x32 (DDP)  
Package  
Q = 168-ball FBGA 12.00 x 12.00 (mm)  
3 = 240-ball FBGA 14.00 x 14.00 (mm)  
J = 162-ball FBGA 11.50 x 13.00 (mm)  
Device Version  
NAND Voltage  
S= 1.8V  
A = 1st version  
Reserve Code  
Interface & Power (VDD1 , VDD2 , VDDQ , VDDCA  
)
AX=Default  
L = HSUL_12 (1.8V, 1.2V, 1.2V, 1.2V)  
Version 1.5  
3
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Features  
MCP  
Separate SLC NAND and LPDDR2 RAM interfaces  
Lead-free (RoHS compliant) and Halogen-free Package :  
162-ball FBGA (11.50mm x 13.00mm x 0.80mm) ;168-ball FBGA (12.00mm x 12.00mm x 0.80mm) ;  
240-ball FBGA (14.00mm x 14.00mm x 0.80mm) ; 240-ball FBGA (14.00mm x 14.00mm x 0.90mm)  
Operating temperature range: 25°C to +85°C  
4Gb X8 /X16 SLC NAND  
Voltage Supply(VCC/VCCQ): 1.70V ~ 1.95V  
Organization  
4Gb(SDP)/8Gb(DDP) X32 LPDDR2  
Speed, Addressing and Retention Specification  
Organization  
128Mb x 32  
- X8 Memory Cell Array: 4352 x 128K x 8  
- X8 Register: 4352 x 8  
Speed Grade  
Device Type  
Number of Banks  
Bank Address  
Row  
1066 / RL=8  
S4B  
- X8 Page size: 4352 Bytes  
8
- X8 Block size: (256K + 16K) Bytes  
- X16 Memory Cell Array: 2176 x 128K x 16  
- X16 Data Register: 2176 x 16  
BA[2:0]  
R[13:0]  
C[9:0]  
3.9  
Column  
- X16 Page Program: 2176 Words  
- X16 Block Erase: (128K + 8K) Bytes  
tREFI (us)  
JEDEC LPDDR2 Compliant  
- Low Power Consumption  
Modes  
Read, Reset, Auto Page Program, Auto Block Erase,  
Status Read, Page Copy, Multi Page Program,  
Multi Block Erase, Multi Page Copy, Multi Page Read  
Mode control  
- Double-data rate on DQs, DQS, DM and CA bus  
- 4n Prefetch Architecture  
HSUL12 interface and Power Supply  
- VDD1= 1.70 to 1.95V  
- Serial input/output  
- Command control  
- VDD2/VDDQ/VDDCA = 1.14 to 1.3V  
Signal Integrity  
Number of valid blocks  
- Configurable DS for system compatibility  
- Min 2008 blocks  
- Max 2048 blocks  
Access time  
- ZQ calibration for the accuracy of output driver strength  
over Process, Voltage and Temperature  
Training for SignalsSynchronization  
- DQ Calibration offering specific DQ output patterns  
Data Integrity  
- Cell array to register: 25μs max  
- Serial Read Cycle: 25ns min (CL=30pF)  
Program/Erase time  
- DRAM built-in Temperature Sensor for Temperature  
Compensated Self Refresh (TCSR)  
- Auto Page Program: 30s/page typical  
- Auto Block Erase: 3.5ms/block typical  
Operating current  
- Auto Refresh, Self Refresh and PASR Modes  
Power Saving Modes  
- Read (25ns cycle): 30 mA max  
- Program (avg.): 30 mA max  
- Deep Power Down Mode (DPD)  
- Partial Array Self Refresh (PASR)  
- Clock Stop capability during idle period  
Programmable Function  
- Erase (avg.): 30 mA max  
- Standby: 50 μA max  
8 bit ECC for each 512 Bytes is required.  
- Output Drive Impedance (34.3/40/48/60/80/120)  
- Burst Lengths (4/8/16)  
- Burst Type (Sequential/Interleaved)  
- Read Latency (3/4/5/6/7/8),Write Latency (1/2/3/4)  
- nWR (3/4/5/6/7/8)  
Version 1.5  
4
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Ball Assignment (162b Flash X 8 + DRAM X 32)  
Part Number: NM1484KSLAXAJ-XXX  
Top View, A1 in Top Left Corner  
NAND  
LPDDR2  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
DNU  
DNU  
NC  
DNU  
VCC  
I/O 1  
I/O 0  
  
NC  
CLE  
ALE  
  
  
VCC  
  
I/O 4  
I/O 5  
I/O 6  
NC  
I/O 7  
NC  
VCC  
NC  
NB  
DNU  
VSS  
NB  
DNU  
DNU  
NB  
A
B
C
D
I/O 3  
I/O 2  
R/  
NC  
NB  
NC  
NB  
NB  
NB  
NB  
E
VSS  
NC  
NC  
NB  
VDD2  
VDD1  
DQ31  
DQ29  
DQ26  
DNU  
E
F
G
H
J
VDD1  
VSS  
VSS  
VDD2  
CA9  
CA6  
CA5  
VSS  
NC  
NC  
ZQ  
NB  
NB  
NB  
NB  
NB  
NB  
NB  
NB  
NB  
NB  
NB  
NB  
NB  
NB  
NB  
4
VSS  
VDDQ  
DQ28  
VSS  
VSS  
DQ30  
DQ24  
DQ11  
DQS1  
VDDQ  
VDDQ  
VDDQ  
DQS0  
DQ4  
VDDQ DQ25  
VSS  
VDDQ  
VSS  
VSS  
VDDQ  
VSS  
NB  
F
G
H
J
DQ27  
DM3  
DQ13  
DQ10  
NB  
DQS3  
  
VSS  
CA8  
CA7  
VREFCA  
  
DQ15 VDDQ  
VDDCA  
VDD2  
VDDCA  
VSS  
DQ14  
DQ9  
NB  
DQ12  
DQ8  
NB  
K
  
DM1  
VSS  
K
L
L
M
N
P
CK  
VDD2  
NB  
VSS VREFDQ  
NB  
M
N
P
CKE  
  
NC  
NC  
DM0  
  
VSS  
NB  
DQ6  
DQ1  
DQ0  
DQS2  
NB  
DQ7  
DQ3  
VDDQ  
  
VSS  
DQ21  
DNU  
9
NB  
NC  
NC  
DQ5  
DQ2  
DM2  
DQ20  
VSS  
VDDQ  
VSS  
VSS  
VDDQ  
DNU  
DNU  
10  
R
T
CA4  
CA3  
VDDCA  
VDD2  
VSS  
NC  
CA2  
CA1  
CA0  
NC  
R
T
VSS  
DQ19  
VDDQ  
VSS  
DQ23  
DQ17  
VSS  
U
V
W
Y
VSS  
U
V
W
Y
VDD1  
DNU  
DNU  
1
VDDQ DQ22  
NC  
VDD2  
NB  
VDD1  
NB  
DQ16  
NB  
7
DQ18  
NB  
8
DNU  
2
NB  
3
5
6
Version 1.5  
5
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Ball Assignment (168b Flash X 16 + DRAM X32)  
Part Number: NM14F4KSLAXAQ-XXX  
< TOP View>  
See the balls through the package  
A1  
a
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
A
B
C
D
E
F
A
B
NC  
NC  
NC  
R/  
NC I/O 11 VCC I/O 10 I/O 9 VCC I/O 8 VDD1 VSS DQ30 DQ29 VSS DQ26 DQ25 VSS  VDD1 VSS  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC VDD1 I/O3 VSS I/O2  
I/O1 VSS I/O0 VSS VDD2 DQ31  
DQ28 DQ27  
DQ24 DQS3  
DM3 VDD2 NC  
C
D
E
VSS VDD2  
I/O 12 I/O4  
I/O 13 I/O5  
VCC VSS  
I/O 14 I/O6  
I/O 15 I/O7  
VCC VSS  
DQ15 VSS  
DQ14  
VDDQ  
DQ12 DQ13  
DQ11 VSS  
F
G
H
J
VDDQ  
G
H
J
DQ10  
DQ8 DQ9  
DQS1 VSS  
K
L
VDDQ  
K
  
  
  
L
CLE ALE  
VDD2 DM1  
VREF  
M
N
P
R
T
M
N
P
 VSS  
VSS  
DQ  
 VDD1  
VDD1 DM0  
VREF  
ZQ  
CA  
 VSS  
VDDQ  
R
T
VSS VDD2  
DQS0  
CA9 CA8  
VDD  
DQ6 DQ7  
DQ5 VSS  
U
V
W
Y
U
V
CA7  
CA  
VDDQ  
VSS CA6  
VDD  
DQ4  
W
Y
CA5  
CA  
DQ2 DQ3  
DQ1 VSS  
  
CK  
AA  
AB  
AC  
VDDQ  
AA  
AB  
AC  
VSS VDD2  
DQ0  
NC  
VDDQ  
VDDQ  
VDDQ  
DQ22 DQS2  
NC  
NC  
NC  
NC  
  
NC VDD1 CA1 VSS CA3 CA4 VDD2 VSS DQ16  
VDD  
DQ18 DQ20  
DM2 VDD2 NC  
CKE  
NC  
VSS CA0 CA2  
NC  
VCC  
NC  
VSS DQ17 DQ19 VSS DQ21 DQ23 VSS  VDD1 VSS  
NC  
22  
NC  
CA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
23  
Version 1.5  
6
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Ball Assignment (240b Flash X 16 + DRAM X32)  
Part Number: NM14F4KSLAXA3-XXX  
< TOP View>  
See the balls through the package  
A1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
NC  
a
VREF  
DQ  
NC  
VSS VDD2 DQ31 VDDQ VSS DQ26 DQ24 DQS3 DM3 DQ15 DQ13 VSS VDDQ DQ8 VSS  
VDD1 VDDQ VSS DQ7 DQ5 VSS VDDQ VDD1 VSS  
A
A
B
B
NC  
NC  
NC  
VSS DQ30 DQ29 DQ27 VDDQ VSS  VSS DQ14 DQ12 DQ11 DQ9  VDDQ VSS VDD2  DM0 DQ6 DQ4 DQ3 DQ1 DQ0  
NC  
VSS  
VDD2  
C
D
E
VDD1  
NC  
DQ28  
DQ25  
VDDQ  
VDDQ  
DQ10  
DQS1  
DM1  
DQS0  
VDDQ  
DQ2  
DM2  
C
NC  
VDDQ   
VSS DQS2 DQ23  
DQ22 VDDQ  
D
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
VSS  
E
F
NC  
NC  
F
NC  
NC  
DQ21 DQ20  
VSS  
G
H
J
G
NC  
NC  
DQ19 DQ18  
H
NC  
NC  
VDDQ DQ17 DQ16  
J
K
NC  
NC  
VSS  
VDD1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VDD2  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
K
L
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
L
M
N
P
NC  
NC  
M
N
NC  
NC  
NC  
NC  
P
R
T
VCC  
I/O 8  
I/O 9  
I/O 10  
VCC  
I/O 11  
R/  
NC  
R
VSS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
NC  
T
U
V
U
V
W
Y
W
Y
AA  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AB I/O 12  
AC  
VCC  
AD I/O 13  
I/O 14  
NC  
NC  
VSS  
RE  
NC  
WP  
CE  
NC  
NC  
NC  
VDD2  
CA6  
CA7  
CA8  
CA5  
VSS  
VDD2  
CK  
CA4  
  
NC  
VSS  
NC  
AE  
AF  
AG  
VDD  
CA  
VDD  
CA  
NC  
NC  
I/O7  
ALE  
CLE  
NC  
NC  
NC  
VSS CA9  
CKE  
NC  
CA2  
CA3  
VSS CA0 VDD2 NC  
NC  
NC  
VREF  
CA  
VDD  
NC  
NC  
I/O 15 VCC  
WE  
NC VDD1 ZQ  
VSS  
14  
VSS  
16  
  
CA1 VDD1 NC  
CA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Version 1.5  
7
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Ball Assignment (240b Flash X 16 + DRAM X32)  
LPDDR2 14x14 PoP-FBGA 1-channelX32 (/) ballout  
Part Number: NM14F8KSLAXA3-XXX  
< TOP View>  
See the balls through the package  
A1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
NC  
a
VREF  
DQ  
A
NC  
VSS VDD2 DQ31 VDDQ VSS DQ26 DQ24 DQS3 DM3 DQ15 DQ13 VSS VDDQ DQ8 VSS  
VDD1 VDDQ VSS DQ7 DQ5 VSS VDDQ VDD1 VSS  
A
B
B
NC  
NC  
NC  
VSS DQ30 DQ29 DQ27 VDDQ VSS  VSS DQ14 DQ12 DQ11 DQ9  VDDQ VSS VDD2  DM0 DQ6 DQ4 DQ3 DQ1 DQ0  
NC  
VSS  
VDD2  
C
D
E
VDD1  
NC  
DQ28  
DQ25  
VDDQ  
VDDQ  
DQ10  
DQS1  
DM1  
DQS0  
VDDQ  
DQ2  
DM2  
C
NC  
VDDQ   
VSS DQS2 DQ23  
DQ22 VDDQ  
D
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
VSS  
E
F
NC  
NC  
F
G
H
J
NC  
NC  
DQ21 DQ20  
VSS  
G
NC  
NC  
DQ19 DQ18  
H
NC  
NC  
VDDQ DQ17 DQ16  
J
K
NC  
NC  
VSS  
VDD1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VDD2  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
K
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
L
L
M
N
P
NC  
NC  
M
N
NC  
NC  
NC  
NC  
P
R
T
VCC  
I/O 8  
I/O 9  
I/O 10  
VCC  
I/O 11  
R/  
NC  
R
VSS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
NC  
T
U
V
U
V
W
Y
W
Y
AA  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AB I/O 12  
VCC  
AC  
AD I/O 13  
AE I/O 14  
NC  
VSS  
RE  
NC  
WP  
CE  
NC  
NC  
NC  
VDD2  
CA6  
CA7  
CA8  
CA5  
VSS  
VDD2  
CA4  
VSS  
NC  
VDD  
CA  
VDD  
CA  
AF  
NC  
NC  
NC  
NC  
I/O7  
ALE  
CLE  
NC  
NC  
NC  
VSS CA9  
CK CKE0  CA2  
 CKE1  CA3  
VSS CA0 VDD2 NC  
NC  
NC  
VREF  
CA  
VDD  
AG  
NC  
I/O 15 VCC  
WE  
NC VDD1 ZQ  
VSS  
14  
VSS  
16  
CA1 VDD1 NC  
CA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Version 1.5  
8
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Package Outline Drawing (162-ball-4Gb SLC NAND + 4Gb LPDDR2)  
Unit: mm  
* BSC (Basic Spacing between Center)  
Version 1.5  
9
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Package Outline Drawing (168-ball-4Gb SLC NAND + 4Gb LPDDR2)  
Unit: mm  
* BSC (Basic Spacing between Center)  
Version 1.5  
10  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Package Outline Drawing (240-ball-4Gb SLC NAND + 4Gb LPDDR2)  
Unit: mm  
* BSC (Basic Spacing between Center)  
Version 1.5  
11  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Package Outline Drawing (240-ball-4Gb SLC NAND + 8Gb LPDDR2)  
Unit: mm  
* BSC (Basic Spacing between Center)  
Version 1.5  
12  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Ball Description - 4Gb X8/X16 SLC NAND  
Symbol  
Type  
Function  
Data Bus: The I/O0 to 7 pins are used as a port for transferring address, command and input/output data to  
and from the device.  
X8: I/O[7:0]  
Input/output  
X16: I/O[15:0]  
The I/O8 to 15 pins are used as a port for transferring input/ouput data to and from the device. I/O8 to 15  
pins must be low level(V ) when address and command are input.  
IL  
Command Latch Enable: The CLE input signal is used to control loading of the operation mode command  
into the internal command register. The command is latched into the command register from the I/O port on  
the rising edge of the  signal while CLE is High.  
CLE  
ALE  
  
Input  
Input  
Input  
Input  
Address Latch Enable: The ALE signal is used to control loading address information into the internal  
address register. Address information is latched into the address register from the I/O ports on the rising  
edge of  while ALE is High.  
Chip Enable: The device goes into a low-power Standby mode when  goes High during the device is in  
Ready state. The  signal is ignored when device is in Busy state ( RY /  = L), such as during a Program  
or Erase or Read operation, and will not enter Standby mode even if the  input goes High.  
Read Enable: The  signal controls serial data output. Data is available tREA after the falling edge of .  
  
