NT6CL256M16CM-H1 [NANYA]

Commercial Mobile LPDDR3 4Gb / 8Gb(DDP) SDRAM;
NT6CL256M16CM-H1
型号: NT6CL256M16CM-H1
厂家: Nanya Technology Corporation.    Nanya Technology Corporation.
描述:

Commercial Mobile LPDDR3 4Gb / 8Gb(DDP) SDRAM

动态存储器 双倍数据速率 光电二极管
文件: 总166页 (文件大小:6046K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Commercial Mobile LPDDR3 4Gb / 8Gb(DDP) SDRAM  
Features  
Data Integrity  
Basis LPDDR3 Compliant  
- Low Power Consumption  
- DRAM built-in Temperature Sensor for  
Temperature Compensated Self Refresh (TCSR)  
- 8n Prefetch Architecture and BL8 only  
- Auto Refresh and Self Refresh Modes  
Power Saving Modes  
Signal Integrity  
- Configurable DS for system compatibility  
- Configurable On-Die Termination1  
- Deep Power Down Mode (DPD)  
- Partial Array Self Refresh (PASR)  
- Clock Stop capability during idle period  
HSUL12 interface and Power Supply  
- VDD1= 1.70 to 1.95V  
- ZQ Calibration for DS/ODT impedance accuracy via  
external ZQ pad (240Ω± 1%)  
Training for SignalsSynchronization  
- DQ Calibration offering specific DQ output patterns  
- CA Training  
- Write Leveling via MR settings 2  
- VDD2/VDDQ/VDDCA = 1.14 to 1.3V  
Options  
Temperature Range (Tc)  
Speed Grade (DataRate/Read Latency)  
- Commercial Grade = - 25to + 85℃  
- 1866 Mbps / RL=14  
Programmable functions  
RL/WL Select (Set A / Set B)4  
nWRE ( nWR9 / nWR>9)  
PASR (bank/segment)  
RON (Typical:34.3/40/48/60/80)  
RON (PD34.3_PU40 / PD40_PU48 / PD34.3_PU48)  
RTT (120/240)  
Packages / Density information  
Lead-free RoHS compliance and Halogen-free  
Density, Signals and Addressing  
4Gb (SDP)  
X16 X32  
8Gb (DDP)  
X16 X32  
Width x Length x Height  
(mm)  
Ball pitch  
(mm)  
FBGA Package  
Items  
  
CK//CKE  
DQ  
  
1:0]  
168b PoP  
178b  
12.00 x 12.00 x 0.80  
10.50 x 11.50 x 0.80  
12.00 x 12.00 x 0.80  
14.00 x 14.00 x 0.80  
0.50  
CK /  / CKE  
CK /  / CKE[1:0]  
[15:0]  
[31:0]  
[15:0]  
[31:0]  
0.65/0.80  
Mixed  
DQS/DM  
CA  
[1:0] / [1:0] [3:0] / [3:0] [1:0] / [1:0]  
[3:0] / [3:0]  
CA[9:0]  
BA[2:0]  
R[13:0]  
Bank Addr.  
Row Addr.3  
Column Addr.3  
tREFI  
216b PoP  
256b PoP  
0.40  
0.40  
C[10:0]  
C[9:0]  
C[10:0]  
C[9:0]  
3.9μs (Tc85oC)  
NOTE 1 Depending on ballout, ODT pin may be NOT supported so ODT die pad is connected to Vss inside the package.  
NOTE 2 Write Leveling DQ feedback on all DQs  
NOTE 3 Row and Column Addresses values on the CA bus that are not used are “don’t care.”  
NOTE 4 For this operation, please confirm notices with NTC.  
1
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC has the rights to change any specifications or product herein without notification.  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Ordering Information  
Speed  
Density Organization  
Part Number  
Package  
TCK  
(ns)  
Data Rate  
(Mb/s/pin)  
RL  
Commercial Grade  
NT6CL128M32CQ-H1  
NT6CL128M32CM-H1  
NT6CL256M16CM-H1  
NT6CL256T32CQ-H1  
NT6CL256T32CM-H1  
NT6CL128T64CR-H1  
NT6CL128T64C4-H1  
168-Ball  
178-Ball  
1.07  
1.07  
1.07  
1.07  
1.07  
1.07  
1.07  
1866  
1866  
1866  
1866  
1866  
1866  
1866  
14  
14  
14  
14  
14  
14  
14  
128M x 32  
4Gb  
(SDP)  
256M x 16  
168-Ball  
178-Ball  
216-Ball  
256-Ball  
256M x 32  
8Gb  
(DDP)  
128M x 64  
( 2-CH )  
2
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
NANYA Mobile LPDDR3 Part Number Naming Guide  
L
128M32  
NT  
6C  
C
Q
H1  
Grade  
NANYA  
Technology  
N/A =Commercial Grade  
Speed  
Product Family  
H1 = 1866Mbps @ RL=14  
6C = LPDDR3 SDRAM  
Package Code  
Interface & Power (VDD1 , VDD2 , VDDQ , VDDCA  
L = HSUL_12 (1.8V, 1.2V, 1.2V, 1.2V)  
)
ROHS+Halogen-Free  
Q = 168-Ball PoP FBGA  
M = 178-Ball FBGA  
R = 216-Ball 2-CH PoP-FBGA  
4 = 256-Ball 2-CH PoP-FBGA  
Organization (Depth, Width)  
4Gb = 128M32, 256M16  
8Gb = 256T32, 512T16, 128T64  
Device Version  
C = 3rd version  
NOTE: M=Mono; T=DDP  
Operating frequency  
The backward compatibility of each speed grade is listed in a table below. If an application operates at specific frequency  
which is not defined herein but within the highest and the lowest supporting grade, then the comparative loose  
specifications to DRAM must be adopted from the neighboring defined speed bins. Please confirm notices with NTC for  
operating frequency slower than defined speed bins.  
Frequency[Mbps]  
RL[nCK]  
1866  
14  
1600  
12  
1333  
10  
VDDQ[V]  
1.2  
1.2  
1.2  
NT6CL128M32CQ-H1  
NT6CL128M32CM-H1  
NT6CL256M16CM-H1  
NT6CL256T32CQ-H1  
NT6CL256T32CM-H1  
NT6CL128T64CR-H1  
NT6CL128T64C4-H1  
1866  
1600  
1333  
Notes:  
Any speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production  
Tests but has been verified.  
3
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Functional Descriptions  
4Gb LPDDR3-SDRAM has 4,294,967,296 bits and 8Gb LPDDR3-SDRAM has 8,589,934,592 bits. These devices  
are high-speed synchronous DRAM devices internally configured as an 8-bank memory and use a double data rate  
architecture on the Command/Address (CA) bus to reduce the number of input pins in the system. The 10-bit CA  
bus contains command, address, and bank information. Each command uses one clock cycle, during which  
command information is transferred on both the positive and negative edge of the clock.  
These devices also use a double data rate architecture on the DQ pins to achieve high speed operation. The  
double data rate architecture is essentially an 8n prefetch architecture with an interface designed to transfer two  
data bits per DQ every clock cycle at the I/O pins. A single read or write access for the device effectively  
consists of a single 8n-bit wide, one clock cycle data transfer at the internal DRAM core and eight corresponding  
n-bit wide, one-half-clock-cycle data transfers at the I/O pins.  
Read and write accesses are burst oriented; accesses start at a selected location and continue for a  
programmed number of locations in a programmed sequence. Accesses begin with the registration of an  
Activate command, which is then followed by a Read or Write command. The address and BA bits registered  
coincident with the Activate command are used to select the row and the bank to be accessed. The address bits  
registered coincident with the Read or Write command are used to select the bank and the starting column  
location for the burst access.  
Prior to normal operation, the device must be initialized. The following section provides detailed information  
covering device initialization, register definition, command description and device operation.  
4
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Functional Block Diagram  
5
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Power, Ground, Signals of Single Die, Single Channel Package  
Part Number: NT6CL128M32CQ-XXX  
Available: 168b  
VDD1 VDD2 VDDQ VDDCA  
Vss  
VREFCA  
VREFDQ  
  
ZQ  
RZQ  
4Gb  
CKE  
CK  
Device  
(128Mb x 32)  
Die 0  
  
DM[3:0]  
CA[9:0]  
DQ[31:0]  
DQS[3:0]  
[3:0]  
NOTE 1 ODT pin is NOT supported. ODT die pad is connected to VSS inside the package.  
6
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Part Number: NT6CL128M32CM-XXX  
Available: 178b  
VDD1 VDD2 VDDQ VDDCA  
Vss  
VREFCA  
VREFDQ  
  
ZQ  
RZQ  
4Gb  
CKE  
CK  
Device  
(128Mb x 32)  
Die 0  
  
DM[3:0]  
CA[9:0]  
ODT  
DQ[31:0]  
DQS[3:0]  
[3:0]  
Part Number: NT6CL256M16CM-XXX  
Available: 178b  
VDD1 VDD2 VDDQ VDDCA  
Vss  
VREFCA  
VREFDQ  
  
ZQ  
RZQ  
4Gb  
CKE  
CK  
Device  
(256Mb x 16)  
Die 0  
  
DM[1:0]  
CA[9:0]  
ODT  
DQ[15:0]  
DQS[1:0]  
[1:0]  
7
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Power, Ground, Signals of Dual Die, Single Channel Package  
Part Number: NT6CL256T32CQ-XXX  
Available: 168b  
VDD1 VDD2 VDDQ VDDCA  
Vss  
VREFCA  
  
VREFDQ  
CKE1  
ZQ2  
RZQ  
  
CKE0  
CK  
4Gb  
4Gb  
Device  
(128Mb x 32)  
Die 1  
Device  
(128Mb x 32)  
Die 0  
  
DM[3:0]  
CA[9:0]  
DQ[31:0]  
DQS[3:0]  
[3:0]  
NOTE 1 ODT pins are NOT supported. ODT die pad is connected to VSS inside the package.  
NOTE 2 ZQ is connected to both dies.  
8
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Part Number: NT6CL256T32CM-XXX  
Available: 178b  
Vss  
VDD1 VDD2 VDDQ VDDCA  
VREFCA  
  
VREFDQ  
CKE1  
ZQ2  
RZQ  
  
CKE0  
CK  
4Gb  
4Gb  
Device  
(128Mb x 32)  
Die 1  
Device  
(128Mb x 32)  
Die 0  
  
DM[3:0]  
CA[9:0]  
DQ[31:0]  
DQS[3:0]  
[3:0]  
ODT1  
NOTE 1 ODT will be connected to rank0 (die0). The ODT input to rank1 (die1) will be connected to VSS in the package.  
NOTE 2 ZQ is connected to both dies.  
9
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Power, Ground, Signals of Dual Die, Dual Channel Package  
Part Number: NT6CL128T64CR-XXX  
Available: 216b (2-channel)  
VDD1 VDD2 VDDQ VDDCA  
Vss  
VREFCA (b)  
VREFDQ(b)  
  
ZQ(b)  
RZQ  
4Gb  
CKE(b)  
CK(b)  
Device  
  
DM[3:0] (b)  
CA[9:0] (b)  
(128Mb x 32)  
Channel B  
DQ[31:0] (b)  
DQS[3:0] (b)  
[3:0] (b)  
ZQ(a)  
RZQ  
  
4Gb  
CKE(a)  
CK(a)  
Device  
  
(128Mb x 32)  
Channel A  
DM[3:0] (a)  
CA[9:0] (a)  
DQ[31:0] (a)  
DQS[3:0] (a)  
[3:0] (a)  
VREFCA (a)  
VREFDQ(a)  
10  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Power, Ground, Signals of Dual Die, Dual Channel Package  
Part Number: NT6CL128T64C4-XXX  
Available: 256b (2-channel)  
VDD1 VDD2 VDDQ VDDCA  
Vss  
VREFCA (b)  
VREFDQ(b)  
  
ZQ(b)  
RZQ  
4Gb  
CKE(b)  
CK(b)  
Device  
  
DM[3:0] (b)  
CA[9:0] (b)  
(128Mb x 32)  
Channel B  
DQ[31:0] (b)  
DQS[3:0] (b)  
[3:0] (b)  
ODT (b)  
ZQ(a)  
RZQ  
  
4Gb  
CKE(a)  
CK(a)  
Device  
  
(128Mb x 32)  
Channel A  
DM[3:0] (a)  
CA[9:0] (a)  
DQ[31:0] (a)  
DQS[3:0] (a)  
[3:0] (a)  
ODT (a)  
VREFCA (a)  
VREFDQ(a)  
11  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 12x12 PoP-FBGA 1-channel x 32 ballout  
(168-ball SDP, 12.00mm x 12.00mm, 0.50mm pitch)  
Part Number: NT6CL128M32CQ-XXX  
< TOP View>  
See the balls through the package  
A1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
a
A
DNU  
DNU  
VSS  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
ZQ  
DNU  
DNU  
VDD2  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU VDD1 VSS DQ30 DQ29 VSS DQ26 DQ25 VSS  
 VDD1 VSS  
DNU  
DNU  
DNU  
DNU  
VSS  
DQ14  
DQ13  
VSS  
DQ10  
DQ9  
VSS  
  
DM1  
VSS  
DM0  
VSS  
DQS0  
DQ7  
VSS  
DQ4  
DQ3  
VSS  
DQ0  
DNU  
DNU  
23  
A
B
B
VDD1 DNU  
VSS VDD2 DQ31 VDDQ DQ28 DQ27 VDDQ DQ24 DQS3 VDDQ DM3 VDD2  
C
D
E
DQ15  
VDDQ  
DQ12  
DQ11  
VDDQ  
DQ8  
C
D
E
F
F
G
H
J
G
H
J
DQS1  
VDDQ  
VDD2  
VrefDQ  
VDD1  
  
VDDQ  
DQ6  
K
K
L
L
M
N
P
M
N
P
VDD1  
VrefCA  
VDD2  
CA8  
R
T
VSS  
CA9  
CA7  
VSS  
CA5  
  
R
T
U
V
VDDCA  
CA6  
DQ5  
U
V
VDDQ  
DQ2  
W
Y
VDDCA  
CK  
W
Y
DQ1  
AA  
AB  
AC  
VSS  
DNU  
DNU  
1
VDD2  
DNU  
DNU  
2
VDDQ  
DNU  
AA  
AB  
AC  
  
CKE  
3
NC  
NC  
4
VDD1 CA1  
VSS  
CA3  
CA4 VDD2 VSS DQ16 VDDQ DQ18 DQ20 VDDQ DQ22 DQS2 VDDQ DM2 VDD2  
VSS  
5
CA0  
6
CA2 VDDCA DNU  
DNU  
10  
NC  
11  
VSS DQ17 DQ19 VSS DQ21 DQ23 VSS  
 VDD1 VSS  
DNU  
7
8
9
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NOTE 1 Do Not Use (DNU)  
NOTE 2 Top View, A1 in Top Left Corner  
NOTE 3 ODT pin is NOT supported. ODT die pad is connected to VSS inside the package.  
12  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 12x12 PoP-FBGA 1-channel x 32 Pin list  
(168-ball SDP, 12.00mm x 12.00mm, 0.50mm pitch)  
Part Number: NT6CL128M32CQ-XXX  
Pin  
Signal name  
Pin  
Signal name  
Pin Signal name Pin Signal name Pin  
Signal name  
A1  
A2  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VDD1  
VSS  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
C1  
DQ31  
VDDQ  
DQ28  
DQ27  
VDDQ  
DQ24  
DQS3  
VDDQ  
DM3  
H22  
H23  
J1  
DQ8  
DQ9  
U1  
U2  
CA7  
VDDCA  
DQ5  
VSS  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AC1  
DQ20  
VDDQ  
DQ22  
DQS2  
VDDQ  
DM2  
VDD2  
DNU  
DNU  
DNU  
DNU  
CKE  
A3  
DNU  
U22  
U23  
V1  
A4  
J2  
DNU  
A5  
J22  
J23  
K1  
DQS1  
VSS  
VSS  
A6  
V2  
CA6  
A7  
DNU  
V22  
V23  
W1  
VDDQ  
DQ4  
CA5  
A8  
K2  
DNU  
A9  
K22  
K23  
L1  
VDDQ  
  
DNU  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
B1  
VDD2  
DNU  
W2  
VDDCA  
DQ2  
DQ3  
  
W22  
W23  
Y1  
AC2  
DNU  
L2  
DNU  
AC3  
DQ30  
DQ29  
VSS  
VSS  
L22  
L23  
M1  
M2  
M22  
M23  
N1  
VDD2  
DM1  
AC4  
NC  
C2  
VDD2  
DQ15  
VSS  
Y2  
CK  
AC5  
VSS  
C22  
C23  
D1  
DNU  
Y22  
Y23  
AA1  
AA2  
AA22  
AA23  
AB1  
AB2  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
AB9  
AB10  
AB11  
AB12  
AB13  
AB14  
DQ1  
VSS  
AC6  
CA0  
DQ26  
DQ25  
VSS  
VSS  
AC7  
CA2  
DNU  
VREFDQ  
VSS  
VSS  
AC8  
VDDCA  
DNU  
DNU  
NC  
D2  
DNU  
VDD2  
VDDQ  
DQ0  
DNU  
DNU  
  
AC9  
  
VDD1  
VSS  
D22  
D23  
E1  
VDDQ  
DQ14  
DNU  
DNU  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
N2  
VDD1  
VDD1  
DM0  
N22  
N23  
P1  
VSS  
DNU  
DNU  
DNU  
DNU  
VDD1  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS  
E2  
DNU  
DQ17  
DQ19  
VSS  
E22  
E23  
F1  
DQ12  
DQ13  
DNU  
ZQ  
P2  
VREFCA  
  
VSS  
NC  
B2  
P22  
P23  
R1  
VDD1  
CA1  
DQ21  
DQ23  
VSS  
B3  
F2  
DNU  
B4  
F22  
F23  
G1  
DQ11  
VSS  
VSS  
VSS  
B5  
R2  
VDD2  
VDDQ  
DQS0  
CA9  
CA3  
  
VDD1  
VSS  
B6  
DNU  
R22  
R23  
T1  
CA4  
B7  
G2  
DNU  
VDD2  
VSS  
B8  
G22  
G23  
H1  
VDDQ  
DQ10  
DNU  
DNU  
DNU  
B9  
T2  
CA8  
DQ16  
VDDQ  
DQ18  
B10  
B11  
T22  
T23  
DQ6  
VDD2  
H2  
DNU  
DQ7  
13  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 178-ball FBGA SDP X32 ballout  
(10.50mm x 11.50mm, 0.65mm/0.80mm mixed pitch)  
Part Number: NT6CL128M32CM-XXX  
< TOP View>  
See the balls through the package  
A1  
a
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
B
C
D
E
F
DNU  
DNU  
DNU  
VSS  
CA9  
CA8  
CA7  
VDD1  
ZQ  
VDD1  
NC  
VDD1 VDD1  
VDD2 VDD2 VDD1 VDDQ  
DNU  
VSS  
DNU  
DNU  
A
B
C
D
E
F
VSS  
VSS  
VSS  
VSS  
DQ31 DQ30 DQ29  
DQ27 DQ26 DQ25  
DM3 DQ15 DQS3  
VDDQ DQ14 DQ13  
DQ28  
DQ24  
  
DQ12  
DQ8  
VSS  
VSS  
CA6  
NC  
VDDQ  
VSS  
VDD2  
VSS  
VSS  
VSS  
VDD2 VDD2  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDQ  
VSS  
VDDCA CA5  
VDDCA VSS  
DQ11 DQ10  
DM1 VSS DQS1  
VDDQ VDDQ VSS  
DQ9  
G
H
J
VDD2  
 VDDQ  
G
H
J
VSS VDDCA VREFCA VDD2 VDD2  
VDDQ VDD2  
  
VSS  
CK  
CKE  
  
VSS  
NC  
VDD2 VDD2  
VDD2 VDD2  
ODT VDDQ VDDQ VREFDQ VSS  
K
L
VDDQ  
DM0  
NC  
VSS  
VDDQ VDD2  
K
L
VDDCA  
NC  
VDD2  
VSS  
VSS  
VSS  
VSS  
VSS DQS0  
 VDDQ  
M
N
P
R
T
VDDCA CA4  
VSS  
VSS  
VDD2  
VSS  
VSS  
VDD1  
DQ4  
DQ5  
DQ6  
DQ2  
DQ7  
DQ3  
VSS  
VDDQ  
VSS  
M
N
P
R
T
CA2  
CA1  
CA0  
VSS  
DNU  
CA3  
VSS  
NC  
VSS  
VDDQ DQ1  
DM2  
VDD2 VDD2  
DQ0 DQS2  
  
DQ23  
DQ19  
VSS  
VSS  
VSS  
VSS  
DQ20 DQ21 DQ22  
DQ16 DQ17 DQ18  
VDDQ  
VSS  
DNU  
DNU  
VSS  
VDD1  
DNU  
DNU  
U
VDD1 VDD1  
VDD2 VDD2 VDD1 VDDQ  
DNU  
U
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
NOTE 1 Do Not Use (DNU)  
NOTE 2 Top View, A1 in Top Left Corner  
14  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 FBGA SDP X32 Pin list  
(178-ball SDP 10.50mm x 11.50mm, 0.65mm/0.80mm mixed pitch)  
Part Number: NT6CL128M32CM-XXX  
Pin  
Signal name  
Pin  
Signal name  
Pin Signal name Pin Signal name Pin  
Signal name  
A1  
A2  
DNU  
DNU  
VDD1  
VDD1  
VDD1  
VDD1  
VDD2  
VDD2  
VDD1  
VDDQ  
DNU  
DNU  
DNU  
VSS  
D4  
D5  
VDD2  
VDD2  
VDD2  
DM3  
G11  
G12  
H2  
H3  
H4  
H5  
H6  
H8  
H9  
H10  
H11  
H12  
J2  
  
VDDQ  
VSS  
L6  
L8  
VSS  
DM0  
VSS  
R2  
R3  
CA0  
NC  
A3  
D6  
L9  
R4  
VSS  
A4  
D8  
VDDCA  
VREFCA  
VDD2  
VDD2  
VDDQ  
VDDQ  
VSS  
L10  
L11  
L12  
M2  
M3  
M4  
M5  
M6  
M8  
M9  
M10  
M11  
M12  
N2  
DQS0  
  
VDDQ  
VDDCA  
CA4  
R5  
VSS  
A5  
D9  
DQ15  
DQS3  
  
VSS  
R6  
VSS  
A6  
D10  
D11  
D12  
E2  
R8  
DQ20  
DQ21  
DQ22  
DQ23  
VDDQ  
DNU  
VSS  
A8  
R9  
A9  
R10  
R11  
R12  
T1  
A10  
A11  
A12  
A13  
B1  
CA7  
VSS  
E3  
CA6  
VSS  
E4  
VSS  
VDDQ  
VDD2  
  
VSS  
E5  
VSS  
DQ4  
T2  
E6  
VSS  
DQ5  
T3  
VSS  
B2  
E8  
VDDQ  
DQ14  
DQ13  
DQ12  
VDDQ  
VDDCA  
CA5  
J3  
CK  
DQ6  
T4  
VSS  
B3  
ZQ  
E9  
J4  
VSS  
DQ7  
T5  
VSS  
B4  
NC  
E10  
E11  
E12  
F2  
J5  
VDD2  
VDD2  
ODT  
VSS  
T6  
VSS  
B5  
VSS  
J6  
CA2  
T8  
DQ16  
DQ17  
DQ18  
DQ19  
VSS  
B6  
VSS  
J8  
N3  
CA3  
T9  
B8  
DQ31  
DQ30  
DQ29  
DQ28  
VSS  
J9  
VDDQ  
VDDQ  
VREFDQ  
VSS  
N4  
VSS  
T10  
T11  
T12  
T13  
U1  
B9  
F3  
J10  
J11  
J12  
K2  
N5  
VSS  
B10  
B11  
B12  
B13  
C2  
F4  
VSS  
N6  
VSS  
F5  
VSS  
N8  
VDDQ  
DQ1  
DNU  
DNU  
DNU  
VDD1  
VDD1  
VDD1  
VDD1  
VDD2  
VDD2  
VDD1  
VDDQ  
DNU  
DNU  
F6  
VSS  
VSS  
N9  
DNU  
CA9  
F8  
DQ11  
DQ10  
DQ9  
K3  
CKE  
N10  
N11  
N12  
P2  
DQ2  
U2  
F9  
K4  
NC  
DQ3  
U3  
C3  
VSS  
F10  
F11  
F12  
G2  
G3  
G4  
G5  
G6  
G8  
G9  
G10  
K5  
VDD2  
VDD2  
VDDQ  
NC  
VDDQ  
CA1  
U4  
C4  
NC  
DQ8  
K6  
U5  
C5  
VSS  
VSS  
K8  
P3  
VSS  
U6  
C6  
VSS  
VDDCA  
VSS  
K9  
P4  
VDD2  
VDD2  
VDD2  
DM2  
DQ0  
U8  
C8  
DQ27  
DQ26  
DQ25  
DQ24  
VDDQ  
CA8  
K10  
K11  
K12  
L2  
VSS  
P5  
U9  
C9  
VSS  
VDDQ  
VDD2  
VDDCA  
  
P6  
U10  
U11  
U12  
U13  
C10  
C11  
C12  
D2  
VDD2  
VSS  
P8  
P9  
DM1  
L3  
P10  
P11  
P12  
DQS2  
  
VSS  
VSS  
L4  
NC  
D3  
VSS  
DQS1  
L5  
VDD2  
15  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 178-ball FBGA SDP X16 ballout  
(10.50mm x 11.50mm, 0.65mm/0.80mm mixed pitch)  
Part Number: NT6CL256M16CM-XXX  
< TOP View>  
See the balls through the package  
A1  
a
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
B
C
D
E
F
DNU  
DNU  
DNU  
VSS  
CA9  
CA8  
CA7  
VDD1  
ZQ  
VDD1  
NC  
VDD1 VDD1  
VDD2 VDD2 VDD1 VDDQ  
DNU  
VSS  
DNU  
DNU  
A
B
C
D
E
F
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
CA6  
NC  
VDDQ  
VSS  
VDD2  
VSS  
VSS  
VSS  
VDD2 VDD2  
DQ15  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDQ DQ14 DQ13  
DQ11 DQ10 DQ9  
DM1 VSS DQS1  
VDDQ VDDQ VSS  
DQ12  
DQ8  
VDDQ  
VSS  
VDDCA CA5  
VDDCA VSS  
G
H
J
VDD2  
 VDDQ  
G
H
J
VSS VDDCA VREFCA VDD2 VDD2  
VDDQ VDD2  
  
VSS  
CK  
CKE  
  
VSS  
NC  
VDD2 VDD2  
VDD2 VDD2  
ODT VDDQ VDDQ VREFDQ VSS  
K
L
VDDQ  
DM0  
NC  
VSS  
VDDQ VDD2  
K
L
VDDCA  
NC  
VDD2  
VSS  
VSS  
VSS  
VSS  
VSS DQS0  
 VDDQ  
M
N
P
R
T
VDDCA CA4  
VSS  
VSS  
VDD2  
VSS  
VSS  
VDD1  
DQ4  
DQ5  
DQ6  
DQ2  
NC  
DQ7  
DQ3  
NC  
VSS  
VDDQ  
VSS  
M
N
P
R
T
CA2  
CA1  
CA0  
VSS  
DNU  
CA3  
VSS  
NC  
VSS  
VDDQ DQ1  
VDD2 VDD2  
NC  
NC  
NC  
DQ0  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
VDDQ  
VSS  
DNU  
DNU  
VSS  
VDD1  
NC  
NC  
NC  
DNU  
DNU  
U
VDD1 VDD1  
VDD2 VDD2 VDD1 VDDQ  
DNU  
U
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
NOTE 1 Do Not Use (DNU)  
NOTE 2 Top View, A1 in Top Left Corner  
16  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 FBGA SDP X16 Pin list  
(178-ball SDP 10.50mm x 11.50mm, 0.65mm/0.80mm mixed pitch)  
Part Number: NT6CL256M16CM-XXX  
Pin  
Signal name  
Pin  
Signal name  
Pin Signal name Pin Signal name Pin  
Signal name  
A1  
A2  
DNU  
DNU  
VDD1  
VDD1  
VDD1  
VDD1  
VDD2  
VDD2  
VDD1  
VDDQ  
DNU  
DNU  
DNU  
VSS  
ZQ  
D4  
D5  
VDD2  
VDD2  
VDD2  
NC  
G11  
G12  
H2  
H3  
H4  
H5  
H6  
H8  
H9  
H10  
H11  
H12  
J2  
  
VDDQ  
VSS  
L6  
L8  
VSS  
DM0  
VSS  
DQS0  
  
VDDQ  
VDDCA  
CA4  
R2  
R3  
CA0  
NC  
A3  
D6  
L9  
R4  
VSS  
VSS  
VSS  
NC  
A4  
D8  
VDDCA  
VREFCA  
VDD2  
VDD2  
VDDQ  
VDDQ  
VSS  
L10  
L11  
L12  
M2  
M3  
M4  
M5  
M6  
M8  
M9  
M10  
M11  
M12  
N2  
R5  
A5  
D9  
DQ15  
NC  
R6  
A6  
D10  
D11  
D12  
E2  
R8  
A8  
NC  
R9  
NC  
A9  
VSS  
R10  
R11  
R12  
T1  
NC  
A10  
A11  
A12  
A13  
B1  
CA7  
VSS  
VSS  
VSS  
DQ4  
DQ5  
DQ6  
DQ7  
VSS  
CA2  
NC  
E3  
CA6  
VDDQ  
DNU  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
E4  
VSS  
VDDQ  
VDD2  
  
E5  
VSS  
T2  
E6  
VSS  
T3  
B2  
E8  
VDDQ  
DQ14  
DQ13  
DQ12  
VDDQ  
VDDCA  
CA5  
J3  
CK  
T4  
B3  
E9  
J4  
VSS  
T5  
B4  
NC  
E10  
E11  
E12  
F2  
J5  
VDD2  
VDD2  
ODT  
T6  
B5  
VSS  
VSS  
NC  
J6  
T8  
B6  
J8  
N3  
CA3  
T9  
NC  
B8  
J9  
VDDQ  
VDDQ  
VREFDQ  
VSS  
N4  
VSS  
VSS  
VSS  
VDDQ  
DQ1  
DQ2  
DQ3  
VDDQ  
CA1  
T10  
T11  
T12  
T13  
U1  
NC  
B9  
NC  
F3  
J10  
J11  
J12  
K2  
N5  
NC  
B10  
B11  
B12  
B13  
C2  
NC  
F4  
VSS  
N6  
VSS  
DNU  
DNU  
DNU  
VDD1  
VDD1  
VDD1  
VDD1  
VDD2  
VDD2  
VDD1  
VDDQ  
DNU  
DNU  
NC  
F5  
VSS  
N8  
VSS  
DNU  
CA9  
VSS  
NC  
F6  
VSS  
VSS  
N9  
F8  
DQ11  
DQ10  
DQ9  
K3  
CKE  
N10  
N11  
N12  
P2  
U2  
F9  
K4  
NC  
U3  
C3  
F10  
F11  
F12  
G2  
G3  
G4  
G5  
G6  
G8  
G9  
G10  
K5  
VDD2  
VDD2  
VDDQ  
NC  
U4  
C4  
DQ8  
K6  
U5  
C5  
VSS  
VSS  
NC  
VSS  
K8  
P3  
VSS  
VDD2  
VDD2  
VDD2  
NC  
U6  
C6  
VDDCA  
VSS  
K9  
P4  
U8  
C8  
K10  
K11  
K12  
L2  
VSS  
P5  
U9  
C9  
NC  
VSS  
VDDQ  
VDD2  
VDDCA  
  