The internal column address counter is also incremented (Address = Address +1) on this falling edge.  
  
  
Input  
Input  
Write Enable: The  signal is used to control the acquisition of data from the I/O port.  
Write Protect: The  signal is used to protect the device from accidental programming or erasing. The  
internal voltage regulator is reset when  is Low. This signal is usually used protecting the data during the  
power-on/off sequence when input signals are invalid.  
Ready / Busy Output: The RY /  output signal is used to indicate the operation condition of the device.  
The RY /  signal is in Busy state ( RY /  =L) during the Program, Erase and Read operations and will  
return to Ready state ( RY /  =H) afeter completion of the operation. The output buffer for this signal is an  
open drain and has to be pulled-up to Vccq with an appropriate resister.  
RY/  
Output  
If RY /  signal is not pulled-up to Vccq ( Openstate ), device operation cannot guarantee.  
VCC  
VSS  
NC  
Supply  
Supply  
Power  
Ground  
No Connect: These pins should be left unconnected.  
Version 1.5  
13  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Ball Description - 4Gb(SDP)/8Gb(DDP) X32 LPDDR2  
Symbol  
Type  
Function  
Clock: CK and  are differential clock inputs. All Double Data Rate (DDR) CA inputs are sampled  
on both positive and negative edge of CK. Single Data Rate (SDR) inputs,  and CKE, are sampled  
at the positive Clock edge. Clock is defined as the differential pair, CK and . The positive Clock  
edge is defined by the crosspoint of a rising CK and a falling . The negative Clock edge is defined  
by the crosspoint of a falling CK and a rising .  
CK,   
Input  
Clock Enable: CKE high activates, and CKE low deactivates internal clock signals, and device input  
buffers and output drivers. Power saving modes are entered and exited through CKE transitions. CKE  
is considered part of the command code. CKE is sampled at the positive Clock edge.  
CKE0, CKE1  
,   
CA[9:0]  
Input  
Input  
Input  
Chip Select:  is considered part of the command code.  is sampled at the positive Clock edge.  
Command/Address Inputs: Uni-directional command/address bus inputs. Provide the command  
and address inputs according to the command truth table. CA is considered part of the command  
code.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is  
sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of  
DQS. Although DM pins are input-only, the DM loading matched the DQ and DQS (or ).  
DM0 corresponds to the data on DQ0-DQ7, DM1 corresponds to the data on DQ8-DQ15, DM2  
corresponds to the data on DQ16-DQ23, and DM3 corresponds to the data on DQ24-DQ31.  
DM[3:0]  
Input  
DQ[31:0]  
Input/output  
Data Bus: Bi-directional Input / Output data bus.  
Data Strobe (Bi-directional, Differential): The data strobe is bi-directional (used for read and write  
data) and Differential (DQS and ). It is output with read data and input with write data. DQS is  
edge-aligned to read data, and centered with write data.  
DQS,  
DQS[3:0]  
[3:0]  
Input/output  
DQS0 &  corresponds to the data on DQ0-DQ7, DQS1 &  corresponds to the data on  
DQ8-DQ15, DQS2 &  corresponds to the data on DQ16-DQ23, DQS3 &  corresponds to  
the data on DQ24-DQ31.  
NC  
ZQ  
-
No Connect: No internal electrical connection is present.  
Reference Pin for Output Drive Strength Calibration. External impedance (240-ohm): this signal is  
Input  
used to calibrate the device output impedance.  
Supply  
Supply  
Supply  
Supply  
VDD1  
VDD2  
VDDQ  
VDDCA  
Core Power Supply 1: Core power supply  
Core Power Supply 2: Core power supply  
DQ Power Supply: Isolated on the die for improved noise immunity.  
Input Receiver Power Supply: Power supply for CA0-9, CKE, , CK, and  input buffers.  
Reference Voltage: VREFDQ is reference for DQ input buffers. VREFCA is reference for Command /  
VREFDQ, VREFCA  
VSS  
Supply  
Supply  
Address input buffers.  
Ground  
NOTE 1: The signal may show up in a different symbol but it indicates to the same thing. e.g., /CK = CK# =  = CKb,  
/DQS = DQS# =  = DQSb, /CS = CS# =  = CSb.  
Version 1.5  
14  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Functional Block Diagram (4Gb SLC NAND + 4Gb LPDDR2)  
VDD1 VDD2 VDDQ VDDCA  
Vss  
VREFCA  
VREFDQ  
  
ZQ  
RZQ  
CKE  
CK  
4Gb Mobile DDR2  
  
DM[3:0]  
CA[9:0]  
DQ[31:0]  
DQS[3:0]  
  
NAND  
CLE  
ALE  
  
4Gb NAND Flash  
X8: I/O[7:0]  
X16: I/O[15:0]  
  
  
  
R/  
VCC VSS  
Version 1.5  
05/2018  
15  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Functional Block Diagram (4Gb SLC NAND + 8Gb LPDDR2)  
VDD1 VDD2 VDDQ VDDCA  
Vss  
VREFCA  
VREFDQ  
  
CKE1  
ZQ  
RZQ  
  
CKE0  
CK  
4Gb  
Mobile DDR2  
Die 0  
4Gb  
Mobile DDR2  
Die 1  
  
DM[3:0]  
CA[9:0]  
DQ[31:0]  
DQS[3:0]  
  
NAND  
CLE  
ALE  
  
4Gb NAND Flash  
X16: I/O[15:0]  
  
  
  
R/  
VCC VSS  
Version 1.5  
05/2018  
16  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
4Gb(X8/X16) SLC NAND Flash  
Version 1.5  
17  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Descriptions  
The device is a single 1.8V 4Gbit (4,563,402,752 bits) NAND Electrically Erasable and Programmable  
2
Read-Only Memory (NAND E PROM) organized as X8: (4096 +256) bytes x 64 pages x 2048 blocks or X16:  
(2048 + 128) words x 64 pages x 2048 blocks.  
The device has two 4352-bytes or 2176-words static registers which allow program and read data to be  
transferred between the register ad the memory cell array in 4352-bytes or 2176-words increments. The  
Erase operation is implemented in a single block unit (X8=256 Kbytes + 16 Kbytes: 4352 bytes x 64 pages  
or X16=128 Kwords + 8 Kwords: 2176 words x 64 pages).  
The device is a serial-type memory device which utilizes the I/O pins for both address and data input/output  
as well as for command inputs. The Erase and Program operations are automatically executed making the  
device most suitable for applications such as solid-state file storage, voice recording, image file memory for  
still cameras and other systems which require high-density non-volatile memory data storage.  
Version 1.5  
18  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Function Block Diagram (X8)  
VCC  
VSS  
Status register  
Address register  
I/O 0  
Column buffer  
Column decoder  
Data register  
I/O  
to  
I/O 7  
Control circuit  
Command register  
Command register  
  
CLE  
ALE  
Memory cell array  
Logic control  
Control circuit  
  
  
  
RY/  
RY/  
HV generator  
Schematic Cell Layout and Address Assignment (X8)  
The Program operation works on page units while the Erase operation works on block units  
A page consists of 4352 bytes in which 4096 bytes are used for  
main memory storage and 256 bytes are for redundancy or for  
other uses.  
I/O 0  
I/O 7  
1 Page = 4352 Bytes  
1 Block = 4352 Bytes x 64 Pages = (256K + 16K) Bytes  
Capacity = 4352 Bytes x 64 Pages x 2048 Blocks  
1 Block = 64 Pages  
(256K + 16K) Bytes  
Array Address (X8)  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
Address  
1st cycle  
2nd cycle  
3rd cycle  
4th cycle  
5th cycle  
CA0  
CA8  
PA0  
PA8  
PA16  
CA1  
CA9  
PA1  
PA9  
L
CA2  
CA10  
PA2  
PA10  
L
CA3  
CA11  
PA3  
PA11  
L
CA4  
CA12  
PA4  
PA12  
L
CA5  
L
CA6  
L
CA7  
L
Column Address  
Column Address  
Page Address  
Page Address  
Page Address  
PA5  
PA13  
L
PA6  
PA14  
L
PA7  
PA15  
L
PA6 to PA16: Block address  
PA0 to PA5: NAND address in block  
Version 1.5  
05/2018  
19  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Function Block Diagram (X16)  
VCC  
VSS  
Status register  
Address register  
I/O 0  
Column buffer  
Column decoder  
Data register  
I/O  
to  
I/O 15  
Control circuit  
Command register  
Command register  
  
CLE  
ALE  
Memory cell array  
Logic control  
Control circuit  
  
  
  
RY/  
RY/  
HV generator  
Schematic Cell Layout and Address Assignment (X16)  
The Program operation works on page units while the Erase operation works on block units  
A page consists of 2176 words in which 2048 words are used  
for main memory storage and 128 words are for redundancy or  
for other uses.  
I/O 0  
I/O 15  
1 Page = 2176 Words  
1 Block = 2176 Words x 64 Pages = (128K + 8K) Words  
Capacity = 2176 Words x 64 Pages x 2048 Blocks  
1 Block = 64 Pages  
(128K + 8K) Words  
Array Address (X16)  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 8 ~ I/O 15  
Address  
1st cycle  
2nd cycle  
3rd cycle  
4th cycle  
5th cycle  
CA0  
CA8  
PA0  
PA8  
PA16  
CA1  
CA9  
PA1  
PA9  
L
CA2  
CA10  
PA2  
PA10  
L
CA3  
CA11  
PA3  
PA11  
L
CA4  
L
CA5  
L
CA6  
L
CA7  
L
L
L
L
L
L
Column Address  
Column Address  
Page Address  
Page Address  
Page Address  
PA4  
PA12  
L
PA5  
PA13  
L
PA6  
PA14  
L
PA7  
PA15  
L
PA6 to PA16: Block address  
PA0 to PA5: NAND address in block  
Note I/O8 ~ 15 must be held low when address is input.  
Version 1.5  
05/2018  
20  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Absolute Maximum Ratings  
Symbol  
VCC  
Rating  
Value  
-0.6 to +2.5  
-0.6 to +2.5  
-0.6 to Vcc + 0.3 (2.5V)  
0.3  
Unit  
Power Supply Voltage  
Input Voltage  
VIN  
V
VI/O  
Input / Output Voltage  
Power Dissipation  
PD  
W
oC  
oC  
TSOLDER  
TSTG  
Soldering Temperature (10 s)  
Storage Temperature  
260  
-55 to +125  
Capacitance1  
(TA=25, f=1.0MHz)  
Symbol  
CIN  
Parameter  
Input  
Test Condition  
Min  
Max  
Unit  
pF  
VIN=0V  
10  
10  
COUT  
Output  
VOUT=0V  
pF  
NOTE 1  
This parameter is periodically sampled and is not tested for every device.  
Version 1.5  
21  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Valid Blocks  
Symbol  
NVB  
Parameter  
Min  
Typ.  
Max  
2,048  
Unit  
Number of Valid Blocks  
2,008  
Blocks  
NOTE 1  
The device occasionally contains unusable blocks.  
The first block (Block 0) is guaranteed to be a valid block at the time of shipment.  
The specification for the minimum number of valid blocks is applicable over lifetime.  
The number of valid blocks is on the basis of single plane operations, and this may be decreased with two  
plane operations.  
Recommended DC Operating Conditions  
Symbol  
VCC  
Parameter  
Power Supply Voltage  
Min  
1.70  
Typ.  
Max  
1.95  
Unit  
V
VIH  
High Level Input Voltage  
Low Level Input Voltage  
VCC x 0.8  
-0.31  
VCC + 0.3  
VCC x 0.2  
V
VIL  
V
Note 1  
-2V (pulse width lower than 20 ns)  
DC and Operation Characteristics  
(Ta= -25 to 85, VCC=1.70 to 1.95V )  
Symbol  
IIL  
Parameter  
Input Leakage Current  
Output Leakage Current  
Serial Read Current  
Test Conditions  
Min  
Typ.  
4
Max  
±10  
±10  
30  
Unit  
μA  
μA  
VIN=0 to VCC  
ILO  
VOUT=0 to VCC  
mA  
mA  
ICCO1  
ICCO2  
ICCO3  
ICCS  
=VIL,IOUT= 0 mA, tcycle=25ns  
Programming Current  
Erasing Current  
30  
30  
mA  
μA  
V
Standby Current  
= VCC - 0.2 V,  = 0 V/VCC  
IOH = -0.1mA  
50  
VOH  
VOL  
High Level Output Voltage  
Low Level Output Voltage  
VCC - 0.2  
IOL = 0.1mA  
0.2  
V
IOL (RY/) Output Current of (RY/) pin  
VOL=0.2V  
mA  
Version 1.5  
05/2018  
22  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
AC Timing Characteristics for Command / Address / Data Input  
(Ta= -25 to 85, VCC=1.70 to 1.95V)  
Symbol  
Parameter  
Min  
Max  
Unit  
tCLS  
tCLH  
tCS  
CLE Setup Time  
CLE Hold Time  
 Setup Time  
 Hold Time  
12  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
5
tCH  
tWP  
tALS  
tALH  
tDS  
Write Pulse Width  
ALE Setup Time  
ALE Hold Time  
Data Setup Time  
Data Hold Time  
Write Cycle Time  
 High Hold Time  
12  
12  
5
12  
5
tDH  
tWC  
tWH  
25  
10  
AC Characteristics for Operation  
Symbol  
Parameter  
Min  
Max  
Unit  
tWW  
tRR  
 High to  Low  
100  
20  
20  
12  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
ns  
μs  
Ready to  Falling Edge  
tRW  
tRP  
Ready to  Falling Edge  
Read Pulse Width  
tRC  
Read Cycle Time  
tREA  
tCEA  
tCLR  
 Access Time  
20  
 Access Time  
25  
CLE Low to  Low  
10  
10  
25  
5
tAR  
ALE Low to  Low  
tRHOH  
tRLOH  
tRHZ  
tCHZ  
tCSD  
tREH  
tIR  
 High to Output Hold Time  
 Low to Output Hold Time  
 High to Output High Impedance  
 High to Output High Impedance  
 High to ALE or CLE Don’t care  
 High Hold Time  
60  
20  
0
10  
0
Output-High-impedance-to- Falling Edge  
 High to  Low  
tRHW  
tWHC  
tWHR  
tR  
30  
30  
60  
 High to  Low  
 High to  Low  
25  
Memory Cell Array to Starting Address  
Data Cache Busy in Read Cache (following 31h and 3Fh)  
Data Cache Busy in Page Copy (following 3Ah)  
 High to Busy  
tDCBSYR1  
tDCBSYR2  
tWB  
25  
30  
100  
tRST  
Device Reset Time (Ready/Read/Program/Erase)  
5/5/10/500  
NOTE 1 tCLS and tALS cannot be shorter than tWP.  
NOTE 2 tCS should be longer than tWP + 8ns.  
Version 1.5  
23  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
AC Test Condition  
Condition  
VCC : 1.70 to 1.95V  
VCC 0.2 V, 0.2 V  
3ns  
Parameter  
Input level  
Input pulse rise and fall time  
Input comparison level  
Output data comparison level  
Output Load  
Vcc / 2  
Vcc / 2  
1 TTL GATE and CL=30pF  
NOTE 1  
Busy to ready time depends on the pull-up resistor tied to the RY/ pin.  
Programming / Erasing Characteristics  
(Ta= -25 to 85, VCC=1.70 to 1.95V)  
Symbol  
tPROG  
Parameter  
Average Programming Time  
Min  
Typ.  
300  
Max  
700  
10  
Unit  
μs  
tDCBSYW1 Data Cache Busy Time in Write Cache (following 11h)  
tDCBSYW21 Data Cache Busy Time in Write Cache (following 15h)  
μs  
700  
4
μs  
N
Number of Partial Program Cycles in the Same Page  
Block Erase Time  
cycle  
ms  
tBERASE  
NOTE 1  
3.5  
10  
t
depends on the timing between internal programming time and data in time.  
DCBSYW2  
Data Output  
When tREH is long, output buffers are disabled by =High, and the hold time of data output depend on tRHOH  
(25ns MIN). On this condition, waveforms look like normal serial read mode.  
When tREH is short, output buffers are not disabled by  =High, and the hold time of data output depend on  
tRLOH (5ns MIN). On this condition, output buffers are disabled by the rising edge of CLE, ALE,  or falling  
edge of , and waveforms look like Extended Data Output Mode.  
Version 1.5  
24  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Operation Mode: Logic and Command Tables  
The operation modes such as Program, Erase, Read and Reset are controlled by operations shown in  
command table. Address input, command input and data input/output are controlled by the CLE, ALE, , ,  
 and  signals, as shown in Mode Selection Table.  
Logic Table  
CLE  
H
ALE  
L
  
L
  
  
H
  
Mode  
Command Input  
Data Input  
H
L
L
L
H
L
H
L
H
Address Input  
L
L
L
H
Serial Data Output  
During Program (Busy)  
During Erase (Busy)  
H
H1  
H1  
H
H
During Read (Busy)  
L
H
L
Program, Erase Inhibit  
Stand-by  
0V/VCC  
H: VIH, L=VIL *: VIH or VIL.  
Note 1: If  is low during read busy.  and  must be held High to avoid unintended command/address input to  
device or read to device. Reset or Status Read command can be input during Read Busy.  
Version 1.5  
25  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Command Table  
Function  
1stCycle  
80H  
00H  
05H  
31H  
3FH  
80H  
85H  
80H  
80H  
81H  
81H  
00H  
8CH  
8CH  
60H  
90H  
70H  
71H  
FFH  
2ndCycle  
Acceptable Command during Busy  
Serial Data Input  
Read  
30H  
E0H  
Column Address Change in Serial Data Output  
Read with Data Cache  
Read Start for Last Page in Read Cycle with Data Cache  
Auto Page Program  
10H  
Column Address Change in Serial Data Input  
Auto Program with Data Cache  
15H  
11H  
15H  
10H  
3AH  
15H  
10H  
D0H  
Multi Page Program  
Read for Page Copy (2) with Data Out  
Auto Program with Data Cache during Page Copy (2)  
Auto Program for last page during Page Copy (2)  
Auto Block Erase  
ID Read  
Status Read  
O
O
O
Status Read for Multi-Page Program or Multi Block Erase  
Reset  
Read mode operation states  
CLE  
L
ALE  
L
  