P6  
U10  
U11  
U12  
U13  
C10  
C11  
C12  
D2  
NC  
VDD2  
VSS  
P8  
NC  
P9  
DQ0  
NC  
VDDQ  
CA8  
VSS  
DM1  
VSS  
L3  
P10  
P11  
P12  
L4  
NC  
NC  
D3  
DQS1  
L5  
VDD2  
VSS  
17  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 12x12 PoP-FBGA 1-channel x 32 ballout  
(168-ball DDP, 12.00mm x 12.00mm, 0.50mm pitch)  
Part Number: NT6CL256T32CQ-XXX  
< TOP View>  
See the balls through the package  
A1  
a
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
A
B
DNU  
DNU  
VSS  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
ZQ  
DNU  
DNU  
VDD2  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU VDD1 VSS DQ30 DQ29 VSS DQ26 DQ25 VSS  
 VDD1 VSS  
DNU  
DNU  
DNU  
DNU  
VSS  
DQ14  
DQ13  
VSS  
DQ10  
DQ9  
VSS  
  
DM1  
VSS  
DM0  
VSS  
DQS0  
DQ7  
VSS  
DQ4  
DQ3  
VSS  
DQ0  
DNU  
DNU  
23  
A
B
VDD1 DNU  
VSS VDD2 DQ31 VDDQ DQ28 DQ27 VDDQ DQ24 DQS3 VDDQ DM3 VDD2  
C
D
E
DQ15  
VDDQ  
DQ12  
DQ11  
VDDQ  
DQ8  
C
D
E
F
F
G
H
J
G
H
J
DQS1  
VDDQ  
VDD2  
VrefDQ  
VDD1  
  
VDDQ  
DQ6  
K
K
L
L
M
N
P
M
N
P
VDD1  
VrefCA  
VDD2  
CA8  
R
T
VSS  
CA9  
CA7  
VSS  
CA5  
  
R
T
U
V
VDDCA  
CA6  
DQ5  
U
V
VDDQ  
DQ2  
W
Y
VDDCA  
CK  
W
Y
DQ1  
AA  
AB  
AC  
VSS  
DNU  
DNU  
1
VDD2  
DNU  
DNU  
2
VDDQ  
DNU  
AA  
AB  
AC  
  
 VDD1 CA1  
VSS  
CA3  
CA4 VDD2 VSS DQ16 VDDQ DQ18 DQ20 VDDQ DQ22 DQS2 VDDQ DM2 VDD2  
CKE0 CKE1 VSS  
CA0  
6
CA2 VDDCA DNU  
DNU  
10  
NC  
11  
VSS DQ17 DQ19 VSS DQ21 DQ23 VSS  
 VDD1 VSS  
DNU  
3
4
5
7
8
9
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NOTE 1 Do Not Use (DNU)  
NOTE 2 Top View, A1 in Top Left Corner  
NOTE 3 ODT pins are NOT supported. ODT die pad is connected to VSS inside the package.  
NOTE 4 ZQ is connected to both dies.  
18  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 12x12 PoP-FBGA 1-channel x 32 Pin list  
(168-ball DDP, 12.00mm x 12.00mm, 0.50mm pitch)  
Part Number: NT6CL256T32CQ-XXX  
Pin  
Signal name  
Pin  
Signal name  
Pin Signal name Pin Signal name Pin  
Signal name  
A1  
A2  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VDD1  
VSS  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
C1  
DQ31  
VDDQ  
DQ28  
DQ27  
VDDQ  
DQ24  
DQS3  
VDDQ  
DM3  
H22  
H23  
J1  
DQ8  
DQ9  
U1  
U2  
CA7  
VDDCA  
DQ5  
VSS  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AC1  
DQ20  
VDDQ  
DQ22  
DQS2  
VDDQ  
DM2  
A3  
DNU  
U22  
U23  
V1  
A4  
J2  
DNU  
A5  
J22  
J23  
K1  
DQS1  
VSS  
VSS  
A6  
V2  
CA6  
A7  
DNU  
V22  
V23  
W1  
VDDQ  
DQ4  
CA5  
VDD2  
DNU  
A8  
K2  
DNU  
A9  
K22  
K23  
L1  
VDDQ  
  
DNU  
DNU  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
B1  
VDD2  
DNU  
W2  
VDDCA  
DQ2  
DQ3  
  
DNU  
W22  
W23  
Y1  
AC2  
DNU  
DNU  
L2  
DNU  
AC3  
CKE0  
CKE1  
VSS  
DQ30  
DQ29  
VSS  
VSS  
L22  
L23  
M1  
M2  
M22  
M23  
N1  
VDD2  
DM1  
AC4  
C2  
VDD2  
DQ15  
VSS  
Y2  
CK  
AC5  
C22  
C23  
D1  
DNU  
Y22  
Y23  
AA1  
AA2  
AA22  
AA23  
AB1  
AB2  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
AB9  
AB10  
AB11  
AB12  
AB13  
AB14  
DQ1  
VSS  
AC6  
CA0  
DQ26  
DQ25  
VSS  
VSS  
AC7  
CA2  
DNU  
VREFDQ  
VSS  
VSS  
AC8  
VDDCA  
DNU  
D2  
DNU  
VDD2  
VDDQ  
DQ0  
DNU  
DNU  
  
  
AC9  
  
VDD1  
VSS  
D22  
D23  
E1  
VDDQ  
DQ14  
DNU  
DNU  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
DNU  
N2  
VDD1  
VDD1  
DM0  
NC  
N22  
N23  
P1  
VSS  
DNU  
DNU  
DNU  
DNU  
VDD1  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS  
E2  
DNU  
DQ17  
DQ19  
VSS  
E22  
E23  
F1  
DQ12  
DQ13  
DNU  
ZQ  
P2  
VREFCA  
  
VSS  
B2  
P22  
P23  
R1  
VDD1  
CA1  
DQ21  
DQ23  
VSS  
B3  
F2  
DNU  
B4  
F22  
F23  
G1  
DQ11  
VSS  
VSS  
VSS  
B5  
R2  
VDD2  
VDDQ  
DQS0  
CA9  
CA3  
  
VDD1  
VSS  
B6  
DNU  
R22  
R23  
T1  
CA4  
B7  
G2  
DNU  
VDD2  
VSS  
B8  
G22  
G23  
H1  
VDDQ  
DQ10  
DNU  
DNU  
B9  
T2  
CA8  
DQ16  
VDDQ  
DQ18  
DNU  
B10  
B11  
T22  
T23  
DQ6  
VDD2  
H2  
DNU  
DQ7  
19  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 178-ball FBGA DDP X32 ballout  
(10.50mm x 11.50mm, 0.65mm/0.80mm mixed pitch)  
Part Number: NT6CL256T32CM-XXX  
< TOP View>  
See the balls through the package  
A1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
a
A
B
C
D
E
F
DNU  
DNU  
DNU  
VSS  
CA9  
CA8  
CA7  
VDD1  
ZQ  
VDD1  
NC  
VDD1 VDD1  
VDD2 VDD2 VDD1 VDDQ  
DNU  
VSS  
DNU  
DNU  
A
B
C
D
E
F
VSS  
VSS  
VSS  
VSS  
DQ31 DQ30 DQ29  
DQ27 DQ26 DQ25  
DM3 DQ15 DQS3  
VDDQ DQ14 DQ13  
DQ28  
DQ24  
  
DQ12  
DQ8  
VSS  
VSS  
CA6  
NC  
VDDQ  
VSS  
VDD2  
VSS  
VSS  
VSS  
VDD2 VDD2  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDQ  
VSS  
VDDCA CA5  
VDDCA VSS  
DQ11 DQ10  
DM1 VSS DQS1  
VDDQ VDDQ VSS  
DQ9  
G
H
J
VDD2  
 VDDQ  
G
H
J
VSS VDDCA VREFCA VDD2 VDD2  
VDDQ VDD2  
  
CK  
VSS  
CKE1  
  
VDD2 VDD2  
VDD2 VDD2  
ODT VDDQ VDDQ VREFDQ VSS  
K
L
VSS  
CKE0  
VDDQ  
DM0  
NC  
VSS  
VDDQ VDD2  
K
L
VDDCA   
VDD2  
VSS  
VSS  
VSS  
VSS  
VSS DQS0  
 VDDQ  
M
N
P
R
T
VDDCA CA4  
VSS  
DQ4  
DQ5  
DQ6  
DQ2  
DQ7  
DQ3  
VSS  
VDDQ  
VSS  
M
N
P
R
T
CA2  
CA1  
CA0  
VSS  
DNU  
CA3  
VSS  
NC  
VSS  
VSS  
VDDQ DQ1  
DM2  
VDD2  
VSS  
VDD2 VDD2  
DQ0 DQS2  
  
DQ23  
DQ19  
VSS  
VSS  
VSS  
VSS  
DQ20 DQ21 DQ22  
DQ16 DQ17 DQ18  
VDDQ  
VSS  
DNU  
DNU  
VSS  
VDD1  
VSS  
DNU  
DNU  
U
VDD1  
VDD1 VDD1  
VDD2 VDD2 VDD1 VDDQ  
DNU  
U
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
NOTE 1 Do Not Use (DNU)  
NOTE 2 Top View, A1 in Top Left Corner  
20  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 FBGA DDP X32 Pin list  
(178-ball DDP 10.50mm x 11.50mm, 0.65mm/0.80mm mixed pitch)  
Part Number: NT6CL256T32CM-XXX  
Pin  
Signal name  
Pin  
Signal name  
Pin Signal name Pin Signal name Pin  
Signal name  
A1  
A2  
DNU  
DNU  
VDD1  
VDD1  
VDD1  
VDD1  
VDD2  
VDD2  
VDD1  
VDDQ  
DNU  
DNU  
DNU  
VSS  
D4  
D5  
VDD2  
VDD2  
VDD2  
DM3  
G11  
G12  
H2  
H3  
H4  
H5  
H6  
H8  
H9  
H10  
H11  
H12  
J2  
  
VDDQ  
VSS  
L6  
L8  
VSS  
DM0  
VSS  
R2  
R3  
CA0  
NC  
A3  
D6  
L9  
R4  
VSS  
A4  
D8  
VDDCA  
VREFCA  
VDD2  
VDD2  
VDDQ  
VDDQ  
VSS  
L10  
L11  
L12  
M2  
M3  
M4  
M5  
M6  
M8  
M9  
M10  
M11  
M12  
N2  
DQS0  
  
VDDQ  
VDDCA  
CA4  
R5  
VSS  
A5  
D9  
DQ15  
DQS3  
  
VSS  
R6  
VSS  
A6  
D10  
D11  
D12  
E2  
R8  
DQ20  
DQ21  
DQ22  
DQ23  
VDDQ  
DNU  
VSS  
A8  
R9  
A9  
R10  
R11  
R12  
T1  
A10  
A11  
A12  
A13  
B1  
CA7  
VSS  
E3  
CA6  
VSS  
E4  
VSS  
VDDQ  
VDD2  
  
VSS  
E5  
VSS  
DQ4  
T2  
E6  
VSS  
DQ5  
T3  
VSS  
B2  
E8  
VDDQ  
DQ14  
DQ13  
DQ12  
VDDQ  
VDDCA  
CA5  
J3  
CK  
DQ6  
T4  
VSS  
B3  
ZQ  
E9  
J4  
VSS  
DQ7  
T5  
VSS  
B4  
NC  
E10  
E11  
E12  
F2  
J5  
VDD2  
VDD2  
ODT  
VSS  
T6  
VSS  
B5  
VSS  
J6  
CA2  
T8  
DQ16  
DQ17  
DQ18  
DQ19  
VSS  
B6  
VSS  
J8  
N3  
CA3  
T9  
B8  
DQ31  
DQ30  
DQ29  
DQ28  
VSS  
J9  
VDDQ  
VDDQ  
VREFDQ  
VSS  
N4  
VSS  
T10  
T11  
T12  
T13  
U1  
B9  
F3  
J10  
J11  
J12  
K2  
N5  
VSS  
B10  
B11  
B12  
B13  
C2  
F4  
VSS  
N6  
VSS  
F5  
VSS  
N8  
VDDQ  
DQ1  
DNU  
DNU  
DNU  
VDD1  
VDD1  
VDD1  
VDD1  
VDD2  
VDD2  
VDD1  
VDDQ  
DNU  
DNU  
F6  
VSS  
VSS  
N9  
DNU  
CA9  
F8  
DQ11  
DQ10  
DQ9  
K3  
CKE0  
CKE1  
VDD2  
VDD2  
VDDQ  
NC  
N10  
N11  
N12  
P2  
DQ2  
U2  
F9  
K4  
DQ3  
U3  
C3  
VSS  
F10  
F11  
F12  
G2  
G3  
G4  
G5  
G6  
G8  
G9  
G10  
K5  
VDDQ  
CA1  
U4  
C4  
NC  
DQ8  
K6  
U5  
C5  
VSS  
VSS  
K8  
P3  
VSS  
U6  
C6  
VSS  
VDDCA  
VSS  
K9  
P4  
VDD2  
VDD2  
VDD2  
DM2  
DQ0  
U8  
C8  
DQ27  
DQ26  
DQ25  
DQ24  
VDDQ  
CA8  
K10  
K11  
K12  
L2  
VSS  
P5  
U9  
C9  
VSS  
VDDQ  
VDD2  
VDDCA  
  
P6  
U10  
U11  
U12  
U13  
C10  
C11  
C12  
D2  
VDD2  
VSS  
P8  
P9  
DM1  
L3  
P10  
P11  
P12  
DQS2  
  
VSS  
VSS  
L4  
  
D3  
VSS  
DQS1  
L5  
VDD2  
21  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 12x12 PoP-FBGA 2-channel 2x32 ballout  
(216-ball DDP, 12.00mm x 12.00mm, 0.40mm pitch)  
Part Number: NT6CL128T64CR-XXX  
< TOP View>  
See the balls through the package  
A1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
a
DQ30 DQ29  
DQ26 DQ25  
  
DQ14 DQ13  
DQ11 DQ10 DQ9_ DQS1 DM1_  
DQS0 DQ7_ DQ6_ DQ4_ DQ3_  
A
A
B
NC VSS VDD2  
VSS  
VSS  
VSS  
VSS VDD1 VDD2  
VREF  
VDDQ  
VSS NC  
NC VSS  
VDD1 VDD2  
_a  
_a  
_a  
_a  
DQ24  
_a  
_a  
_a  
_a  
_a  
DQ12  
_a  
_a  
a
_a  
a
_a  
a
a
a
a
DQ31  
VSS NC  
_a  
DQ28 DQ27  
DQS3 DM3_ DQ15  
DQ8_ /DQS  
DM0_ /DQS  
DQ5_ DQ2_  
B
VDDQ  
VDDQ  
VDDQ  
VDDQ VSS  
VDD2  
VDDQ  
VSS  
VSS VDDQ  
_a  
_a  
_a  
a
_a  
DQ_a  
a
1_a  
a
0_a  
a
a
DQ16  
VDD1  
C
C
_b  
DQ17  
VDDQ  
_b  
DQ1_  
VDDQ  
a
D
D
DQ18 DQ19  
DQ0_  
E
E
VSS  
a
_b  
_b  
DQ20  
_b  
DM2_  
VDDQ  
a
F
F
VSS  
DQ21  
_b  
DQS2   
G
G
VDDQ  
_a  
_a  
DQ23  
_a  
DQ22 DQ23  
_b _b  
H
H
VSS  
DQ22  
_a  
J
J
VSS VDDQ  
VDDQ  
 DQS2  
DQ20 DQ21  
K
K
_b  
_b  
_a  
DQ19  
_a  
_a  
DM2_ DQ0_  
L
L
VSS  
b
DQ1_  
b
b
DQ18  
_a  
M
N
M
N
VSS  
VDDQ  
DQ2_  
b
DQ16 DQ17  
_a _a  
VDD1  
P
P
VSS VSS  
VDD2 VDD1  
VREF  
VDD1  
CA0_  
R
R
VSS  
b
DQ_b  
VDD CA1_  
T
T
VDD2 VDD2  
CA  
b
DQ3_  
VREF CA2_  
U
U
VDDQ  
b
CA_b  
VSS  
b
CA3_  
b
DQ4_  
VSS  
b
V
V
DQ6_ DQ5_  
CA4_  
b
W
Y
W
Y
NC  
b
b
DQ7_  
b
VDDQ  
_b NC  
DQS0   
CKE_  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
VSS  
b
_b  
DM0_  
b
_b  
VSS  
CK_b _b  
DM1_  
b
VDD CA5_  
VDDQ  
CA  
b
 DQS1  
CA7_ CA6_  
_b  
DQ8_  
b
_b  
b
b
CA8_ VDD  
VSS  
b
CA  
CA9_  
b
DQ9_  
b
VDDQ  
VSS  
DQ10 DQ11  
_b _b  
VDD2 ZQ_b  
VDD1 VSS  
VSS NC  
DQ13  
_b  
DQ15 DM3_ DQS3  
DQ26 DQ27  
DQ30  
VREF CA9_  
CA7_ CA6_  
VDD CKE_  
_a  
CA3_ CA2_ CA1_  
VSS VDD1 VDD2  
VSS  
VDDQ  
VDDQ  
VSS VDD2  
VSS  
_a  
_b  
b
_b  
_b  
_b  
_b  
CA_a  
VDD1 VSS ZQ_a  
15 16 17  
a
a
a
CA  
a
a
a
a
DQ12  
NC VSS  
_b  
DQ14  
_b  
 DQ24 DQ25  
DQ28 DQ29 DQ31  
CA8_ VDD CA5_  
CA4_ VDD CA0_  
VDDQ  
VDDQ VSS  
VSS  
CK_a VSS NC NC  
21 22 23 24  
_b  
_b  
_b  
_b  
_b  
_b  
a
CA  
a
a
CA  
a
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
18  
19  
20  
25  
26  
27  
28  
29  
NOTE 1 Top View, A1 in Top Left Corner  
22  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 14x14 PoP-FBGA 2-channel 2x32 ballout  
(256-ball DDP, 14.00mm x 14.00mm, 0.40mm pitch)  
Part Number: NT6CL128T64C4-XXX  
< TOP View>  
See the balls through the package  
A1  
a
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
DQ0  
32  
33  
34  
DQ30 DQ28 DQ27  
_a  
DQ24 DQS3  
_a  
DQ15  
_a  
DQ12 DQ11  
DQ8 DQS1  
ODT VREF  
 DQ7  
DQ4 DQ3  
A
B
DNU DNU VDD2  
DNU VSS VDD1  
VDDQ  
VDDQ VDD2  
VDDQ  
VDDQ  
VDDQ VDD2  
VDDQ  
VDDQ  
VDDQ  
VDDQ VDD2 DNU DNU  
A
B
C
D
E
F
_a  
_a  
_a  
_a  
_a  
_a  
_a  
_a  
DQ_a  
_a  
_a  
_a  
_a  
_a  
DQ31 DQ29  
_a  
DQ26 DQ25  
_a  
 DM3_  
DQ14 DQ13  
DQ10 DQ9  
 DM1_  
DM0 DQS0  
_a  
DQ6 DQ5  
DQ2 DQ1  
_a _a  
DM2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD1 VSS DNU  
_a  
_a  
_a  
_a  
a
_a  
_a  
_a  
_a  
_a  
a
_a  
_a  
_a  
  
VDDQ  
_a  
C
D
E
VDD2 VDD1  
DQ17 DQ16  
DQS2  
VSS  
_a  
_b  
_b  
DQ19 DQ18  
DQ22 DQ23  
_b  
_b  
_a  
_a  
DQ20  
_b  
DQ21  
_a  
F
VSS  
VDDQ  
DQ21  
_b  
DQ20  
_a  
G
H
J
VDDQ  
VSS  
G
H
J
DQ23 DQ22  
DQ18 DQ19  
_a _a  
_b  
_b  
DQS2  
_b  
DQ16 DQ17  
_a _a  
VSS  
  
_b  
K
VDDQ  
VDD2  
VSS VDDQ  
VDD1 VDD2  
K
L
DM2  
_b  
L
DQ0  
_b  
M
N
P
VSS  
VSS  
VSS  
M
N
P
R
T
DQ1  
_b  
CA0 VDD  
_b  
VDDQ  
CA  
DQ3 DQ2  
_b  
CA2  
_b  
CA1  
_b  
_b  
DQ4  
_b  
R
T
VSS  
VSS VDD2  
DQ5  
_b  
CA4  
_b  
CA3  
_b  
VDDQ  
DQ7 DQ6  
U
V
NC  
NC  
_b  
U
V
W
Y
_b  
_b  
  
_b  
CKE  
_b  
VSS  
DQS0  
_b  
VDD  
CA  
W
Y
VDDQ  
VSS  
VREF DM0  
_b CK_b  
DQ_b  
_b  
ODT  
_b  
VREF  
CA_b  
AA  
VSS  
VDD2 AA  
DM1_  
b
VDD  
AB  
AB VDD2  
AC VDDQ  
VSS  
CA  
  
_b  
CA6_ CA5  
AC  
AD  
AE  
AF  
AG  
b
_b  
DQS1  
CA7_  
b
AD  
_b  
VSS  
VSS  
DQ8 DQ9  
CA8 VDD  
AE  
_b  
_b  
_b  
CA  
DQ10  
_b  
ZQ  
_b  
CA9  
_b  
AF VDDQ  
DQ11  
AG  
_b  
VSS  
RFU  
NC  
DQ12 DQ13  
AH  
VDD1 VDD2 AH  
_b  
_b  
DQ14  
_b  
AJ VDDQ  
VSS  
VSS  
AJ  
DQ15  
AK  
_b  
VSS  
DNU DNU AK  
DNU DNU AL  
DNU DNU AM  
DM3  
_b  
AL VDDQ  
AM VDD2 VDD1  
  
_b  
DQ25 DQ26  
DQ29 DQ31  
_b _b  
CA8  
_a  
CA6  
_a  
VREF  
CA_a  
CA4  
_a  
CA2  
_a  
CA0  
_a  
AN  
AP  
DNU VSS  
VSS  
VSS  
VSS VDD1 RFU ZQ_a  
CA9  
VSS  
VSS  
_a VSS  
NC  
NC  
VSS  
VSS VDD1 VSS DNU DNU DNU DNU DNU AN  
VSS VDD2 VSS DNU DNU DNU DNU DNU AP  
_b  
_b  
VDDQ  
6
DQS3 DQ24  
DQ27 DQ28 DQ30  
VDD  
CA  
CA7  
_a  
CA5  
_a  
VDD  
CA  
VDD CKE  
CA  
CA3  
_a  
CA1  
_a  
VDD  
CA  
DNU DNU VDDQ  
VDDQ VDD2  
NC  
VDD2 CK_a  
_a  
VDD2  
24  
_b  
_b  
_b  
_b  
_b  
_a  
_a  
1
2
3
4
5
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
NOTE 1 Do Not Use (DNU)  
NOTE 2 Top View, A1 in Top Left Corner  
NOTE 3 In case ODT function is not used, ODT pin should be considerd as NC.  
23  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
168-ball Package Outline Drawing  
Part Number: NT6CL128M32CQ-XXX, NT6CL256T32CQ-XXX  
Unit: mm  
* BSC (Basic Spacing between Center)  
24  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
178-ball Package Outline Drawing  
Part Number: NT6CL128M32CM-XXX, NT6CL256T32CM-XXX  
NT6CL256M16CM-XXX  
Unit: mm  
* BSC (Basic Spacing between Center)  
25  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
216-ball Package Outline Drawing  
Part Number: NT6CL128T64CR-XXX  
Unit: mm  
* BSC (Basic Spacing between Center)  
26  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
256-ball Package Outline Drawing (14.00mm x 14.00mm)  
Part Number: NT6CL128T64C4-XXX  
Unit: mm  
* BSC (Basic Spacing between Center)  
27  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Ball Definition and Descriptions  
Symbol  
Type  
Function  
Clock: CK and are differential clock inputs. All Double Data Rate (DDR) CA inputs are sampled  
on both positive and negative edge of CK. Single Data Rate (SDR) inputs,  and CKE, are  
sampled at the positive Clock edge.  
CK,   
Input  
Clock is defined as the differential pair, CK and . The positive Clock edge is defined by the  
crosspoint of a rising CK and a falling . The negative Clock edge is defined by the crosspoint of a  
falling CK and a rising .  
Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and therefore  
device input buffers and output drivers. Power savings modes are entered and exited through CKE  
transitions.  
CKE  
Input  
CKE is considered part of the command code. See Command Truth Table for command code  
descriptions. CKE is sampled at the positive Clock edge.  
Chip Select:  is considered part of the command code. See Command Truth Table for  
command code descriptions.  is sampled at the positive Clock edge.  
  