L
  
H
  
L
I/O0 to I/O15  
Data output  
Power  
Active  
Active  
Output Select  
Output Deselect  
L
L
L
H
H
High impedance  
H: VIH, L=VIL  
Version 1.5  
26  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
DEVICE OPERATION  
Read Mode  
Read mode is set when the "00h" and “30h” commands are issued to the Command register. Between the two  
commands, a start address for the Read mode needs to be issued. After initial power on sequence, “00h”  
command is latched into the internal command register. Therefore read operation after power on sequence is  
executed by the setting of only five address cycles and “30h” command. Refer to the figures below for the  
sequence and the block diagram (Refer to the detailed timing chart.).  
For X8 :  
For X16 :  
A data transfer operation from the cell array to the Data Cache via Page Buffer starts on the rising edge of   
in the 30h command input cycle (after the address information has been latched). The device will be in the Busy  
state during this transfer period.  
After the transfer period, the device returns to Ready state. Serial data can be output synchronously with the   
clock from the start address designated in the address input cycle.  
Version 1.5  
27  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Random Column Address Change in Read Cycle  
During the serial data output from the Data Cache, the column address can be changed by inputting a new  
column address using the 05h and E0h commands. The data is read out in serial starting at the new column  
address. Random Column Address Change operation can be done multiple times within the same page.  
Version 1.5  
28  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Read Operation with Read Cahe  
The device has a Read operation with Data Cache that enables the high speed read operation shown below.  
When the block address changes, this sequence has to be started from the beginning.  
For X8 :  
For X16 :  
If the 31h command is issued to the device, the data content of the next page is transferred to the Page Buffer  
during serial data out from the Data Cache, and therefore the tR (Data transfer from memory cell to data  
register) will be reduced.  
1 Normal read. Data is transferred from Page N to Data Cache through Page Buffer. During this time period, the device outputs Busy state  
for tR max.  
2 After the Ready/Busy returns to Ready, 31h command is issued and data is transferred to Data Cache from Page Buffer again. This data  
transfer takes tDCBSYR1 max and the completion of this time period can be detected by Ready/Busy signal.  
3 Data of Page N + 1 is transferred to Page Buffer from cell while the data of Page N in Data cache can be read out by  clock  
simultaneously.  
4 The 31h command makes data of Page N + 1 transfer to Data Cache from Page Buffer after the completion of the transfer from cell to  
Page Buffer. The device outputs Busy state for tDCBSYR1 max.  
This Busy period depends on the combination of the internal data transfer time from cell to Page buffer and the serial data out time.  
5 Data of Page N + 2 is transferred to Page Buffer from cell while the data of Page N + 1 in Data cache can be read out by  clock  
simultaneously.  
6 The 3Fh command makes the data of Page N + 2 transfer to the Data Cache from the Page Buffer after the completion of the transfer  
from cell to Page Buffer. The device outputs Busy state for tDCBSYR1 max. This Busy period depends on the combination of the internal  
data transfer time from cell to Page buffer and the serial data out time.  
7 Data of Page N + 2 in Data Cache can be read out, but since the 3Fh command does not transfer the data from the memory cell to Page  
Buffer, the device can accept new command input immediately after the completion of serial data out.  
Version 1.5  
29  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Multi Page Read Operation  
The device has a Multi Page Read operation and Multi Page Read with Data Cache operation.  
(1) Multi Page Read without Data Cache  
The sequence of command and address input is shown below.  
Same page address (PA0 to PA5) within each district has to be selected.  
For X8 :  
Version 1.5  
30  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
For X16 :  
The data transfer operation from the cell array to the Data Cache via Page Buffer starts on the rising edge of  
 in the 30h command input cycle (after the 2 Districts address information has been latched). The device will  
be in the Busy state during this transfer period.  
After the transfer period, the device returns to Ready state. Serial data can be output synchronously with the   
clock from the start address designated in the address input cycle.  
Version 1.5  
31  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(2) Multi Page Read with Data Cache  
When the block address changes (increments) this sequenced has to be started from the beginning.  
The sequence of command and address input is shown below.  
Same page address (PA0 to PA5) within each district has to be selected.  
For X8 :  
Version 1.5  
32  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
For X16 :  
Version 1.5  
33  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(3) Notes  
(a) Internal addressing in relation with the Districts  
To use Multi Page Read operation, the internal addressing should be considered in relation with the District.  
The device consists from 2 Districts.  
Each District consists from 1024 erase blocks.  
The allocation rule is follows.  
District 0: Block 0, Block 2, Block 4, Block 6,···, Block 2046  
District 1: Block 1, Block 3, Block 5, Block 7,···, Block 2047  
(b) Address input restriction for the Multi Page Read operation  
There are following restrictions in using Multi Page Read;  
(Restriction)  
Maximum one block should be selected from each District.  
Same page address (PA0 to PA5) within two districts has to be selected.  
For example;  
(60) [District 0, Page Address 0x00000] (60) [District 1, Page Address 0x00040] (30)  
(60) [District 0, Page Address 0x00001] (60) [District 1, Page Address 0x00041] (30)  
(Acceptance)  
There is no order limitation of the District for the address input.  
For example, following operation is accepted;  
(60) [District 0] (60) [District 1] (30)  
(60) [District 1] (60) [District 0] (30)  
It requires no mutual address relation between the selected blocks from each District.  
(c)  signal  
Make sure  is held to High level when Multi Page Read operation is performed  
Version 1.5  
05/2018  
34  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Auto Page Program Operation  
The device carries out an Automatic Page Program operation when it receives a "10h" Program command  
after the address and data have been input. The sequence of command, address and data input is shown  
below.  
(Refer to the detailed timing chart.)  
The data is transferred (programmed) from the Data Cache via the Page Buffer to the selected page on the  
rising edge of  following input of the “10h” command. After programming, the programmed data is  
transferred back to the Page Buffer to be automatically verified by the device.  
If the programming does not succeed, the Program/Verify operation is repeated by the device until success is  
achieved or until the maximum loop number set in the device is reached.  
Version 1.5  
35  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Random Column Address Change in Auto Page Program Operation  
The column address can be changed by the 85h command during the data input sequence of the Auto Page  
Program operation.  
Two address input cycles after the 85h command are recognized as a new column address for the data input.  
After the new data is input to the new column address, the 10h command initiates the actual data program into  
the selected page automatically. The Random Column Address Change operation can be repeated multiple  
times within the same page.  
Version 1.5  
36  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Multi Page Program  
The device has a Multi Page Program, which enables even higher speed program operation compared to Auto  
Page Program. The sequence of command, address and data input is shown below. (Refer to the detailed  
timing chart.)  
Although two planes are programmed simultaneously, pass/fail is not available for each page by "70h"  
command when the program operation completes. Status bit of I/O 1 is set to “1” when any of the pages fails.  
Limitation in addressing with Multi Page Program is shown below.  
For X8 :  
For X16 :  
NOTE: Any command between 11h and 81h is prohibited except 70h and FFh.  
Version 1.5  
37  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Auto Page Program Operation with Data Cache  
The device has an Auto Page Program with Data Cache operation enabling the high speed program operation  
shown below. When the block address changes this  
sequenced has to be started from the beginning.  
Issuing the 15h command to the device after serial data input initiates the program operation with Data Cache  
1 Data for Page N is input to Data Cache.  
2 Data is transferred to the Page Buffer by the 15h command. During the transfer the Ready/Busy outputs Busy State (tDCBSYW2).  
3 Data is programmed to the selected page while the data for page N + 1 is input to the Data Cache.  
4 By the 15h command, the data in the Data Cache is transferred to the Page Buffer after the programming of page N is completed. The  
device output busy state from the 15h command until the Data Cache becomes empty. The duration of this period depends on timing  
between the internal programming of page N and serial data input for Page N + 1 (tDCBSYW2).  
5 Data for Page N + P is input to the Data Cache while the data of the Page N + P 1 is being programmed.  
6 The programming with Data Cache is terminated by the 10h command. When the device becomes Ready, it shows that the internal  
programming of the Page N + P is completed.  
NOTE: Since the last page programming by the 10h command is initiated after the previous cache program, the tPROG during cache  
programming is given by the following;  
tPROG = tPROG for the last page +tPROG of the previous page ( command input cycle +address input cycle +data input cycle time of  
the last page)  
Version 1.5  
38  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Pass/fail status for each page programmed by the Auto Page Programming with Data Cache operation can be detected by the Status  
Read operation.  
I/O1 : Pass/fail of the current page program operation.  
I/O2 : Pass/fail of the previous page program operation.  
The Pass/Fail status on I/O1 and I/O2 are valid under the following conditions.  
Status on I/O1: Page Buffer Ready/Busy is Ready State.  
The Page Buffer Ready/Busy is output on I/O6 by Status Read operation or RY /  pin after the 10h command  
Status on I/O2: Data Cache Read/Busy is Ready State.  
The Data Cache Ready/Busy is output on I/O7 by Status Read operation or RY /  pin after the 15h command.  
If the Page Buffer Busy returns to Ready before the next 80h command input, and if Status Read is done during  
this Ready period, the Status Read provides pass/fail for Page 2 on I/O1 and pass/fail result for Page1 on I/O2  
Version 1.5  
39  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Multi Page Program with Data Cache  
The device has a Multi Page Program with Data Cache operation, which enables even higher speed program  
operation compared to Auto Page Program with Data Cache as shown below. When the block address  
changes (increments) this sequenced has to be started from the beginning.  
The sequence of command, address and data input is shown below. (Refer to the detailed timing chart.)  
For X8 :  
For X16 :  
After “15h” or “10h” Program command is input to device, physical programing starts as follows. For details  
of Auto Program with Data Cache, refer to “Auto Page Program with Data Cache”.  
The data is transferred (programmed) from the page buffer to the selected page on the rising edge of  following input of the “15h” or  
“10h” command. After programming, the programmed data is transferred back to the register to be automatically verified by the device. If  
the programming does not succeed, the Program/Verify operation is repeated by the device until success is achieved or until the maximum  
loop number set in the device is reached.  
Version 1.5  
40  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Starting the above operation from 1st page of the selected erase blocks, and then repeating the operation  
total 64 times with incrementing the page address in the blocks, and then input the last page data of the  
blocks, “10h” command executes final programming. Make sure to terminate with 81h-10h- command  
sequence.  
In this full sequence, the command sequence is following.  
After the “15h” or “10h” command, the results of the above operation is shown through the “71h”Status Read  
command.  
The 71H Command Status Description  
I/O  
Status  
Output  
Pass : 0 / Fail : 1  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
Chip Status1 : Pass / Fail  
Pass : 0 / Fail : 1  
Pass : 0 / Fail : 1  
Pass : 0 / Fail : 1  
Pass : 0 / Fail : 1  
District 0 Chip Status1 : Pass / Fail  
District 1 Chip Status2 : Pass / Fail  
District 0 Chip Status1 : Pass / Fail  
District 1 Chip Status2 : Pass / Fail  
I/O 5  
I/O 6  
I/O 7  
Ready / Busy  
Data Cache Ready / Busy  
Write Protect  
Busy : 0 / Ready : 1  
Busy : 0 / Ready : 1  
Protected : 0 / Not Protected : 1  
I/O0 describes Pass/Fail condition of district 0 and 1 (OR data of I/O1 and I/O2). If one of the districts fails during multi  
page program operation, it shows Fail.  
I/O1 to I/O4 shows the Pass/Fail condition of each district. For details on Chip Status 1and Chip Status2refer to  
section Status Read.  
Version 1.5  
41  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Internal addressing in relation with the Districts  
To use Multi Page Program operation, the internal addressing should be considered in relation with the  
District.  
The device consists from 2 Districts.  
Each District consists from 1024 erase blocks.  
The allocation rule is follows.  
District 0: Block 0, Block 2, Block 4, Block 6,···, Block 2046  
District 1: Block 1, Block 3, Block 5, Block 7,···, Block 2047  
Address input restriction for the Multi Page Program with Data Cache operation  
There are following restrictions in using Multi Page Program with Data Cache;  
(Restriction)  
Maximum one block should be selected from each District.  
Same page address (PA0 to PA5) within two districts has to be selected.  
For example;  
(80) [District 0, Page Address 0x00000] (11) (81) [District 1, Page Address 0x00040] (15 or 10)  
(80) [District 0, Page Address 0x00001] (11) (81) [District 1, Page Address 0x00041] (15 or 10)  
(Acceptance)  
There is no order limitation of the District for the address input.  
For example, following operation is accepted;  
(80) [District 0] (11) (81) [District 1] (15 or 10)  
(80) [District 1] (11) (81) [District 0] (15 or 10)  
It requires no mutual address relation between the selected blocks from each District.  
Operating restriction during the Multi Page Program with Data Cache operation  
(Restriction)  
The operation has to be terminated with “10h” command.  
Once the operation is started, no commands other than the commands shown in the timing diagram is allowed  
to be input except for Status Read command and reset command.  
Version 1.5  
42  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Page Copy (2)  
By using Page Copy (2), data in a page can be copied to another page after the data has been read out.  
When the block address changes (increments) this sequenced has to be started from the beginning.  
For X8 :  
For X16 :  
Pa  
ge Copy (2) operation is as following.  
1 Data for Page N is transferred to the Data Cache.  
2 Data for Page N is read out.  
3 Copy Page address M is input and if the data needs to be changed, changed data is input.  
4 Data Cache for Page M is transferred to the Page Buffer.  
5 After the Ready state, Data for Page N + P1 is output from the Data Cache while the data of Page M is being programmed.  
Version 1.5  
43  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
For X8 :  
For X16 :  
6 Copy Page address (M + R1) is input and if the data needs to be changed, changed data is input.  
7 After programming of page M is completed, Data Cache for Page M + R1 is transferred to the Page Buffer.  
8 By the 15h command, the data in the Page Buffer is programmed to Page M + R1. Data for Page N + P2 is transferred to the Data cache.  
9 The data in the Page Buffer is programmed to Page M + Rn − 1. Data for Page N + Pn is transferred to the Data Cache.  
Version 1.5  
44  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
For X8 :  
For X16 :  
10 Copy Page address (M + Rn) is input and if the data needs to be changed, changed data is input.  
11 By issuing the 10h command, the data in the Page Buffer is programmed to Page M + Rn.  
(*1) Since the last page programming by the 10h command is initiated after the previous cache program, the tPROG here will be expected  
as the following,  
tPROG = tPROG of the last page + tPROG of the previous page − ( command input cycle + address input cycle + data output/input cycle  
time of the last page)  
NOTE) This operation needs to be executed within District-0 or District-1.  
Data input is required only if previous data output needs to be altered.  
If the data has to be changed, locate the desired address with the column and page address input after the 8Ch command, and  
change only the data that needs be changed.  
If the data does not have to be changed, data input cycles are not required.  
Make sure  is held to High level when Page Copy (2) operation is performed.  
Also make sure the Page Copy operation is terminated with 8Ch-10h command sequence  
Version 1.5  
45  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Mutil Page Copy (2)  
By using Multi Page Copy (2), data in two pages can be copied to other pages after the data has been read out.  
When each block address changes (increments) this sequence has to be started from the beginning.  
Same page address (PA0 to PA5) within two districts has to be selected.  
For X8 :  
Version 1.5  
46  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
For X16 :  
Version 1.5  
47  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Auto Block Erase  
The Auto Block Erase operation starts on the rising edge of WE after the Erase Start command “D0h” which  
follows the Erase Setup command “60h”. This two-cycle process for Erase operations acts as an extra layer of  
protection from accidental erasure of data due to external noise. The device automatically executes the Erase  
and Verify operations.  
Multi Block Erase  
The Multi Block Erase operation starts by selecting two block addresses before D0h command as in below  
diagram. The device automatically executes the Erase and Verify operations and the result can be monitored  
by checking the status by 71h status read command. For details on 71h status read command, refer to section  
Multi Page Program with Data Cache”.  
Version 1.5  
48  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Internal addressing in relation with the Districts  
To use Multi Block Erase operation, the internal addressing should be considered in relation with the District.  
The device consists from 2 Districts.  
Each District consists from 1024 erase blocks.  
The allocation rule is follows.  
District 0: Block 0, Block 2, Block 4, Block 6,···, Block 2046  
District 1: Block 1, Block 3, Block 5, Block 7,···, Block 2047  
Address input restriction for the Multi Block Erase  
There are following restrictions in using Multi Block Erase  
(Restriction)  
Maximum one block should be selected from each District.  
For example;  
(60) [District 0] (60) [District 1] (D0)  
(Acceptance)  
There is no order limitation of the District for the address input.  
For example, following operation is accepted;  
(60) [District 1] (60) [District 0] (D0)  
It requires no mutual address relation between the selected blocks from each District.  
Make sure to terminate the operation with D0h command. If the operation needs to be terminated before D0h  
command input, input the FFh reset command to terminate the operation.  
Version 1.5  
49  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
ID Read  
The device contains ID codes which can be used to identify the device type, the manufacturer, and features of  
the device. The ID codes can be read out under the following timing conditions:  
ID Definition Table (X8)  
I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 Hex Data  
Description  
1st Data  
2nd Data  
3rd Data  
4th Data  
5th Data  
Maker Code  
Device Code  
1
1
1
0
0
0
0
0
0
1
0
1
0
1
1
1
0
1
0
1
1
1
0
0
0
0
1
0
1
1
0
0
0
1
1
0
0
0
0
0
98H  
ACH  
90H  
26H  
76H  
Chip Number, Cell Type  
Page Size, Block Size, I/O Width  
Plane Number  
ID Definition Table (X16)  
I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 Hex Data  
Description  
1st Data  
2nd Data  
3rd Data  
4th Data  
5th Data  
Maker Code  
Device Code  
1
1
1
0
0
0
0
0
1
1
0
1
0
1
1
1
1
1
0
1
1
1
0
0
0
0
1
0
1
1
0
0
0
1
1
0
0
0
0
0
98H  
BCH  
90H  
66H  
76H  
Chip Number, Cell Type  
Page Size, Block Size, I/O Width  
Plane Number  
Version 1.5  
50  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
3rd ID Data  
Item  
Description  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1
2
4
8
0
0
1
1
0
1
0
1
Internal Chip Number  
2 Level Cell  
4 Level Cell  
8 Level Cell  
16 Level Cell  
0
0
1
1
0
1
0
1
Cell Type  
Reserved  
1
0
0
1
4th ID Data  
Item  
Description  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1 KB  
2 KB  
4 KB  
0
0
1
1
0
1
0
1
Page Size  
(without redundant area)  
8 KB  
64 KB  
128 KB  
256 KB  
512 KB  
X8  
0
0
1
1
0
1
0
1
Block Size  
(without redundant area)  
0
1
I/O Width  
Reserved  
X16  
0
0
1
5th ID Data  
Item  
Description  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1 Plane  
2 Plane  
4 Plane  
8 Plane  
0
0
1
1
0
1
0
1
Plane Number  
Reserved  
0
1
1
1
1
0
Version 1.5  
51  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Status Read  
The device automatically implements the execution and verification of the Program and Erase operations. The  
status Read function is used to monitor the Ready/Busy status of the device, determine the result (pass/fail) of  
a Program or Erase operation, and determine whether the device is in Protect mode. The device status is  
output via the I/O port using  after a 70h” command input. The Status Read can also be used during a Read  
operation to find out the Ready/Busy status.  
Status Register Definition for ommand  
I/O  
Page Program  
Block Erase  
Read  
Cache Read  
Cache Program  
Definition  
Chip Status1  
Pass : 0 / Fail : 1  
Chip Status2  
I/O 0  
Pass / Fail  
Pass / Fail  
Invalid  
Invalid  
Pass / Fail  
I/O 1  
Invalid  
Invalid  
Invalid  
Invalid  
Pass / Fail  
Pass : 0 / Fail : 1  
I/O 2  
I/O 3  
I/O 4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not Used  
Not Used  
Not Used  
Page Buffer  
Busy : 0 / Ready : 1  
Data Cache  
I/O 5  
I/O 6  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Busy : 0 / Ready : 1  
Write Prot  
I/O 7  
Write Protect  
Invalid  
Write Protect  
Invalid  
Write Protect  
Invalid  
Write Protect  
Invalid  
Write Protect  
Invalid  
Protected : 0  
/ Not Protected : 1  
I/O 8 to 15  
Not used  
NOTE  
The Pass/Fail status on I/O0 and I/O1 is only valid during a Program/Erase operation when the device is in the  
Ready state.  
Chip Status 1:  
During a Auto Page Program or Auto Block Erase operation this bit indicates the pass/fail result.  
During a Auto Page Programming with Data Cache operation, this bit shows the pass/fail results of the current  
page program operation, and therefore this bit is only valid when I/O5 shows the Ready state.  
Chip Status 2:  
This bit shows the pass/fail result of the previous page program operation during Auto Page Programming with  
Data Cache. This status is valid when I/O6 shows the Ready State.  
The status output on the I/O5 is the same as that of I/O6 if the command input just before the 70h is not 15h or  
31h.  
Version 1.5  
52  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
An application example with multiple devices is shown in the figure below.  
System Design Note: If the  /  pin signals from multiple devices are wired together as shown in the  
diagram, the Status Read function can be used to determine the status of each individual device.  
Reset  
The Reset mode stops all operations. For example, in case of a Program or Erase operation, the internally  
generated voltage is discharged to 0 volt and the device enters the Wait state.  
Reset during a Cache Program/Page Copy may not just stop the most recent page program but it may also  
stop the previous program to a page depending on when the FF reset is input.  
The response to a “FFh” Reset command input during the various device operations is as follows:  
When a Reset (FFh) command is input during programming  
Version 1.5  
53  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
When a Reset (FFh) command is input during erasing  
When a Reset (FFh) command is input during Read operation  
When a Reset (FFh) command is input during Ready  
When a Status Read command (70h) is input after a Reset  
When two or more Reset commands are input in succession  
Version 1.5  
54  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
APPLICATION NOTES AND COMMENTS  
(1)Power-on/off sequence  
The timing sequence shown in the figure below is necessary for the power-on/off sequence.  
The device internal initialization starts after the power supply reaches an appropriate level in the power on  
sequence.  
During the initialization the device Ready/Busy signal indicates the Busy state as shown in the figure below. In  
this time period, the acceptable commands are FFh or 70h.  
The  signal is useful for protecting against data corruption at power-on/off.  
(2)Do not turn off the power before write/erase operation is complete. Avoid using the device when the battery  
is low. Power shortage and/or power failure before write/erase operation is complete will cause loss of data  
and/or damage to data.  
(3)Power-on Reset  
The following sequence is necessary because some input signals may not be stable at power-on.  
(4)Prohibition of unspecified commands  
The operation commands are listed in Logic Table. Input of a command other than those specified in Logic  
Table is prohibited. Stored data may be corrupted if an unknown command is entered during the command  
cycle.  
(5)Restriction of commands while in the Busy state  
During the Busy state, do not input any command except 70h(71h) and FFh.  
Version 1.5  
55  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(6)Acceptable commands after Serial Input command “80h”  
Once the Serial Input command “80h” has been input, do not input any command other than the Column  
Address Change in Serial Data Input command “85h”, Auto Program command “10h”, Multi Page Program  
command “11h”, Auto Program with Data Cache Command “15h”, or the Reset command “FFh”.  
If a command other than “85h” , “10h” , “11h” , “15h” or “FFh” is input, the Program operation is not performed  
and the device operation is set to the mode which the input command specifies.  
(7)Addressing for Program Operation  
Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the  
block to MSB (most significant bit) page of the block. Random page address programming is prohibited.  
Page 63  
Page 31  
Page 63  
Page 31  
(64)  
(64)  
(1)  
(32)  
Page2  
Page 1  
Page 0  
Page2  
Page 1  
Page 0  
(3)  
(32)  
(2)  
(3)  
(2)  
(1)  
Data Register  
Data Register  
From the LSB page to MSB page  
DATA IN: Data(1) Data (64)  
Ex.) Random page program (Prohibition)  
DATA IN: Data(1) Data (64)  
Version 1.5  
56  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(8)Status Read during a Read operation  
The device status can be read out by inputting the Status Read command “70h” in Read mode. Once the  
device has been set to Status Read mode by a “70h” command, the device will not return to Read mode  
unless the Read command “00h” is inputted during [A]. If the Read command “00h” is inputted during [A],  
Status Read mode is reset, and the device returns to Read mode. In this case, data output starts  
automatically from address N and address input is unnecessary  
(9)Auto programming failure  
Version 1.5  
57  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(10)RY /  : termination for the Ready/Busy pin (RY /  )  
A pull-up resistor needs to be used for termination because the RY /  buffer consists of an open drain  
circuit.  
Version 1.5  
58  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(11)Note regarding the  signal  
The Erase and Program operations are automatically reset when WP goes Low. The operations are  
enabled and disabled as follows:  
Enable Programming  
Disable Programming  
Enable Erasing  
Disable Erasing  
Version 1.5  
59  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(12)When six address cycles are input  
Although the device may read in a sixth address, it is ignored inside the chip.  
Read operation  
Program operation  
Version 1.5  
60  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(13)Several programming cycles on the same page (Partial Page Program)  
Each segment can be programmed individually as follows:  
1st Programming  
2nd Programming  
Data Pattern 1  
All 1 s  
All 1 s  
All 1 s  
Data Pattern 2  
4th Programming  
Result  
All 1 s  
Data Pattern 4  
Data Pattern 4  
Data Pattern 1  
Data Pattern 2  
-------------------------------------  
Version 1.5  
61  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(14)Invalid blocks (bad blocks)  
The device occasionally contains unusable blocks. Therefore, the following issues must be recognized:  
Please do not perform an erase operation to bad blocks. It may be impossible to recover  
the bad block information if the information is erased.  
Check if the device has any bad blocks after installation into the system.  
Refer to the test flow for bad block detection. Bad blocks which are detected by the test  
flow must be managed as unusable blocks by the system.  
A bad block does not affect the performance of good blocks because it is isolated from  
the bit lines by select gates.  
The number of valid blocks over the device lifetime is as follows:  
Symbol  
Valid(Good) Block Number  
Min  
Typ.  
Max  
Unit  
2,008  
2,048  
Blocks  
Bad Block Test Flow  
Regarding invalid blocks, bad block mark is in whole pages.  
Please read one column of any page in each block. It makes sure that every invalid block has Majority “0” data  
at this column. If the data of the column is Majority “0”, define the block as a bad block.  
Start  
Block No = 1  
Fail  
Read Check  
Pass  
Block No. = Block No. + 1  
Bad Block1  
No  
Last Block  
Yes  
End  
Note1: No erase operation is allowed to detected bad blocks.  
Version 1.5  
05/2018  
62  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(15)Failure phenomena for Program and Erase Operations  
The device may fail during a Program or Erase operation.  
The following possible failure modes should be considered when implementing a highly reliable system.  
Failure Mode  
Erase Failure  
Programming Failure  
Bit Error  
Detection and Countermeasure Sequence  
Read Status after Erase Block Replacement  
Read Status after Program Block Replacement  
ECC Correction / Block Refresh  
Block  
Page  
Read  
NOTE 1  
ECC: Error Correction Code. 8 bit correction per 512 Bytes is necessary.  
Block Replacement  
Program  
When an error happens in Block A, try to reprogram the data into another Block (Block B) by loading from an  
external buffer. Then, prevent further system accesses to Block A (by creating a bad block table or by using  
another appropriate scheme).  
Erase  
When an error occurs during an Erase operation, prevent future accesses to this bad block (again by creating a  
table within the system or by using another appropriate scheme).  
(16)The number of valid blocks is on the basis of single plane operations, and this may be decreased with two  
plane operations.  
Version 1.5  
63  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
(17)Reliability Guidance  
This reliability guidance is intended to notify some guidance related to using NAND flash with 8bit ECC for each  
512 bytes. For detailed reliability data, please refer to TOSHIBA’s reliability note.  
Although random bit errors may occur during use, it does not necessarily mean that a block is bad.  
Generally, a block should be marked as bad when a program status failure or erase status failure is detected.  
The other failure modes may be recovered by a block erase.  
ECC treatment for read data is mandatory due to the following Data Retention and Read Disturb failures.  
Write/Erase Endurance  
Write/Erase endurance failures may occur in a cell, page, or block, and are detected by doing a status read  
after either an auto program or auto block erase operation. The cumulative bad block count will increase  
along with the number of write/erase cycles.  
Data Retention  
The data in memory may change after a certain amount of storage time. This is due to charge loss or charge  