Input  
Input  
DDR Command/Address Inputs: Uni-directional command/address bus inputs.  
CA0 CA9  
CA is considered part of the command code. See Command Truth Table for command code  
descriptions.  
Input Data Mask: DM is the input mask signal for write data. Input data is masked when DM is  
sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges  
of DQS. Although DM is for input only, the DM loading shall match the DQ and DQS (or ).  
For x16  
DM0 DM1  
For x32  
Input  
For x16 and x32 devices, DM0 is the input data mask signal for the data on DQ0-7. DM1 is the  
input data mask signal for the data on DQ8-15.  
DM0 - DM3  
For x32 devices, DM2 is the input data mask signal for the data on DQ16-23 and DM3 is the input  
data mask signal for the data on DQ24-31.  
For x16  
DQ0 - DQ15  
For x32  
Input/output  
Data Inputs/Output: Bi-directional data bus  
DQ0 - DQ31  
Data Strobe (Bi-directional, Differential): The data strobe is bi-directional (used for read and  
write data) and differential (DQS and ). It is output with read data and input with write data.  
DQS is edge-aligned to read data and centered with write data.  
For x16  
DQS0-1,   
For x32  
For x16 DQS0 and  correspond to the data on DQ0 - DQ7, DQS1 and  to the data on  
Input/output  
DQ8 - DQ15,  
DQS0-3,   
For x32 DQS0 and  correspond to the data on DQ0 - DQ7, DQS1 and  to the data on  
DQ8 - DQ15, DQS2 and  to the data on DQ16 - DQ23, DQS3 and  to the data on DQ24  
- DQ31.  
On-Die Termination: This signal enables and disables termination on the DRAM DQ bus according  
Input  
ODT  
to the specified mode register settings.  
28  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Symbol  
Type  
Function  
External Reference ball for ZQ Calibration: This ball is tied to an external 240Ω resistor (RZQ),  
ZQ  
Reference  
which is tied to VSS  
.
Supply  
Supply  
Supply  
Supply  
VDD1  
VDD2  
VDDQ  
VDDCA  
Core Power Supply 1: Core power supply  
Core Power Supply 2: Core power supply  
I/O Power Supply: Power supply for Data input/output buffers.  
Input Receiver Power Supply: Power supply for CA0-9, CKE, , CK, and  input buffers.  
Reference Voltage for CA Command and Control Input Receiver: Reference voltage for all  
CA0-9, CKE, , CK, and  input buffers.  
VREFCA  
Supply  
VREFDQ  
VSS  
Supply  
Supply  
-
Reference Voltage for DQ Input Receiver: Reference voltage for all data input buffers.  
Ground  
NC  
No Connect: No internal electrical connection is present.  
NOTE 1: The signal may show up in a different symbol but it indicates to the same thing. e.g., /CK = CK# =  = CKb = CK_n = CK_c,  
/DQS = DQS# =  = DQSb = DQS_n = DQS_c, /CS = CS# =  = CSb = CS_n.  
NOTE 2: Data includes DQ and DM.  
29  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Simplified Bus Interface State Diagram  
LPDDR3-SDRAM state diagram provides a simplified illustration of allowed state transitions and the related  
commands to control them. For a complete definition of the device behavior, the information provided by the state  
diagram should be integrated with the truth tables and timing specification.  
The truth tables provide complementary information to the state diagram, they clarify the device behavior and the  
applied restrictions when considering the actual state of all the banks.  
30  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Simplified State Diagram  
Deep  
Power  
Down  
Automatic Sequence  
Command Sequence  
Power  
Power  
On  
DPDX  
Applied  
Reset  
Resetting  
MRR  
MR  
Reading  
Self  
Refreshing  
DPD  
Idle 1  
Resetting  
PD  
PDX  
SREF  
Resetting  
Power  
Down  
SREFX  
Reset  
MRR  
REF  
Refreshing  
Idle  
MR  
Reading  
MRW  
PD  
PDX  
MR  
Writing2  
Idle  
Power  
Down  
NOTE 1: In the Idle state, all banks  
are precharged.  
ACT  
NOTE 2: In the case of MRW to  
enter CA Training mode  
or Write Leveling Mode,  
the state machine will not  
automatically return to  
the Idle state. In these  
cases an additional  
MRW command is  
Active  
Active  
Power  
Down  
MR  
PR, PRA  
MRR  
Reading  
PDX  
PD  
Active  
required to exit either  
operating mode and  
return to the Idle state.  
See sections “CA  
WR3  
RD3  
RD  
WR  
Training” or “Write  
Leveling”.  
Reading  
RDA3  
Writing  
WRA3  
NOTE 3: Terminated bursts are not  
allowed. For these state  
transitions, the burst  
RDA  
WRA  
operation must be  
completed before the  
transition can occur.  
Reading  
with  
Autoprecharge  
Writing  
with  
Autoprecharge  
PR, PRA  
NOTE 4: Use caution with this  
diagram. It is intended to  
provide a floorplan of the  
possible state transitions  
and commands to control  
them, not all details. In  
particular, situations  
Precharging  
involving more than one  
bank are not captured in  
full detail.  
Abbr.  
ACT  
Function  
Abbr.  
Function  
Abbr.  
SREF  
SREFX Exit self refresh  
Function  
Active  
PD  
Enter Power Down  
Exit Power Down  
Enter Deep Power Down  
Exit Deep Power Down  
Refresh  
Enter self refresh  
RD(A)  
Read (w/ Autoprecharge)  
PDX  
WR(A) Write (w/ Autoprecharge)  
DPD  
DPDX  
REF  
PR(A)  
MRW  
MRR  
Precharge (All)  
Mode Register Write  
Mode Register Read  
RESET  
Reset is achieved through MRW command  
31  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Absolute Maximum DC Ratings  
Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
reliability.  
Absolute Maximum DC Ratings  
Parameter  
Symbol  
Min  
Max  
Units  
Notes  
-0.4  
-0.4  
-0.4  
-0.4  
-0.4  
-55  
2.3  
1.6  
1.6  
1.6  
1.6  
125  
V
V
1
V
V
V
V
DD1 supply voltage relative to VSS  
DD2 supply voltage relative to VSS  
DDCA supply voltage relative to VSS  
DDQ supply voltage relative to VSS  
VDD1  
VDD2  
1
V
1,2  
1,3  
VDDCA  
VDDQ  
V
V
Voltage on any ball relative to VSS  
VIN, VOUT  
TSTG  
Storage Temperature  
°C  
4
NOTE 1 See “Power-Ramp” section for relationships between power supplies.  
NOTE 2 VREFCA 0.6 x VDDCA; however, VREFCA may be VDDCA provided that VREFCA 300mV.  
NOTE 3 VREFDQ 0.7 x VDDQ; however, VREFDQ may be VDDQ provided that VREFDQ 300mV.  
NOTE 4 Storage Temperature is the case surface temperature on the center/top side of the LPDDR3 device. For the  
measurement conditions, please refer to JESD51-2 standard.  
32  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
AC/DC Operating Conditions  
Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the  
LPDDR3 device must be powered down and then restarted through the specialized initialization sequence before normal  
operation can continue.  
Recommended DC Operating Conditions  
Voltage  
Symbol  
DRAM  
Unit  
Min  
1.70  
1.14  
1.14  
1.14  
Typ  
1.80  
1.20  
1.20  
1.20  
Max  
1.95  
1.30  
1.30  
1.30  
Core Power1  
Core Power2  
V
V
V
V
VDD1  
VDD2  
Input Buffer Power  
I/O Buffer Power  
VDDCA  
VDDQ  
NOTE 1 VDD1 uses significantly less current than VDD2  
.
NOTE 2 The voltage range is for DC voltage only. DC is defined as the voltage supplied at the DRAM and is inclusive of all  
noise up to 1MHz at the DRAM package ball.  
Input Leakage Current  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input Leakage current  
-2  
-1  
2
1
uA  
uA  
1, 2  
3, 4  
IL  
V
REF supply leakage current  
IVREF  
NOTE 1 For CA, CKE, , CK, . Any input 0V VIN VDDCA (All other pins not under test = 0V)  
NOTE 2 Although DM is for input only, the DM leakage shall match the DQ and DQS/ output leakage specification.  
NOTE 3 The minimum limit requirement is for testing purposes. The leakage current on VREFCA and VREFDQ pins should be  
minimal.  
NOTE 4 VREFDQ = VDDQ/2 or VREFCA = VDDCA/2. (All other pins not under test = 0V)  
33  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Operating Temperature Range  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Commercial  
-25  
85  
oC  
TOPER  
NOTE 1 Operating Temperature is the case surface temperature on the center-top side of the LPDDR3 device. For the  
measurement conditions, please refer to JESD51-2 standard.  
NOTE 2 Either the device case temperature rating or the temperature sensor may be used to set an appropriate refresh rate,  
determine the need for AC timing de-rating and/or monitor the operating temperature. When using the temperature  
sensor, the actual device case temperature may be higher than the TOPER rating that applies for the Standard or Elevated  
o
Temperature Ranges. For example, TCASE may be above 85 C when the temperature sensor indicates a temperature of  
o
less than 85 C.  
34  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
AC/DC Input Level  
AC and DC Logic Input Levels for Single-Ended Signals  
Single-Ended AC and DC Input Levels for CA and  Inputs  
1333/1600  
1866  
Symbol  
IHCA(AC)  
Parameter  
Unit Notes  
Min  
VRef + 0.150  
Note 2  
Max  
Note 2  
Min  
Max  
Note 2  
V
AC input logic high  
AC input logic low  
DC input logic high  
DC input logic low  
VRef + 0.135  
Note 2  
V
V
V
V
1, 2  
1, 2  
1
V
ILCA(AC)  
IHCA(DC)  
VRef - 0.150  
VDDCA  
VRef - 0.135  
VDDCA  
V
VRef + 0.100  
VSS  
VRef + 0.100  
VSS  
V
ILCA(DC)  
VRef - 0.100  
VRef - 0.100  
1
Reference Voltage  
for CA and  inputs  
V
RefCA(DC)  
0.49 * VDDCA  
0.51 * VDDCA  
0.49 * VDDCA  
0.51 * VDDCA  
V
3, 4  
NOTE 1 For CA and  input only pins. VRef = VRefCA(DC)  
.
NOTE 2 Overshoot and Undershoot Specifications.  
NOTE 3 The ac peak noise on VRefCA may not allow VRefCA to deviate from VRefCA(DC) by more than ± 1% VDDCA (for reference:  
approx. ± 12 mV).  
NOTE 4 For reference: approx. VDDCA/2 ± 12 mV.  
Single-Ended AC and DC Input Levels for CKE  
Symbol  
VIHCKE  
Parameter  
Min  
0.65 * VDDCA  
Note 1  
Max  
Note 1  
Unit  
V
Notes  
CKE Input High Level  
CKE Input Low Level  
1
1
0.35 * VDDCA  
V
VILCKE  
NOTE 1 Overshoot and Undershoot Specifications.  
35  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Single-Ended AC and DC Input Levels for DQ and DM  
1333/1600  
1866  
Symbol  
Parameter  
Unit  
Notes  
Min  
AC input logic high VRef + 0.150  
AC input logic low Note 2  
DC input logic high VRef + 0.100  
Max  
Note 2  
Min  
VRef + 0.135  
Note 2  
Max  
Note 2  
V
IHDQ(AC)  
V
V
V
V
1, 2, 5  
V
ILDQ(AC)  
VRef - 0.150  
VDDQ  
VRef - 0.135  
VDDQ  
1, 2, 5  
VIHDQ(DC)  
VRef + 0.100  
VSS  
1
1
V
ILDQ(DC)  
DC input logic low  
VSS  
VRef - 0.100  
VRef - 0.100  
V
RefDQ(DC)  
(DQ ODT disabled)  
Reference Voltage  
for DQ, DM inputs  
0.49 * VDDQ  
0.51 * VDDQ 0.49 * VDDQ 0.51 * VDDQ  
V
V
3, 4  
VRefDQ(DC)  
Reference Voltage  
for DQ, DM inputs  
VODTR/2 -  
0.01 * VDDQ  
VODTR/2 +  
VODTR/2 -  
VODTR/2 +  
3, 5, 6  
(DQ ODT enabled)  
0.01 * VDDQ 0.01 * VDDQ 0.01 * VDDQ  
NOTE 1 For DQ input only pins. VRef = VRefDQ(DC)  
.
NOTE 2 Overshoot and Undershoot Specifications.  
NOTE 3 The ac peak noise on VRefDQ may not allow VRefDQ to deviate from VRefDQ(DC) by more than ± 1% VDDQ (for reference:  
approx. ± 12 mV).  
NOTE 4 For reference: approx. VDDQ/2 ± 12 mV.  
NOTE 5 For reference: approx. VODTR/2 ± 12 mV.  
NOTE 6 RON and RODT nominal mode register programmed values are used for the calculation of VODTR. For testing purposes a  
controller RON value of 50 Ω is used.  
VODTR = RON + RTT VDDQ  
-----------------------------  
RON + RTT  
36  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
VREF Tolerances  
The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated below.  
It shows a valid reference voltage VRef(t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise). VDD  
stands for VDDCA for VRefCA and VDDQ for VRefDQ. VREF(DC) is the linear average of VRef(t) over a very long period of  
time (e.g. 1 sec) and is specified as a fraction of the linear average of VDDQ or VDDCA also over a very long  
period of time (e.g. 1 sec). This average has to meet the min/max requirements. Furthermore VRef(t) may  
temporarily deviate from VREF(DC) by no more than ± 1% VDD. VRef(t) cannot track noise on VDDQ or VDDCA if this  
would send VRef outside these specifications.  
VREF DC Tolerance and VREF AC Noise Limits  
VDD  
VRef(AC) noise  
VRef(t)  
VRef(DC)max  
VRef(DC)  
VDD/2  
VRef(DC)min  
VSS  
time  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VRef. “VRef  
“ shall be understood as VREF(DC) above.  
This clarifies that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low  
level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to  
account for VREF(DC) deviations from the optimum position within the data-eye of the input signals.  
This also clarifies that the LPDDR3 setup/hold specification and derating values need to include time and voltage  
associated with VRef ac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of  
VDD) are included in LPDDR3 timings and their associated deratings.  
37  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Input Signal  
LPDDR3-1866 to LPDDR3-1333 Input Signal  
VIL and VIH levels with ringback  
VDD + 0.35V  
VDD  
Minimum VIL and VIH levels  
VIH(AC)  
VIH(AC)  
IH(DC)  
V
VIH(DC)  
VREF + AC noise  
VREF + DC error  
VREF  
- DC error  
VREF - AC noise  
V IL(DC)  
VIL(DC)  
IL(AC)  
V
VIL(AC)  
VSS  
VSS - 0.35V  
NOTE 1 Numbers reflect typical values.  
NOTE 2 For CA[9:0], CK, , and , VDD stands for VDDCA. For DQ, DM, DQS, , and ODT, VDD stands for VDDQ.  
NOTE 3 For CA[9:0], CK, , and , VSS stands for VSS. For DQ, DM, DQS, , and ODT, VSS stands for VSS.  
38  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
AC and DC Logic Input Levels for Differential Signals  
Differential AC Swing Time and time above ac-leveltDVAC  
tDVAC  
VIHDIFF(AC) MIN  
VIHDIFF(DC) MIN  
CK -   
DQS -   
0.0  
VILDIFF(DC) MAX  
VILDIFF(AC) MAX  
half cycle  
tDVAC  
time  
39  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Differential swing requirements for clock (CK - ) and strobe (DQS - )  
For CK and , VREF = VREFCA(DC); For DQS and , VREF = VREFDQ(DC)  
Differential AC and DC Input Levels  
Value  
Symbol  
Parameter  
Unit Notes  
Min  
2 x (VIH(dc) - VRef  
Note 3  
Max  
Note 3  
Differential input high  
Differential input low  
Differential input high ac  
Differential input low ac  
)
V
V
V
V
1
1
2
2
VIHdiff(dc)  
VILdiff(dc)  
VIHdiff(ac)  
VILdiff(ac)  
2 x (VIL(dc) - VRef  
)
2 x (VIH(ac) - VRef  
)
Note 3  
Note 3  
2 x (VIL(ac) - VRef)  
NOTE 1 Used to define a differential signal slew-rate. For CK -  use VIH/VIL(dc) of CA and VREFCA; for DQS - , use  
VIH/VIL(dc) of DQs and VREFDQ  
;
if a reduced dc-high or dc-low level is used for a signal group, then the reduced  
level applies also here.  
NOTE 2 For CK -  use VIH/VIL(ac) of CA and VREFCA; for DQS - , use VIH/VIL(ac) of DQs and VREFDQ  
;
if a reduced  
ac-high or ac-low level is used for a signal group, then the reduced level applies also here.  
NOTE 3 These values are not defined, however the single-ended signals CK, , DQS, and  need to be within the  
respective limits (VIH(dc) max, VIL(dc)min) for single-ended signals as well as the limitations for overshoot and  
undershoot. Refer to Overshoot and Undershoot Specifications.  
NOTE 4 For CK and , VRef = VRefCA(DC). For DQS and , VRef = VRefDQ(DC)  
.
40  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Allowed time before ringback tDVAC for Strobe (DQS - )  
tDVAC [ps]  
tDVAC [ps]  
tDVAC [ps]  
@ |VIH/Ldiff(ac)| =  
270mV 1866Mbps  
@ |VIH/Ldiff(ac)| =  
300mV 1600Mbps  
@ |VIH/Ldiff(ac)| =  
Slew Rate  
[V/ns]  
300mV 1333Mbps  
min  
40  
40  
39  
36  
33  
29  
21  
21  
max  
min  
48  
48  
46  
43  
40  
35  
27  
27  
max  
min  
58  
58  
56  
53  
50  
45  
37  
37  
max  
> 8.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
< 3.0  
Allowed time before ringback tDVAC for Clock (CK - )  
tDVAC [ps]  
tDVAC [ps]  
tDVAC [ps]  
@ |VIH/Ldiff(ac)| =  
270mV 1866Mbps  
@ |VIH/Ldiff(ac)| =  
300mV 1600Mbps  
@ |VIH/Ldiff(ac)| =  
Slew Rate  
[V/ns]  
300mV 1333Mbps  
min  
40  
40  
39  
36  
33  
29  
21  
21  
max  
min  
48  
48  
46  
43  
40  
35  
27  
27  
max  
min  
58  
58  
56  
53  
50  
45  
37  
37  
max  
> 8.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
< 3.0  
41  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQS, , or ) has also to comply with certain requirements for  
single-ended signals. The applicable AC levels for CA and DQ differ by speed bin.  
CK and  shall meet V  
DQS,  shall meet V  
/ V  
in every half-cycle.  
SEH(ac)min  
SEL(ac)max  
/ V  
in every half-cycle preceeding and following a valid transition.  
SEH(ac)min  
SEL(ac)max  
Note that the applicable ac-levels for CA and DQ’s are different per speed-bin.  
VSEH(AC)  
VSEH(AC)max  
CK,   
DQS, or   
VSEL(AC)max  
VSEL(AC)  
Note that while CA and DQ signal requirements are with respect to Vref, the single-ended components of differential  
signals have a requirement with respect to VDDQ/2 for DQS,  and VDDCA/2 for CK, ; this is nominally the same.  
The transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components  
of differential signals the requirement to reach VSEL(ac)max, VSEH(ac)min has no bearing on timing, but adds a restriction on  
the common mode characteristics of these signals (See tables: Single-Ended AC and DC Input Levels for CA and   
Inputs; Single-Ended AC and DC Input Levels for DQ and DM).  
42  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Single-ended levels for CK, DQS, ,   
Value  
Symbol  
Parameter  
Unit  
Notes  
Min  
Max  
V
V
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
Single-ended high-level for strobes  
Single-ended high-level for CK,   
Single-ended low-level for strobes  
Single-ended low-level for CK,   
Single-ended high-level for strobes  
Single-ended high-level for CK,   
Single-ended low-level for strobes  
Single-ended low-level for CK,   
(VDDQ / 2) + 0.150  
Note 3  
VSEH(AC150)  
(VDDCA / 2) + 0.150  
Note 3  
Note 3  
(VDDQ / 2) - 0.150  
V
V
V
V
VSEL(AC150)  
VSEH(AC135)  
VSEL(AC135)  
Note 3  
(VDDCA / 2) - 0.150  
Note 3  
(VDDQ / 2) + 0.135  
(VDDCA / 2) + 0.135  
Note 3  
Note 3  
(VDDQ / 2) - 0.135  
(VDDCA / 2) - 0.135  
V
V
Note 3  
NOTE 1 For CK,  use VSEH/VSEL(ac) of CA; for strobes (DQS0, , DQS1, , DQS2, , DQS3, ) use  
VIH/VIL(ac) of DQs.  
NOTE 2 VIH(ac)/VIL(ac) for DQs is based on VREFDQ; VSEH(ac)/VSEL(ac) for CA is based on VREFCA  
;
if a reduced ac-high or ac-low  
level is used for a signal group, then the reduced level applies also here  
NOTE 3 These values are not defined, however the single-ended signals CK, , DQS0, , DQS1, , DQS2, ,  
DQS3,  need to be within the respective limits (VIH(dc) max, VIL(dc)min) for single-ended signals as well as the  
limitations for overshoot and undershoot. Refer to Overshoot and Undershoot Specifications.  
43  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross  
point voltage of differential input signals (CK,  and DQS, ) must meet the requirements. The differential input cross  
point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD  
and VSS.  
VDDCA or VDDQ  
,   
VDDCA/2 or  
VDDQ/2  
VIX  
VIX  
VIX  
CK, DQS  
VSS  
Value  
Symbol  
VIXCA  
Parameter  
Unit  
mV  
Notes  
1,2  
Min  
Max  
Differential Input Cross Point Voltage  
relative to VDDCA/2 for CK,   
- 120  
120  
Differential Input Cross Point Voltage  
relative to VDDQ/2 for DQS,   
- 120  
120  
mV  
1,2  
VIXDQ  
NOTE 1 The typical value of VIX(AC) is expected to be about 0.5 × VDD of the transmitting device, and VIX(AC) is expected to  
track variations in VDD. VIX(AC) indicates the voltage at which differential input signals must cross.  
NOTE 2 For CK and , VRef = VRefCA(DC). For DQS and , VRef = VRefDQ(DC)  
.
44  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Slew Rate Definitions for Differential Input Signals  
Differential Input Slew Rate Definition  
Measured  
Description  
Defined by  
from  
to  
Differential input slew rate for rising edge  
(CK -  and DQS - ).  
VILdiffmax  
VIHdiffmin  
[VIHdiffmin - VILdiffmax] / DeltaTRdiff  
[VIHdiffmin - VILdiffmax] / DeltaTFdiff  
Differential input slew rate for falling edge  
(CK -  and DQS - ).  
VIHdiffmin  
VILdiffmax  
NOTE 1 The differential signal (i.e. CK -  and DQS - ) must be linear between these thresholds.  
Differential Input Slew Rate Definition for CK, , DQS, and   
Delta TRdiff  
VIH, diff, min  
0
VIL, diff, max  
Delta TFdiff  
time  
45  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
AC and DC Output Measurement Levels  
Single Ended AC and DC Output Levels  
Symbol  
Parameter  
Value  
Unit Notes  
VOH(DC)  
DC output high measurement level (for IV curve linearity)  
0.9 x VDDQ  
V
V
1
2
VOL(DC)  
ODT disabled  
0.1 x VDDQ  
DC output low measurement level  
(for IV curve linearity)  
ODT enabled  
VDDQ x [0.1 + 0.9 x  
(RON / (RTT + RON))]  
VOL(DC)  
V
3
VOH(AC)  
VOL(AC)  
AC output high measurement level (for output slew rate )  
AC output low measurement level (for output slew rate )  
VREFDQ + 0.12  
V
V
VREFDQ - 0.12  
Min  
Max  
-5  
5
uA  
uA  
Output Leakage current (DQ, DM, DQS, )  
(DQ, DQS,  are disabled; 0V VOUT VDDQ  
IOZ  
NOTE 1 IOH = -0.1mA.  
NOTE 2 IOL = 0.1mA.  
NOTE 3 The minimum value is derived when using RTT,min and RON,max (±30% uncalibrated, ±15% calibrated).  
Differential AC and DC Output Levels  
Symbol  
VOHdiff(AC)  
VOLdiff(AC)  
Parameter  
Value  
Unit Notes  
AC differential output high measurement level (for output SR)  
AC differential output low measurement level (for output SR)  
+ 0.20 x VDDQ  
- 0.20 x VDDQ  
V
V
1
2
NOTE 1 IOH = -0.1mA.  
NOTE 2 IOL = 0.1mA  
46  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Single Ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and  
measured between VOL(AC) and VOH(AC) for single ended signals.  
Single-ended Output Slew Rate Definition  
Measured  
Description  
Defined by  
from  
to  
Single-ended output slew rate for rising edge  
Single-ended output slew rate for falling edge  
VOL(AC)  
VOH(AC)  
[VOH(AC) - VOL(AC)] / DeltaTRse  
[VOH(AC) - VOL(AC)] / DeltaTFse  
VOH(AC)  
VOL(AC)  
NOTE Output slew rate is verified, and may not be subject to production test.  
Delta TRse  
VOH(AC)  
Vref  
VOL(AC)  
Delta TFse  
time  
47  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Single-ended Output Slew Rate  
Value  
Units  
Parameter  
Symbol  
Min1  
1.5  
Max2  
SRQse  
4.0  
V/ns  
Single-ended Output Slew Rate (RON = 40+/- 30%)  
Output slew-rate matching Ratio (Pull-up to Pull-down)  
0.7  
1.4  
Description: SR: Slew Rate; Q: Query Output (like in DQ, which stands for Data-in, Query-Output); se: Single-ended Signals  
NOTE 1 Measured with output reference load.  
NOTE 2 The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire  
temperature and voltage range. For a given output, it represents the maximum difference between pull-up and  
pull-down drivers due to process variation.  
NOTE 3 The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)  
.
NOTE 4 Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching.  
48  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured  
between VOLdiff(AC) and VOHdiff(AC) for differential signals.  
Differential Output Slew Rate Definition  
Measured  
Description  
Defined by  
from  
to  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
VOLdiff(AC)  
VOHdiff(AC)  
[VOHdiff(AC) - VOLdiff(AC)] / DeltaTRdiff  
[VOHdiff(AC) - VOLdiff(AC)] / DeltaTFdiff  
VOHdiff(AC)  
VOLdiff(AC)  
NOTE 1 Output slew rate is verified, and may not be subject to production test.  
Delta TRdiff  
VOH, diff(AC)  
0
VOL, diff(AC)  
Delta TFdiff  
time  
Differential Output Slew Rate  
Value  
Parameter  
Symbol  
Units  
Min  
Max  
SRQdiff  
3.0  
8.0  
V/ns  
Differential Output Slew Rate (RON = 40+/- 30%)  
Description: SR: Slew Rate; Q: Query Output (like in DQ, which stands for Data-in, Query-Output); diff: Differential Signals  
NOTE 1 Measured with output reference load.  
NOTE 2 The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)  
.
NOTE 3 Slew rates are measured under normal SSO conditions, with 50% of DQ signals per data byte switching.  
49  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Overshoot and Undershoot Specifications  
AC Overshoot/Undershoot Specification  
Parameter  
Units  
1333  
1600/1866  
Maximum peak amplitude allowed for overshoot area.  
Maximum peak amplitude allowed for undershoot area.  
Maximum area above VDD.  
Max  
Max  
Max  
Max  
0.35  
0.35  
V
V
0.12  
0.12  
0.10  
0.10  
V-ns  
V-ns  
Maximum area below VSS.  
NOTE 1 VDD stands for VDDCA for CA[9:0], CK, , , and CKE. VDD stands for VDDQ for DQ, DM, ODT, DQS, and .  
NOTE 2 VSS stands for VSS for CA[9:0], CK, , , and CKE. VSS stands for VSS for DQ, DM, ODT, DQS, and .  
NOTE 3 Maximum peak amplitude values are referenced from actual VDD and VSS values.  
NOTE 4 Maximum area values are referenced from maximm operating VDD and VSS values.  
Overshoot and Undershoot Definition  
Maximum Amplitude  
Overshoot Area  
V
V
DD  
Time (ns)  
SS  
Undershoot Area  
Maximum Amplitude  
NOTE 1 VDD = VDDCA for CA[9:0], CK, , , and CKE. VDD = VDDQ for DQ, DM, DQS, , and ODT.  
NOTE 2 VSS = VSS for CA[9:0], CK, , , and CKE. VSS = VSS for DQ, DM, DQS, , and ODT.  
NOTE 3 Absolute maximum requirements apply.  
NOTE 4 Maximum peak amplitude values are referenced from actual VDD and VSS values.  
NOTE 5 Maximum area values are referenced from maximum operating VDD and VSS values.  
50  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Output buffer characteristics  
HSUL_12 Driver Output Timing Reference Load  
These ‘Timing Reference Loads’ are not intended as a precise representation of any particular system environment or a  
depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools  
to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions,  
generally one or more coaxial transmission lines terminated at the tester electronics.  
LPDDR3  
SDRAM  
VREF  
0.5 x VDDQ  
Rload = 50  
Output  
VTT = 0.5 x VDDQ  
Cload= 5pF  
NOTE 1 All output timing parameter values (tDQSCK, tDQSQ, tHZ, tRPRE, etc.) are reported with respect to this reference  
load. This reference load is also used to report slew rate.  
51  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
ODT Levels and I-V Characteristics  
On-Die Termination effective resistance, RTT, is defined by mode register MR11[1:0]. ODT is applied to the DQ, DM, and  
DQS/ pins. A functional representation of the on-die termination is shown in the figure below.  
RTT is defined by the following formula:  
RTTPU = (VDDQ - VOut) / | IOut  
|
ODT  
VDDQ  
IPU  
to other  
circuitry  
VDDQ - VOUT  
RTTPU  
IOUT  
DQ  
VOUT  
VSS  
52  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Input/output capacitance  
Parameter  
Symbol  
CCK  
Min  
0.5  
0
Max  
1.2  
Units  
pF  
Notes  
1,2  
Input capacitance, CK and   
Input capacitance delta, CK and   
0.15  
1.1  
pF  
1,2,3  
1,2,4  
1,2,5  
1,2,6,7  
1,2,7,8  
1,2,7,9  
1,2  
CDCK  
CI  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS,   
Input/output capacitance delta, DQS,   
Input/output capacitance delta, DQ, DM  
Input/output capacitance ZQ Pin  
0.5  
-0.20  
1.0  
0
pF  
0.20  
1.8  
pF  
CDI  
pF  
CIO  
0.2  
pF  
CDDQS  
CDIO  
CZQ  
-0.25  
0
0.25  
2.0  
pF  
pF  
(TOPER ;VDDQ = 1.14-1.3V; VDDCA = 1.14-1.3V; VDD1 = 1.7-1.95V, VDD2 = 1.14-1.3V)  
NOTE 1 This parameter applies to die device only (does not include package capacitance).  
NOTE 2 This parameter is not subject to production test. It is verified. The capacitance is measured according to JEP147  
(Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD1, VDD2, VDDQ, VSS, VSS,  
VSS applied and all other pins floating.  
NOTE 3 Absolute value of CCK - C  
NOTE 4 CI applies to , CKE, CA0-CA9, ODT.  
NOTE 5 CDI = CI - 0.5 * (CCK + C  
.
)
NOTE 6 DM loading matches DQ and DQS.  
NOTE 7 MR3 I/O configuration DS OP3-OP0 = 0001B (34.3 typical)  
NOTE 8 Absolute value of CDQS and C  
.
NOTE 9 CDIO = CIO - 0.5 * (CDQS + C) in byte-lane.  
53  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
IDD Specification Parameters and Test Conditions  
IDD Measurement Conditions  
The following definitions are used within the IDD measurement tables unless stated otherwise:  
LOW: VIN VIL(DC) MAX  
HIGH: VIN VIH(DC) MIN  
STABLE: Inputs are stable at a HIGH or LOW level  
SWITCHING: See following 3 tables.  
Definition of Switching for CA Input Signals  
Switching for CA  
CK  
(RISING) /  
  
CK  
(FALLING) /  
  
CK  
(RISING) /  
  
CK  
(FALLING) /  
  
CK  
(RISING) /  
  
CK  
(FALLING) /  
  
CK  
(RISING) /  
  
CK  
(FALLING) /  
  
(FALLING)  
(RISING)  
(FALLING)  
(RISING)  
(FALLING)  
(RISING)  
(FALLING)  
(RISING)  
Cycle  
  
N
N+1  
HIGH  
N+2  
HIGH  
N+3  
HIGH  
HIGH  
CA0  
CA1  
CA2  
CA3  
CA4  
CA5  
CA6  
CA7  
CA8  
CA9  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
NOTE 1  must always be driven HIGH.  
NOTE 2 50% of CA bus is changing between HIGH and LOW once per clock for the CA bus.  
NOTE 3 The above pattern (N, N+1, N+2, N+3...) is used continuously during IDD measurement for IDD values that  
require SWITCHING on the CA bus.  
54  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Definition of Switching for IDD4R  
Clock Cycle  
Clock  
CKE  
  
Command  
CA[0:2]  
CA[3:9]  
All DQ  
Number  
N
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
Read_Rising  
Read_Falling  
NOP  
HLH  
LLL  
LLL  
LLL  
LLL  
LLL  
LLL  
HLH  
HLH  
LHH  
HHH  
HHH  
HHH  
HHH  
HHH  
HLH  
LHLHLHL  
LLLLLLL  
LLLLLLL  
LLLLLLL  
LLLLLLL  
LLLLLLL  
LLLLLLL  
HLHLLHL  
HLHLLHL  
HHHHHHH  
HHHHHHH  
HHHHHHH  
HHHHHHH  
HHHHHHH  
HHHHHHH  
LHLHLHL  
L
L
H
L
H
H
H
L
H
H
H
L
L
L
H
L
N
H
H
H
H
H
H
L
N + 1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
N + 4  
N + 4  
N + 5  
N + 5  
N + 6  
N + 6  
N + 7  
N + 7  
NOP  
NOP  
NOP  
NOP  
NOP  
Read_Rising  
Read_Falling  
NOP  
L
H
H
H
H
H
H
NOP  
NOP  
NOP  
NOP  
NOP  
NOTE 1 Data strobe (DQS) is changing between HIGH and LOW every clock cycle.  
NOTE 2 The above pattern (N, N+1...) is used continuously during IDD measurement for IDD4R  
.
Definition of Switching for IDD4W  
Clock Cycle  
Clock  
CKE  
  
Command  
CA[0:2]  
CA[3:9]  
All DQ  
Number  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
N
Write_Rising  
Write_Falling  
NOP  
HLL  
LLL  
LLL  
LLL  
LLL  
LLL  
LLL  
HLL  
HLL  
LHH  
HHH  
HHH  
HHH  
HHH  
HHH  
HLL  
LHLHLHL  
LLLLLLL  
LLLLLLL  
LLLLLLL  
LLLLLLL  
LLLLLLL  
LLLLLLL  
HLHLLHL  
HLHLLHL  
HHHHHHH  
HHHHHHH  
HHHHHHH  
HHHHHHH  
HHHHHHH  
HHHHHHH  
LHLHLHL  
L
L
H
L
H
H
H
L
H
H
H
L
L
L
H
L
N
H
H
H
H
H
H
L
N + 1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
N + 4  
N + 4  
N + 5  
N + 5  
N + 6  
N + 6  
N + 7  
N + 7  
NOP  
NOP  
NOP  
NOP  
NOP  
Write_Rising  
Write_Falling  
NOP  
L
H
H
H
H
H
H
NOP  
NOP  
NOP  
NOP  
NOP  
NOTE 1 Data strobe (DQS) is changing between HIGH and LOW every clock cycle.  
NOTE 2 Data masking (DM) must always be driven LOW.  
NOTE 3 The above pattern (N, N+1...) is used continuously during IDD measurement for IDD4W  
.
55  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
IDD Specifications  
IDD values are for the entire operating voltage range, and all of them are for the entire standard range.  
IDD Specification Parameters and Operating Conditions  
Notes 1, 2, 3 apply for all values.  
Parameter/Condition  
Symbol  
Power Supply  
Notes  
Operating one bank active-precharge current:  
tCK =tCK (MIN); tRC = tRC (MIN); CKE is HIGH;  is HIGH between  
valid commands; CA bus inputs are switching; Data bus inputs are  
stable; ODT is disabled  
IDD01  
IDD02  
VDD1  
VDD2  
IDD0in  
VDDCA, VDDQ  
4
4
4
4
4
IDD2P1  
IDD2P2  
VDD1  
VDD2  
Idle power-down standby current:  
tCK = tCK (MIN); CKE is LOW;  is HIGH; All banks are idle; CA bus  
inputs are switching; Data bus inputs are stable; ODT is disabled  
IDD2P,in  
IDD2PS1  
IDD2PS2  
VDDCA, VDDQ  
VDD1  
Idle power-down standby current with clock stop:  
CK= LOW,  = HIGH; CKE is LOW;  is HIGH; All banks are  
idle; CA bus inputs are stable; Data bus inputs are stable;  
ODT is disabled  
VDD2  
IDD2PS,in  
VDDCA, VDDQ  
IDD2N1  
IDD2N2  
VDD1  
VDD2  
Idle non-power-down standby current:  
tCK = tCK (MIN); CKE is HIGH;  is HIGH; All banks are idle; CA bus  
inputs are switching; Data bus inputs are stable; ODT is disabled  
IDD2N,in  
IDD2NS1  
IDD2NS2  
VDDCA, VDDQ  
VDD1  
Idle non-power-down standby current with clock stopped:  
CK = LOW;  = HIGH; CKE is HIGH;  is HIGH;  
All banks are idle; CA bus inputs are stable; Data bus inputs are stable;  
ODT is disabled  
VDD2  
IDD2NS,in  
VDDCA, VDDQ  
IDD3P1  
IDD3P2  
VDD1  
VDD2  
Active power-down standby current:  
tCK = tCK (MIN); CKE is LOW;  is HIGH; One bank is active; CA bus  
inputs are switching; Data bus inputs are stable; ODT is disabled  
IDD3P,in  
IDD3PS1  
IDD3PS2  
IDD3PS,in  
IDD3N1  
IDD3N2  
IDD3N,in  
IDD3NS1  
IDD3NS2  
IDD3NS,in  
IDD4R1  
VDDCA, VDDQ  
VDD1  
4
4
4
4
Active power-down standby current with clock stop:  
CK = LOW,  = HIGH; CKE is LOW;  is HIGH; One bank is active;  
CA bus inputs are stable; Data bus inputs are stable;ODT is disabled  
VDD2  
VDDCA, VDDQ  
VDD1  
Active non-power-down standby current:  
tCK = tCK (MIN); CKE is HIGH;  is HIGH; One bank is active; CA bus  
inputs are switching; Data bus inputs are stable; ODT is disabled  
VDD2  
VDDCA, VDDQ  
VDD1  
Active non-power-down standby current with clock stopped:  
CK = LOW,  = HIGH; CKE is HIGH;  is HIGH; One bank is active;  
CA bus inputs are stable; Data bus inputs are stable; ODT is disabled  
VDD2  
VDDCA, VDDQ  
VDD1  
Operating burst READ current:  
IDD4R2  
VDD2  
tCK = tCK (MIN);  is HIGH between valid commands; One bank is  
active; BL = 8; RL = RL (MIN); CA bus inputs are switching; 50% data  
change each burst transfer; ODT is disabled  
IDD4R,in  
IDD4RQ  
IDD4W1  
IDD4W2  
VDDCA  
VDDQ  
5
4
Operating burst WRITE current:  
VDD1  
tCK = tCK (MIN);  is HIGH between valid commands; One bank is  
active; BL = 8; WL = WL (MIN); CA bus inputs are switching; 50% data  
change each burst transfer; ODT is disabled  
VDD2  
IDD4W,in  
VDDCA, VDDQ  
56  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Parameter/Condition  
Symbol  
Power Supply  
Notes  
All-bank REFRESH burst current:  
IDD51  
IDD52  
VDD1  
VDD2  
tCK = tCK (MIN); CKE is HIGH between valid commands; tRC =  
tRFCab (MIN); Burst refresh; CA bus inputs are switching; Data bus  
inputs are stable; ODT is disabled  
IDD5IN  
VDDCA, VDDQ  
4
4
4
All-bank REFRESH average current:  
IDD5AB1  
IDD5AB2  
VDD1  
VDD2  
tCK = tCK (MIN); CKE is HIGH between valid commands; tRC = tREFI;  
CA bus inputs are switching; Data bus inputs are stable; ODT is  
disabled  
IDD5AB,in  
VDDCA, VDDQ  
Per-bank REFRESH average current:  
IDD5PB1  
IDD5PB2  
VDD1  
VDD2  
tCK = tCK (MIN); CKE is HIGH between valid commands; tRC =  
tREFI/8; CA bus inputs are switching; Data bus inputs are stable; ODT  
is disabled  
IDD5PB,in  
VDDCA, VDDQ  
IDD61  
IDD62  
IDD6IN  
VDD1  
VDD2  
6, 7  
6, 7  
4,7  
Self refresh current (TC +85˚C):  
CK = LOW,  = HIGH; CKE is LOW; CA bus inputs are stable; Data  
bus inputs are stable; Maximum 1x self refresh rate; ODT is disabled  
VDDCA, VDDQ  
NOTE 1  
NOTE 2  
NOTE 3  
NOTE 4  
NOTE 5  
NOTE 6  
Published IDD values are the maximum of the distribution of the arithmetic mean.  
ODT disabled: MR11[2:0] = 000B.  
IDD current specifications are tested after the device is properly initialized.  
Measured currents are the summation of VDDQ and VDDCA  
.
Guaranteed by design with output load = 5 pF and RON = 40 ohm.  
The 1x self refresh rate is the rate at which the device is refreshed internally during self refresh, before going into the  
elevated temperature range.  
NOTE 7  
NOTE 8  
This is the general definition that applies to full-array SELF REFRESH.  
Published IDD values of DDP can support x32 and x16 I/O configuration.  
IDD6 Partial Array Self-Refresh Current  
Parameter  
Full Array  
1/2 Array  
Unit  
A  
A  
I
DD6 Partial Array  
Self-Refresh Current  
1/4 Array  
1/8 Array  
A  
A  
NOTE 1 IDD6 currents are measured using bank-masking only.  
NOTE 2 IDD values published are the maximum of the distribution of the arithmetic mean.  
57  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
IDD Specifications  
1866  
Unit  
DDP  
Parameter  
Condition  
Symbol  
Power Supply  
SDP  
15  
IDD01  
IDD02  
VDD1  
VDD2  
30  
Operating one bank  
active-precharge  
current  
mA  
μA  
70  
140  
28  
IDD0in  
VDDCA, VDDQ  
VDD1  
14  
IDD2P1  
600  
800  
130  
600  
800  
130  
2
1200  
1600  
260  
1200  
1600  
260  
4
Idle power-down  
standby current  
IDD2P2  
VDD2  
IDD2P,in  
IDD2PS1  
IDD2PS2  
IDD2PS,in  
IDD2N1  
IDD2N2  
IDD2N,in  
IDD2NS1  
IDD2NS2  
IDD2NS,in  
IDD3P1  
VDDCA, VDDQ  
VDD1  
Idle power-down  
standby current with  
clock stop  
μA  
VDD2  
VDDCA, VDDQ  
VDD1  
Idle non-power-down  
standby current  
mA  
mA  
VDD2  
24  
48  
VDDCA, VDDQ  
VDD1  
13  
26  
1.7  
10  
3.4  
20  
Idle non-power-down  
standby current with  
clock stopped  
VDD2  
VDDCA, VDDQ  
VDD1  
6
12  
μA  
μA  
μA  
μA  
μA  
μA  
1000  
7500  
160  
1300  
7500  
160  
2
2000  
15000  
320  
2600  
15000  
320  
4
Active power-down  
standby current  
IDD3P2  
VDD2  
IDD3P,in  
IDD3PS1  
IDD3PS2  
IDD3PS,in  
IDD3N1  
IDD3N2  
IDD3N,in  
IDD3NS1  
IDD3NS2  
IDD3NS,in  
IDD4R1  
IDD4R2  
IDD4R,in  
IDD4W1  
IDD4W2  
IDD4W,in  
VDDCA, VDDQ  
VDD1  
Active power-down  
standby current with  
clock stop  
VDD2  
VDDCA, VDDQ  
VDD1  
Active  
mA  
mA  
mA  
non-power-down  
standby current  
VDD2  
25  
50  
VDDCA, VDDQ  
VDD1  
13  
26  
2
4
Active  
non-power-down  
standby current with  
clock stopped  
VDD2  
20  
40  
VDDCA, VDDQ  
VDD1  
6
12  
3
6
Operating burst READ  
current  
VDD2  
320  
12  
640  
24  
VDDCA  
VDD1  
3
6
Operating burst  
WRITE current  
VDD2  
320  
640  
100  
mA  
VDDCA, VDDQ  
50  
58  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
1866  
Unit  
DDP  
Parameter  
Condition  
Symbol  
Power Supply  
SDP  
20  
IDD51  
VDD1  
VDD2  
40  
All-bank REFRESH  
burst current  
mA  
mA  
mA  
IDD52  
150  
13  
300  
26  
IDD5IN  
VDDCA, VDDQ  
VDD1  
IDD5AB1  
5
10  
All-bank REFRESH  
average current  
IDD5AB2  
VDD2  
25  
50  
IDD5AB,in  
VDDCA, VDDQ  
VDD1  
14  
28  
IDD5PB1  
5
10  
Per-bank REFRESH  
average current  
IDD5PB2  
VDD2  
25  
50  
IDD5PB,in  
VDDCA, VDDQ  
VDD1  
13  
26  
IDD61 (full Array)  
IDD62 (full Array)  
IDD6IN (full Array)  
IDD61 (1/2 Array)  
IDD62 (1/2 Array)  
IDD6IN (1/2 Array)  
IDD61 (1/4 Array)  
IDD62 (1/4 Array)  
IDD6IN (1/4 Array)  
IDD61 (1/8 Array)  
IDD62 (1/8 Array)  
IDD6IN (1/8 Array)  
1000  
4000  
150  
950  
2300  
150  
900  
1500  
150  
850  
1200  
150  
2000  
8000  
300  
1900  
4600  
300  
1800  
3000  
300  
1700  
2400  
300  
Self refresh current  
(Full Array;  
VDD2  
TC +85˚C)  
VDDCA, VDDQ  
VDD1  
Self refresh current  
(1/2 Array;  
VDD2  
TC +85˚C)  
VDDCA, VDDQ  
VDD1  
μA  
Self refresh current  
(1/4 Array;  
VDD2  
TC +85˚C)  
VDDCA, VDDQ  
VDD1  
Self refresh current  
(1/8 Array;  
VDD2  
TC +85˚C)  
VDDCA, VDDQ  
59  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Electrical Characteristic and AC Timing  
Clock Specification  
The specified clock jitter is a random jitter with Gaussian distribution. Input clocks violating minimum or maximum values  
may result in device malfunction.  
Definitions and Calculations  
Symbol  
Description  
Calculation  
Notes  
The average clock period across any consecutive  
200-cycle window. Each clock period is calculated  
from rising clock edge to rising clock edge.  
Unit tCK(avg) represents the actual clock average  
tCK(avg) of the input clock under operation. Unit nCK  
represents one clock cycle of the input clock,  
tCK(avg) and nCK  
counting from actual clock edge to actual clock edge.  
tCK(avg) can change no more than ±1% within a  
100-clock-cycle window, provided that all jitter and  
timing specifications are met.  
The absolute clock period, as measured from one  
rising clock edge to the next consecutive rising clock  
edge. tCK(abs) is not subject to production test.  
tCK(abs)  
tCH(avg)  
The average HIGH pulse width, as calculated across  
any 200 consecutive HIGH pulses.  
The average LOW pulse width, as calculated across  
any 200 consecutive LOW pulses.  
tCL(avg)  
The single-period jitter defined as the largest  
deviation of any signal tCK from tCK(avg). tJIT(per)  
is not subject to production test.  
tJIT(per)  
tJIT(per),act  
The actual clock jitter for a given system.  
The specified clock period jitter allowance.  
tJIT(per),allowed  
The absolute difference in clock periods between two  
consecutive clock cycles. tJIT(cc) defines the  
cycle-to-cycle jitter. tJIT(cc) is not subject to  
production test.  
tJIT(cc)  
60  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Symbol  
Description  
Calculation  
Notes  
The cumulative error across n multiple consecutive  
cycles from tCK(avg).  
tERR(nper)  
The actual cumulative error over n cycles for a given  
tERR(nper),act  
system.  
The specified cumulative error allowance over n  
tERR(nper),allowed  
tERR(nper),min  
cycles.  
The minimum tERR(nper).  
The maximum tERR(nper).  
tERR(nper),max  
tJIT(duty),min =  
MIN((tCH(abs),min tCH(avg),min),  
(tCL(abs),min tCL(avg),min)) × tCK(avg)  
tJIT(duty),max =  
Defined with tCH jitter and tCL jitter. tCH jitter is the  
largest deviation of any single tCH from tCH(avg).  
tCL jitter is the largest deviation of any single tCL  
from tCL(avg).  
tJIT(duty)  
MAX((tCH(abs),max tCH(avg),max),  
(tCL(abs),max tCL(avg),max)) × tCK(avg)  
Notes:  
1. Not subject to production testing.  
2. Using these equations, tERR(nper) tables can be generated for each tJIT(per),act value.  
Definition for tCK(abs), tCH(abs) and tCL(abs)  
These parameters are specified per their average values, however, it is understood that the following relationship  
between the average timing and the absolute instantaneous timing holds at all times.  
Symbol  
Parameter  
Minimum  
Unit  
ps1  
Absolute clock period  
tCK(avg),min + tJIT(per),min  
tCK(abs)  
tCH(avg),min + tJIT(duty)2,min/ tCK(avg)min  
tCL(avg),min + tJIT(duty) 2,min / tCK(avg)min  
tCK(avg)  
tCK(avg)  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
tCH(abs)  
tCL(abs)  
Notes:  
1. tCK(avg),min is expressed in ps for this table.  
2. tJIT(duty),min is a negative value.  
61  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Period Clock Jitter  
LPDDR3 devices can tolerate some clock period jitter without core timing parameter derating. This section describes  
device timing requirements with clock period jitter (tJIT(per)) in excess of the values found in the AC timing table.  
Calculating cycle time derating and clock cycle derating are also described.  
Clock Period Jitter Effects on Core Timing Parameters(tRCD, tRP, tRTP, tWR, tWRA, tWTR,  
tRC,tRAS, tRRD, tFAW )  
Core timing parameters extend across multiple clock cycles. Period clock jitter impacts these parameters when  
measured in numbers of clock cycles. Within the specification limits, the device is characterized and verified to support  
tnPARAM = RU[tPARAM / tCK(avg)]. During device operation where clock jitter is outside specification limits, the  
number of clocks or tCK(avg), may need to be increased based on the values for each core timing parameter.  
Cycle Time Derating for Core Timing Parameters  
For a given number of clocks (tnPARAM), for each core timing parameter, average clock period (tCK(avg)) and actual  
cumulative period error (tERR(tnPARAM),act) in excess of the allowed cumulative period error  
(tERR(tnPARAM),allowed), the equation below calculates the amount of cycle time de-rating (in ns) required if the  
equation results in a positive value for a core timing parameter.  
A cycle time derating analysis should be conducted for each core timing parameter. The amount of cycle time derating  
required is the maximum of the cycle time de-ratings determined for each individual core timing parameter.  
Clock Cycle Derating for Core Timing Parameters  
For a given number of clocks (tnPARAM) for each core timing parameter, clock cycle de-rating should be specified with  
amount of period jitter (tJIT(per)).  
For a given number of clocks (tnPARAM), for each core timing parameter, average clock period (tCK(avg)) and actual  
cumulative period error (tERR(tnPARAM),act) in excess of the allowed cumulative period error (tERR(tnPARAM),allowed), the  
equation below calculates the clock cycle derating (in clocks) required if the equation results in a positive value for a  
core timing parameter.  
A clock cycle de-rating analysis should be conducted for each core timing parameter.  
62  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Clock Jitter Effects on Command/Address Timing Parameters(tISCA, tIHCA, tISCS,  
tIHCS,tISCKE,tIHCKE, tISb, tIHb, tISCKEb, tIHCKEb)  
These parameters are measured from a command/address signal (CKE, , CA0 - CA9) transition edge to its respective  
clock signal (CK/) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), as the  
setup and hold are relative to the clock signal crossing that latches the command/address. Regardless of clock jitter values,  
these values shall be met.  
Clock Jitter Effects on READ Timing Parameters  
tRPRE  
When the device is operated with input clock jitter, tRPRE must be derated by the actual period jitter( tJIT(per),act,max) of  
the input clock that exceeds the allowed period jitter( tJIT(per),allowed,max.). Output de-ratings are relative to the input  
clock.  
tJITperact,max tJITper,allowed,max  
tRPREminderated  
tCK(avg)  
For example, if the measured jitter into a LPDDR3-1600 device has tCK(avg) = 1250ps,tJIT(per),act,min = 92ps, and  
tJIT(per),act,max = +134ps, then  
tRPRE,min,derated = 0.9 - (tJIT(per),act,max - tJIT(per),allowed,max)/tCK(avg) = 0.9 - (134 - 100)/1250=0.8728 tCK(avg)  
tLZ(DQ), tHZ(DQ), tDQSCK, tLZ(DQS), tHZ(DQS)  
These parameters are measured from a specific clock edge to a data signal transition (DMn or DQm, where: n = 0, 1, 2, or  
3; and m = DQ[31:0]), and specified timings must be met with respect to that clock edge. Therefore, they are not affected  
by the amount of clock jitter applied (for instance, tJIT(per)).  
tQSH, tQSL  
These parameters are affected by duty cycle jitter which is represented by tCH(abs)min and tCL(abs)min. These  
parameters determine absolute Data-Valid Window (DVW) at the LPDDR3 device pin.  
Absolute min DVW @ LPDDR3 device pin =  
min{ ( tQSH(abs)min tDQSQmax) , ( tQSL(abs)min tDQSQmax ) }  
This minimum DVW shall be met at the target frequency regardless of clock jitter.  
tRPST  
tRPST is affected by duty cycle jitter, represented by tCL(abs). Therefore, tRPST(abs)min can be specified by tCL(abs)min.  
tRPST(abs)min = tCL(abs)min - 0.05 = tQSL(abs)min  
63  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Clock Jitter Effects on WRITE Timing Parameters  
tDS, tDH  
These parameters are measured from a data signal (DMn or DQm, where n = 0, 1, 2, 3; and m = DQ[31:0]) transition edge  
to its respective data strobe signal (DQSn, n = 0,1,2,3) crossing. The specification values are not affected by the  
amount of tJIT(per) applied, as the setup and hold times are relative to the clock signal crossing that latches the  
command/address. Regardless of clock jitter values, these values must be met.  
tDSS, tDSH  
These parameters are measured from a data strobe signal (DQSx, x) crossing to its respective clock signal (CK, )  
crossing. The specification values are not affected by the amount of tJIT(per)) applied, as the setup and hold times are  
relative to the clock signal crossing that latches the command/address. Regardless of clock jitter values, these values must  
be met.  
tDQSS  
This parameter is measured from a data strobe signal (DQSx, x) crossing to the subsequent clock signal (CK/)  
crossing. When the device is operated with input clock jitter, this parameter needs to be de-rated by the actual period  
jitter tJIT(per),act of the input clock in excess of the allowed period jitter tJIT(per),allowed.  
tJITperact,min tJITper,allowed,min  
tDQSSminderated  
tCK(avg)  
tJITperact,max tJITper,allowed,max  
tDQSSmaxderated  
tCK(avg)  
For example, if the measured jitter into an LPDDR3-1600 device has tCK(avg) = 1250ps,tJIT(per),act,min = -92ps, and  
tJIT(per),act,max = +134ps, then:  
tDQSS,(min,derated) = 0.75 - (tJIT(per),act,min - tJIT(per),allowed,min)/tCK(avg) = 0.75 - (-93 + 100)/1250 = 0.7444 tCK(avg), and  
tDQSS,(max,derated) = 1.25 - (tJIT(per),act,max - tJIT(per),allowed,max)/tCK(avg) = 1.25 - (134 - 100)/1250 = 1.2228 tCK(avg).  
64  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
REFRESH Requirements  
LPDDR3 Refresh Requirement Parameters  
Parameter  
Symbol  
4 Gb (SDP) 8 Gb (DDP)  
Unit  
-
Number of Banks  
8
32  
Refresh Window: Tcase 85°C  
Refresh Window: 1/2-Rate Refresh  
Refresh Window: 1/4-Rate Refresh  
Required number of REFRESH commands (min)  
tREFW  
tREFW  
tREFW  
R
ms  
ms  
ms  
-
16  
8
8,192  
3.9  
average time between REFRESH  
commands (for reference only)  
Tcase 85°C  
REFab  
REFpb  
tREFI  
s  
s  
ns  
ns  
tREFIpb  
tRFCab  
tRFCpb  
0.4875  
Refresh Cycle time  
130  
60  
130  
60  
Per Bank Refresh Cycle time  
LPDDR3 Read and Write Latencies  
Parameter  
Value  
Unit  
MHz  
Max. Clock Frequency  
Max. Data Rate  
166  
333  
6
400  
800  
2.5  
6
533  
1066  
1.875  
8
600  
667  
733  
1466  
1.36  
11  
800  
933  
1866  
1.071  
14  
1200  
1.67  
9
1333  
1.5  
10  
6
1600  
1.25  
12  
Mbps  
Average Clock Period  
Read Latency  
ns  
31  
tCK(avg)  
tCK(avg)  
tCK(avg)  
Write Latency (Set A)  
Write Latency (Set B)2  
11  
3
4
5
6
6
8
11  
3
4
5
8
9
9
11  
NOTE 1 RL=3/WL=1 setting is an optional feature. Refer to MR0 OP<7>.  
NOTE 2 Write Latency (Set B) support is an optional feature. Refer to MR0 OP<6>.  
NOTE 3 For this operation, please confirm notices with NTC.  
65  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
AC Timing  
Notes 14 apply to all parameters. Notes begin below table.  
Data Rate  
Unit  
Min/  
Max  
Parameter  
Symbol  
1866  
1600  
1333  
667  
1.5  
Clock frequency  
Average clock period  
Clock Timing  
fCK  
933  
800  
MHz  
ns  
tCK(avg)  
1.071  
1.25  
MIN  
MAX  
MIN  
MAX  
MIN  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.45  
0.55  
0.45  
0.55  
Average HIGH pulse width  
tCH(avg)  
tCK(avg)  
Average LOW pulse width  
Absolute clock period  
tCL(avg)  
tCK(abs)  
tCH(abs)  
tCK(avg)  
ns  
tCK(avg) MIN + tJIT(per) MIN  
0.43  
0.57  
0.43  
0.57  
Absolute clock HIGH pulse width  
tCK(avg)  
Absolute clock LOW pulse width  
tCL(abs)  
tCK(avg)  
-60  
-70  
70  
-80  
tJIT(per),  
allowed  
Clock period jitter (with supported jitter)  
ps  
ps  
60  
80  
Maximum Clock Jitter between two consecutive clock cycles  
(with allowed jitter)  
tJIT(cc),  
allowed  
MAX  
MIN  
120  
140  
160  
min((tCH(abs),min -tCH(avg),min),  
(tCL(abs),min - tCL(avg),min)) × tCK(avg)  
tJIT(duty),  
allowed  
Duty cycle jitter (with supported jitter)  
ps  
max((tCH(abs),max -tCH(avg),max),  
MAX  
(tCL(abs),max - tCL(avg),max)) × tCK(avg)  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
-88  
88  
-103  
103  
-118  
118  
tERR(2per),  
allowed  
Cumulative errors across 2 cycles  
Cumulative errors across 3 cycles  
Cumulative errors across 4 cycles  
Cumulative errors across 5 cycles  
Cumulative errors across 6 cycles  
Cumulative errors across 7 cycles  
Cumulative errors across 8 cycles  
Cumulative errors across 9 cycles  
Cumulative errors across 10 cycles  
Cumulative errors across 11 cycles  
Cumulative errors across 12 cycles  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
-105  
105  
-117  
117  
-126  
126  
-133  
133  
-139  
139  
-145  
145  
-150  
150  
-154  
154  
-158  
158  
-161  
161  
-122  
122  
-140  
140  
tERR(3per),  
allowed  
-136  
136  
-155  
155  
tERR(4per),  
allowed  
-147  
147  
-168  
168  
tERR(5per),  
allowed  
-155  
155  
-177  
177  
tERR(6per),  
allowed  
-163  
163  
-186  
186  
tERR(7per),  
allowed  
-169  
169  
-193  
193  
tERR(8per),  
allowed  
-175  
175  
-200  
200  
tERR(9per),  
allowed  
-180  
180  
-205  
205  
tERR(10per),  
allowed  
-184  
184  
-210  
210  
tERR(11per),  
allowed  
-188  
188  
-215  
215  
tERR(12per),  
allowed  
66  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Data Rate  
Unit  
Min/  
Max  
Parameter  
Symbol  
1866  
1600  
1333  
Clock Timing  
tERR(nper),allowed MIN = (1 + 0.68ln(n))  
×tJIT(per), allowed MIN  
MIN  
tERR(nper),  
allowed  
Cumulative errors across n = 13, 14, 15…, 19, 20 cycles  
ps  
tERR (nper), allowed MAX = (1 + 0.68ln(n))  
×tJIT(per), allowed MAX  
MAX  
ZQ Calibration Parameters  
Initialization calibration time  
Long calibration time  
tZQINIT  
tZQCL  
MIN  
MIN  
MIN  
MIN  
1
µs  
ns  
ns  
ns  
360  
90  
Short calibration time  
tZQCS  
Calibration RESET time  
READ Parameters5  
tZQRESET  
max(50ns,3nCK)  
MIN  
MAX  
MAX  
2500  
5500  
DQS output access time from CK/  
tDQSCK  
ps  
265  
593  
733  
165  
DQSCK delta short  
tDQSCKDS  
190  
435  
525  
115  
220  
511  
ps  
ps  
DQSCK delta medium  
tDQSCKDM MAX  
DQSCK delta long  
tDQSCKDL  
tDQSQ  
tQSH  
MAX  
MAX  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MAX  
614  
ps  
DQS-DQ skew  
135  
ps  
DQS output HIGH pulse width  
DQS output LOW pulse width  
DQ/DQS output hold time from DQS  
READ preamble  
tCH(abs) - 0.05  
tCL(abs) - 0.05  
min(tQSH, tQSL)  
0.9  
tCK(avg)  
tCK(avg)  
ps  
tQSL  
tQH  
tRPRE  
tCK(avg)  
tCK(avg)  
ps  
READ postamble  
tRPST  
0.3  
DQS Low-Z from clock  
tLZ(DQS)  
tLZ(DQ)  
tHZ(DQS)  
tHZ(DQ)  
tDQSCK (MIN) - 300  
tDQSCK,(MIN) - 300  
tDQSCK,(MAX) - 100  
DQ Low-Z from clock  
ps  
DQS High-Z from clock  
ps  
DQ High-Z from clock  
WRITE Parameters5  
MAX tDQSCK,(MAX) + (1.4 × tDQSQ,(MAX))  
ps  
175  
175  
DQ and DM input hold time (VREF based)  
DQ and DM input setup time (VREF based)  
DQ and DM input pulse width  
tDH  
tDS  
MIN  
MIN  
MIN  
MIN  
MAX  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
130  
130  
150  
150  
0.35  
0.75  
1.25  
0.4  
ps  
ps  
tDIPW  
tCK(avg)  
Write command to 1st DQS latching transition  
tDQSS  
tCK(avg)  
DQS input high-level width  
DQS input low-level width  
tDQSH  
tDQSL  
tDSS  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
0.4  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Write postamble  
0.2  
tDSH  
0.2  
tWPST  
tWPRE  
0.4  
Write preamble  
0.8  
CKE Input Parameters  
CKE minimum pulse width (HIGH and LOW pulse width)  
CKE input setup time  
tCKE  
tISCKE  
tIHCKE  
tCPDED  
MIN  
MIN  
MIN  
MIN  
max(7.5ns,3nCK)  
ns  
0.25  
0.25  
2
tCK(avg)  
tCK(avg)  
tCK(avg)  
CKE input hold time  
Command path disable delay  
Command Address Input Parameters5  
Address and control input setup time  
Address and control input hold time  
 input setup time  
175  
175  
290  
290  
tISCA  
tIHCA  
tISCS  
tIHCS  
MIN  
MIN  
MIN  
MIN  
130  
130  
230  
230  
150  
150  
270  
270  
ps  
ps  
ps  
ps  
 input hold time  
67  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Data Rate  
Unit  
Min/  
Max  
Parameter  
Symbol  
1866  
1600  
1333  
Command Address Input Parameters5  
Address and control input pulse width  
 input pulse width  
tIPWCA  
tIPWCS  
MIN  
MIN  
0.35  
0.7  
tCK(avg)  
tCK(avg)  
Boot Parameters (10 MHz55 MHz) 16, 17, 18  
MAX  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MAX  
MAX  
100  
18  
Clock cycle time  
tCKb  
ns  
CKE input setup time  
tISCKEb  
tIHCKEb  
tISb  
2.5  
2.5  
1150  
1150  
2
ns  
ns  
ps  
ps  
CKE input hold time  
Address and control input setup time  
Address and control input hold time  
tIHb  
DQS output data access time from CK/  
tDQSCKb  
tDQSQb  
ns  
ns  
10  
Data strobe edge to output data edge  
Mode Register Parameters  
1.2  
MODE REGISTER WRITE command period  
MODE REGISTER READ command period  
tMRW  
tMRR  
MIN  
MIN  
10  
4
tCK(avg)  
tCK(avg)  
Additional time after tXP has expired  
until the MRR command may be issued  
tMRRI  
MIN  
tRCD(min)  
ns  
Core Parameters 19  
10  
6
READ latency  
RL  
WL  
WL  
MIN  
MIN  
MIN  
14  
8
12  
tCK(avg)  
tCK(avg)  
tCK(avg)  
WRITE latency(Set A)  
WRITE latency(Set B)  
6
8
11  
9
tRAS + tRPab  
(with all-bank precharge)  
tRAS + tRPpb  
ACTIVATE-to- ACTIVATE command period  
tRC  
MIN  
ns  
(with per-bank precharge)  
CKE minimum pulse width during SELF REFRESH (low pulse  
width during SELF REFRESH)  
tCKESR  
MIN  
max(15ns,3nCK)  
ns  
SELF REFRESH exit to next valid command delay  
tXSR  
tXP  
MIN  
MIN  
MIN  
MIN  
max(tRFCab + 10ns,2nCK)  
max(7.5ns,3nCK)  
4
ns  
ns  
Exit power- down to next valid command delay  
CAS-to-CAS delay  
tCCD  
tRTP  
tCK(avg)  
ns  
Internal READ to PRECHARGE command delay  
max(7.5ns,4nCK)  
RAS-to-CAS delay  
tRCD (typ)  
MIN  
MIN  
MIN  
max(18ns,3nCK)  
max(18ns,3nCK)  
max(21ns,3nCK)  
ns  
ns  
ns  
Row precharge time (single bank)  
tRPpb (typ)  
Row precharge time (all banks)  
Row active time  
tRPpab (typ)  
MIN  
MAX  
MIN  
MIN  
MIN  
MIN  
MIN  
max(42ns,3nCK)  
70  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
tRAS  
WRITE recovery time  
tWR  
tWTR  
tRRD  
tFAW  
tDPD  
max(15ns,4nCK)  
max(7.5ns,4nCK)  
max(10ns,2nCK)  
max(50ns,8nCK)  
500  
Internal WRITE-to- READ command delay  
Active bank A to active bank B  
Four-bank ACTIVATE window  
Minimum deep power- down time  
68  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Data Rate  
Unit  
Min/  
Max  
Parameter  
Symbol  
1866  
1600  
1333  
ODT Parameters  
MIN  
MAX  
MIN  
MAX  
1.75  
3.5  
Asynchronous RTT turn-on dely from ODT input  
Asynchronous RTT turn-off delay from ODT input  
Automatic RTT turn-on delay after READ data  
tODTon  
tODToff  
ns  
ns  
1.75  
3.5  
tDQSCK + 1.4 × tDQSQ,max +  
tCK(avg,min)  
tAODTon  
tAODToff  
tODTd  
MAX  
MIN  
MIN  
MAX  
ps  
ps  
ns  
ns  
Automatic RTT turn-off delay after READ data  
RTT disable delay from power down, self-refresh, and deep  
power down entry  
tDQSCK,min - 300  
12  
12  
RTT enable delay from power down and self refresh exit  
CA Training Parameters  
tODTe  
First CA calibration command after CA calibration mode is  
programmed  
tCAMRD  
MIN  
20  
tCK(avg)  
First CA calibration command after CKE is LOW  
tCAENT  
tCAEXT  
MIN  
MIN  
MIN  
MIN  
10  
10  
10  
10  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
CA caibration exit command after CKE is HIGH  
CKE LOW after CA calibration mode is programmed  
tCACKEL  
tCACKEH  
CKE HIGH after the last CA calibration results are driven.  
Data out delay after CA training calibration command is  
programmed  
tADR  
MAX  
20  
ns  
MRW CA exit command to DQ tri-state  
tMRZ  
MIN  
MIN  
3
ns  
CA calibration command to CA calibration command delay  
tCACD  
RU(tADR+2 × tCK)  
tCK(avg)  
Write Leveling Parameters  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MIN  
MIN  
MAX  
25  
40  
0
DQS/ delay after write leveling mode is programmed  
tWLDQSEN  
ns  
ns  
ns  
First DQS/ edge after write leveling mode is programmed tWLMRD  
Write leveling output delay  
tWLO  
20  
205  
205  
Write leveling hold time  
Write leveling setup time  
tWLH  
tWLS  
150  
150  
175  
ps  
ps  
175  
MAX (14ns, 10nCK)  
Mode register set command delay  
tMRD  
ns  
Temperature Derating  
DQS output access time from CK/ (derated)  
RAS-to-CAS delay (derated)  
tDQSCK  
tRCD  
tRC  
MAX  
MIN  
MIN  
MIN  
MIN  
MIN  
5620  
ps  
ns  
ns  
ns  
ns  
ns  
tRCD + 1.875  
tRC + 1.875  
tRAS + 1.875  
tRP + 1.875  
tRRD + 1.875  
ACTIVATE-to-ACTIVATE command period (derated)  
Row active time (derated)  
tRAS  
tRP  
Row precharge time (derated)  
Active bank A to active bank B (derated)  
tRRD  
NOTE 1 Frequency values are for reference only. Clock cycle time (tCK) is used to determine device capabilities.  
NOTE 2 All AC timings assume an input slew rate of 2V/ns for single-ended signals.  
NOTE 3 Measured with 4 V/ns differential CK/ slew rate and nominal VIX.  
NOTE 4 All timing and voltage measurements are defined at the ball.  
NOTE 5 READ, WRITE, and input setup and hold values are referenced to VREF.  
NOTE 6 tDQSCKDS is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within  
a contiguous sequence of bursts in a 160ns rolling window. tDQSCKDS is not tested and is guaranteed by design.  
Temperature drift in the system is <10˚C/s. Values do not include clock jitter.  
69  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
NOTE 7 tDQSCKDM is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within  
a 1.6μs rolling window. tDQSCKDM is not tested and is guaranteed by design. Temperature drift in the system  
is <10˚C/s. Values do not include clock jitter.  
NOTE 8 tDQSCKDL is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within  
a 32ms rolling window. tDQSCKDL is not tested and is guaranteed by design. Temperature drift in the system  
is <10˚C/s. Values do not include clock jitter.  
NOTE 9 For LOW-to-HIGH and HIGH-to-LOW transitions, the timing reference is at the point when the signal crosses  
the transition threshold (VTT). tHZ and tLZ transitions occur in the same access time (with respect to clock)  
as valid data transitions. These parameters are not referenced to a specific voltage level but to the time  
when the device output is no longer driving (for tRPST, tHZ(DQS) and tHZ(DQ)), or begins driving (for tRPRE,  
tLZ(DQS) and tLZ(DQ)). The figure below shows a method to calculate the point when the device is no longer  
driving tHZ(DQS) and tHZ(DQ) or begins driving tLZ(DQS) and tLZ(DQ) by measuring the signal at two different  
voltages. The actual voltage measurement points are not critical as long as the calculation is consistent.  
NOTE 10 Output Transition Timing  
NOTE 11 The parameters tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as single-ended. The timing parameters  
tRPRE and tRPST are determined from the differential signal DQS/.  
NOTE 12 Measured from the point when DQS/ begins driving the signal, to the point when DQS/ begins driving  
the first rising strobe edge.  
NOTE 13 Measured from the last falling strobe edge of DQS/ to the point when DQS/ finishes driving the signal.  
NOTE 14 CKE input setup time is measured from CKE reaching a HIGH/LOW voltage level to CK/ crossing.  
NOTE 15 CKE input hold time is measured from CK/ crossing to CKE reaching a HIGH/LOW voltage level.  
NOTE 16 Input setup/hold time for signal (CA[9:0], ).  
NOTE 17 To ensure device operation before the device is configured, a number of AC boot timing parameters are defined  
in this table. Boot parameter symbols have the letter b appended (for example, tCK during boot is tCKb).  
NOTE 18 Mobile LPDDR3 devices set some mode register default values upon receiving a RESET (MRW) command, as specified  
in Mode Register Definition.  
NOTE 19 The output skew parameters are measured with default output impedance settings using the reference load.  
NOTE 20 The minimum tCK column applies only when tCK is greater than 6ns.  
70  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
CA and  Setup, Hold and Derating  
For all input signals (CA and ) the total tI (setup time) and tIH (hold time) required is calculated by adding the data sheet  
S
tIS(base) and tIH(base) value (see tIS/tIH Base Table) to the tIS and tIH derating value (see tIS/tIH Derating Table)  
respectively. Example: tIS (total setup time) = tIS(base) + tIS.  
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first  
crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing  
of VREF(dc) and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line between  
shaded ‘VREF(dc) to ac region’, use nominal slew rate for derating value (see following typical slew rate Figure of tIS). If the  
actual signal is later than the nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region’, the slew rate of a  
tangent line to the actual signal from the ac level to dc level is used for derating value (see following angent line figure of  
tIS).  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the first  
crossing of VREF(dc). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of  
VIH(dc)min and the first crossing of VREF(dc). If the actual signal is always later than the nominal slew rate line between shaded  
‘dc to VREF(dc) region’, use nominal slew rate for derating value (see following typical slew rate Figure of tIH). If the actual  
signal is earlier than the nominal slew rate line anywhere between shaded ‘dc to VREF(dc) region’, the slew rate of a tangent  
line to the actual signal from the dc level to VREF(dc) level is used for derating value (see following angent line figure of tIH).  
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC (see table of required tVAC for  
CA).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac)  
at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac)  
.
For slew rates in between the values listed in derating Table, the derating values may be obtained by linear interpolation.  
These values are typically not subject to production test. They are verified.  
71  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
CA Setup and Hold Base-Values  
Data Rate  
unit [ps]  
reference  
1866  
-
1600  
75  
1333  
100  
-
tISCA(base)  
tISCA(base)  
tIHCA(base)  
VIH/L(ac) =  
VIH/L(ac) =  
VIH/L(dc) =  
VREF(dc) +/-150mV  
VREF(dc) +/-135mV  
VREF(dc) +/-100mV  
62.5  
80  
-
100  
125  
NOTE 1 AC/DC referenced for 2V/ns CA slew rate and 4V/ns differential CK- slew rate.  
 Setup and Hold Base-Values  
Data Rate  
unit [ps]  
reference  
1866  
-
1600  
195  
-
1333  
215  
-
tISCS(base)  
tISCS(base)  
tIHCS(base)  
VIH/L(ac) =  
VIH/L(ac) =  
VIH/L(dc) =  
VREF(dc) +/-150mV  
VREF(dc) +/-135mV  
VREF(dc) +/-100mV  
162.5  
180  
220  
240  
NOTE 1 AC/DC referenced for 2V/ns  slew rate and 4V/ns differential CK- slew rate.  
Derating values tIS/tIH - ac/dc based AC150  
tISCA, tIHCA, tISCS, tIHCS derating in [ps] AC/DC based  
AC150 Threshold -> VIH(ac)=VREF(dc)+150mV, VIL(ac)=VREF(dc)-150mV  
DC100 Threshold -> VIH(dc)=VREF(dc)+100mV, VIL(dc)=VREF(dc)-100mV  
CK,  Differential Slew Rate  
8.0V/ns  
7.0V/ns  
6.0V/ns  
5.0V/ns  
4.0V/ns  
3.0V/ns  
tIS  
38  
-
tIH  
25  
-
tIS  
38  
25  
tIH  
25  
17  
tIS  
38  
25  
tIH  
25  
17  
tIS  
38  
25  
tIH  
25  
17  
tIS  
38  
25  
tIH  
25  
17  
tIS  
-
38  
tIH  
-
29  
4.0  
3.0  
CA,  
Slew  
rate  
2.0  
1.5  
-
-
-
-
-
-
-
-
0
-
0
-
0
0
0
0
13  
13  
-4  
(V/ns)  
-25  
-17  
-25  
-17  
-12  
NOTE 1 Cell contents shaded in pink are defined as ‘not supported’.  
Derating values tIS/tIH - ac/dc based AC135  
tISCA, tIHCA, tISCS, tIHCS derating in [ps] AC/DC based  
AC135 Threshold -> VIH(ac)=VREF(dc)+135mV, VIL(ac)=VREF(dc)-135mV  
DC100 Threshold -> VIH(dc)=VREF(dc)+100mV, VIL(dc)=VREF(dc)-100mV  
CK,  Differential Slew Rate  
8.0V/ns  
7.0V/ns  
6.0V/ns  
5.0V/ns  
4.0V/ns  
3.0V/ns  
tIS  
34  
-
tIH  
25  
-
tIS  
34  
23  
tIH  
25  
17  
tIS  
34  
23  
tIH  
25  
17  
tIS  
34  
23  
tIH  
25  
17  
tIS  
34  
23  
tIH  
25  
17  
tIS  
-
34  
tIH  
-
29  
4.0  
3.0  
CA,  
Slew  
rate  
2.0  
1.5  
-
-
-
-
-
-
-
-
0
-
0
-
0
0
0
0
11  
13  
-4  
(V/ns)  
-23  
-17  
-23  
-17  
-12  
NOTE 1 Cell contents shaded in pink are defined as ‘not supported’.  
72  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition for CA  
tVAC at 135mV (ps)  
1866Mb/s  
tVAC at 150mV (ps)  
1600Mb/s  
tVAC at 150mV (ps)  
1333Mb/s  
Min  
Slew Rate  
(V/ns)  
Min  
40  
40  
39  
36  
33  
29  
21  
21  
Max  
Min  
48  
48  
46  
43  
40  
35  
27  
27  
Max  
Max  
>4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
<1.5  
58  
58  
56  
53  
50  
45  
37  
37  
73  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Typical Slew Rate and tVAC tIS for CA and  Relative to Clock  
  