gain. After block erasure and reprogramming, the block may become usable again.  
Here is the combined characteristics image of Write/Erase Endurance and Data Retention.  
Version 1.5  
64  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
TIMING DIAGRAMS  
Latch Timing Diagram for Command/Address/Data  
Command Input Cycle Timing Diagram  
Version 1.5  
65  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Address Input Cycle Timing Diagram  
Data Input Cycle Timing Diagram  
Version 1.5  
66  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Serial Read Cycle Timing Diagram  
Status Read Cycle Timing Diagram  
*: 70h represents the hexadecimal number  
Version 1.5  
67  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Read Cycle Timing Diagram  
Read Cycle Timing Diagram: When Interrupted by   
Version 1.5  
68  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Read Cycle with Data Cache Timing Diagram (1/2)  
*: The column address will be reset to 0 by the 31h command input.  
Read Cycle with Data Cache Timing Diagram (2/2)  
Make sure to terminate the operation with 3Fh command  
.
Version 1.5  
69  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Column Address Change in Read Cycle Timing Diagram (1/2)  
Version 1.5  
70  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Column Address Change in Read Cycle Timing Diagram (2/2)  
Version 1.5  
71  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Data Output Timing Diagram  
Version 1.5  
72  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Auto-Program Operation Timing Diagram  
*: M: up to 4351 (byte input data for ×8 device).  
Version 1.5  
73  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Auto-Program Operation with Data Cache Timing Diagram (1/3)  
CA0 to CA12 is 0 in this diagram.  
Version 1.5  
74  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Auto-Program Operation with Data Cache Timing Diagram (2/3)  
Repeat a max of 62 times  
(in order to program pages 1 to 62 of a block).  
Version 1.5  
75  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Auto-Program Operation with Data Cache Timing Diagram (3/3)  
(*1)  
tPROG: Since the last page programming by 10h command is initiated after the previous cache  
program, the tPROG during cache programming is given by the following equation.  
tPROG = tPROG of the last page + tPROG of the previous page A  
A = (command input cycle + address input cycle + data input cycle time of the last page)  
If “A” exceeds the tPROG of previous page, tPROG of the last page is tPROG max.  
NOTE : Make sure to terminate the operation with 80h-10h- command sequence.  
If the operation is terminated by 80h-15h command sequence, monitor I/O 6 (Ready / Busy) by  
issuing Status Read command (70h) and make sure the previous page program operation is  
completed. If the page program operation is completed issue FFh reset before next operation.  
Version 1.5  
76  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Multi-Page Program Operation with Data Cache Timing Diagram (1/4)  
Version 1.5  
77  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Multi-Page Program Operation with Data Cache Timing Diagram (2/4)  
Repeat a max of 63 times  
(in order to program pages 0 to 62 of a block).  
Version 1.5  
78  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Multi-Page Program Operation with Data Cache Timing Diagram (3/4)  
Version 1.5  
79  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Multi-Page Program Operation with Data Cache Timing Diagram (4/4)  
(*1)  
tPROG: Since the last page programming by 10h command is initiated after the previous cache  
program, the tPROG during cache programming is given by the following equation.  
tPROG = tPROG of the last page + tPROG of the previous page − A  
A = (command input cycle + address input cycle + data input cycle time of the last page)  
If “A” exceeds the tPROG of previous page, tPROG of the last page is tPROG max.  
NOTE : Make sure to terminate the operation with 81h-10h- command sequence.  
If the operation is terminated by 81h-15h command sequence, monitor I/O 6 (Ready / Busy)  
by issuing Status  
Read command (70h) and make sure the previous page program operation is completed.  
If the page program operation is completed issue FFh reset before next operation.  
Version 1.5  
80  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Auto Block Erase Timing Diagram  
Version 1.5  
81  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Multi Block Erase Timing Diagram  
Version 1.5  
82  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
ID Read Operation Timing Diagram  
Table 5: ID Definition Table  
4Gb(X32, SDP)/8Gb(X32, DDP) LPDDR2  
Version 1.5  
83  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
LPDDR2 Descriptions  
LPDDR2-S4 uses the double data rate architecture on the Command/Address (CA) bus to reduce the number  
of input pins in the system. The 10-bit CA bus contains command, address, and Bank/Row Buffer information.  
Each command uses one clock cycle, during which command information is transferred on both the positive  
and negative edge of the clock.  
To achieve high-speed operation, our LPDDR2-S4 SDRAM uses the double data rate architecture and adopt  
4n-prefetch interface designed to transfer two data per clock cycle at the I/O pins. A single read or write  
access for the LPDDR2-S4 effectively consists of a single 4n-bit wide, one clock cycle data transfer at the  
internal SDRAM core and four corresponding n-bit wide, one-half-clock-cycle data transfer at the I/O pins.  
Read and write accesses to the LPDDR2-S4 are burst oriented; accesses start at a selected location and  
continue for a programmed number of locations in a programmed sequence.  
For LPDDR2-S4 devices, accesses begin with the registration of an Active command, which is then followed  
by a Read or Write command. The address and BA bits registered coincident with the Active command are  
used to select the row and the Bank to be accessed. The address bits registered coincident with the Read or  
Write command are used to select the Bank and the starting column location for the burst access.  
Version 1.5  
84  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Units  
V
V
VDD1  
VDD2  
Voltage on VDD1 pin relative to Vss  
Voltage on VDD2 pin relative to Vss  
Voltage on VDDCA pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature (plastic)  
-0.4  
-0.4  
-0.4  
-0.4  
-0.4  
-55  
2.3  
1.6  
V
VDDCA  
VDDQ  
1.6  
V
1.6  
V
Vin, Vout  
Tstg  
1.6  
+125  
C  
Notes:  
1. Stresses greater than those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For measurement conditions,  
refer to the JESD51-2 standard.  
3. VDD2 and VDDQ / VDDCA must be within 200mV of each other at all times.  
4. Voltage on any I/O may not exceed voltage on VDDQ; Voltage on any CA input may not exceed voltage on VDDCA.  
5. VREF must always be less than all other supply voltages.  
6. The voltage difference between any VSS pins may not exceed 100mV.  
Version 1.5  
85  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
AC/DC Operating Conditions  
DC Operating Conditions  
Symbol  
Parameter  
Min  
Typical  
Max  
Unit  
Notes  
Power Supply  
1.70  
1.14  
1.14  
1.14  
1.80  
1.20  
1.20  
1.20  
1.95  
1.30  
1.30  
1.30  
V
V
V
V
VDD1  
VDD2  
Core Supply voltage 1  
Core Supply voltage 2  
VDDCA  
VDDQ  
Leakage current  
Input leakage current  
Input Supply Voltage (Command / Address)  
I/O Supply voltage (DQ)  
Any input 0 VIN VDDQ / VDDCA  
,
-2  
-1  
-
-
2
1
uA  
uA  
1
1
II  
All other pins not under test = 0V  
VREF leakage current; VREFDQ = VDDQ/2 or  
VREFCA = VDDCA/2 (all other pins not under test  
= 0V)  
IVREF  
Notes:  
1. The minimum limit requirement is for testing purposes. The leakage current on VREFCA and VREFDQ pins should be minimal.  
Although DM is for input only, the DM leakage shall match the DQ and DQS,  output leakage specification.  
Version 1.5  
86  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
AC/DC Input Measurement Level  
AC and DC Logic Levels for Single-Ended Signals  
CA inputs (Address and Command) and  inputs  
LPDDR2 1066  
Symbol  
Parameter  
Unit Notes  
Min  
Max  
AC Input logic HIGH voltage  
DC Input logic HIGH voltage  
AC Input logic LOW voltage  
DC Input logic LOW voltage  
mV  
mV  
mV  
mV  
V
1,3  
1
VIHCA(AC)  
VIHCA(DC)  
VILCA(AC)  
VILCA(DC)  
VREFCA(DC)  
VREFCA + 220 mV  
-
VREFCA + 130 mV  
VDDCA  
1,3  
1
-
VREFCA 220 mV  
VREFCA 130 mV  
0.51 x VDDCA  
VSS  
Reference voltage for CA and   
4,5  
0.49 x VDDCA  
inputs  
Data inputs (DQ & DM)  
AC Input logic HIGH voltage  
mV  
mV  
mV  
mV  
V
2,3  
1
VIHDQ(AC)  
VIHDQ(DC)  
VILDQ(AC)  
VILDQ(DC)  
VREFDQ(DC)  
VREFDQ + 220 mV  
-
DC Input logic HIGH voltage  
AC Input logic LOW voltage  
DC Input logic LOW voltage  
VREFDQ + 130 mV  
VDDQ  
2,3  
1
-
VREFDQ 220 mV  
VREFDQ 130 mV  
0.51 x VDDQ  
VSS  
Reference voltage for DQ and DM  
inputs  
4,5  
0.49 x VDDQ  
Clock enable inputs (CKE)  
Symbol  
Parameter  
Min  
Max  
Unit Notes  
CKE AC Input HIGH voltage  
CKE AC Input LOW voltage  
V
V
3
3
VIHCKE (AC)  
VILCKE (AC)  
0.8 * VDDCA  
-
-
0.2 * VDDCA  
NOTE 1 For CA and  input only pins. Vref = VrefCA(DC).  
NOTE 2 For DQ input only pins. Vref = VrefDQ(DC).  
NOTE 3 See “Overshoot and Undershoot Specifications”  
NOTE 4 The ac peak noise on VRefCA may not allow VRefCA to deviate from VRefCA(DC) by more than +/-1% VDDCA (for reference:  
approx. +/- 12 mV).  
NOTE 5 For reference: approx. VDDCA/2 +/- 12 mV.  
Version 1.5  
87  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Differential AC and DC Input Levels  
Differential Inputs logical levels (CK,  VREF = VREFCA(DC); DQS, : VREF = VREFDQ(DC)  
)
LPDDR2 1066  
Symbol  
Parameter  
Unit  
Min  
Max  
Differential input voltage HIGH AC  
Differential input voltage LOW AC  
Differential input voltage HIGH DC  
Differential input voltage LOW DC  
2 x (VIH(AC)-VREF  
)
Note 3  
2 x (VREF-VIL(AC)  
Note 3  
VIHdiff(AC)  
VILdiff(AC)  
VIHdiff(DC)  
VILdiff(DC)  
V
Note 3  
)
V
V
V
2 x (VIH(DC)-VREF  
)
Note 3  
2 x (VREF-VIL(DC)  
)
Notes:  
1. Used to define a differential signal slew-rate. For CK  use VIH/VIL(dc) of CA and VREFCA; for DQS , use VIH/VIL(dc) of  
DQs and VREFDQ; if a reduced dc-high or dc-low level is used for a signal group, then the reduced level applies also here.  
2. For CK and , use VIH/VIL(AC) of CA and VREFCA; for DQS and , use VIH/VIL(AC) of DQ and VREFDQ. If a reduced AC HIGH or AC  
LOW is used for a signal group, the reduced voltage level also applies.  
3. These values are not defined, however the single-ended signals CK, , DQS, and  must be within the respective limits  
(VIH(DC)max, VIL(DC)min) for single-ended signals and must comply with the specified limitations for overshoot and undershoot.  
CK,  and DQS,  Time Requirement before Ring back (tDVAC  
)
tDVAC(ps) at  
Slew Rate  
VIH/VILdiff(AC) = 440 mV  
(V/ns)  
Min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
>4.0  
4.0  
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
<1.0  
Version 1.5  
05/2018  
88  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Single-Ended Requirements for Differential Signals  
LPDDR2 1066  
Symbol  
Parameter  
Unit  
Min  
Max  
Single-ended HIGH level for strobes  
Single-ended HIGH level for CK,   
Single-ended LOW level for strobes  
Single-ended LOW level for CK,   
(VDDQ/2) + 0.22  
Note 3  
V
V
VSEH(AC)  
(VDDCA/2) + 0.22  
Note 3  
Note 3  
(VDDQ/2) - 0.22  
(VDDCA/2) - 0.22  
V
V
VSEL(AC)  
Note 3  
Notes:  
1. For CK and , use VSEH/VSEL(AC) of CA; for strobes (DQS[3:0] and [3:0]) use VIH/VIL(AC) of DQ.  
2. VIH(AC) and VIL(AC) for DQ are based on VREFDQ; VSEH(AC) and VSEL(AC) for CA are based on VREFCA. If a reduced AC HIGH or AC  
LOW is used for a signal group, the reduced level applies.  
3. These values are not defined, however the single-ended signals CK, , DQS0, , DQS1, , DQS2, , DQS3,  
 must be within the respective limits (VIH(DC)max, VIL(DC)min) for single-ended signals, and must comply with the  
specified limitations for overshoot and undershoot.  
Differential input Cross-Point Voltage  
LPDDR2 1066  
Symbol  
Parameter  
Unit  
Min  
Max  
Differential input cross-point voltage relative to VDDCA/2 for CK and   
Differential input cross-point voltage relative to VDDQ/2 for DQS and   
-120  
+120  
mV  
mV  
VIXCA(AC)  
-120  
+120  
VIXDQ(AC)  
Notes:  
1. The typical value of VIX(AC) is expected to be about 0.5 × VDD of the transmitting device, and it is expected to track variations  
in VDD. VIX(AC) indicates the voltage at which differential input signals must cross.  
2. For CK and , VREF = VREFCA(DC). For DQS and , VREF = VREFDQ(DC).  
Slew Rate Definitions for Differential Input Signals  
Measured  
Description  
Defined by  
From  
To  
Differential input slew rate for rising edge  
(CK,  and DQS, )  
[VIHdiffmin VILdiffmax] / ΔTRdiff  
[VIHdiffmin VILdiffmax] / ΔTFdiff  
VILdiffmax  
VIHdiffmin  
Differential input slew rate for falling edge  
(CK,  and DQS, )  
VIHdiffmin  
VILdiffmax  
Notes:  
1. The differential signals (CK,  and DQS, ) must be linear between these thresholds.  
Version 1.5  
89  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
AC/DC Output Measurement Level  
Single-Ended AC and DC Output Levels  
Symbol  
Parameter  
LPDDR2 1066  
Unit Notes  
VREF + 0.12  
VREF 0.12  
0.9 x VDDQ  
0.1 x VDDQ  
-5  
V
V
VOH(AC)  
AC output HIGH measurement level (for output slew rate)  
AC output LOW measurement level (for output slew rate)  
DC output HIGH measurement level (for I-V curve linearity)  
DC output LOW measurement level (for I-V curve linearity)  
VOL(AC)  
VOH(DC)  
VOL(DC)  
V
V
1
2
Min  
uA  
uA  
Output leakage current (DQ, DM, DQS, )  
(DQ, DQS,  are disabled; 0V VOUT VDDQ)  
IOZ  
Max  
5
Min  
-15  
15  
%
%
Delta output impedance between pull-up and pull-down  
for DQ/DM  
MMpupd  
Max  
Notes:  
1. IOH = 0.1mA  
2. IOL = 0.1mA  
Differential AC and DC Output Levels  
Symbol  
Parameter  
LPDDR2 1066  
Unit Notes  
+ 0.20 x VDDQ  
- 0.20 x VDDQ  
V
V
1
2
VOHdiff(AC)  
AC differential output HIGH measurement level (for output SR)  
AC differential output LOW measurement level (for output SR)  
VOLdiff(AC)  
Notes:  
1. IOH = 0.1mA  
2. IOL = 0.1mA  
Version 1.5  
90  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Single Ended Output Slew Rate  
LPDDR2 1066  
Symbol  
Parameter  
Unit  
Min  
Max  
Single-ended output slew rate (output impedance = 40Ω ± 30%)  
Single-ended output slew rate (output impedance = 60Ω ± 30%)  
Output slew-rate-matching ratio (pull-up to pull-down)  
1.5  
3.5  
V/ns  
V/ns  
SRQSE  
SRQSE  
1.0  
0.7  
2.5  
1.4  
Definitions:  
SR = slew rate, Q = query output (similar to DQ = data-in, query-output), se = single-ended signals  
NOTE 1 Measured with output reference load.  
NOTE 2 The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire  
temperature and voltage range. For a given output, it represents the maximum difference between pull-up and  
pull-down drivers due to process variation.  
NOTE 3 The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).  
NOTE 4 Slew rates are measured under normal SSO conditions, with 1/2 of DQ signals per data byte driving logic-high and 1/2 of  
DQ signals per data byte driving logic-low.  
Differential Output Slew Rate  
LPDDR2 1066  
Symbol  
Parameter  
Unit  
Min  
Max  
3.0  
7.0  
V/ns  
V/ns  
SRQdiff  
Differential output slew rate (output impedance = 40Ω ± 30%)  
Differential output slew rate (output impedance = 60Ω ± 30%)  
2.0  
5.0  
SRQdiff  
Definitions:  
SR = slew rate, Q = query output (similar to DQ = data-in, query-output), diff = differential signals  
NOTE 1 Measured with output reference load.  
NOTE 2 The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).  
NOTE 3 Slew rates are measured under normal SSO conditions, with 1/2 of DQ signals per data byte driving logic-high and 1/2 of  
DQ signals per data byte driving logic-low.  
AC Overshoot/Undershoot Specification  
Parameter  
1066  
Unit  
Maximum peak amplitude provided for overshoot area  
Maximum peak amplitude provided for undershoot area  
Maximum area above VDD  
Max  
Max  
Max  
Max  
0.35  
0.35  
0.15  
0.15  
V
V
V-ns  
V-ns  
Maximum area below VSS  
Notes:  
1. VDD stands for VDDCA for CA[9:0], CK, , , and CKE. VDD stands for VDDQ for DQ, DM, DQS, and .  
2. Values are referenced from actual VDDQ and VDDCA levels.  
Version 1.5  
91  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Input / Output Capacitance  
TOPER; VDDQ = 1.14-1.3V; VDDCA = 1.14-1.3V; VDD1 = 1.7-1.95V  
LPDDR2 1066  
Symbol  
CCK  
CDCK  
CI  
Parameter  
Unit  
Min  
Max  
Input capacitance :  
0.5  
2
pF  
pF  
pF  
pF  
pF  
CK,   
Input capacitance delta :  
CK,   
0
1
0.2  
2
Input capacitance:  
all other input-only pins  
Input capacitance delta:  
all other input-only pins  
-0.4  
1.25  
0.4  
2.5  
CDI  
Input/output capacitance :  
CIO  
DQ, DQS, , DM  
0
-0.5  
0
0.25  
0.5  
pF  
pF  
pF  
Input/output capacitance delta : DQS,   
Input/output capacitance delta : DQ, DM  
Input/output capacitance : ZQ  
CDDQS  
CDIO  
CZQ  
2.5  
Notes:  
1. This parameter applies to die devices only (does not include package capacitance).  
2. This parameter is not subject to production testing. It is verified by design and characterization. The capacitance is measured  
according to JEP147 (procedure for measuring input capacitance using a vector network analyzer), with VDD1, VDD2, VDDQ,  
VSS applied; all other pins are left floating.  
3. Absolute value of CCK - .  
4. CI applies to , CKE, and CA[9:0].  
5. CDI = CI 0.5 × (CCK + )  
6. DM loading matches DQ and DQS.  
7. MR3 I/O configuration DS OP[3:0] = 0001B (34.3 ohm typical)  
8. Absolute value of CDQS and .  
9. CDIO = CIO 0.5 × (CDQS + ) in byte-lane.  
10. Maximum external load capacitance on ZQ pin, including packaging, board, pin, resistor, and other LPDDR2 devices: 5pf.  
Version 1.5  
92  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
IDD Specifications and Measurement Conditions  
VDD2/VDDQ/VDDCA = 1.14~1.30V; VDD1 = 1.70~1.95V  
1066  
Symbol  
Supply  
Unit  
SDP  
15  
DDP  
30  
IDD01  
IDD02  
VDD1  
VDD2  
IDD0  
70  
140  
20  
mA  
IDD0IN  
VDDCA + VDDQ  
VDD1  
10  
IDD2P1  
IDD2P2  
IDD2PIN  
IDD2PS1  
IDD2PS2  
IDD2PSIN  
IDD2N1  
600  
800  
120  
600  
800  
120  
2
1200  
1600  
240  
1200  
1600  
240  
4
IDD2P  
VDD2  
uA  
VDDCA + VDDQ  
VDD1  
IDD2PS  
IDD2N  
VDD2  
uA  
mA  
mA  
VDDCA + VDDQ  
VDD1  
IDD2N2  
IDD2NIN  
IDD2NS1  
VDD2  
VDDCA + VDDQ  
VDD1  
20  
40  
10  
20  
1.7  
3.4  
IDD2NS  
IDD2NS2  
IDD2NSIN  
IDD3P1  
VDD2  
VDDCA + VDDQ  
VDD1  
10  
6
20  
12  
1000  
7.5  
150  
1200  
7.5  
150  
2
2000  
15  
uA  
mA  
uA  
uA  
mA  
uA  
IDD3P  
IDD3PS  
IDD3N  
IDD3P2  
VDD2  
IDD3PIN  
IDD3PS1  
IDD3PS2  
IDD3PSIN  
IDD3N1  
IDD3N2  
IDD3NIN  
IDD3N1  
IDD3N2  
IDD3SIN  
IDD4R1  
IDD4R2  
IDD4RIN  
VDDCA + VDDQ  
VDD1  
300  
2400  
15  
VDD2  
VDDCA + VDDQ  
VDD1  
300  
4
VDD2  
25  
50  
mA  
mA  
mA  
VDDCA + VDDQ  
VDD1  
10  
20  
2
4
IDD3NS  
IDD4R  
VDD2  
20  
40  
VDDCA + VDDQ  
VDD1  
6
12  
3
6
VDD2  
250  
10  
500  
20  
VDDCA  
Continue to next page  
Version 1.5  
93  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
1066  
Symbol  
Supply  
Unit  
SDP  
3
DDP  
6
IDD4W1  
IDD4W2  
IDD4WIN  
IDD51  
VDD1  
VDD2  
IDD4W  
250  
35  
500  
70  
mA  
VDDCA + VDDQ  
VDD1  
20  
40  
IDD5  
IDD5AB  
IDD5PB  
IDD6  
IDD52  
VDD2  
150  
10  
300  
20  
mA  
mA  
mA  
uA  
IDD5IN  
VDDCA + VDDQ  
VDD1  
IDD5AB1  
IDD5AB2  
IDD5ABIN  
IDD5PB1  
IDD5PB2  
IDD5PBIN  
IDD61  
5
10  
VDD2  
25  
50  
VDDCA + VDDQ  
VDD1  
10  
20  
5
10  
VDD2  
25  
50  
VDDCA + VDDQ  
VDD1  
10  
20  
1000  
4000  
120  
2000  
8000  
240  
IDD62  
VDD2  
IDD6IN  
VDDCA + VDDQ  
Continue to next page  
Version 1.5  
94  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
IDD Specifications and Measurement Conditions  
VDD2/VDDQ/VDDCA = 1.14~1.30V; VDD1 = 1.70~1.95V  
IDD6 Partial Array Self-refresh current;  
1066  
PASR  
Supply  
Unit  
SDP  
1000  
4000  
120  
DDP  
2000  
8000  
240  
VDD1  
VDD2  
Full Array  
VDDCA + VDDQ  
VDD1  
950  
1900  
4600  
240  
1/2 Array  
1/4 Array  
1/8 Array  
VDD2  
2300  
120  
VDDCA + VDDQ  
VDD1  
uA  
900  
1800  
3000  
240  
VDD2  
1500  
120  
VDDCA + VDDQ  
VDD1  
850  
1700  
2120  
240  
VDD2  
1060  
120  
VDDCA + VDDQ  
Version 1.5  
05/2018  
95  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
LPDDR2-S4 Refresh Requirement Parameters  
Symbol  
Parameter  
4Gb (SDP)  
8Gb (DDP)  
Unit  
8
Number of banks  
tREFW  
R
32  
ms  
Refresh window: TCASE 85°  
8192  
3.9  
8192  
3.9  
Required number of REFRESH commands (MIN)  
tREFI  
us  
us  
ns  
ns  
us  
Average time between REFRESH commands  
TCASE 85°C  
tREFIpb  
tRFCab  
tRFCpb  
tREFBW  
0.4875  
130  
0.4875  
130  
Refresh cycle time  
60  
60  
Per-bank REFRESH cycle time  
Burst REFRESH window = 4 × 8 × tRFCab  
4.16  
4.16  
Version 1.5  
96  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Electrical Characteristics and Recommended AC Timing  
VDD2,VDDQ,VDDCA = 1.14~1.30V; VDD1 = 1.70~1.95V  
min/  
Parameter  
1066  
Unit  
Symbol  
max  
Clock Timing  
533  
MHz  
ns  
Max. Frequency  
~
1.875  
min  
max  
min  
max  
min  
max  
min  
min  
max  
min  
max  
Average Clock Period  
tCK(avg)  
tCH(avg)  
100  
ns  
0.45  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
ps  
Average high pulse width  
0.55  
0.45  
Average low pulse width  
Absolute Clock Period  
tCL(avg)  
tCK(abs)  
0.55  
tCK(avg)min + tJIT(per),min  
0.43  
0.57  
0.43  
0.57  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
Absolute clock HIGH pulse width  
(with allowed jitter)  
tCH(abs),  
allowed  
Absolute clock LOW pulse width  
(with allowed jitter)  
tCL(abs),  
allowed  
min/  
max  
Parameter  
1066  
Unit  
Symbol  
-90  
90  
ps  
ps  
min  
Clock Period Jitter  
(with allowed jitter)  
tJIT(per),  
allowed  
max  
Maximum Clock Jitter between two  
consecutive clock cycles  
(with allowed jitter)  
tJIT(cc),  
allowed  
180  
ps  
max  
min  
min((tCH(abs),min - tCH(avg),min), (tCL(abs),min - tCL(avg),min)) *  
ps  
ps  
tCK(avg)  
max((tCH(abs),max - tCH(avg),max), (tCL(abs),max - tCL(avg),max)) *  
tCK(avg)  
Duty cycle Jitter  
tJIT(duty),  
allowed  
(with allowed jitter)  
max  
-132  
132  
-157  
157  
-175  
175  
ps  
ps  
ps  
ps  
ps  
ps  
min  
max  
min  
tERR(2per),  
allowed  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
tERR(3per),  
allowed  
max  
min  
tERR(4per),  
allowed  
max  
Version 1.5  
97  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
min/  
Parameter  
1066  
Unit  
Symbol  
max  
-188  
188  
-200  
200  
-209  
209  
-217  
217  
-224  
224  
-231  
231  
-237  
237  
-242  
242  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
min  
max  
min  
max  
min  
max  
min  
max  
min  
max  
min  
max  
min  
max  
min  
max  
min  
max  
tERR(5per),  
allowed  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tERR(6per),  
allowed  
tERR(7per),  
allowed  
tERR(8per),  
allowed  
tERR(9per),  
allowed  
tERR(10per),  
allowed  
tERR(11per),  
allowed  
tERR(12per),  
allowed  
tERR(nper), allowed, min = (1 + 0.68ln(n)) * tJIT(per), allowed, min  
tERR(nper), allowed, max = (1 + 0.68ln(n)) * tJIT(per), allowed, max  
ps  
ps  
Cumulative error across n = 13,  
14 . . . 49, 50 cycles  
tERR(nper),  
allowed  
Version 1.5  
98  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Electrical Characteristics and Recommended AC Timing  
VDD2,VDDQ,VDDCA = 1.14~1.30V; VDD1 = 1.70~1.95V  
Speed Grade  
min/ min  
Symbol  
Parameter  
Unit  
max tCK  
1066  
ZQ calibration parameters  
tZQINIT  
tZQCL  
Calibration initialization Time  
min  
min  
min  
min  
1
us  
ns  
ns  
ns  
Long (Full) Calibration Time  
Short Calibration Time  
Calibration Reset Time  
6
6
3
360  
90  
tZQCS  
tZQRESET  
50  
Read parameters  
min  
max  
max  
max  
max  
2500  
5500  
330  
ps  
ps  
ps  
ps  
ps  
DQS output access time from CK,   
tDQSCK  
tDQSCKDS  
tDQSCKDM  
tDQSCKDL  
DQSCK Delta Short  
DQSCK Delta Medium  
DQSCK Delta Long  
680  
920  
DQS-DQ skew, DQS to last DQ valid, per group,  
per access  
tDQSQ  
max  
200  
ps  
tQHS  
tQSH  
tQSL  
tQHP  
tQH  
Data Hold Skew Factor  
max  
min  
min  
min  
min  
230  
ps  
tCK(avg)  
DQS output HIGH pulse width  
DQS output LOW pulse width  
Data half period  
tCH(abs) - 0.05  
tCL(abs) - 0.05  
min(tQSH, tQSL)  
tQHP - tQHS  
Speed Grade  
1066  
tCK(avg)  
tCK(avg)  
DQ / DQS output hold time from DQS  
ps  
min/ min  
max tCK  
Symbol  
Parameter  
Unit  
Read parameters  
tCK(avg)  
tCK(avg)  
tRPRE  
tRPST  
READ Preamble  
min  
min  
min  
0.9  
READ Postamble  
DQS Low-Z from CK  
tCL(abs) - 0.05  
tDQSCKmin 300  
tLZ(DQS)  
ps  
ps  
ps  
ps  
tDQSCK(MIN) (1.4 ×  
tLZ(DQ)  
tHZ(DQS)  
tHZ(DQ)  
DQ Low-Z from CK  
DQS High-Z from CK  
DQ High-Z from CK  
min  
max  
max  
tQHS(MAX))  
tDQSCKmax 100  
tDQSCK(MAX) + (1.4 ×  
tDQSQ(MAX))  
Version 1.5  
05/2018  
99  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Speed Grade  
min/ min  
Symbol  
Parameter  
Unit  
max tCK  
1066  
Write parameters  
tDH  
tDS  
DQ and DM input hold time (VREF based)  
DQ and DM input setup time (VREF based)  
DQ and DM input pulse width  
min  
min  
min  
min  
210  
210  
0.35  
0.75  
1.25  
0.4  
ps  
ps  
tCK(avg)  
tDIPW  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
Write command to 1st DQS latching transition  
tDQSS  
max  
min  
tDQSH  
tDQSL  
tDSS  
DQS input high-level width  
min  
min  
DQS input low-level width  
0.4  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
0.2  
tDSH  
min  
min  
min  
0.2  
tWPST  
tWPRE  
Write postamble  
Write preamble  
0.4  
0.35  
Speed Grade  
1066  
min/ min  
max tCK  
Symbol  
Parameter  
Unit  
CKE input parameters  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCKE  
CKE min. pulse width (high and low)  
CKE input setup time  
min  
min  
min  
3
3
tISCKE  
tIHCKE  
0.25  
0.25  
CKE input hold time  
Command / Address Input parameters  
tIH  
tIS  
Address and Control input hold time  
min  
min  
min  
220  
220  
0.4  
ps  
Address and Control input setup time  
Address and Control input pulse width  
ps  
tCK(avg)  
tIPW  
Mode register parameters  
tCK(avg)  
tCK(avg)  
tMRR  
tMRW  
MODE Register Read command period  
MODE Register Write command period  
min  
min  
2
5
2
5
SDRAM core parameters  
tCK(avg)  
tCK(avg)  
RL  
Read Latency  
Write Latency  
min  
min  
3
1
8
4
WL  
CKE minimum pulse width during SELF REFRESH  
(low pulse width during SELF REFRESH)  
tCKESR  
tXSR  
min  
min  
3
2
15  
ns  
ns  
Exit SELF REFRESH to first valid command (min)  
tRFCAB +10  
Version 1.5  
05/2018  
100  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Speed Grade  
min/ min  
Symbol  
Parameter  
Unit  
max tCK  
SDRAM core parameters  
1066  
tXP  
Exit power-down mode to first valid command  
Minimum Deep Power-Down time  
min  
min  
min  
min  
2
-
7.5  
500  
50  
ns  
us  
ns  
ns  
tDPD  
tFAW  
tWTR  
Four-Bank Activate Window  
8
2
Internal WRITE to READ command delay  
7.5  
tRAS + tRPAB (with all-bank Precharge)  
tRAS + tRPPB (with per-bank Precharge)  
tRC  
ACTIVE to ACTIVE command period  
min  
ns  
tCK(avg)  
tCCD  
tRTP  
tRCD  
CAS-to-CAS delay  
min  
min  
min  
min  
max  
min  
min  
2
2
3
3
-
2
Internal READ to PRECHARGE command delay  
RAS-to-CAS delay  
7.5  
18  
42  
70  
15  
18  
ns  
ns  
ns  
us  
ns  
ns  
tRAS  
Row Active Time  
tWR  
Write recovery time  
3
3
tRPpb  
PRECHARGE command period (single bank)  
PRECHARGE command period  
tRPab  
tRRD  
min  
min  
3
2
21  
10  
ns  
ns  
(all banks 8bank)  
ACTIVE bank-a to ACTIVE bank-b command  
min/ min  
max tCK  
Speed Grade  
1066  
Symbol  
Parameter  
Unit  
Boot parameters (10MHz ~ 55MHz)  
min  
max  
min  
min  
min  
min  
min  
18  
100  
2.5  
ns  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
tCKb  
Clock cycle time  
tISCKEb  
tIHCKEb  
tISb  
CKE input setup time  
CKE input hold time  
Input setup time  
2.5  
1150  
1150  
2.0  
tIHb  
Input hold time  
tDQSCKb  
Access window of DQS from CK,   
max  
max  
max  
10.0  
1.2  
tDQSQb  
tQHSb  
DQS-DQ skew  
Data hold skew factor  
1.2  
Version 1.5  
05/2018  
101  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Notes for Electrical Characteristics and Recommended AC Timing  
1. Frequency values are for reference only. Clock cycle time (tCK) is used to determine device capabilities.  
2. All AC timings assume an input slew rate of 1 V/ns.  
3. READ, WRITE, and input setup and hold values are referenced to VREF.  
4. tDQSCKDS is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within a contiguous  
sequence of bursts in a 160ns rolling window. tDQSCKDS is not tested and is guaranteed by design. Temperature drift in the system  
is < 10°C/s. Values do not include clock jitter.  
5. tDQSCKdm is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within a 1.6μs rolling  
window. tDQSCKdm is not tested and is guaranteed by design. Temperature drift in the system is < 10 °C/s. Values do not include  
clock jitter.  
6. tDQSCKDL is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within a 32ms rolling  
window. tDQSCKDL is not tested and is guaranteed by design. Temperature drift in the system is < 10 °C/s. Values do not include  
clock jitter.  
7. For LOW-to-HIGH and HIGH-to-LOW transitions, the timing reference is at the point when the signal crosses the transition threshold  
(VTT). tHZ and tLZ transitions occur in the same access time (with respect to clock) as valid data transitions. These parameters are  
not referenced to a specific voltage level but to the time when the device output is no longer driving (for tRPST, tHZ(DQS) and  
tHZ(DQ)), or begins driving (for tRPRE, tLZ(DQS), tLZ(DQ)). Figure shows a method to calculate the point when device is no longer  
driving tHZ (DQS) and tHZ (DQ), or begins driving tLZ (DQS), tLZ (DQ) by measuring the signal at two different voltages. The actual  
voltage measurement points are not critical as long as the calculation is consistent.  
Data Out measurement reference points  
The parameters tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as single-ended. The timing parameters tRPRE and  
tRPST are determined from the differential signal DQS, .  
Version 1.5  
102  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Notes for Electrical Characteristics and Recommended AC Timing  
8. Measured from the point when DQS,  begins driving the signal to the point when DQS,  begins driving the first rising strobe  
edge.  
9. Measured from the last falling strobe edge of DQS,  to the point when DQS,  finishes driving the signal.  
10. CKE input setup time is measured from CKE reaching a HIGH/LOW voltage level to CK,  crossing.  
11. CKE input hold time is measured from CK,  crossing to CKE reaching a HIGH/LOW voltage level.  
12. Input set-up/hold time for signal (CA[9:0], ).  
13. To ensure device operation before the device is configured, a number of AC boot-timing parameters are defined in this table. Boot  
parameter symbols have the letter b appended (for example, tCK during boot is tCKb).  
14. The LPDDR device will set some mode register default values upon receiving a RESET command as specified in “Mode Register  
Definition”.  
15. The output skew parameters are measured with default output impedance settings using the reference load.  
16. The minimum tCK column applies only when tCK is greater than 6ns.  
Version 1.5  
103  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
CA and  Setup and Hold Base Values  
Data Rate  
Parameter  
Reference  
1066  
0
VIH/VIL(AC) = VREF(DC) ± 220 mV  
VIH/VIL(DC) = VREF(DC) ± 130 mV  
tIS (base)  
90  
tIH (base)  
Notes: AC/DC referenced for 1 V/ns CA and  slew rate and 2 V/ns differential CK,  slew rate.  
Derating Values for AC/DC-based tIS/tIH (AC220, DC130)  
AC220 DC130 Threshold  
CK,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH  
2
110  
74  
65  
43  
110  
73  
65  
43  
110  
73  
65  
43  
1.5  
89  
16  
59  
16  
1
0
0
0
0
0
0
32  
32  
CA,  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-3  
-5  
-3  
-8  
-5  
13  
8
11  
3
29  
24  
18  
10  
27  
19  
10  
-3  
45  
40  
34  
26  
4
43  
35  
26  
13  
-4  
-13  
56  
50  
42  
20  
-7  
55  
46  
33  
16  
2
2
-6  
66  
58  
36  
17  
78  
65  
48  
34  
Notes: Cell contents shaded in light yellow are defined as “not supported.”  
Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition  
tVAC @ 220mV [ps]  
Slew Rate (V/ns)  
Min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
Max  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
Version 1.5  
104  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Data Setup and Hold Base Values  
Data Rate  
Parameter  
Reference  
1066  
-10  
VIH/VIL(AC) = VREF(DC) ± 220 mV  
VIH/VIL(DC) = VREF(DC) ± 130 mV  
tDS (base)  
80  
tDH (base)  
Notes: AC/DC referenced for 1 V/ns DQ, DM slew rate, and 2 V/ns differential DQS,  slew rate.  
Derating Values for AC/DC-based tDS/tDH (AC220, DC130)  
AC220 DC130 Threshold  
DQS,  Differential Slew Rate  
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH  
2
110  
74  
65  
43  
110  
73  
65  
43  
110  
73  
65  
43  
1.5  
89  
16  
59  
16  
1
0
0
0
0
0
0
32  
32  
DQ,DM  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-3  
-5  
-3  
-8  
-5  
13  
8
11  
3
29  
24  
18  
10  
27  
19  
10  
-3  
45  
40  
34  
26  
4
43  
35  
26  
13  