CK  
VDDCA  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
tVAC  
VSS  
TF  
TR  
VREF(dc)  
VREF(dc)  
74  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Typical Slew Rate tIH for CA and  Relative to Clock  
  
CK  
VDDCA  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
TR  
TF  
VREF(dc)  
VREF(dc)  
75  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Tangent Line tIS for CA and  Relative to Clock  
  
CK  
VDDCA  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
REF(dc)  
V
REF(dc)  
V
76  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Tangent Line tIH for CA and  Relative to Clock  
  
CK  
VDDCA  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
VREF(dc)  
REF(dc)  
V
77  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Data Setup, Hold and Slew Rate Derating  
For all input signals (DQ, DM) the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet  
tDS(base) and tDH(base) value (see the following tDS/tDH base table) to thetDS andtDH (see tDS/tDH derating table)  
derating value respectively. Example: tDS (total setup time) = tDS(base) +tDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first  
crossing of VIH(ac)min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing  
of VREF(dc) and the first crossing of VIL(ac)max (see following typical slew rate Figure of tDS). If the actual signal is always  
earlier than the nominal slew rate line between shaded ‘VREF(dc) to ac region’, use nominal slew rate for derating value. If  
the actual signal is later than the nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region’, the slew rate of  
a tangent line to the actual signal from the ac level to dc level is used for derating value(see following angent line figure of  
tDS).  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the  
first crossing of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of VIH(dc)min and the first crossing of VREF(dc) (see following typical slew rate Figure of tDH). If the actual signal is  
always later than the nominal slew rate line between shaded ‘dc level to VREF(dc) region’, use nominal slew rate for derating  
value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ‘dc to VREF(dc) region’, the  
slew rate of a tangent line to the actual signal from the dc level to VREF(dc) level is used for derating value (see following  
angent line figure of tDH).  
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC (see table of required tVAC for  
DQ/DM).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac)  
at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac)  
For slew rates in between the values listed in the tables the derating values may be obtained by linear interpolation.  
These values are typically not subject to production test. They are verified.  
.
Data Setup and Hold Base-Values (>400MHz, 1V/ns Slew Rate)  
Data Rate  
unit [ps]  
reference  
1866  
-
1600  
75  
1333  
100  
-
tDS(base)  
tDS(base)  
tDH(base)  
VIH/L(ac) =  
VIH/L(ac) =  
VIH/L(dc) =  
VREF(dc) +/- 150mV  
VREF(dc) +/- 135mV  
VREF(dc) +/- 100mV  
62.5  
80  
-
100  
125  
NOTE 1 AC/DC referenced for 2V/ns DQ, DM slew rate and 4V/ns differential DQS- slew rate and nominal VIX.  
78  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Derating values tDS/tDH - ac/dc based AC150  
tDS, tDH derating in [ps] AC/DC based  
AC150 Threshold -> VIH(ac)=VREF(dc)+150mV, VIL(ac)=VREF(dc)-150mV  
DC100 Threshold -> VIH(dc)=VREF(dc)+100mV, VIL(dc)=VREF(dc)-100mV  
DQS,  Differential Slew Rate  
8.0V/ns  
7.0V/ns  
6.0V/ns  
5.0V/ns  
4.0V/ns  
3.0V/ns  
tIS  
38  
-
tIH  
25  
-
tIS  
38  
25  
tIH  
25  
17  
tIS  
38  
25  
tIH  
25  
17  
tIS  
38  
25  
tIH  
25  
17  
tIS  
38  
25  
tIH  
25  
17  
tIS  
-
38  
tIH  
-
29  
4.0  
3.0  
DQ, DM  
Slew rate  
(V/ns)  
2.0  
1.5  
-
-
-
-
-
-
-
-
0
-
0
-
0
0
0
0
13  
13  
-4  
-25  
-17  
-25  
-17  
-12  
NOTE 1 Cell contents shaded in pink are defined as ‘not supported’.  
Derating values tDS/tDH - ac/dc based AC135  
tDS, tDH derating in [ps] AC/DC based  
AC135 Threshold -> VIH(ac)=VREF(dc)+135mV, VIL(ac)=VREF(dc)-135mV  
DC100 Threshold -> VIH(dc)=VREF(dc)+100mV, VIL(dc)=VREF(dc)-100mV  
DQS,  Differential Slew Rate  
8.0V/ns  
7.0V/ns  
6.0V/ns  
5.0V/ns  
4.0V/ns  
3.0V/ns  
tIS  
34  
-
tIH  
25  
-
tIS  
34  
23  
tIH  
25  
17  
tIS  
34  
23  
tIH  
25  
17  
tIS  
34  
23  
tIH  
25  
17  
tIS  
34  
23  
tIH  
25  
17  
tIS  
-
34  
tIH  
-
29  
4.0  
3.0  
DQ, DM  
Slew rate  
(V/ns)  
2.0  
1.5  
-
-
-
-
-
-
-
-
0
-
0
-
0
0
0
0
11  
13  
-4  
-23  
-17  
-23  
-17  
-12  
NOTE 1 Cell contents shaded in pink are defined as ‘not supported’.  
Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition for DQ, DM  
tVAC at 135mV (ps)  
1866Mb/s  
tVAC at 150mV (ps)  
1600Mb/s  
tVAC at 150mV (ps)  
1333Mb/s  
Slew Rate  
(V/ns)  
Min  
40  
40  
39  
36  
33  
29  
21  
21  
Max  
Min  
48  
48  
46  
43  
40  
35  
27  
27  
Max  
Min  
58  
58  
56  
53  
50  
45  
37  
37  
Max  
>4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
<1.5  
79  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Typical Slew Rate and tVAC tDS for DQ Relative to Strobe  
  
DQS  
VDDQ  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
VREF(dc)  
REF(dc)  
V
80  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Typical Slew Rate tDH for DQ Relative to Strobe  
  
DQS  
VDDQ  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
VREF(dc)  
VREF(dc)  
81  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Tangent Line tDS for DQ with Respect to Strobe  
  
DQS  
VDDQ  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
VREF(dc)  
VREF(dc)  
82  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Tangent Line tDH for DQ with Respect for Strobe  
  
DQS  
VDDQ  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
VREF(dc)  
VREF(dc)  
83  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Basic Functionality  
Mobile LPDDR3 is a high-speed SDRAM internally configured as an 8-bank memory device.  
LPDDR3 uses a double data rate architecture on the command/address (CA) bus to reduce the number of input pins in the  
system. The 10-bit CA bus is used to transmit command, address, and bank information. Each command uses one clock  
cycle, during which command information is transferred on both the rising and falling edges of the clock.  
LPDDR3 uses a double data rate architecture on the DQ pins to achieve high-speed operation. The double data rate  
architecture is essentially an 8n prefetch architecture with an interface designed to transfer two data bits per DQ every  
clock cycle at the I/O pins.  
A single read or write access for LPDDR3 effectively consists of a single 8n-bit-wide, one-clock-cycle data transfer at the  
internal SDRAM core and eight corresponding nbit- wide, one-half-clock-cycle data transfers at the I/O pins. Read and  
write accesses to the device are burst oriented; accesses start at a selected location and continue for a programmed  
number of locations in a programmed sequence.  
Accesses begin with the registration of an ACTIVATE command followed by a READ or WRITE command. The address and  
BA bits registered coincident with the ACTIVATE command are used to select the row and bank to be accessed. The  
address bits registered coincident with the READ or WRITE command are used to select the bank and the starting column  
location for the burst access.  
84  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Power-Up, Initialization, and Power-Off  
LPDDR3 devices must be powered up and initialized in a predefined manner. Power-up and initialization by means other  
than those specified will result in undefined operation.  
Voltage Ramp and Device Initialization  
The following sequence must be used to power up the device. Unless specified otherwise, this procedure is mandatory  
and applies to devices.  
1) Voltage Ramp:  
While applying power (after Ta), CKE must be held LOW (≤ 0.2 × VDDCA), and all other inputs must be between VILmin  
and VIHmax. The device outputs remain at High-Z while CKE is held LOW. Following the completion of the voltage ramp  
(Tb), CKE must be maintained LOW. DQ, DM, DQS and  voltage levels must be between VSS and VDDQ during  
voltage ramp to avoid latch up. CK, , , and CA input levels must be between VSS and VDDCA during voltage ramp  
to avoid latch-up. Voltage ramp power supply requirements are provided below.  
Voltage Ramp Conditions  
After…  
Applicable Conditions  
VDD1 must be greater than VDD2 (200 mV)  
VDD1 and VDD2 must be greater than VDDCA (200 mV)  
VDD1 and VDD2 must be greater than VDDQ (200 mV)  
VREF must always be less than all other supply voltages  
Ta is reached  
Notes:  
1. Ta is the point when any power supply first reaches 300 mV.  
2. Noted conditions apply between Ta and power-down (controlled or uncontrolled).  
3. Tb is the point at which all supply and reference voltages are within their defined operating ranges.  
4. Power ramp duration tINIT0 (Tb Ta) must not exceed 20ms.  
5. The voltage difference between any of VSS pins must not exceed 100 mV.  
Beginning at Tb, CKE must remain LOW for at least tINIT1, after which CKE can be asserted HIGH. The clock must be  
stable at least tINIT2 prior to the first CKE LOW-to-HIGH transition (Tc). CKE, , and CA inputs must observe setup and  
hold requirements (tIS, tIH) with respect to the first rising clock edge (as well as to subsequent falling and rising edges).  
If any MRRs are issued, the clock period must be within the range defined for tCKb. MRW commands can be issued at  
normal clock frequencies as long as all AC timings are met. Some AC parameters (for example, tDQSCK) could have  
relaxed timings (such as tDQSCKb) before the system is appropriately configured. While keeping CKE HIGH, NOP  
commands must be issued for at least tINIT3 (Td). The ODT input signal may be in undefined state until tIS before CKE is  
registered HIGH. When CKE is registered HIGH, the ODT input signal shall be statically held at either LOW or HIGH. The  
ODT input signal remains static until the power up initialization sequence is finished, including the expiration of tZQINIT.  
85  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
2) RESET Command:  
After tINIT3 is satisfied, the MRW RESET command must be issued (Td). An optional PRECHARGE ALL command can  
be issued prior to the MRW RESET command. Wait at least tINIT4 while keeping CKE asserted and issuing NOP  
commands.  
3) MRRs and Device Auto Initialization (DAI) Polling:  
After tINIT4 is satisfied (Te), only MRR commands and power-down entry/exit commands are supported. After Te, CKE  
can go LOW in alignment with power-down entry and exit specifications. Use the MRR command to poll the DAI bit and  
report when device auto initialization is complete; otherwise, the controller must wait a minimum of tINIT5, or until the DAI  
bit is set before proceeding. As the memory output buffers are not properly configured by Te, some AC parameters must  
have relaxed timings before the system is appropriately configured. After the DAI bit (MR0, DAI) is set to zero by the  
memory device (DAI complete), the device is in the idle state (Tf ). DAI status can be determined by issuing the MRR  
command to MR0. The device sets the DAI bit no later than tINIT5 after the RESET command. The controller must wait at  
least tINIT5 or until the DAI bit is set before proceeding.  
4) ZQ Calibration:  
After tINIT5 (Tf), the MRW initialization calibration (ZQ_CAL) command can be issued to the memory (MR10). This  
command is used to calibrate output impedance over process, voltage, and temperature. In systems where more than one  
LPDDR3 device exists on the same bus, the controller must not overlap MRW ZQ_CAL commands. The device is ready  
for normal operation after tZQinit.  
5) Normal Operation:  
After tZQinit (Tg), MRW commands must be used to properly configure the memory (for example the output buffer drive  
strength, latencies, etc.). Specifically, MR1, MR2, and MR3 must be set to configure the memory for the target frequency  
and memory configuration After the initialization sequence is complete, the device is ready for any valid command. After  
Tg, the clock frequency can be changed using the procedure described in the LPDDR3 specification.  
86  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Power Ramp and Initialization Sequence  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Tf’  
tINIT2  
CK /   
tINIT02  
Supplies  
tINIT3  
tINIT1  
PD  
CKE  
CA1  
tINIT5  
tISCKE  
tZQINIT  
tINIT4  
CA  
Valid  
RESET  
MRR  
ZQCa  
Training  
DQ  
tIS  
Valid  
Static HIGH or LOW  
* Midlevel on CA bus means: valid NOP  
ODT3  
NOTE 1 High-Z on the CA bus indicates NOP.  
NOTE 2 For tINIT values, see below table.  
NOTE 3 After RESET command (time Te), RTT is disabled until ODT function is enabled by MRW to MR11 following Tg.  
NOTE 4 CA Training is optional.  
Initialization Timing Parameters  
Symbol  
Parameter  
Value  
Unit  
min  
-
max  
tINIT0  
tINIT1  
tINIT2  
tINIT3  
tINIT4  
tINIT51  
tZQINIT  
tCKb  
Maximum Power Ramp Time  
Minimum CKE low time after completion of power ramp  
Minimum stable clock before first CKE high  
Minimum idle time after first CKE assertion  
Minimum idle time after Reset command  
Maximum duration of Device Auto-Initialization  
ZQ Initial Calibration  
20  
ms  
ns  
100  
5
-
-
-
tCK  
us  
200  
1
-
us  
-
10  
-
us  
1
us  
Clock cycle time during boot  
18  
100  
ns  
NOTE 1 If DAI bit is not read via MRR, SDRAM will be in idle state after tINIT5(max) has expired.  
87  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Initialization after RESET (without voltage ramp):  
If the RESET command is issued before or after the power-up initialization sequence, the re-initialization procedure must begin at  
Td.  
Power-Off Sequence  
The following procedure is required to power off the device. While powering off, CKE must be held LOW (≤ 0.2 × VDDCA);  
all other inputs must be between VILmin and VIHmax. The device outputs remain at High-Z while CKE is held LOW.  
DQ, DM, DQS, and  voltage levels must be between VSS and VDDQ during the power-off sequence to avoid latch-up.  
CK, , , and CA input levels must be between VSS and VDDCA during the power-off sequence to avoid latch-up.  
Tx is the point where any power supply drops below the minimum value specified.  
Tz is the point where all power supplies are below 300 mV. After Tz, the device is powered off.  
Power Supply Conditions  
Between…  
Tx and Tz  
Tx and Tz  
Tx and Tz  
Tx and Tz  
Applicable Conditions  
VDD1 must be greater than VDD2200 mV  
VDD1 must be greater than VDDCA200 mV  
VDD1 must be greater than VDDQ200 mV  
VREF must always be less than all other supply voltages  
Notes:  
1. The voltage difference between any of VSS pins must not exceed 100 mV.  
Uncontrolled Power-Off Sequence  
When an uncontrolled power-off occurs, the following conditions must be met:  
At Tx, when the power supply drops below the minimum values specified, all power supplies must be turned off and all  
power-supply current capacity must be at zero, except for any static charge remaining in the system.  
After Tz (the point at which all power supplies first reach 300 mV), the device must power off. During this period, the  
relative voltage between power supplies is uncontrolled. VDD1 and VDD2 must decrease with a slope lower than 0.5  
V/μs between Tx and Tz. An uncontrolled power-off sequence can occur a maximum of 400 times over the life of the  
device.  
Power-Off Timing  
Symbol  
Parameter  
Min  
Max  
Unit  
tPOFF  
Maximum power-off ramp time  
-
2
s
88  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Mode Register Definition  
LPDDR3 devices contain a set of mode registers used for programming device operating parameters, reading device  
information and status, and for initiating special operations such as DQ calibration, ZQ calibration, and device reset.  
Mode Register Assignment and Definition  
Table below shows the mode registers. Each register is denoted as “R”, if it can be read but not written, “W” if it can  
be written but not read, and “R/W” if it can be read and written. Mode Register Read Command shall be used to read  
a register. Mode Register Write Command shall be used to write a register.  
89  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Mode Register Assignment  
MR#  
MA [7:0]  
Function  
Access OP7  
OP6  
OP5  
OP4  
RZQI  
OP3  
OP2  
OP1  
BL  
OP0  
DAI  
0
1
00H  
01H  
Device Info  
Device Feature1  
Device Feature2  
I/O Config-1  
R
W
W
W
R
RL3  
WL-B  
(RFU)  
(RFU)  
nWR (for AP)  
(RFU)  
2
02H  
WRLev WL Sel (RFU) nWRE  
RL & WL  
DS  
3
03H  
(RFU)  
4
04H  
Refresh Rate  
Basic Config-1  
Basic Config-2  
Basic Config-3  
Basic Config-4  
Test Mode  
TUF  
(RFU)  
Refresh Rate  
5
05H  
R
Manufacturer ID  
Revision ID1  
6
06H  
R
7
07H  
R
Revision ID2  
8
08H  
R
I/O width  
Density  
Type  
9
09H  
W
W
W
W
W
R
Vendor-Specific Test Mode  
Calibration Code  
10  
0AH  
IO Calibration  
ODT  
11  
0BH  
(RFU)  
PD ctl  
DQ ODT  
12-15  
16  
0CH-0FH  
10H  
(Reserved)  
(RFU)  
PASR_BANK  
PASR_Seg  
PASR Bank Mask  
17  
11H  
PASR Segment Mask  
18-31  
32  
12H-1FH  
20H  
(Reserved)  
(RFU)  
DQ calibration pattern A  
(Do Not Use)  
DQ calibration pattern B  
CA Training 1  
CA Training 2  
(Do Not Use)  
CA Training 3  
(Reserved)  
See Data Calibration Pattern Description  
33-39  
40  
21H-27H  
28H  
R
(DNU)  
See Data Calibration Pattern Description  
See MRW CA Training Mode  
See MRW CA Training Mode  
(DNU)  
41  
29H  
W
W
W
W
42  
2AH  
43-47  
48  
2BH-2FH  
30H  
See MRW CA Training Mode  
(RFU)  
49-62  
63  
31H-3EH  
3FH  
RESET  
X or 0xFCh  
64-255  
40H-FFH  
(Reserved)  
(RFU)  
NOTE 1 RFU bits shall be set to ‘0’ during mode register writes.  
NOTE 2 RFU bits shall be read as ‘0’ during mode register reads.  
NOTE 3 All mode registers that are specified as RFU or write-only shall return undefined data when read and DQS,  shall  
be toggled.  
NOTE 4 All mode registers that are specified as RFU shall not be written.  
NOTE 5 See vendor device datasheets for details on vendor-specific mode registers.  
NOTE 6 Writes to read-only registers shall have no impact on the functionality of the device.  
90  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR0_Device Information (MA[7:0] = 00H)  
MR#  
0
MA [7:0]  
00H  
Function  
Access OP7  
OP6  
OP5  
OP4  
RZQI  
OP3  
OP2  
OP1  
OP0  
DAI  
Device Info  
R
RL3  
WL-B  
(RFU)  
(RFU)  
Feature  
Register Information  
Type  
OP  
Definition  
0B: DAI complete  
DAI  
Device Auto-Initialization Status  
Read-only  
OP<0>  
1B: DAI still in progress  
00B: RZQ self test not supported  
01B: ZQ-pin may connect to VDDCA or float  
10B: ZQ-pin may short to GND  
RZQI (Built in Self Test for RZQ  
Information)  
RZQI1-4  
Read-only  
OP<4:3>  
11B: ZQ-pin self test completed, no error condition  
detected (ZQ-pin may not connect to VDDCA or  
float nor short to GND)  
0B: DRAM does not support WL (Set B)  
1B: DRAM supports WL (SetB)  
0B: DRAM does not support  
RL=3, nWR=3, WL=1  
WL-B  
RL3  
WL (Set B) Support  
RL3 Option Support  
Read-only  
Read-only  
OP<6>  
OP<7>  
1B: DRAM supports  
RL=3, nWR=3, WL=1  
for frequencies 166  
NOTE 1 RZQI, if supported, will be set upon completion of the MRW ZQ Initialization Calibration command.  
NOTE 2 If ZQ is connected to VDDCA to set default calibration, OP[4:3] shall be set to 01. If ZQ is not connected to VDDCA, either  
OP[4:3]=01 or OP[4:3]=10 might indicate a ZQ-pin assembly error. It is recommended that the assembly error is  
corrected.  
NOTE 3 In the case of possible assembly error (either OP[4:3]=01 or OP[4:3]=10 per Note 4), the LPDDR3 device will default to  
factory trim settings for RON, and will ignore ZQ calibration commands. In either case, the system may not function as  
intended.  
NOTE 4 In the case of the ZQ self-test returning a value of 11b, this result indicates that the device has detected a resistor  
connection to the ZQ pin. However, this result cannot be used to validate the ZQ resistor value or that the ZQ resistor  
tolerance meets the specified limits (i.e. 240-±1%).  
91  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR1_Device Feature 1 (MA[7:0] = 01H)  
MR#  
1
MA [7:0]  
01H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
BL  
OP0  
Device Feature1  
W
nWR (for AP)  
(RFU)  
Feature  
BL  
Type  
OP  
Definition  
011B: BL8 (default)  
Write-only  
OP<2:0>  
OP<7:5>  
All others: reserved  
If nWRE (MR2 OP<4>) = 0:  
001B: nWR=3 (default)  
100B: nWR=6  
110B: nWR=8  
111B: nWR=9  
nWR (for AP)  
Write -only  
If nWRE (MR2 OP<4> = 1:  
000B: nWR=10  
001B: nWR=11  
010B: nWR=12  
All others: reserved  
NOTE 1 Programmed value in nWR register is the number of clock cycles which determines when to start internal precharge  
operation for a write burst with AP enabled. It is determined by RU(tWR/tCK).  
Burst Sequence  
Burst Cycle Number and Burst Address Sequence  
C2  
C1  
C0  
BL  
1
0
2
4
6
2
1
3
5
7
3
2
4
6
0
4
3
5
7
1
5
4
6
0
2
6
5
7
1
3
7
6
0
2
4
8
7
1
3
5
0B  
0B  
1B  
1B  
0B  
1B  
0B  
1B  
0B  
0B  
0B  
0B  
8
1. C0 input is not present on CA bus. It is implied zero.  
2. The burst address represents C2 - C0.  
92  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR2_Device Feature 2 (MA[7:0] = 02H)  
MR#  
2
MA [7:0]  
02H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Device Feature2  
W
WRLev WL Sel (RFU) nWRE  
RL & WL  
Feature  
Type  
OP  
Definition  
If OP<6> =0 (WL Set A, default)  
0001B: RL = 3 / WL = 1 (166 MHz)  
0100B: RL = 6 / WL = 3 (400 MHz)  
0110B: RL = 8 / WL = 4 (533 MHz)  
0111B: RL = 9 / WL = 5 (600 MHz)  
1000B: RL = 10 / WL = 6 (667 MHz, default)  
1001B: RL = 11 / WL = 6 (733 MHz)  
1010B: RL = 12 / WL = 6 (800 MHz)  
1100B: RL = 14 / WL = 8 (933 MHz)  
All others: reserved  
RL & WL  
Write-only  
OP<3:0>  
If OP<6> =1 (WL Set B)  
0001B: RL = 3 / WL = 1 (166 MHz)  
0100B: RL = 6 / WL = 3 (400 MHz)  
0110B: RL = 8 / WL = 4 (533 MHz)  
0111B: RL = 9 / WL = 5 (600 MHz)  
1000B: RL = 10 / WL = 8 (667 MHz)  
1001B: RL = 11 / WL = 9 (733 MHz)  
1010B: RL = 12 / WL = 9 (800 MHz)  
1100B: RL = 14 / WL = 11 (933 MHz)  
All others: reserved  
0B: enable nWR programming9  
1B: enable nWR programming > 9 (default)  
0B: Select WL Set A (default)  
1B: Select WL Set B  
nWRE  
Write-only  
Write-only  
Write-only  
OP<4>  
OP<6>  
OP<7>  
WL Selection  
WR Leveling  
0B: disabled (default)  
1B: enabled  
NOTE 1 See MR0, OP<7>  
NOTE 2 See MR0, OP<6>  
93  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR3_I/O Configuration 1 (MA[7:0] = 03H)  
MR#  
3
MA [7:0]  
03H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
I/O Config-1  
W
(RFU)  
DS  
Feature  
Type  
OP  
Definition  
0000B: reserved  
0001B: 34.3typical  
0010B: 40typical (default)  
0011B: 48typical  
0100B: 60typical  
Drive Strength  
Write-only  
OP<3:0>  
0110B: 80typical  
1001 B: 34.3pull-down, 40Ω pull-up (240Ω termination)  
1010 B: 40pull-down, 48Ω pull-up (240Ω termination)  
1011 B: 34.3pull-down, 48Ω pull-up (120Ω termination)  
All others: reserved  
94  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR4_Device Temperature (MA[7:0] = 04H)  
MR#  
4
MA [7:0]  
04H  
Function  
Access OP7  
TUF  
OP6  
OP5  
(RFU)  
OP4  
OP3  
OP2  
OP1  
OP0  
Refresh Rate  
R
Refresh Rate  
Feature  
Type  
OP  
Definition  
000B: SDRAM Low temperature operating limit exceeded  
001B: 4x tREFI, 4x tREFIpb, 4x tREFW  
010B: 2x tREFI, 2x tREFIpb, 2x tREFW  
011B: 1x tREFI, 1x tREFIpb, 1x tREFW (85°C)  
100B: reserved  
Refresh Rate  
Read-only  
OP<2:0>  
101B: 0.25x tREFI, 0.25x tREFIpb, 0.25x tREFW, no AC timing derating  
110B: 0.25x tREFI, 0.25x tREFIpb, 0.25x tREFW, timing derating required  
111B: SDRAM High temperature operating limit exceeded  
0B: OP<2:0> value has not changed since last read of MR4.  
1B: OP<2:0> value has changed since last read of MR4.  
Temperature Update  
Flag (TUF)  
Read-only  
OP<7>  
NOTE 1 A mode register read from MR4 will reset OP7 to 0.  
NOTE 2 OP7 is reset to 0 at power-up.  
NOTE 3 If OP2 = 1, the device temperature is greater than 85˚C.  
NOTE 4 OP7 is set to 1 if OP<2:0> has changed at any time since the last MR4 read.  
NOTE 5 The device might not operate properly when OP<2:0> = 000b or 111b.  
NOTE 6 For the specified operating temperature range and maximum operating temperature, refer to the Operating Temperature  
Range table.  
NOTE 7 LPDDR3 devices must be derated by adding 1.875ns to the following core timing parameters:tRCD, tRC, tRAS, tRP, and  
tRRD. The tDQSCK parameter must be derated as specified in the AC Timing table. Prevailing clock frequency  
specifications and related setup and hold timings remain unchanged.  
NOTE 8 The recommended frequency for reading MR4 is provided in the Temperature Sensor section.  
95  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR5_Basic Configuration-1 (MA[7:0] = 05H)  
MR#  
5
MA [7:0]  
05H  
Function  
Access OP7  
OP6  
OP5  
OP5  
OP5  
OP4  
OP3  
OP2  
OP2  
OP2  
OP1  
OP1  
OP1  
OP0  
OP0  
OP0  
Basic Config-1  
R
Manufacturer ID  
Feature  
Manufactuer ID  
Type  
Read-only  
OP  
Definition  
0000 0101B: Nanya  
OP<7:0>  
All Others: Reserved  
MR6_Basic Configuration-2 (MA[7:0] = 06H)  
MR#  
6
MA [7:0]  
06H  
Function  
Access OP7  
OP6  
OP4  
OP3  
Basic Config-2  
R
Revision ID1  
Feature  
Revision ID1  
Type  
Read-only  
OP  
Definition  
0000 0010B: C-die  
OP<7:0>  
All Others: Reserved  
MR7_Basic Configuration-3 (MA[7:0] = 07H)  
MR#  
7
MA [7:0]  
07H  
Function  
Access OP7  
OP6  
OP4  
OP3  
Basic Config-3  
R
Revision ID2  
Feature  
Revision ID2  
Type  
Read-only  
OP  
Definition  
0000 0000B: A Version  
All Others: Reserved  
OP<7:0>  
96  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR8_Basic Configuration-4 (MA[7:0] = 08H)  
MR#  
8
MA [7:0]  
08H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Basic Config-4  
R
I/O width  
Density  
Type  
Feature  
Type  
OP  
Definition  
11B: LPDDR3 S8  
Type  
Read-only  
OP<1:0>  
All others: Reserved  
0110B: 4Gb  
0111B: 8Gb  
Density  
Read-only  
OP<5:2> 1000B: 16Gb  
1001B: 32Gb  
All others: Reserved  
00B: x32  
I/O width  
Read-only  
OP<7:6> 01B: x16  
All others: Reserved  
MR9_Test Mode (MA<7:0> = 09H)  
MR#  
9
MA [7:0]  
09H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Test Mode  
W
Vendor-Specific Test Mode  
97  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR10_Calibration (MA[7:0] = 0AH)  
MR#  
10  
MA [7:0]  
0AH  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
IO Calibration  
W
Calibration Code  
Feature  
Type  
OP  
Definition  
0xFF: Calibration command after initialization  
0xAB: Long calibration  
Calibration Code  
Write-only  
OP<7:0> 0x56: Short calibration  
0xC3: ZQ Reset  
All Others: Reserved  
NOTE 1 Host processor shall not write MR10 with “Reserved” values.  
NOTE 2 The device ignores calibration commands when a reserved value is written into MR10.  
NOTE 3 See AC Timing table for the calibration latency.  
NOTE 4 If ZQ is connected to VSS through RZQ, either the ZQ calibration function (see MRW ZQ CALIBRATION Command)  
or default calibration (through the ZQ RESET command) is supported. If ZQ is connected to VDDCA, the device  
operates with default calibration and ZQ CALIBRATION commands are ignored. In both cases, the ZQ connection must  
not change after power is supplied to the device.  
NOTE 5 Devices that do not support calibration ignore the ZQ CALIBRATION command.  
NOTE 6 The MRW ZQ Initialization Calibration command will update MR0 to indicate RZQ pin connection.  
98  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR11_ODT (MA[7:0] = 0BH)  
MR#  
11  
MA [7:0]  
0BH  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
ODT  
W
(RFU)  
PD ctl  
DQ ODT  
Feature  
Type  
OP  
Definition  
00B: Disable (Default)  
01B: Reserved  
10B: RZQ/2  
DQ ODT1  
Write-only  
OP<1:0>  
11B: RZQ/1  
0B: ODT disabled by DRAM during power down (default)  
1B: ODT enabled by DRAM during power down  
PD Control  
Write-only  
OP<2>  
NOTE 1 Depending on ballout, ODT pin may be NOT supported so ODT die pad is connected to Vss inside the package.  
MR12-15_Reserved (MA[7:0] = 0CH-0FH)  
MR16_PASR_BANK (MA[7:0] = 10H)  
MR#  
16  
MA [7:0]  
10H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
PASR_BANK  
W
PASR Bank Mask  
Feature  
PASR Bank Mask  
Type  
Write-only  
OP  
Definition  
0B: refresh enable to the bank (= unmasked, default)  
1B: refresh blocked (= masked)  
OP<7:0>  
OP  
0
Bank Mask  
XXXXXXX1  
LPDDR3 SDRAM  
Bank 0  
1
XXXXXX1X  
XXXXX1XX  
XXXX1XXX  
XXX1XXXX  
XX1XXXXX  
X1XXXXXX  
1XXXXXXX  
Bank 1  
2
Bank 2  
3
Bank 3  
4
Bank 4  
5
Bank 5  
6
Bank 6  
7
Bank 7  
99  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR17_PASR_Segment (MA[7:0] = 11H)  
MR#  
17  
MA [7:0]  
11H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
PASR_Seg  
W
PASR Segment Mask  
Feature  
PASR Segment Mask  
Type  
OP  
Definition  
0B: refresh enable to the segment (=unmasked, default)  
1B: refresh blocked (=masked)  
Write-only  
OP<7:0>  
4Gb  
8Gb  
16Gb  
32Gb  
Segment  
Mask  
Segment  
OP  
R13:11  
R14:12  
R14:12  
TBD  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
XXXXXXX1  
XXXXXX1X  
XXXXX1XX  
XXXX1XXX  
XXX1XXXX  
XX1XXXXX  
X1XXXXXX  
1XXXXXXX  
000B  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
NOTE 1 Thistableindicatestherangeofrowaddressesineachmaskedsegment.Xisdonotcareforaparticular  
segment.  
NOTE 2 No memory present at addresses with R13=R14=HIGH. Segment masks 6 and 7 are ignored.  
MR18-31_Reserved (MA[7:0] = 12H-1FH)  
MR32_DQ Calibration Pattern A (MA[7:0] = 20H)  
MR#  
32  
MA [7:0]  
20H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
DQ calibration pattern A  
R
See Data Calibration Pattern Description  
NOTE 1 Reads to MR32 return DQ Calibration Pattern “A”. See “DQ Calibration”  
MR33-39_Do Not Use (MA[7:0] = 21H-27H)  
MR40_DQ Calibration Pattern B (MA[7:0] = 28H)  
MR#  
40  
MA [7:0]  
28H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
DQ calibration pattern B  
R
See Data Calibration Pattern Description  
NOTE 1 Reads to MR40 return DQ Calibration Pattern “B”. See “DQ Calibration”  
100  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MR41_CA Training 1 (MA[7:0] = 29H)  
MR#  
41  
MA [7:0]  
29H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
CA Training 1  
W
See MRW CA Training Mode  
NOTE 1 Writes to MR41 enables CA Training. See Mode Register Write - CA Training Mode  
MR42_CA Training 2 (MA[7:0] = 2AH)  
MR#  
42  
MA [7:0]  
2AH  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
CA Training 2  
W
See MRW CA Training Mode  
NOTE 1 Writes to MR42 enables CA Training. See Mode Register Write - CA Training Mode  
MR43-47_Do Not Use (MA[7:0] = 2BH-2FH)  
MR48_CA Training 3 (MA[7:0] = 30H)  
MR#  
48  
MA [7:0]  
30H  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
CA Training 3  
W
See MRW CA Training Mode  
NOTE 1 Writes to MR48 enables CA Training. See Mode Register Write - CA Training Mode  
MR49-62_Do Not Use (MA[7:0] = 31H-3EH)  
MR63_RESET (MA[7:0] = 3FH)  
MR#  
63  
MA [7:0]  
3FH  
Function  
Access OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
RESET  
W
X or 0xFCh  
MR64-255_Reserved (MA[7:0] = 40H-FFH)  
101  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 SDRAM Truth Table  
Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the  
LPDDR3 device must be powered down and then restarted through the specified initialization sequence before normal  
operation can continue.  
102  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Command Truth Table  
Command Pins  
CA pins  
SDRAM  
command  
CKE  
  
CA0  
CA1 CA2  
CA3 CA4 CA5 CA6 CA7 CA8 CA9  
CK EDGE  
CK(n-1) CK(n)  
L
X
L
L
L
L
MA0  
OP2  
MA1  
OP3  
MA2  
OP4  
MA3  
OP5  
MA4  
OP6  
MA5  
OP7  
MRW  
MRR  
H
H
H
H
MA6  
MA7  
OP0  
OP1  
L
X
L
X
L
X
L
X
L
X
L
X
L
X
L
X
L
X
L
X
L
X
H
X
H
X
H
X
H
X
L
MA6  
L
L
MA7  
L
L
H
H
H
H
L
MA0  
MA1  
MA2  
MA3  
MA4  
MA5  
X
X
X
X
X
X
X
Refresh  
(per bank)11  
H
H
H
H
L
L
L
L
L
H
Refresh  
(all bank)  
H
X
Enter  
Self Refresh  
L
R0  
H
H
R1  
L
R8  
R2  
L
R9  
R3  
R10  
R4  
R11  
R5  
C1  
C7  
C1  
C7  
X
R12  
R6  
C2  
C8  
C2  
C8  
X
BA0  
R7  
BA1  
R13  
BA1  
C10  
BA1  
C10  
BA1  
BA2  
R14  
BA2  
C11  
BA2  
C11  
BA2  
Activate  
(bank)  
H
H
H
H
H
H
H
H
L
RFU  
C5  
RFU  
C6  
BA0  
C9  
Write  
AP3  
H
C3  
L
C4  
H
(bank)  
RFU  
C5  
RFU  
C6  
BA0  
C9  
Read  
AP3  
H
C3  
H
C4  
L
(bank)  
H
AB  
BA0  
Precharge  
(pre bank, all bank)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
X
H
H
H
H
H
H
L
H
H
Enter  
Deep Power Down  
NOP  
H
L
H
L
Maintain PD,  
SREF, DPD (NOP)  
NOP  
H
L
H
L
Maintain PD,  
SREF, DPD (NOP)  
H
X
L
X
Enter  
L
Power Down  
Exit  
H
PD, SREF, DPD  
NOTE 1 All LPDDR3 commands are defined by states of , CA0, CA1, CA2, CA3, and CKE at the rising edge of the clock.  
NOTE 2 Bank addresses BA0, BA1, BA2 (BA) determine which bank is to be operated upon.  
NOTE 3 AP “high” during a READ or WRITE command indicates that an auto-precharge will occur to the bank associated with the  
READ or WRITE command.  
NOTE 4 “X” means “H or L (but a defined logic level)”, except when the LPDDR3 SDRAM is in PD, SREF, or DPD, in which case ,  
CK/, and CA can be floated.  
NOTE 5 Self refresh exit and Deep Power Down exit are asynchronous.  
103  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
NOTE 6 VREF must be between 0 and VDDQ during Self Refresh and Deep Power Down operation.  
NOTE 7 CAxr refers to command/address bit “x” on the rising edge of clock.  
NOTE 8 CAxf refers to command/address bit “x” on the falling edge of clock.  
NOTE 9  and CKE are sampled at the rising edge of clock.  
NOTE 10 The least-significant column address C0 is not transmitted on the CA bus, and is implied to be zero.  
NOTE 11 AB “high”during Precharge command indicates that all bank Precharge will occur. In this case, Bank Address is  
do-not-care.  
104  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
CKE Truth Table  
Device  
Current State3  
1
1
CKEn-1 CKEn  
 2  
Command n4  
Operation n4  
Device Next State  
Notes  
L
L
L
L
L
L
L
L
L
L
H
H
L
H
L
x
H
x
x
Maintain Active Power Down  
Exit Active Power Down  
Maintain Idle Power Down  
Exit Idle Power Down  
Active Power Down  
Active  
Active  
Power Down  
NOP  
x
6,9  
6,9  
Idle Power Down  
Idle  
Idle  
Power Down  
H
L
H
x
NOP  
x
Maintain Resetting Power Down  
Exit Resetting Power Down  
Maintain Deep Power Down  
Exit Deep Power Down  
Maintain Self Refresh  
Resetting Power Down  
Idle or Resetting  
Deep Power Down  
Power On  
Resetting  
Power Down  
H
L
H
x
NOP  
x
6,9,12  
8
Deep  
Power Down  
H
L
H
x
NOP  
x
Self Refresh  
Self Refresh  
H
L
H
H
H
NOP  
NOP  
NOP  
Exit Self Refresh  
Idle  
7,10  
Bank(s) Active  
Enter Active Power Down  
Enter Idle Power Down  
Active Power Down  
Idle Power Down  
L
13  
13  
13  
Enter  
Self-Refresh  
All Banks Idle  
H
L
L
Enter Self Refresh  
Self Refresh  
H
H
H
L
L
L
Enter DPD  
Enter Deep Power Down  
Enter Resetting Power Down  
Refer to the Command Truth Table  
Deep Power Down  
Resetting  
H
NOP  
Resetting Power Down  
Other states  
H
Notes:  
1. “CKEn” is the logic state of CKE at clock edge n; “CKEn-1” was the logic state of CKE at previous clock edge.  
2. ” is the logic state of  at the clock rising edge n;  
3. “Current state” is the state of the LPDDR3 device immediately prior to clock edge n.  
4. “Command n” is the command registered at clock edge N, and “Operation n” is a result of “Command n”.  
5. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
6. Power Down exit time (tXP) should elapse before a command other than NOP is issued.  
7. Self-Refresh exit time (tXSR) should elapse before a command other than NOP is issued.  
8. The Deep Power-Down exit procedure must be followed as discussed in the DPD section of the Functional Description.  
9. The clock must toggle at least once during the tXP period.  
10. The clock must toggle at least once during the tXSR period.  
11. X” means “Don’t care”.  
12. Upon exiting Resetting Power Down, the device will return to the idle state if tINIT5 has expired.  
13. In the case of ODT disabled, all DQ output shall be Hi-Z. In the case of ODT enabled, all DQ shall be terminated to VDDQ.  
105  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
State Truth Tables  
The truth tables provide complementary information to the state diagram, they clarify the device behavior and the applied  
restrictions when considering the actual state of all banks.  
Current State Bank n Command to Bank n  
Current State  
Command  
Operation  
Next State  
Notes  
Any  
NOP  
ACTIVATE  
Refresh (Per Bank)  
Refresh (All Banks)  
MRW  
Continue previous operation  
Current State  
Active  
Select and activate row  
Begin to refresh  
Refreshing (Per Bank)  
Refreshing (All Banks)  
MR Writing  
6
7
7
Begin to refresh  
Idle  
Load value to Mode Register  
Read value from Mode Register  
Begin Device Auto-initialization  
Deactivate row(s) in bank or banks  
Select column, and start read burst  
Select column, and start write burst  
Read value from Mode Register  
Deactivate row(s) in bank or banks  
Select column, and start new read burst  
Select column, and start write burst  
Select column, and start new write burst  
Select column, and start read burst  
Begin Device Auto-initialization  
Read value from Mode Register  
MRR  
Idle / MR Reading  
Resetting  
Reset  
7,8  
Precharge  
Read  
Precharging  
Reading  
9,15  
Write  
Writing  
Row Active  
MRR  
Active MR Reading  
Precharging  
Reading  
Precharge  
Read  
9
10,11  
10,11,12  
10,11  
10,11,13  
7,9  
Reading  
Writing  
Write  
Writing  
Write  
Writing  
Read  
Reading  
Power On  
Resetting  
MRW Reset  
MRR  
Resetting  
Resetting MR Reading  
Notes:  
1. The table applies when both CKEn-1 and CKEn are HIGH, and after tXSR or tXP has been met, if the previous state was Power Down.  
2. All states and sequences not shown are illegal or reserved.  
3. Current State definitions:  
State  
Definition  
Idle  
The bank or banks have been precharged, and tRP has been met.  
A row in the bank has been activated, and tRCD has been met. No data bursts or accesses and  
no register accesses are in progress.  
Active  
Reading  
Writing  
A READ burst has been initiated with auto precharge disabled, and has not yet terminated.  
A WRITE burst has been initiated with auto precharge disabled, and has not yet terminated.  
106  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
4. The following states must not be interrupted by any executable command. NOP commands must be applied to each positive  
clock edge during these states.  
Ends when  
It’s met  
State  
Starts with  
Notes  
Refreshing  
(per bank)  
Registration of a REFRESH (per  
bank) command  
tRFCpb  
After tRFCpb is met, the bank is in the idle state.  
Refreshing  
(all banks)  
Registration of a REFRESH  
(all bank) command  
tRFCab  
tMRR  
tMRR  
tMRR  
tMRW  
tRP  
After tRFCab is met, the device is in the all-banks idle state.  
After tMRR is met, the device is in the all-banks idle state..  
After tMRR is met, the device is in the all-banks idle state.  
After tMRR is met, the bank is in the active state.  
Idle MR  
reading  
Registration of the MRR  
command  
Resetting MR  
reading  
Registration of the MRR  
command  
Active MR  
reading  
Registration of the MRR  
command  
Registration of the MRW  
command  
MR writing  
After tMRW is met, the device is in the all-banks idle state.  
After tRP is met, the device is in the all-banks idle state.  
Precharging  
all  
Registration of a PRECHARGE  
ALL command  
5. The states listed below must not be interrupted by a command issued to the same command. NOP commands or supported  
commands to the other bank should be issued on any clock edge occurring during these states.  
Ends when  
It’s met  
State  
Starts with  
Notes  
Precharging  
Registration of a PRECHARGE command  
tRP  
After tRP is met, the bank is in the idle state.  
Row Activing  
Registration of an ACTIVATE command  
tRCD  
tRP  
After tRCD is met, the bank is in the active state.  
After tRP is met, the bank is in the idle state.  
After tRP is met, the bank is in the idle state.  
READ with  
AP enabled  
Registration of a READ  
command with auto precharge enabled  
WRITE with  
AP enabled  
Registration of a WRITE  
command with auto precharge enabled  
tRP  
6. Bank-specific; requires that the bank is idle and no bursts are in progress.  
7. Not bank-specific; requires that all banks are idle and no bursts are in progress.  
8. Not bank-specific reset command is achieved through Mode Register Write command.  
9. This command may or may not be bank specific. If all banks are being precharged, the must be in a valid state for precharging.  
10. A command other than NOP should not be issued to the same bank while a READ or WRITE burst with auto precharge is enabled.  
11. The new READ or WRITE command could be auto precharge enabled or auto precharge disabled.  
12. A WRITE command can be issued after the completion of the READ burst.  
13. A READ command can be issued after completion of the WRITE burst.  
14. If a PRECHARGE command is issued to a bank in the idle state, tRP still applies.  
107  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Current State Bank n Command to Bank m  
Current State  
of Bank n  
Command  
for Bank m  
Next State  
Notes  
Operation  
Continue previous operation  
for Bank m  
Any  
Idle  
NOP  
Any  
Current State of Bank m  
-
Any command supported to Bank m  
Activate  
Read  
Select and activate row in Bank m  
Active  
Reading  
Writing  
6
7
7
8
Select column, and start read burst from Bank m  
Select column, and start write burst to Bank m  
Deactivate row(s) in bank or banks  
Row Activating,  
Active, or  
Precharging  
Write  
Precharge  
Precharging  
Idle MR Reading or Active  
MR Reading  
MRR  
Read value from Mode Register  
9,10,11  
Read  
Write  
Select column, and start read burst from Bank m  
Select column, and start write burst to Bank m  
Select and activate row in Bank m  
Reading  
Writing  
7
7,12  
Reading  
(AP disabled)  
Activate  
Precharge  
Read  
Active  
Deactivate row(s) in bank or banks  
Precharging  
Reading  
8
7,13  
7
Select column, and start read burst from Bank m  
Select column, and start write burst to Bank m  
Select and activate row in Bank m  
Write  
Writing  
Writing  
(AP disabled)  
Activate  
Precharge  
Read  
Active  
Deactivate row(s) in bank or banks  
Precharging  
Reading  
8
Select column, and start read burst from Bank m  
Select column, and start write burst to Bank m  
Select and activate row in Bank m  
7,14  
Write  
Writing  
7,12,14  
Reading with  
Auto-Precharge  
Activate  
Precharge  
Read  
Active  
Deactivate row(s) in bank or banks  
Precharging  
Reading  
8
Select column, and start read burst from Bank m  
Select column, and start write burst to Bank m  
Select and activate row in Bank m  
7,13,14  
7,14  
Write  
Writing  
Writing with  
Auto-Precharge  
Activate  
Precharge  
MRW Reset  
MRR  
Active  
Deactivate row(s) in bank or banks  
Precharging  
Resetting  
Resetting MR Reading  
8
Power On  
Resetting  
Begin Device Auto-initialization  
15,16  
Read value from Mode Register  
Notes:  
1. This table applies when:  
1a. the previous state was self refresh or power-down  
1b. after tXSR or tXP has been met  
1c. and both CKEn -1 and CKEn are HIGH  
2. All states and sequences not shown are illegal or reserved.  
3. Current state definitions:  
State  
Condition  
And…  
And…  
Idle  
The bank has been precharged  
tRP is met  
A row in the bank has been  
activated  
A READ burst has been initiated  
with auto precharge disabled  
A WRITE burst has been initiated  
with auto precharge disabled  
No data bursts/accesses and no  
register accesses are in progress.  
Active  
Reading  
Writing  
tRCD is met  
The READ has not yet terminated.  
The WRITE has not yet terminated.  
4. Refresh, self refresh, and MRW commands can only be issued when all banks are idle.  
108  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
5. The states listed below must not be interrupted by any executable command. NOP commands must be applied during each clock  
cycle while in these states:  
State  
Starts with:  
Ends when:  
Notes  
After tMRR is met, the device is in the  
all-banks idle state.  
Idle MR reading  
Registration of the MRR command  
tMRR is met  
After tMRR is met, the device is in the  
all-banks idle state.  
After tMRR is met, the bank is in the  
active state.  
After tMRW is met, the device is in the  
all-banks idle state.  
Resetting MR reading  
Active MR reading  
MR writing  
Registration of the MRR command  
Registration of the MRR command  
Registration of the MRW command  
tMRR is met  
tMRR is met  
tMRW is met  
6. tRRD must be met between the ACTIVATE command to bank n and any subsequent ACTIVATE command to bank m.  
7. READs or WRITEs listed in the command column include READs and WRITEs with or without auto precharge enabled.  
8. This command may or may not be bank specific. If all banks are being precharged, they must be in a valid state for precharging.  
9. MRR is supported in the row-activating state.  
10. MRR is supported in the precharging state.  
11. The next state for bank m depends on the current state of bank m (idle, row-activating, precharging, or active).  
12. A WRITE command can be issued only after the completion of the READ burst  
13. A READ command can be issued only after the completion of the WRITE burst.  
14. A READ with auto precharge enabled or a WRITE with auto precharge enabled can be followed by any valid command to other  
banks provided that the timing restrictions are met.  
15. Not bank-specific; requires that all banks are idle and no bursts are in progress.  
16. RESET command is achieved through MODE REGISTER WRITE command.  
109  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
DM Operation Truth Table  
The DM truth table provides specifications for data masking.  
DM Truth Table  
Function  
Write Enable  
Write Inhibit  
DM  
DQ  
Valid  
x
Notes  
1
1
L
H
Note: Used to mask write data, provided simultaneouslywith the corresponding input data.  
110  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Commands and Timing  
Command Input Setup and Hold  
  
CK  
  
  
tIS tIH  
tIS tIH  
  
VIH(AC)  
VIL(DC)  
VIH(DC)  
VIL(AC)  
CA  
tIS tIH  
CA  
tIS tIH  
CA  
Rise  
CA  
Rise  
CA  
Fall  
CA  
Fall  
CA  
Rise  
CA  
Fall  
CA  
Fall  
CA  
Rise  
CA0-9  
Cmd  
NOP  
Command  
NOP  
Command  
HIGH or LOW (but a defined logic level)  
Transitioning data  
NOTE 1 Setup and hold conditions also apply to the CKE pin. For timing diagrams related to the CKE pin, see “Power-Down”  
CKE Input Setup and Hold  
  
CK  
tIHCKE  
tISCKE  
tIHCKE  
tISCKE  
CKE  
VIHCKE  
VILCKE  
VIHCKE  
VILCKE  
HIGH or LOW (but a defined logic level)  
NOTE 1 After CKE is registered LOW, CKE signal level shall be maintained below VILCKE for tCKE specification (LOW pulse width).  
NOTE 2 After CKE is registered HIGH, CKE signal level shall be maintained above VIHCKE for tCKE specification (HIGH pulse  
width).  
111  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
ACTIVE  
The ACTIVATE command is issued by holding  LOW, CA0 LOW, and CA1 HIGH at the rising edge of the clock. The  
bank addresses BA0 to BA2 are used to select the desired bank. Row addresses are used to determine which row to  
activate in the selected bank. The ACTIVATE command must be applied before any READ or WRITE operation can be  
executed. The device can accept a READ or WRITE command at tRCD after the ACTIVATE command is issued. After a  
bank has been activated it must be precharged before another ACTIVATE command can be applied to the same bank.  
The bank active and precharge times are defined as tRAS and tRP, respectively. The minimum time interval between  
successive ACTIVATE commands to the same bank is determined by the RAS cycle time of the device (tRC). The  
minimum time interval between ACTIVATE commands to different banks is tRRD.  
ACTIVATE Command  
  
CK  
CA0-9  
tRCD  
Read Begins  
tRRD  
tRP  
Precharge  
NOP  
NOP  
NOP  
Cmd  
Activate  
Activate  
Read  
Activate  
tRAS  
tRC  
NOTE 1  
A PRECHARGE-all command uses tRPab timing, while a single-bank PRECHARGE command uses tRPpb timing. In this  
figure, tRP is used to denote either an all-bank PRECHARGE or a single-bank PRECHARGE.  
112  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
8-Bank Device Operation  
Certain restrictions on operation of the 8-bank devices must be observed. There are two rules: One rule restricts the  
number of sequential ACTIVATE commands that can be issued; the other provides more time for RAS precharge for a  
PRECHARGE ALL command. The rules are as follows:  
The 8-Bank Device Sequential Bank Activation Restriction: No more than 4 banks may be activated (or refreshed, in  
the case of REFpb) in a rolling tFAW window. The number of clocks in a tFAW period is dependent upon the clock  
frequency, which may vary. If the clock frequency is not changed over this period, converting to clocks is done by dividing  
tFAW[ns] by tCK[ns], and rounding up to the next integer value. As an example of the rolling window, if RU(tFAW/tCK) is  
10 clocks, and an ACTIVATE command is issued in clock n, no more than three further ACTIVATE commands can be  
issued at or between clock n + 1 and n + 9. REFpb also counts as bank activation for purposes of tFAW. If the clock  
frequency is changed during the tFAW period, the rolling tFAW window may be calculated in clock cycles by adding up  
the time spent in each clock period. The tFAW requirement is met when the previous n clock cycles exceeds the tFAW  
time.  
The 8-Bank Device Precharge-All Allowance: tRP for a PRECHRGE ALL command must equal tRPab, which is  
greater than tRPpb.  
tFAW Timing  
Tn  
Tn+1  
Tm  
Tm+1  
Tx  
Tx+1  
Ty  
Ty+1  
Ty+2  
Tz  
Tz+1  
Tz+2  
  
CK  
Bank Bank  
Bank Bank  
Bank Bank  
Bank Bank  
Bank Bank  
CA0-9  
Cmd  
A
A
B
B
C
C
D
D
E
E
ACTIVATE NOP  
ACTIVATE NOP  
ACTIVATE NOP  
ACTIVATE  
NOP  
NOP  
NOP  
ACTIVATE  
NOP  
tRRD  
tRRD  
tRRD  
tFAW  
113  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
READ and WRITE Access Modes  
After a bank is activated, a READ or WRITE command can be issued with  LOW, CA0 HIGH, and CA1 LOW at the  
rising edge of the clock. CA2 must also be defined at this time to determine whether the access cycle is a READ  
operation (CA2 HIGH) or a WRITE operation (CA2 LOW).  
The LPDDR3 SDRAM provides a fast column access operation. A single Read or Write Command will initiate a burst  
read or write operation on successive clock cycles. Burst interrupts are not allowed.  
Burst READ  
The burst READ command is initiated with  LOW, CA0 HIGH, CA1 LOW, and CA2 HIGH at the rising edge of the clock.  
The command address bus inputs CA5rCA6r and CA1fCA9f determine the starting column address for the burst. The  
read latency (RL) is defined from the rising edge of the clock on which the READ command is issued to the rising edge of  
the clock from which the tDQSCK delay is measured. The first valid data is available RL × tCK + tDQSCK + tDQSQ after  
the rising edge of the clock when the READ command is issued. The data strobe output is driven LOW tRPRE before the  
first valid rising strobe edge. The first bit of the burst is synchronized with the first rising edge of the data strobe. Each  
subsequent data-out appears on each DQ pin, edge-aligned with the data strobe. The RL is programmed in the mode  
registers. Pin timings for the data strobe are measured relative to the crosspoint of DQS and its complement, .  
READ Output Timing  
RL  
RL-1  
tCH  
RL + BL/2  
tCL  
  
CK  
tDQSCK  
tHZ(DQS)  
tRPST  
tQH  
tRPRE  
tLZ(DQS)  
  
DQS  
tQH  
tDQSQmax  
tDQSQmax  
Dout  
Dout  
Dout  
Dout  
Dout  
Dout  
Dout  
Dout  
DQ  
tLZ(DQ)  
tHZ(DQ)  
Transitioning data  
NOTE 1 tDQSCK can span multiple clock periods.  
114  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Burst READ: RL = 12, BL = 8, tDQSCK > tCK  
T0  
T1  
T2  
T12  
Ta-1  
Ta  
Ta+1  
Ta+2  
Ta+3  
Ta+4  
  
CK  
RL = 12  
CA[9:0]  
CMD  
READ  
NOP  
OP  
NO
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSCK  
  
DQS  
Dout Dout Dout Dout Dout Dout Dout Dout  
DQ  
A1  
A3  
A4  
A5  
A2  
A0  
A7  
A6  
Transitioning data  
Burst Read: RL = 12, BL = 8, tDQSCK < tCK  
T0  
T1  
T2  
T12  
Tn  
Tn+1  
Tn+2  
Tn+3  
Tn+4  
Tn+5  
  
CK  
RL = 12  
CA[9:0]  
CMD  
READ  
NOP  
OP  
NO
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSCK  
  
DQS  
Dout  
A0  
Dout Dout Dout Dout Dout Dout Dout  
A1 A3 A4 A5  
DQ  
A2  
A7  
A6  
Transitioning data  
115  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Burst READ Followed by Burst WRITE: RL = 12, WL = 6, BL = 8  
T0  
T1  
T2  
T12  
Ta-1  
Ta  
Ta+1 Ta+2 Ta+3 Ta+4 Ta+9 Ta+10  
  
CK  
WL = 6  
BL/2  
RL = 12  
CA[9:0]  
CMD  
READ  
tDQSCK  
tDQSSmin  
  
DQS  
DQ  
Transitioning data  
The minimum time from the burst READ command to the burst WRITE command is defined by the read latency (RL) and  
the burst length (BL). Minimum READ-to-WRITE latency is RL + RU(tDQSCK(MAX)/tCK) + BL/2 + 1 - WL clock cycles.  
116  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Seamless Burst READ RL = 6, BL = 8, tCCD = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
  
CK  
RL=6  
CA[9:0]  
CMD  
tCCD=4  
tCCD=4  
READ  
NOP  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
READ  
  
DQS  
DQ  
Transitioning data  
The seamless burst READ operation is supported by enabling a READ command at every fourth clock cycle for BL = 8  
operation. This operation is supported as long as the banks are activated, whether the accesses read the same or  
different banks.  
tDQSCK Delta Timing  
In order to allow for the system to track variations in tDQSCK output across multiple clock cycles, three parameters,  
tDQSCKDS (delta short), tDQSCKDM (delta medium), and tDQSCKDL (delta long) are provided. Each of these  
parameters defines the change in tDQSCK over a short, medium, or long rolling window, respectively. The definitions for  
each tDQSCK-delta parameter show up on the next page.  
117  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
tDQSCKDL Timing  
Tn  
Tn+1 Tn+2 Tn+3 Tn+4  
Tn+5  
Tn+6 Tn+7 Tn+8  
Tm Tm+1 Tm+2 Tm+3 Tm+4 Tm+5 Tm+6 Tm+7 Tm+8  
  
CK  
CA[9:0]  
CMD  
tDQSCKm  
tDQSCKn  
  
DQS  
RL = 5  
RL = 5  
DQ  
32ms maximum  
NOTE 1 tDQSCKDL = (tDQSCKn - tDQSCKm).  
NOTE 2 tDQSCKDL,MAX is defined as the maximum of ABS (tDQSCKn - tDQSCKm) for any (tDQSCKn, tDQSCKm) pair within any  
32ms rolling window.  
tDQSCKDM Timing  
Tn  
Tn+1 Tn+2 Tn+3 Tn+4  
Tn+5  
Tn+6 Tn+7 Tn+8  
Tm Tm+1 Tm+2 Tm+3 Tm+4 Tm+5 Tm+6 Tm+7 Tm+8  
  
CK  
CA[9:0]  
CMD  
tDQSCKm  
tDQSCKn  
  
DQS  
RL = 5  
RL = 5  
DQ  
1.6us maximum  
NOTE 1 tDQSCKDM = (tDQSCKn - tDQSCKm).  
NOTE 2 tDQSCKDM,MAX is defined as the maximum of ABS (tDQSCKn - tDQSCKm) for any (tDQSCKn, tDQSCKm) pair within any  
1.6μs rolling window.  
tDQSCKDS Timing  
Tn  
Tn+1 Tn+2 Tn+3 Tn+4  
Tn+5  
Tn+6 Tn+7 Tn+8  
Tm Tm+1 Tm+2 Tm+3 Tm+4 Tm+5 Tm+6 Tm+7 Tm+8  
  
CK  
CA[9:0]  
CMD  
tDQSCKm  
tDQSCKn  
  
DQS  
RL = 5  
RL = 5  
DQ  
160ns maximum  
NOTE 1 tDQSCKDS = (tDQSCKn - tDQSCKm).  
NOTE 2 tDQSCKDS,MAX is defined as the maximum of ABS (tDQSCKn - tDQSCKm) for any (tDQSCKn, tDQSCKm) pair for READs  
within a consecutive burst, within any 160ns rolling window.  
118  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Burst WRITE  
The burst WRITE command is initiated with  LOW, CA0 HIGH, CA1 LOW, and CA2 LOW at the rising edge of the  
clock. The command address bus inputs, CA5rCA6r and CA1fCA9f, determine the starting column address for the  
burst. Write latency (WL) is defined from the rising edge of the clock on which the WRITE command is issued to the rising  
edge of the clock from which the tDQSS delay is measured. The first valid data must be driven WL × tCK + tDQSS from  
the rising edge of the clock from which the WRITE command is issued. The data strobe signal (DQS) must be driven  
LOW tWPRE prior to data input. The burst cycle data bits must be applied to the DQ pins tDS prior to the associated edge  
of the DQS and held valid until tDH after that edge. Burst data is sampled on successive edges of the DQS until the burst  
is completed. After a burst WRITE operation, tWR must be satisfied before a PRECHARGE command to the same bank  
can be issued. Pin input timings are measured relative to the crosspoint of DQS and its complement, .  
Data Input (WRITE) Timing  
tWPST  
tDQSL  
tDQSH  
tDQSL  
  
DQS  
tWPRE  
VIH(AC)  
VIH(DC)  
VIH(AC)  
VIH(DC)  
DQ  
DM  
DIN  
DIN  
DIN  
DM  
DIN  
IL  
VIL(AC)  
VIL(DC)  
VIL(AC)  
VIL(DC)  
tDS  
tDH tDS  
tDH tDS  
VIH(AC)  
VIH(DC)  
tDH tDS  
tDH  
VIH(AC)  
VIH(DC)  
DM  
DM  
DM  
VIL(AC)  
VIL(DC) VIL(AC)  
VIL(DC)  
Don’t Care  
119  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Burst WRITE  
Tx+1  
T0  
Ta  
Ta+1  
...  
Ta+5  
Tx  
Ty  
Ty+1  
  
CK  
WL  
CA0-9  
Cmd  
WRITE  
NOP  
NOP  
NOP  
NO
Precharge  
NP  
ACTIVATE  
NOP  
Case 1: with tDQSS max  
Completion of Burst Write  
tDQSSmax tDSS  
tDSS  
  
DQS  
DQ  
tWR  
tRP  
Case 2: with tDQSS min  
tDQSSmin tDSH tDSH  
  
DQS  
DQ  
tWPRE Calculation  
The method for calculating tWPRE is shown in the following figure:  
Method for Calculating tWPRE Transitions and Endpoints  
CK  
VTT  
  
tWPRE begins  
T1  
DQS -   
tWPRE  
Resulting differential signal  
relevant for tWPRE specification  
T2  
tWPRE ends  
120  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
tWPST Calculation  
The method for calculating tWPST is shown in the follwing figure:  
Method for Calculating tWPST Transitions and Endpoints  
CK  
VTT  
  
tWPST begins  
T1  
DQS -   
tWPST  
T2  
Resulting differential signal  
tWPST ends  
relevant for tWPST specification  
Burst WRITE Followed by Burst READ  
T0  
Tx  
Tx+1  
Ty  
Ty+1  
NOP  
Ty+2  
NOP  
Ty+3  
Ty+4  
CK,  
CA0-0  
Cmd  
WRITE  
WL  
NOP  
NOP  
NOP  
NOP  
NOP  
RL  
NOP  
DQS,  
tWTR  
DQ  
NOTE 1 The minimum number of clock cycles from the burst WRITE command to the burst READ command for any bank is [WL  
+ 1 + BL/2 + RU(tWTR/tCK)].  
NOTE 2 tWTR starts at the rising edge of the clock after the last valid input data.  
121  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Seamless Burst WRITE: WL = 4, BL = 8, tCCD = 4  
T0 ... T4 T5  
T6  
T7  
T8  
T9  
T10  
CK,  
WL = 4  
CA0-0  
Cmd  
WRITE  
tCCD = 4  
NOP  
WRITE  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
DQS,  
DQ  
NOTE 1 The seamless burst WRITE operation is supported by enabling a write command every four clocks for BL = 8 operation.  
This operation is supported for any activated bank.  
122  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Write Data Mask  
On LPDDR3 devices, one write data mask (DM) pin for each data byte (DQ) is supported, consistent with the  
implementation on LPDDR2 SDRAM. Each DM can mask its respective DQ for any given cycle of the burst. Data mask  
timings match data bit timing, but are inputs only. Internal data-mask loading is identical to data-bit loading to ensure  
matched system timing.  
Data Mask Timing  
  
DQS  
DQ  
VIH(AC)  
VIH(DC)  
VIH(AC)  
VIH(DC)  
DM  
VIL(AC)  
VIL(DC)  
VIL(AC)  
VIL(DC)  
tDS  
tDH  
tDS  
tDH  
WRITE Data Mask, Second Data Bit Masked  
  
CK  
tWTR  
tWR  
WRITE  
Cmd  
Case 1: with tDQSSmin  
WL  
tDQSSmin  
0
  
DQS  
DQ  
1
2
3
4
5
6
7
DM  
Case 2: with tDQSSmax  
tDQSSmax  
  
DQS  
0
1
2
3
4
5
6
7
DQ  
DM  
NOTE 1 For the data mask function, BL = 8 is shown; the second data bit is masked.  
123  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
PRECHARGE Operation  
The PRECHARGE command is used to precharge or close a bank that has been activated. The PRECHARGE command  
is initiated with  LOW, CA0 HIGH, CA1 HIGH, CA2 LOW, and CA3 HIGH at the rising edge of the clock. The  
PRECHARGE command can be used to precharge each bank independently or all banks simultaneously. The AB flag  
and the bank address bits BA0, BA1, and BA2 are used to determine which bank(s) to precharge.  
The precharged bank(s) will be available for subsequent row access tRPab after an allbank PRECHARGE command is  
issued, or tRPpb after a single-bank PRECHARGE command is issued.  
To ensure that LPDDR3 devices can meet the instantaneous current demand required to operate, the row-precharge time  
for an all-bank PRECHARGE (tRPab) will be longer than the row PRECHARGE time for a single-bank PRECHARGE  
(tRPpb).  
Bank Selection for PRECHARGE by Address Bits  
Precharged Bank(s)  
AB (CA4r) BA2 (CA9r) BA1 (CA8r) BA0 (CA7r)  
8-bank device  
0
0
0
0
0
0
0
0
1
0
0
0
Bank 0 only  
Bank 1 only  
Bank 2 only  
Bank 3 only  
Bank 4 only  
Bank 5 only  
Bank 6 only  
Bank 7 only  
All Banks  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
1
1
0
1
Don't care  
Don't care  
Don't care  
124  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Burst READ Operation Followed by PRECHARGE  
For the earliest possible precharge, the PRECHARGE command can be issued BL/2 clock cycles after a READ command.  
A new bank ACTIVATE command can be issued to the same bank after the row PRECHARGE time (tRP) has elapsed. A  
PRECHARGE command cannot be issued until after tRAS is satisfied. For LPDDR3 devices, the minimum  
READ-to-PRECHARGE time (tRTP) must also satisfy a minimum analog time from the rising clock edge that initiates the  
last 8-bit prefetch of a READ command. tRTP begins BL/2 4 clock cycles after the READ command.  
Burst READ Followed by PRECHARGE: BL = 8, RU(tRTP(MIN)/tCK) = 2  
T0  
T1  
...  
Tx  
Tx+1  
Tx+2  
Tx+3  
Tx+4  
Tx+5  
  
CK  
RL  
CA0-0  
Cmd  
READ  
NOP  
NOP  
Precharge  
NOP  
NOP  
tRP  
ACTIVATE  
NOP  
NOP  
tRTP  
DQS,  
DQ  
125  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Burst WRITE Followed by PRECHARGE  
For WRITE cycles, a WRITE recovery time (tWR) must be provided before a PRECHARGE command can be issued. This  
delay is referenced from the last valid burst input data to the completion of the burst WRITE. PRECHARGE command  
must not be issued prior to the tWR delay.  
LPDDR3 devices write data to the array in prefetch multiples (prefetch = 8). An internal WRITE operation can only begin  
after a prefetch group has been completely latched, so tWR starts at prefetch boundaries. The minimum  
WRITE-to-PRECHARGE time for commands to the same bank is WL + BL/2 + 1 + RU(tWR/tCK) clock cycles.  
Burst WRITE Followed by PRECHARGE: BL = 8  
T0  
Tx  
Tx+1  
Tx+4  
Tx+5  
Ty  
Ty+1  
Tz  
Tz+1  
  
CK  
WL  
CA0-0  
Cmd  
WRITE  
NOP  
NOP  
NOP  
NOP  
Precharge  
NOP  
ACTIVATE  
NOP  
Case 1: with tDQSSmax  
Completion of Burst Write  
tDQSSmax  
  
DQS  
DQ  
Case 2: with tDQSSmin  
tDQSSmin  
tWR  
tRP  
  
DQS  
DQ  
126  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Auto PRECHARGE Operation  
Before a new row can be opened in an active bank, the active bank must be precharged using either the PRECHARGE  
command or the auto precharge function. When a READ or a WRITE command is issued to the device, the AP bit (CA0f)  
can be set to enable the active bank to automatically begin precharge at the earliest possible moment during the burst  
READ or WRITE cycle.  
If AP is LOW when the READ or WRITE command is issued, then normal READ or WRITE burst operation is executed  
and the bank remains active at the completion of the burst.  
If AP is HIGH when the READ or WRITE command is issued, the auto precharge function is engaged. This feature  
enables the PRECHARGE operation to be partially or completely hidden during burst READ cycles (dependent upon  
READ or WRITE latency) thus improving system performance for random data access.  
127  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Burst READ with Auto PRECHARGE  
If AP (CA0f) is HIGH when a READ command is issued, the READ with auto-precharge function is engaged. LPDDR3  
devices start an auto-precharge operation on the rising edge of the clock BL/2 or BL/2 - 2 + RU(tRTP/tCK) clock cycles  
later than the READ with auto precharge command, whichever is greater.  
Following an auto-precharge operation, an ACTIVATE command can be issued to the same bank if the following two  
conditions are satisfied simultaneously:  
• The RAS precharge time (tRP) has been satisfied from the clock at which the auto-precharge begins.  
The RAS cycle time (tRC) from the previous bank activation has been satisfied.  
Burst READ with Auto Precharge: BL = 8, RU(tRTP(MIN)/tCK) = 4  
T0  
T1  
...  
Tx  
Tx+1  
Tx+2  
Tx+3  
Tx+4  
Tx+5  
  
CK  
RL  
CA0-0  
Cmd  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
tRPpb  
NOP  
ACTIVATE  
tRTP  
DQS,  
DQ  
128  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Burst WRITE with Auto Precharge  
If AP (CA0f ) is HIGH when a WRITE command is issued, the WRITE with auto precharge function is engaged. The  
device starts an auto precharge on the rising edge tWR cycles after the completion of the burst WRITE.  
Following a WRITE with auto precharge, an ACTIVATE command can be issued to the same bank if the following two  
conditions are met:  
• The RAS precharge time (tRP) has been satisfied from the clock at which the autoprecharge begins.  
• The RAS cycle time (tRC) from the previous bank activation has been satisfied.  
Burst WRITE with Auto Precharge: BL = 8  
T0  
Tx  
Tx+1  
...  
Tx+5  
Ty  
Ty+1  
Tz  
Tz+1  
  
CK  
WL  
tWR  
tRPpb  
CA0-0  
Cmd  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVATE  
NOP  
DQS,  
DQ  
129  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
PRECHARGE and Auto Precharge Clarification  
From  
Minimum Delay between "From Command"  
To Command  
Command  
Unit Notes  
to "To Command"  
Precharge (to same Bank as Read)  
BL/2 + max(4, RU(tRTP/tCK)) - 4  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
1
1
Read  
Precharge All  
BL/2 + max(4, RU(tRTP/tCK)) - 4  
Precharge (to same Bank as Read w/AP)  
Precharge All  
BL/2 + max(4, RU(tRTP/tCK)) - 4  
1,2  
1
BL/2 + max(4, RU(tRTP/tCK)) - 4  
Activate (to same Bank as Read w/AP)  
BL/2 + max(4, RU(tRTP/tCK)) - 4 + RU(tRPpb/tCK)  
1
Read w/AP  
Write  
Write or Write w/AP (same bank)  
Write or Write w/AP (different bank)  
Read or Read w/AP (same bank)  
Read or Read w/AP (different bank)  
Precharge (to same Bank as Write)  
Precharge All  
illegal  
3
RL + BL/2 + RU(tDQSCKmax/tCK) - WL + 1  
3
illegal  
3
BL/2  
3
WL + BL/2 + RU(tWR/tCK) + 1  
1
WL + BL/2 + RU(tWR/tCK) + 1  
1
Precharge (to same Bank as Write w/AP)  
Precharge All  
WL + BL/2 + RU(tWR/tCK) + 1  
1,2  
1
WL + BL/2 + RU(tWR/tCK) + 1  
Activate (to same Bank as Write w/AP)  
Write or Write w/AP (same bank)  
Write or Write w/AP (different bank)  
Read or Read w/AP (same bank)  
Read or Read w/AP (different bank)  
Precharge (to same Bank as Precharge)  
Precharge All  
WL + BL/2 + RU(tWR/tCK) + 1 + RU(tRPpb/tCK)  
1
Write w/AP  
Precharge  
illegal  
3
BL/2  
3
illegal  
3
WL + BL/2 + RU(tWTR/tCK) + 1  
3
1
1
1
1
1
1
Precharge  
1
Precharge  
All  
Precharge All  
1
Notes:  
1. For a given bank, the precharge period should be counted from the latest precharge command, either one bank precharge  
or precharge all, issued to that bank. The precharge period is satisfied after tRP depending on the latest precharge command  
issued to that bank.  
2. Any command issued during the minimum delay time as specified above table is illegal.  
3. After Read with AP, seamless read operations to different banks are supported. After Write with AP, seamless write  
operations to different banks are supported. Read w/AP and Write a/AP may not be interrupted or truncated.  
130  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
REFRESH Command  
The REFRESH command is initiated with  LOW, CA0 LOW, CA1 LOW, and CA2 HIGH at the rising edge of the clock.  
Per-bank REFRESH is initiated with CA3 LOW at the rising edge of the clock. All-bank REFRESH is initiated with CA3  
HIGH at the rising edge of the clock.  
A per-bank REFRESH command (REFpb) performs a per-bank REFRESH operation to the bank scheduled by the bank  
counter in the memory device. The bank sequence for per-bank REFRESH is fixed to be a sequential round-robin:  
0-1-2-3-4-5-6-7-0-1-.... The bank count is synchronized between the controller and the SDRAM by resetting the bank  
count to zero. Synchronization can occur upon issuing a RESET command or at every exit from self refresh. Bank  
addressing for the per-bank REFRESH count is the same as established for the single-bank PRECHARGE command. A  
bank must be idle before it can be refreshed. The controller must track the bank being refreshed by the per-bank  
REFRESH command.  
The REFpb command must not be issued to the device until the following conditions are met:  
tRFCab has been satisfied after the prior REFab command  
tRFCpb has been satisfied after the prior REFpb command  
tRP has been satisfied after the prior PRECHARGE command to that bank  
tRRD has been satisfied after the prior ACTIVATE command (if applicable, for example after activating a row in a  
different bank than the one affected by the REFpb command).  
The target bank is inaccessible during per-bank REFRESH cycle time (tRFCpb), however, other banks within the device  
are accessible and can be addressed during the cycle.During the REFpb operation, any of the banks other than the one  
being refreshed can be maintained in an active state or accessed by a READ or a WRITE command. When the per-bank  
REFRESH cycle has completed, the affected bank will be in the idle state.  
After issuing REFpb, these conditions must be met:  
tRFCpb must be satisfied before issuing a REFab command  
tRFCpb must be satisfied before issuing an ACTIVATE command to the same bank  
tRRD must be satisfied before issuing an ACTIVATE command to a different bank  
tRFCpb must be satisfied before issuing another REFpb command.  
An all-bank REFRESH command (REFab) issues a REFRESH command to all banks. All banks must be idle when  
REFab is issued (for instance, by issuing a PRECHARGE-all command prior to issuing an all-bank REFRESH command).  
REFab also synchronizes the bank count between the controller and the SDRAM to zero. The REFab command must not  
be issued to the device until the following conditions have been met:  
tRFCab has been satisfied following the prior REFab command  
tRFCpb has been satisfied following the prior REFpb command  
tRP has been satisfied following the prior PRECHARGE commands.  
When an all-bank refresh cycle has completed, all banks will be idle. After issuing REFab:  
tRFCab latency must be satisfied before issuing an ACTIVATE command  
tRFCab latency must be satisfied before issuing a REFab or REFpb command.  
131  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
REFRESH Command Scheduling Separation Requirements  
Symbol  
minimum delay from  
to  
Notes  
REFab  
tRFCab  
REFab  
Activate cmd to any bank  
REFpb  
REFab  
Activate cmd to same bank as REFpb  
REFpb  
tRFCpb  
tRRD  
REFpb  
REFpb  
Activate  
REFpb affecting an idle bank (different bank than Activate)  
Activate cmd to different bank than prior Activate  
1
ACTIVATE  
NOTE 1 A bank must be in the idle state before it is refreshed, so following an ACTIVATE command REFab is prohibited; REFpb  
is supported only if it affects a bank that is in the idle state.  
In general, an all bank refresh command needs to be issued to the LPDDR3 SDRAM regularly every tREFI interval. To  
allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is  
provided for postponing and pulling-in refresh command. A maximum of 8 Refresh commands can be postponed during  
operation of the LPDDR3 SDRAM, meaning that at no point in time more than a total of 8 Refresh commands are allowed  
to be postponed. In case that 8 Refresh commands are postponed in a row, the resulting maximum interval between the  
surrounding Refresh commands is limited to 9 × tREFI. A maximum of 8 additional Refresh commands can be issued in  
advance (“pulled in”) , with each one reducing the number of regular Refresh commands required later by one. Note that  
pulling in more than 8, depending on Refresh mode, Refresh commands in advance does not further reduce the number  
of regular Refresh commands required later, so that the resulting maximum interval between two surrounding Refresh  
commands is limited to 9 × tREFI . At any given time, a maximum of 16 REF commands can be issued within 2 x tREFI  
And for per bank refresh, a maximum 8 x 8 per bank refresh commands can be postponed or pulled in for scheduling  
efficiency. At any given time, a maximum of 2 x 8 x 8 per bank refresh commands can be issued within 2 x tREFI.  
Refresh Command Timing  
NOTE 1 Only NOP commands allowed after Refresh command registered untill tRFC(min) expires.  
NOTE 2 Time interval between two Refresh commands may be extended to a maximum of 9 X tREFI.  
132  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Postponing Refresh Commands  
Pulling-in Refresh Commands  
133  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
REFRESH Requirements  
1. Minimum number of REFRESH commands  
LPDDR3 requires a minimum number, R, of REFRESH (REFab) commands within any rolling refresh window (tREFW  
= 32 ms @ MR4[2:0] = 011 or TC 85°C). For actual values per density, and the resulting average refresh interval  
(tREFI). For tREFW and tREFI refresh multipliers at different MR4 settings.  
When using per-bank REFRESH, a REFab command can be replaced by a full cycle of eight REFpb commands.  
2. REFRESH Requirements and SELF REFRESH  
Self refresh mode may be entered with a maximum of eight refresh commands being postponed. After exiting  
selfrefresh mode with one or more refresh commands postponed, additional refresh commands may be postponed to  
the extent that the total number of postponed refresh commands (before and after the self refresh) will never exceed  
eight. During self-refresh mode, the number of postponed or pulled-in REF commands does not change.  
“The use of self refresh mode introduces the possibility that an internally timed refresh event can be missed when CKE  
is raised for exit from self refresh mode. Upon exit from self refresh, the LPDDR3 SDRAM requires a minimum of one  
extra refresh command before it is put back into self refresh mode.”  
All-Bank REFRESH Operation  
T0  
T1  
T2  
T3  
T4  
Tx  
Tx+1  
Ty  
Ty+1  
  
CK  
CA0-9  
Cmd  
Precharge  
NOP  
tRPab  
NOP  
REFab  
NOP  
REFab  
NOP  
tRFCab  
Valid  
NOP  
tRFCab  
Per-Bank REFRESH Operation  
T0 T1 T2  
T3  
T4  
Tx  
Tx+1  
Ty  
Ty+1  
  
CK  
Bank1 RowA  
RowA  
CA0-9  
Cmd Precharge  
NOP  
tRPab  
NOP  
REFpb  
NOP  
REFpb  
NOP  
tRFCpb  
ACTIVATE  
NOP  
tRFCpb  
Refresh to Bank 0  
Refresh to Bank 1  
Activate command to Bank 1  
NOTE 1 In the beginning of this example, the REFpb bank is pointing to bank 0.  
NOTE 2 Operations to banks other than the bank being refreshed are supported during the tRFCpb period.  
134  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
SELF REFRESH Operation  
The SELF REFRESH command can be used to retain data in the array, even if the rest of the system is powered down.  
When in the self refresh mode, the device retains data without external clocking. The device has a built-in timer to  
accommodate SELF REFRESH operation. The SELF REFRESH command is executed by taking CKE LOW,  LOW,  
CA0 LOW, CA1 LOW, and CA2 HIGH at the rising edge of the clock. CKE must be HIGH during the clock cycle preceding  
a SELF REFRESH command. To ensure that there is enough time to account for internal delay on the CKE signal path,  
two NOP commands are reuired after CKE is driven LOW, this timing period is defined as tCPDED. CKE LOW will result  
in deactivation of input receivers after tCPDED has expired. After the power-down command is registered, CKE must be  
held LOW to keep the device in self refresh mode.  
LPDDR3 devices can operate in self refresh mode in both the standard and elevated temperature ranges. These devices  
also manage self refresh power consumption when the operating temperature changes, resulting in the lowest possible  
power consumption across the operating temperature range.  
Once the SDRAM has entered Self Refresh mode, all of the external signals except CKE, are “don’t care”. For proper self  
refresh operation, power supply pins (VDD1, VDD2, and VDDCA) must be at valid levels. VDDQ may be turned off during  
Self-Refresh. Prior to exiting Self-Refresh, VDDQ must be within specified limits. VrefDQ and VrefCA may be at any level  
within minimum and maximum levels (see Absolute Maximum DC Ratings). However prior to exiting Self-Refresh,  
VrefDQ and VrefCA must be within specified limits (see Recommended DC Operating Conditions). The SDRAM initiates  
a minimum of one all-bank refresh command internally within tCKESR period once it enters Self Refresh mode. The clock  
is internally disabled during Self Refresh Operation to save power. The minimum time that the SDRAM must remain in  
Self Refresh mode is tCKESR,min. The user may change the external clock frequency or halt the external clock tCPDED  
after Self Refresh entry is registered; however, the clock must be restarted and stable before the device can exit Self  
Refresh operation.  
The procedure for exiting Self Refresh requires a sequence of commands. First, the clock shall be stable and within  
specified limits for a minimum of 2 tCK prior to the positive clock edge that registers CKE HIGH. Once Self Refresh Exit is  
registered, a delay of at least tXSR must be satisfied before a valid command can be issued to the device to allow for any  
internal refresh in progress. CKE must remain HIGH for the entire Self Refresh exit period tXSR for proper operation.  
NOP commands must be registered on each positive clock edge during the Self Refresh exit interval tXSR. For the  
description of ODT operation and specifications during self-refresh entry and exit, see section On-Die Termination.  
The use of Self Refresh mode introduces the possibility that an internally timed refresh event can be missed when CKE is  
raised for exit from Self Refresh mode. Upon exit from Self Refresh, it is required that at least one REFRESH command  
(8 per-bank or 1 all-bank) is issued before entry into a subsequent Self Refresh.  
135  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Self Refresh Operation  
2 x tCK(min)  
  
CK  
tIHCKE tCPDED  
tIHCKE  
Input clock frequency may be changed or the  
input clock stopped during Self-Refresh.  
CKE  
tISCKE  
tISCKE  
  
tXSR(min)  
Exit  
tCKESR(min)  
Enter  
SR  
Valid  
NOP NOP  
NOP N P Valid  
Cmd  
SR  
Enter Self-Refresh  
Exit Self-Refresh  
NOTE 1 Input clock frequency can be changed or stopped during self refresh, provided that upon exiting self-refresh, a  
minimum of 2 cycles of stable clocks are provided, and the clock frequency is between the minimum and maximum  
frequencies for the particular speed grade.  
NOTE 2 The device must be in the all-banks-idle state prior to entering self refresh mode.  
NOTE 3 tXSR begins at the rising edge of the clock after CKE is driven HIGH.  
NOTE 4 A valid command can be issued only after tXSR is satisfied. NOPs must be issued during tXSR.  
136  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Partial-Array Self Refresh: Bank Masking  
LPDDR3 SDRAMs are comprised of 8 banks. Each bank can be configured independently whether a self refresh  
operation is taking place. One 8-bit mode register (accessible via the MRW command) is assigned to program the  
bankmasking status of each bank up to 8 banks.  
The mask bit to the bank enables or disables a refresh operation of the entire memory space within the bank. If a bank is  
masked using the bank mask register, a REFRESH operation to the entire bank is blocked and bank data retention is not  
guaranteed in self refresh mode. To enable a REFRESH operation to a bank, the corresponding bank mask bit must be  
programmed as “unmasked.” When a bank mask bit is unmasked, the array space being refreshed within that bank is  
determined by the programmed status of the segment mask bits. bits, which is decribed in the following pages.  
Partial-Array Self Refresh: Segment Masking  
Programming segment mask bits is similar to programming bank mask bits. Eight segments are used for masking. A  
mode register is used for programming segment mask bits up to 8 bits.  
When the mask bit to an address range (represented as a segment) is programmed as “masked,” a REFRESH operation  
to that segment is blocked. Conversely, when a segment mask bit to an address range is unmasked, refresh to that  
segment is enabled.  
A segment-masking scheme can be used in place of or in combination with a bankmasking scheme. Each  
segment-mask bit setting is applied across all banks. Programming of bits in the reserved registers has no effect on the  
device operation.  
Segment Mask  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
(MR17)  
Bank Mask  
(MR16)  
0
1
0
0
0
0
0
1
Segment 0  
Segment 1  
Segment 2  
Segment 3  
Segment 4  
Segment 5  
Segment 6  
Segment 7  
0
0
1
0
0
0
0
1
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
NOTE 1 This table illustrates an example of an 8-bank LPDDR3 device, when a refresh operation to bank 1 and bank 7, as well  
as segment 2 and segment 7 are masked.  
137  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MODE REGISTER READ (MRR)  
The MRR command is used to read configuration and status data from SDRAM mode registers. The MRR command is  
initiated with  LOW, CA0 LOW, CA1 LOW, CA2 LOW, and CA3 HIGH at the rising edge of the clock. The mode  
register is selected by CA1fCA0f and CA9rCA4r. The mode register contents are available on the first data beat of  
DQ[7:0] after RL × tCK + tDQSCK + tDQSQ following the rising edge of the clock where MRR is issued. Subsequent data  
beats contain valid but undefined content, except in the case of the DQ calibration function, where subsequent data beats  
contain valid content as described. All DQS are toggled for the duration of the mode register READ burst.  
The MRR command has a burst length of eight. MRR operation (consisting of the MRR command and the corresponding  
data traffic) must not be interrupted. The MRR command period is defined as tMRR.  
T0  
...  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
  
CK  
CA0-9  
Cmd  
MRR1  
NOP2  
MRR1  
NOP2  
tMRR=4  
NOP2  
NOP2  
Valid  
Valid  
Valid  
tMRR=4  
  
DQS  
RL=8  
DQ[7:0]3  
DQ[max:8]  
NOTE 1 MRRs to DQ calibration registers MR32 and MR40 are described in “DQ Calibration” .  
NOTE 2 Only the NOP command is supported during tMRR.  
NOTE 3 Mode register data is valid only on DQ[7:0] on the first beat. Subsequent beats contain valid but undefined data.  
DQ[MAX:8] contain valid but undefined data for the duration of the MRR burst.  
NOTE 4 Minimum Mode Register Read to write latency is RL + RU(tDQSCKmax/tCK) + 8/2 + 1 - WL clock cycles.  
NOTE 5 Minimum Mode Register Read to Mode Register Write latency is RL + RU(tDQSCKmax/tCK) + 8/2 + 1clock cycles.  
NOTE 6 In this example, RL = 8 for illustration purposes only. After a prior READ command, the MRR command must not be issued  
earlier than BL/2 clock cycles, or WL + 1 + BL/2 + RU(tWTR/tCK) clock cycles after a prior WRITE command, as READ bursts  
and WRITE bursts must not be truncated by MRR.  
138  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
READ to MRR Timing  
NOTE 1 The minimum number of clock cycles from the burst READ command to the MRR command is BL/2.  
NOTE 2 Only the NOP command is supported during tMRR.  
After a prior READ command, the MRR command must not be issued earlier than BL/2 clock cycles, or WL + 1 + BL/2 +  
RU(tWTR/tCK) clock cycles after a prior WRITE command, as READ bursts and WRITE bursts must not be truncated by  
MRR.  
Burst WRITE Followed by MRR  
T0  
Tx  
Tx+1  
...  
Tx+5  
Tx+6  
Tx+7  
Tx+8  
Tx+9  
  
CK  
WL  
RL  
CA0-9  
Cmd  
Write  
Valid  
MRR1  
NOP2  
tMRR  
NOP2  
tWTR  
  
DQS  
DQ  
NOTE 1 The minimum number of clock cycles from the burst WRITE command to the MRR command is [WL + 1 + BL/2 +  
RU(tWTR/tCK)].  
NOTE 2 Only the NOP command is supported during tMRR.  
139  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MRR Following Idle Power-Down State  
Following the idle power-down state, an additional time, tMRRI, is required prior to issuing the mode register read (MRR)  
command. This additional time (equivalent to tRCD) is required in order to be able to maximize power-down current  
savings by allowing more power-up time fo rthe MRR data path after exit from the idle power-down state.  
NOTE 1 Any valid command except MRR.  
140  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Temperature Sensor  
LPDDR3 devices feature a temperature sensor whose status can be read from MR4. This sensor can be used to  
determine an appropriate refresh rate, determine whether AC timing derating is required in the elevated temperature  
range, and/or monitor the operating temperature. Either the temperature sensor or the device operating temperature can  
be used to determine if operating temperature requirements are being met.  
Temperature sensor data can be read from MR4 using the Mode Register Read protocol. Upon exiting self-refresh or  
power-down, the device temperature status bits will be no older than tTSI.  
When using the temperature sensor, the actual device case temperature may be higher than the operating temperature  
specification that applies for the standard or extended temperature ranges. For example, TCASE could be above 85°C  
when MR4[2:0] equals 011B. LPDDR3 devices shall allow for 2oC temperature margin between the point at which the  
device updates the MR4 value and the point at which the controller re-configures the system accordingly. In the case of  
tight thermal coupling of the memory device to external hot spots, the maximum device temperature might be higher than  
what is indicated by MR4.  
To assure proper operation using the temperature sensor, applications should consider the following specifications.  
Edge  
Parameter  
Symbol  
Value  
Unit  
Notes  
Maximum temperature gradient experienced by  
the memory device at the temperature of interest  
over a range of 2°C.  
System Temperature Gradient  
Max System Dependent oC/s  
Max System Dependent ms  
TempGradient  
MR4 Read Interval  
ReadInterval  
tTSI  
Time period between MR4 READs from the system.  
Maximum delay between internal updates of MR4.  
Temperature Sensor Interval  
Max  
32  
ms  
Maximum response time from an MR4 READ to the  
system response.  
System Response Delay  
Max System Dependent ms  
SysRespDelay  
TempMargin  
Margin above maximum temperature to support  
controller response.  
Device Temperature Margin  
Max  
2
oC  
These devices accommodate the temperature margin between the point at which the device temperature enters the  
elevated temperature range and point at which the controller re-configures the system accordingly. To determine the  
required MR4 polling frequency, the system must use the maximum TempGradient and the maximum response time of  
the system using the following equation:  
TempGradient × (ReadInterval + tTSI + SysRespDelay) C  
For example, if TempGradient is 10°C/s and the SysRespDelay is 1ms:  
10oC/s x (ReadInterval + 32ms + 1ms) <= 2oC  
In this case, ReadInterval must not exceed 167ms.  
141  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Temperature Sensor Timing  
Temp  
< (tTSI + ReadInterval + SysRespDelay)  
Device  
Temp  
Margin  
TempGradient  
2oC  
MR4  
Trip Level  
tTSI  
MR4 = 0x03 MR4 = 0x86  
MR4 = 0x86  
MR4 = 0x86 MR4 = 0x86 MR4 = 0x06  
Time  
Temperature  
Sensor Update  
SysRespDelay  
ReadInterval  
Host MR4 Read  
MRR MR4 = 0x03  
MRR MR4 = 0x86  
142  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
DQ Calibration  
LPDDR3 devices feature a DQ calibration function that outputs one of two predefined system-timing calibration patterns.  
An MRR operation to MR32 (pattern A) or an MRR operation to MR40 (pattern B) will return the specified pattern on DQ0  
and DQ8; and on DQ0, DQ8, DQ16, and DQ24 for x32 devices. For x16 devices, DQ[7:1] and DQ[15:9] drive the same  
information as DQ0 during the MRR burst. For x32 devices, DQ[7:1], DQ[15:9], DQ[23:17], and DQ[31:25] drive the same  
information as DQ0 during the MRR burst. MRR DQ calibration commands can occur only from the idle state.  
Data Calibration Pattern Description  
Bit Time Bit Time Bit Time Bit Time Bit Time Bit Time Bit Time Bit Time  
Pattern  
MR#  
0
1
2
3
4
5
6
7
Pattern A  
Pattern B  
MR32  
MR40  
1
0
1
0
1
0
1
0
0
0
1
1
0
0
1
1
143  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Mode Register Write (MRW) Command  
The Mode Register Write (MRW) command is used to write configuration data to mode registers. The MRW command is  
initiated with  LOW, CA0 LOW, CA1 LOW, CA2 LOW, and CA3 LOW at the rising edge of the clock. The mode register  
is selected by CA1f-CA0f, CA9r-CA4r. The data to be written to the mode register is contained in CA9f-CA2f. The MRW  
command period is defined by tMRW. Mode register WRITEs to read-only registers have no impact on the functionality of  
the device.  
MODE REGISTER WRITE Timing  
T0  
T1  
T2  
Tx  
Tx + 1  
Tx + 2  
Ty  
Ty + 1  
Ty + 2  
  
CK  
CA0-9  
Cmd  
tMRW  
tMRW  
NOP2  
MRW  
NOP2  
NOP2  
MRW  
NOP2  
Valid  
NOTE 1 At time Ty, the device is in the idle state.  
NOTE 2 Only the NOP command is supported during tMRW.  
MRW  
MRW can only be issued when all banks are in the idle precharge state. One method of ensuring that the banks are in this  
state is to issue a PRECHARGE-ALL command.  
Truth Table for MRR and MRW  
Current State  
Command  
MRR  
Intermediate State  
Mode Register Reading (All Banks idle)  
Mode Register Writing (All Banks idle)  
Restting (Device Auto-Init)  
Mode Register Reading (Bank(s) idle)  
Not Allowed  
Next State  
All Banks idle  
All Banks idle  
All Banks idle  
Bank(s) Active  
Not Allowed  
Not Allowed  
All Banks idle  
MRW  
MRW (Reset)  
MRR  
Bank(s) Active  
MRW  
MRW (Reset)  
Not Allowed  
144  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Mode Register Write Reset (MRW Reset)  
The MRW RESET command brings the device to the device auto-initialization (resetting) state in the power-on  
initialization sequence (see “Voltage Ramp and Device Initialization”). The MRW RESET command can be issued from  
the idle state. This command resets all mode registers to their default values. After MRW RESET, boot timings must be  
observed until the device initialization sequence is complete and the device is in the idle state. Array data is undefined  
after the MRW RESET command.  
If the initialization is to be performed at-speed (greater than the recommended boot clock frequency), then CA Training  
may be necessary to ensure setup and hold timings. Since the MRW RESET command is required prior to CA Training,  
an alternate MRW RESET command with an op-code of 0xFCh should be used. This encoding ensures that no transitions  
occur on the CA bus. Prior to CA Training, it is recommended to hold the CA bus stable for one cycle prior to, and one  
cycle after, the issuance of the MRW RESET command to ensure setup and hold timings on the CA bus.  
NOTE 1 Optional MRW RESET command and optional  assertion are allowed, When optional MRW RESET command is  
used, tINIT4 starts at Td’.  
145  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MRW ZQ Calibration Command  
The MRW command is used to initiate the ZQ calibration command. This command is used to calibrate the output driver  
impedance across process, temperature, and voltage. LPDDR3 devices support ZQ calibration.  
There are four ZQ calibration commands and related timings: tZQINIT, tZQRESET, tZQCL, and tZQCS. tZQINIT is for  
initialization calibration; tZQRESET is for resetting ZQ to the default output impedance; tZQCL is for long calibration(s);  
and tZQCS is for short calibration(s). See calibration command-code definitions.  
The initialization ZQ calibration (ZQINIT) must be performed for LPDDR3. ZQINIT provides an output impedance  
accuracy of ±15 percent. After initialization, the ZQ calibration long (ZQCL) can be used to recalibrate the system to an  
output impedance accuracy of ±15 percent. A ZQ calibration short (ZQCS) can be used periodically to compensate for  
temperature and voltage drift in the system.  
The ZQ reset command (ZQRESET) resets the output impedance calibration to a default accuracy of ±30% across  
process, voltage, and temperature. This command is used to ensure output impedance accuracy to ±30% when ZQCS  
and ZQCL commands are not used.  
One ZQCS command can effectively correct at least 1.5% (ZQ correction) of output impedance errors within tZQCS for all  
speed bins, assuming the maximum sensitivities specified are met. The appropriate interval between ZQCS commands  
can be determined from using these tables and system-specific parameters.  
LPDDR3 devices are subject to temperature drift rate (TdriftrateE) and voltage drift rate (Vdriftrate) in various applications.  
To accommodate drift rates and calculate the necessary interval between ZQCS commands, apply the following formula:  
ZQCorrection  
=
CalibrationInterval  
(TSens x Tdriftrate) + (VSens x Vdriftrate)  
Where Tsens = MAX (dRONdT) and Vsens = MAX (dRONdV) define temperature and voltage sensitivities.  
For example, if Tsens = 0.75%/°C, Vsens = 0.20%/mV, Tdriftrate = 1°C/sec, and  
Vdriftrate = 15mV/sec, then the interval between ZQCS commands is calculated as:  
1.5  
=
0.4s  
(0.75 x 1) + (0.20 x 15)  
A ZQ calibration command can only be issued when the device is in the idle state with all banks precharged. ODT shall be  
disabled via the mode register or the ODT pin prior to issuing a ZQ calibration command. No other activities can be  
performed on the data bus and the data bus shall be un-terminated during calibration periods (tZQINIT, tZQCL, or tZQCS).  
The quiet time on the data bus helps to accurately calibrate output impedance. There is no required quiet time after the  
ZQ RESET command. If multiple devices share a single ZQ resistor, only one device can be calibrating at any given time.  
After calibration is complete, the ZQ ball circuitry is disabled to reduce power consumption. In systems sharing a ZQ  
resistor between devices, the controller must prevent tZQINIT, tZQCS, and tZQCL overlap between the devices. ZQ  
RESET overlap is acceptable.  
146  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
ZQ Timings  
T0  
T1  
T2  
T3  
T4  
T5  
Tx  
Tx + 1  
Tx + 2  
  
CK  
CA0-9  
tZQINIT  
tZQINIT  
MRW  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
Cmd  
tZQCS  
tZQCS  
NOP  
Cmd  
MRW  
MRW  
MRW  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
Valid  
Valid  
tZQCL  
tZQCL  
NOP  
Cmd  
tZQRESET  
tZQRESET  
NOP  
Cmd  
NOTE 1 Only the NOP command is supported during ZQ calibration.  
NOTE 2 CKE must be registered HIGH continuously during the calibration period.  
NOTE 3 All devices connected to the DQ bus should be High-Z during the calibration process.  
ZQ External Resistor Value, Tolerance, and Capacitive Loading  
To use the ZQ calibration function, a RZQ±1% tolerance external resistor must be connected between the ZQ pin and  
ground. A single resistor can be used for each device or one resistor can be shared between multiple devices if the ZQ  
calibration timings for each device do not overlap. The total capacitive loading on the ZQ pin must be limited.  
147  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MRW - CA Training Mode  
Because CA inputs operate as double data rate, it may be difficult for memory controller to satisfy CA input setup/hold  
timings at higher frequency. A CA Training mechanism is provided.  
CA Training Sequence  
1. CA Training mode entry: Mode Register Write to MR41  
2. CA Training session: Calibrate CA0, CA1, CA2, CA3, CA5, CA6, CA7 and CA8  
3. CA to DQ mapping change: Mode Register Write to MR48  
4. Additional CA Training session: Calibrate remaining CA pins (CA4 and CA9)  
5. CA Training mode exit: Mode Register Write to MR42  
CA Training Timing  
CK  
  
MRW  
#42  
(CA Cal  
Exit)  
MRW  
MRW  
MRW  
#41, #48 #41,#48 #41,#48  
(Optional  
4
4
)
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP  
NOP  
NOP NOP  
)
(CA Cal  
Entry)  
(Optional  
Cmd  
CA CA  
CAx CAx  
R#  
CAy CAy  
CA CA  
CA0-9  
R
R
R#  
  
CKE  
tCACKEL  
tCAMRD  
tCAENT  
tCACD  
tADR  
tADR  
tCACKEH  
tCAEXT  
tMRZ  
CAx  
R
CAy  
R
Even DQ  
Odd DQ  
CAx  
R#  
CAy  
R#  
NOTE 1 Unused DQ must be valid HIGH or LOW during data output period. Unused DQ may transition at the same time as the active DQ. DQS  
must remain static and not transition.  
NOTE 2 CA to DQ mapping change via MR 48 omitted here for clarity of the timing diagram. Both MR41 and MR48 training sequences must be  
completed before exiting the training mode (MR42). To enable a CA to DQ mapping change, CKE must be driven HIGH prior to issuance of  
the MRW 48 command. For details, please refer to CA Training Sequence section.  
NOTE 3 Because data out control is asynchronous and will be an analog delay from when all the CA data is available, tADR and tMRZ are defined  
from CK falling edge.  
NOTE 4 It is recommended to hold the CA bus stable for one cycle prior to and one cycle after the issuance of the MRW CA Training Entry  
Command to ensure setup and hold timings on the CA bus.  
NOTE 5 Clock phase may be adjusted in CA training mode while  is high and CKE is low resulting in an irregular clock with shorter/longer periods  
and pulse widths.  
NOTE 6 Optional MRW 41, 48, 42 command and CA calibration command are allowed. To complement these optional commands, optional   
assertions are also allowed. All timing must comprehend these optional  assertions:  
a) tADR starts at the falling clock edge after the last registered  assertion.  
b) tCACD, tCACKEL, tCAMRD start with the rising clock edge of the last  assertion.  
c) tCAENT, tCAEXT need to be met by the first  assertion.  
d) tMRZ will be met after the falling clock edge following the first  assertion with exit (MRW#42) command.  
148  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
The LPDDR3 SDRAM may not properly recognize a Mode Register Write command at normal operation frequency before  
CA Training is finished. Special encodings are provided for CA Training mode enable/disable. MR41 and MR42  
encodings are selected so that rising edge and falling edge values are the same. The LPDDR3 SDRAM will recognize  
MR41 and MR42 at normal operation frequency even before CA timing adjustments have been made. Calibration data  
will be output through DQ pins. CA to DQ mapping is described in below table.  
After timing calibration with MR41 is finished, users will issue MRW to MR48 and calibrate remaining CA pins (CA4 and  
CA9) using (DQ0/DQ1and DQ8/DQ9) as calibration data output pins.  
CA Training mode enable ( MR41(29H, 0010 1001b), OP=A4H(1010 0100b) )  
Clock edge  
CK rising edge  
CK falling edge  
CA0  
CA1  
CA2  
CA3  
CA4  
H
CA5  
CA6  
CA7  
H
CA8  
CA9  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
CA Training mode disable (MR42(2AH,0010 1010b),OP=A8H(1010 1000b) )  
Clock edge  
CK rising edge  
CK falling edge  
CA0  
CA1  
CA2  
CA3  
CA4  
CA5  
H
CA6  
CA7  
H
CA8  
CA9  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
CA to DQ mapping (CA Training mode enabled with MR41)  
Clock edge  
CK rising edge  
CK falling edge  
CA0  
DQ0  
DQ1  
CA1  
DQ2  
DQ3  
CA2  
DQ4  
DQ5  
CA3  
DQ6  
DQ7  
CA5  
DQ8  
DQ9  
CA6  
DQ10  
DQ11  
CA7  
DQ12  
DQ13  
CA8  
DQ14  
DQ15  
CA Training mode enable ( MR48(30H, 0011 0000b), OP=C0H(1100 0000b) )  
Clock edge  
CK rising edge  
CK falling edge  
CA0  
CA1  
CA2  
CA3  
CA4  
CA5  
CA6  
CA7  
CA8  
H
CA9  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
CA to DQ mapping (CA Training mode is enabled with MR48)  
Clock edge  
CK rising edge  
CK falling edge  
CA4  
DQ0  
DQ1  
CA9  
DQ8  
DQ9  
NOTE 1 Other DQs must have valid output (either HIGH or LOW).  
149  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
MRW - Write Leveling Mode  
In order to provide for improved signal integrity performance, the LPDDR3 SDRAM provides a write leveling feature to  
compensate for timing skew, affecting timing parameters such as tDQSS, tDSS, and tDSH.  
The memory controller uses the write leveling feature to receive feedback from the SDRAM allowing it to adjust the clock  
to data strobe signal relationship for each DQS/ signal pair. The memory controller performing the leveling must have  
adjustable delay setting on DQS/ signal pair to align the rising edge of DQS signals with that of the clock signal at the  
DRAM pin. The DRAM asynchronously feeds back CLK, sampled with the rising edge of DQS signals. The controller  
repeatedly delays DQS signals until a transition from 0 to 1 is detected. The DQS signals delay established through this  
exercise ensures the tDQSS specification can be met.  
All data bits carry the leveling feedback to the controller (DQ[15:0] for x16 configuration, DQ[31:0] for x32 configuration).  
All DQS signals must be leveled independently.  
The LPDDR3 SDRAM enters into write leveling mode when mode register MR2[7] is set HIGH. When entering write  
leveling mode, the state of the DQ pins is undefined. During write leveling mode, only NOP commands are allowed, or  
MRW command to exit write leveling operation. Upon completion of the write leveling operation, the DRAM exits from  
write leveling mode when MR2[7] is reset LOW.  
The controller will drive DQS LOW and  HIGH after a delay of tWLDQSEN. After time tWLMRD, the controller  
provides DQS signal input which is used by the DRAM to sample the clock signal driven from the controller. The delay  
time tWLMRD(max) is controller dependent. The DRAM samples the clock input with the rising edge of DQS and provides  
asynchronous feedback on all the DQ bits after time tWLO. The controller samples this information and either increment  
or decrement the DQS and/or  delay settings and launches the next DQS/ pulse. The sample time and trigger  
time is controller dependent. Once the following DQ/ transition is sampled, the controller locks the strobe delay  
settings, and write leveling is achieved for the device.  
Write Leveling Timing  
tWLS tWLH  
tWLS tWLH  
  
CK  
CA CA  
MRW  
CA CA  
CA0-9  
Cmd  
NOP NOP NOP NOP NOP NOP NOP NOP NOP MRW NOP NOP NOP  
NOP  
tWLDQSEN  
  
DQS  
DQ  
tWLMRD  
tWLO  
tDQSH tDQSL  
tWLO  
tMRD  
150  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
On-Die Termination  
ODT (On-Die Termination) is a feature of the LPDDR3 SDRAM that allows the DRAM to turn on/off termination resistance  
for each DQ, DQS/ and DM signal via the ODT control pin. The ODT feature is designed to improve signal integrity of  
the memory channel by allowing the DRAM controller to independently turn on/off termination resistance for any or all  
DRAM devices. The ODT pin directly controls ODT operation and is not sampled by the clock.  
The ODT feature is turned off and not supported in self-refresh and deep power down modes. The DRAM will also disable  
termination during read operations. ODT operation can optionally be enabled during power down mode via a mode  
register.  
ODT  
VDDQ  
To other  
RTT  
Switch  
circuitry  
like  
RCV, ...  
DQ, DQS, DM  
The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other mode register control  
information. The value of RTT is determined by the settings of mode register bits.  
ODT Mode Register  
The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other mode register control  
information. The value of RTT is determined by the settings of Mode Register bits. The ODT pin will be ignored if the  
Mode Register MR11 is programmed to disable ODT, in self-refresh, in deep power down, in CKE power down (mode  
register option) and during read operations.  
Asynchronous ODT  
When enabled, the ODT feature is controlled asynchronously based on the status of the ODT pin. ODT is off under any of  
the following conditions:  
ODT is disabled through MR11[1:0]  
DRAM is performing a read operation (RD or MRR)  
DRAM is in power down mode and MR11[2] is zero  
DRAM is in self-refresh or deep power down modes.  
DRAM is in CA Training Mode.  
In asynchronous ODT mode, the following timing parameters apply when ODT operation is controlled by the ODT pin:  
tODToff,min,max, tODTon,min,max.  
Minimum RTT turn-on time (tODTon,min) is the point in time when the device termination circuit leaves high impedance  
state and ODT resistance begins to turn on. Maximum RTT turn on time (tODTon,max) is the point in time when the ODT  
resistance is fully on. tODTon,min and tODTon,max are measured from ODT pin high.  
Minimum RTT turn-off time (tODToff,min) is the point in time when the device termination circuit starts to turn off the ODT  
151  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
resistance. Maximum ODT turn off time (tODToff,max) is the point in time when the on-die termination has reached high  
impedance. tODToff,min and tODToff,max are measured from ODT pin low.  
ODT During Read Operations (RD or MRR)  
During read operations, LPDDR3 SDRAM will disable termination and disable ODT control through the ODT pin. After  
read operations are completed, ODT control is resumed through the ODT pin (if ODT mode is enabled).  
ODT During Power Down  
When MR11 OP<2> is zero, termination control through the ODT pin will be disabled when the DRAM enters CKE power  
down. After a power down command is registered, termination will be disabled within a time window specified by  
tODTd,min,max. After a power down exit command is registered, termination will be enabled within a time window  
specified by tODTe,min,max.  
Minimum RTT disable time (tODTd,min) is the point in time when the device termination circuit is no longer be controlled  
by the ODT pin. Maximum ODT disable time (tODTd,max) is the point in time when the on-die termination will be in high  
impedance.  
Minimum RTT enable time (tODTe,min) is the point in time when the device termination circuit will no longer be in high  
impedance. The ODT pin shall control the device termination circuit after maximum ODT enable time  
(tODTe,max) is satisfied. When MR11[2] is enabled and MR11[1:0] are non zero, ODT operation is supported during CKE  
power down with ODT control through the ODT pin.  
ODT During Self Refresh  
LPDDR3 SDRAM disables the ODT function during self refresh. After a self refresh command is registered, termination  
will be disabled within a time window specified by tODTd,min,max. After a self refresh exit command is registered,  
termination will be enabled within a time window specified by tODTe,min,max.  
ODT During Deep Power Down  
LPDDR3 SDRAM disables the ODT function during deep power down. After a deep power down command is registered,  
termination will be disabled within a time window specified by tODTd,min,max.  
ODT During CA Training and Write Leveling  
During CA Training Mode, LPDDR3 SDRAM will disable on-die termination and ignore the state of the ODT control pin.  
For ODT operation during Write Leveling mode, refer to below table for termination activation and deactivation for DQ and  
DQS/. If ODT is enabled, the ODT pin must be high, in Write Leveling mode.  
152  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
DRAM Termination Function in Write Leveling Mode  
DQS/  
termination  
OFF  
ODT pin  
DQ termination  
de-asserted  
asserted  
OFF  
OFF  
ON  
ODT States Truth Table  
Write  
Enabled  
Enabled  
Read/DQ Cal  
Disabled  
ZQ Cal  
Disabled  
Disabled  
CA Training  
Disabled  
Write Level  
Disabled  
DQ Termination  
DQS Termination  
Disabled  
Disabled  
Enabled  
NOTE 1 ODT is enabled with MR11[1:0]=01b, 10b, or 11b