-4  
-13  
56  
50  
42  
20  
-7  
55  
46  
33  
16  
2
2
-6  
66  
58  
36  
17  
78  
65  
48  
34  
Notes: Cell contents shaded in light purple are defined as “not supported.”  
Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition  
tVAC @ 220mV [ps]  
Slew Rate (V/ns)  
Min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
Max  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
Version 1.5  
105  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Initialization Timing Parameters  
Symbol  
Parameter  
Value  
Unit  
min  
-
max  
tINIT0  
tINIT1  
tINIT2  
tINIT3  
tINIT4  
Maximum Power Ramp Time  
Minimum CKE low time after completion of power ramp  
Minimum stable clock before first CKE high  
Minimum idle time after first CKE assertion  
Minimum idle time after Reset command,  
this time will be about 2 x tRFCab + tRPab  
Maximum duration of Device Auto-Initialization  
ZQ Initial Calibration  
20  
-
ms  
ns  
100  
5
-
tCK  
us  
200  
-
1
-
us  
tINIT5  
tZQINIT  
tCKb  
-
10  
-
us  
us  
ns  
1
Clock cycle time during boot  
18  
100  
Power-Off Timing  
Symbol  
Parameter  
Min  
Max  
Unit  
tPOFF  
Maximum power-off ramp time  
-
2
s
Version 1.5  
106  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Mode Register Assignment  
MR#  
MA <7:0>  
Function  
Access OP7 OP6  
OP5 OP4 OP3 OP2 OP1 OP0  
Device Info  
Device Feature1  
Device Feature2  
I/O Config-1  
R
W
W
W
R
(RFU)  
nWR (for AP)  
(RFU)  
(RFU)  
0
1
00H  
01H  
RZQI  
WC BT  
DI  
DAI  
BL  
2
02H  
RL & WL  
DS  
3
03H  
(RFU)  
Refresh Rate  
Basic Config-1  
Basic Config-2  
Basic Config-3  
Basic Config-4  
Test Mode  
(RFU)  
4
04H  
TUF  
Refresh Rate  
R
5
05H  
Manufacturer ID  
Revision ID1  
Revision ID2  
Density  
R
6
06H  
R
7
07H  
R
8
08H  
I/O width  
Type  
W
W
9
09H  
Specific Test Mode  
Calibration Code  
(RFU)  
IO Calibration  
(Reserved)  
10  
0AH  
11~15  
16  
0BH~0FH  
10H  
PASR_BANK  
PASR_Seg  
W
W
Bank Mask (4-Bank or 8-Bank)  
Segment Mask  
17  
11H  
(Reserved)  
(RFU)  
18-19  
20-31  
32  
12H-13H  
18H-1FH  
20H  
Reserved for NVM  
DQ calibration pattern A  
(Do Not Use)  
DQ calibration pattern B  
(Do Not Use)  
(Reserved)  
R
R
See “Data Calibration Pattern Description”  
33-39  
40  
21H-27H  
28H  
See “Data Calibration Pattern Description”  
41-47  
48-62  
63  
29H-2FH  
30H-3EH  
3FH  
(DNU)  
(RFU)  
X
Reset  
W
(Reserved)  
(RFU)  
(DNU)  
(RFU)  
(DNU)  
(RFU)  
(DNU)  
64-126  
127  
128-190  
191  
192-254  
40H-7EH  
7FH  
(Do Not Use)  
(Reserved)  
80H-BEH  
BFH  
(Do Not Use)  
(Reserved)  
C0H-FEH  
FFH  
(Do Not Use)  
255  
Notes:  
1. RFU bits shall be set to “0” during Mode Register writes. RFU bits shall be read as “0” during Mode Register reads. All Mode Registers that are  
specified as RFU shall not be written. Writes to read-only registers shall have no impact on the functionality of the device.  
2.All Mode Registers from that are specified as RFU or write-only shall return undefined data when read and DQS shall be toggled.  
Version 1.5  
107  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR0_Device Information (MA<7:0> = 00H)  
MR#  
0
MA <7:0>  
00H  
Function  
Access OP7 OP6 OP5 OP4 OP3 OP2 OP1  
OP0  
DAI  
RZQI  
Device Info  
R
(RFU)  
(RFU) DI  
(Optional)  
DAI (Device Auto-Initialization  
Status)  
0B: DAI complete  
OP0  
Read-only  
1B: DAI still in progress  
0B: S2 or S4 SDRAM  
1B: Do Not Use  
OP1  
DI (Device Information)  
Read-only  
00B: RZQ self test not supported  
01B: ZQ-pin may connect to VDDCA or float  
10B: ZQ-pin may short to GND  
RZQI (Built in Self Test for RZQ  
Information)  
OP<4:3>  
Read-only  
11B:ZQ-pin self test completed, no error condition  
detected (ZQpin may not connect to VDDCA or float nor  
short to GND)  
Notes:  
1.  
RZQI, if supported, will be set upon completion of the MRW ZQ Initialization Calibration command.  
Version 1.5  
108  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR1_Device Feature 1 (MA<7:0> = 01H)  
MR#  
1
MA <7:0>  
01H  
Function  
Access  
OP7  
OP6  
OP5  
OP4  
WC  
OP3  
BT  
OP2  
OP1  
BL  
OP0  
Device Feature1  
W
nWR (for AP)  
010B: BL4 (default)  
011B: BL8  
OP<2:0>  
BL (Burst Length)  
Write-only  
100B: BL16  
All others: reserved  
0B: Sequential (default)  
1B: Interleaved  
OP3  
OP4  
BT*1 (Burst Type)  
WC (Wrap)  
Write-only  
Write-only  
0B: Wrap (default)  
1B: No wrap (allowed for SDRAM BL4 only)  
001B: nWR=3 (default)  
010B: nWR =4  
011B: nWR =5  
OP<7:5>  
nWR (for AP)  
Write-only  
100B: nWR =6  
101B: nWR =7  
110B: nWR =8  
All others: reserved  
Notes:  
1. BL16, interleaved is not an official combination to be supported.  
2. Programmed value in nWR register is the number of clock cycles which determines when to start internal precharge  
operation for a write burst with AP enabled. It is determined by RU(tWR/tCK).  
Version 1.5  
109  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Burst Sequence by BL, BT, WC and column address  
Burst Cycle Number and Burst Address Sequence  
C3  
C2  
C1 C0  
WC  
BT  
BL  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
BL4  
0
2
y
1
3
2
0
3
1
x
x
x
x
x
x
0B  
1B  
x
0B  
0B  
0B  
wrap any  
4
y+1 y+2 y+3  
BL8  
nw  
any  
0
2
4
6
0
2
4
6
1
3
5
7
1
3
5
7
2
4
6
0
2
0
6
4
3
4
6
0
2
4
6
0
2
5
7
1
3
5
7
1
3
6
0
2
4
6
4
2
0
7
1
3
5
7
5
3
1
x
x
x
x
x
x
x
x
x
0B  
0B  
1B  
1B  
0B  
0B  
1B  
1B  
x
0B  
1B  
0B  
1B  
0B  
1B  
0B  
1B  
x
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
5
7
1
3
1
7
5
seq  
wrap  
8
int  
nw  
any  
illegal (not allowed)  
Burst Cycle Number and Burst Address Sequence  
C3  
C2  
C1 C0  
WC  
BT  
BL  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
BL16  
0
2
1
3
5
7
9
B
D
F
2
4
3
5
7
9
B
D
F
1
4
6
5
7
9
B
D
F
1
3
6
8
7
9
B
D
F
1
3
5
8
A
C
E
0
9
B
D
F
1
3
5
7
A
C
E
0
2
4
6
8
B
D
F
1
3
5
7
9
C
E
0
2
4
6
8
A
D
F
1
3
5
7
9
B
E
0
2
4
6
8
A
C
F
1
3
5
7
9
B
D
0B  
0B  
0B  
0B  
1B  
1B  
0B  
0B  
1B  
1B  
x
0B  
1B  
0B  
1B  
0B  
1B  
0B  
1B  
x
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
4
6
8
A
C
E
0
0B  
6
8
A
C
E
0
0B  
seq  
8
A
C
E
0
1B  
wrap  
16  
A
C
E
2
1B  
2
4
1B  
2
4
6
1B  
x
int  
illegal (not allowed)  
illegal (not allowed)  
x
x
x
nw  
any  
Notes:  
1. C0 input is not present on CA bus. It is implied zero.  
2. For BL=4, the burst address represents C1~C0.  
3. For BL=8, the burst address represents C2~C0.  
4. For BL=16, the burst address represents C3~C0.  
5. For no-wrap, BL4, the burst must not cross the page boundary or the sub-page boundary. The variable y can start at any address with C0 equal  
to 0, but must not start at any address shown bellow.  
Version 1.5  
110  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Non-Wrap Restrictions  
Width  
64Mb  
128Mb/256Mb  
512Mb/1Gb/2Gb  
4Gb/8Gb  
Cannot cross full page boundary  
X16  
X32  
FE, FF, 00, 01  
7E, 7F, 00, 01  
1FE, 1FF, 000, 001  
FE, FF, 00, 01  
3FE, 3FF, 000, 001  
1FE, 1FF, 000, 001  
7FE, 7FF, 000, 001  
3FE, 3FF, 000, 001  
Cannot cross sub-page boundary  
X16  
X32  
7E, 7F, 80, 81  
none  
0FE, 0FF, 100, 101  
none  
1FE, 1FF, 200, 201  
none  
3FE, 3FF, 400, 401  
none  
Notes: Non-wrap BL= 4 data orders shown are prohibited.  
Version 1.5  
111  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR2_DeviceFeature 2 (MA<7:0> = 02H)  
MR#  
2
MA <7:0>  
02H  
Function  
Access  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Device Feature2  
W
(RFU)  
RL & WL  
0001B: RL3 / WL1 (default)  
0010B: RL4 / WL2  
0011B: RL5 / WL2  
0100B: RL6 / WL3  
0101B: RL7 / WL4  
0110B: RL8 / WL4  
All others: reserved  
RL & WL  
OP<3:0>  
(Read Latency &  
Write Latency)  
Write-only  
MR3_I/O Configuration 1 (MA<7:0> = 03H)  
MR#  
3
MA <7:0>  
03H  
Function  
Access  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
I/O Config-1  
W
(RFU)  
DS  
0000B: reserved  
0001B: 34.3 ohm typical  
0010B: 40.0 ohm typical (default)  
0011B: 48.0 ohm typical  
0100B: 60.0 ohm typical  
0101B: reserved  
OP<3:0>  
DS (Drive Strength)  
Write-only  
0110B: 80.0 ohm typical  
0111B: 120.0 ohm typical  
All others: reserved  
Version 1.5  
112  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR4_Device Temperature (MA<7:0> = 04H)  
MR#  
4
MA <7:0>  
04H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Refresh Rate  
R
TUF  
(RFU)  
Refresh Rate  
000B: SDRAM Low temperature operating limit exceeded  
001B: 4x tREFI, 4x tREFIpb, 4x tREFW  
010B: 2x tREFI, 2x tREFIpb, 2x tREFW  
011B: 1x tREFI, 1x tREFIpb, 1x tREFW (<=85C)  
100B: RFU  
OP<2:0>  
Refresh Rate  
Read-only  
101B: 0.25x tREFI, 0.25x tREFIpb, 0.25x tREFW,  
do not de-rate SDRAM AC timing  
110B: 0.25x tREFI, 0.25x tREFIpb, 0.25x tREFW,  
de-rate SDRAM AC timing  
111B: SDRAM High temperature operating limit exceeded  
0B: OP<2:0> value has not changed since last read of MR4.  
1B: OP<2:0> value has changed since last read of MR4.  
TUF  
(Temperature Update Flag)  
OP7  
Read-only  
Notes:  
1. A Mode Register Read from MR4 will reset OP7 to “0”.  
2. OP7 is reset to “0” at power-up.  
3. If OP2 equals “1”, the device temperature is greater than 85C.  
4. OP7 is set to “1”, if OP2~OP0 has changed at any time since the last read of MR4.  
5. LPDDR2 might not operate properly when OP<2:0> = 000B or 111B.  
6. For specified operating temperature range and maximum operating temperature.  
7. LPDDR2 devices must be derated by adding 1.875ns to the following core timing parameters: tRCD, tRC, tRAS, tRP and tRRD.  
The tDQSCK parameter must be derated. Prevailing clock frequency specifications and related setup and hold timings remain  
unchanged.  
8. The recommended frequency for reading MR4 is provided in “Temperature Sensor”.  
Version 1.5  
113  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR5_Basic Configuration-1 (MA<7:0> = 05H)  
MR#  
5
MA <7:0>  
05H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Basic Config-1  
R
Manufacturer ID  
0000 0000B : Reserved  
0000 0001B : Samsung  
0000 0010B : Qimonda  
0000 0011B : Elpida  
0000 0100B : Etron  
0000 0101B : Nanya  
0000 0110B : Hynix  
0000 0111B : Mosel  
0000 1000B : Winbond  
0000 1001B : ESMT  
0000 1010B : Reserved  
0000 1011B : Spansion  
0000 1100B : SST  
OP<7:0>  
Manufacturer ID  
Read-only  
0000 1101B : ZMOS  
0000 1110B : Intel  
1111 1110B : Numonyx  
1111 1111B : Micron  
All Others : Reserved  
MR6_Basic Configuration-2 (MA<7:0> = 06H)  
MR#  
6
MA <7:0>  
06H  
Function  
Access  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Basic Config-2  
R
Revision ID1  
OP<7:0>  
Revision ID1  
Read-only  
Reserved 1  
Notes:  
1. Please contact with NTC for details  
Version 1.5  
114  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR7_Basic Configuration-3 (MA<7:0> = 07H)  
MR#  
7
MA <7:0>  
07H  
Function  
Access  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Basic Config-3  
R
Revision ID2  
OP<7:0>  
Revision ID2  
Read-only  
Reserved 1  
Notes:  
1. Please contact with NTC for details  
MR8_Basic Configuration-4 (MA<7:0> = 08H)  
MR#  
8
MA <7:0>  
08H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Basic Config-4  
R
I/O width  
Density  
Type  
00B: S4 SDRAM  
01B: S2 SDRAM  
10B: N NVM  
11B: Reserved  
0000B: 64Mb  
0001B: 128Mb  
0010B: 256Mb  
0011B: 512Mb  
0100B: 1Gb  
OP<1:0>  
OP<5:2>  
OP<7:6>  
Type  
Read-only  
Density  
Read-only  
0101B: 2Gb  
0110B: 4Gb  
0111B: 8Gb  
1000B: 16Gb  
1001B: 32Gb  
All others: reserved  
00B: x32  
01B: x16  
I/O width  
Read-only  
10B: x8  
11B: not used  
Version 1.5  
115  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR9_Test Mode (MA<7:0> = 09H)  
MR#  
9
MA <7:0>  
09H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Test Mode  
W
Specific Test Mode  
OP<7:0>  
Specific Test Mode  
Reserved 1  
Notes:  
1. Please contact with NTC for details  
MR10_Calibration (MA<7:0> = 0AH)  
MR#  
10  
MA <7:0>  
0AH  
Function  
Access  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
IO Calibration  
W
Calibration Code  
0xFF: Calibration command after initialization  
0xAB: Long calibration  
0x56: Short calibration  
OP<7:0>  
Calibration Code  
Write-only  
0xC3: ZQ Reset  
others: Reserved  
Notes:  
1. Host processor shall not write MR10 with “Reserved” values.  
2. LPDDR2 devices shall ignore calibration command, when a “Reserved” values is written into MR10.  
3. See AC timing table for the calibration latency.  
4. If ZQ is connected to VSS through RZQ, either the ZQ calibration function (see “MRW ZQ Calibration Command”) or default calibration  
(through the ZQ RESET command) is supported. If ZQ is connected to VDDCA, the device operates with default calibration, and ZQ  
calibration commands are ignored. In both cases, the ZQ connection must not change after power is supplied to the device. Devices that  
do not support calibration ignore the ZQ calibration command.  
Version 1.5  
05/2018  
116  
Nanya Technology Corp.  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR11:15_(Reserved) (MA<7:0> = 0BH- 0FH)  
MR#  
MA <7:0>  
0BH~0FH  
Function  
Access  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
11~15  
(reserved)  
(RFU)  
OP<7:0>  
RFU  
Reserved for Future Use  
MR16_PASR_Bank Mask (MA<7:0> = 010H)  
MR#  
16  
MA <7:0>  
10H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
PASR_BANK  
W
Bank Mask (4-Bank or 8-Bank)  
0B: refresh enable to the bank (=unmasked, default)  
1B: refresh blocked (=masked)  
OP<7:0>  
Bank Mask (4-Bank or 8-Bank)  
Write-only  
For 4-bank S4 SDRAM, only OP<3:0> are used.  
OP  
Bank Mask  
4 Bank  
8 Bank  
0
1
2
3
4
5
6
7
XXXXXXX1  
XXXXXX1X  
XXXXX1XX  
XXXX1XXX  
XXX1XXXX  
XX1XXXXX  
X1XXXXXX  
1XXXXXXX  
Bank 0  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
Bank 1  
Bank 2  
Bank 3  
-
-
-
-
Version 1.5  
117  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR17_PASR_Segment Mask (MA<7:0> = 011H)  
MR#  
17  
MA <7:0>  
11H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
PASR_Seg  
W
Segment Mask  
0B: refresh enable to the segment (=unmasked, default)  
1B: refresh blocked (=masked)  
OP<7:0>  
Segment Mask  
Write-only  
This table indicates the range of row addresses in each masked segment. X is don’t care for a particular segment.  
2Gb, 4Gb  
R13:11  
000B  
1Gb  
8Gb  
Segment  
OP  
Bank Mask  
R12:10  
R14:12  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
XXXXXXX1  
XXXXXX1X  
XXXXX1XX  
XXXX1XXX  
XXX1XXXX  
XX1XXXXX  
X1XXXXXX  
1XXXXXXX  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
Version 1.5  
118  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR18:19_(Reserved) (MA<7:0> = 012H- 013H)  
MR#  
MA <7:0>  
12H-13H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
18-19  
(Reserved)  
(RFU)  
OP<7:0>  
RFU  
Reserved for Future Use  
MR20:31_(Do Not Use) (MA<7:0> = 014H- 01FH)  
MR#  
MA <7:0>  
18H-1FH  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
20-31  
Reserved for NVM  
OP<7:0>  
Reserved for NVM  
N/A  
MR32_ DQ calibration pattern A (MA<7:0> = 020H)  
MR40_ DQ calibration pattern B (MA<7:0> = 028H)  
MR#  
MA <7:0>  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
32  
40  
20H  
28H  
DQ calibration pattern A  
DQ calibration pattern B  
R
R
See “Data Calibration Pattern Description”  
See “Data Calibration Pattern Description”  
OP<7:0>  
OP<7:0>  
DQ calibration pattern A  
DQ calibration pattern B  
See “Data Calibration Pattern Description”  
See “Data Calibration Pattern Description”  
Version 1.5  
119  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
MR63_Reset (MA<7:0> = 03FH): MRW only  
MR#  
63  
MA <7:0>  
3FH  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Reset  
W
X
X
OP<7:0>  
Reset  
(For additional information on MRW RESET, see “Mode Register Write Command” on  
Timing Spec)  
Do Not Use and Reserved functions  
MR#  
MA <7:0>  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
33-39  
41-47  
48-62  
64-126  
127  
21H-27H  
29H-2FH  
30H-3EH  
40H-7EH  
7FH  
(Do Not Use)  
(Do Not Use)  
(Reserved)  
(DNU)  
(DNU)  
(RFU)  
(RFU)  
(DNU)  
(RFU)  
(DNU)  
(RFU)  
(DNU)  
(Reserved)  
(Do Not Use)  
(Reserved)  
128-190  
191  
80H-BEH  
BFH  
(Do Not Use)  
(Reserved)  
192-254  
255  
C0H-FEH  
FFH  
(Do Not Use)  
Version 1.5  
120  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
4Gb SLC NAND + 4Gb LPDDR2  
4Gb SLC NAND + 8Gb LPDDR2  
NTC Proprietary  
Level: Property  
NM14F4KSLAXAQ(3)/NM14F8KSLAXA3/NM1484KSLAXAJ  
Revision History  
Rev  
Page  
Modified  
Description  
Released  
1.3  
-
-
Official Release  
New  
06/2017  
P27-49  
P53-64  
P62,63  
Device Operation  
1.4  
1.5  
04/2018  
05/2018  
-
-
Add Application notes  
Correct typo.  
Version 1.5  
121  
Nanya Technology Corp.  
05/2018  
All Rights Reserved. ©  
http://www.nanya.com/  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY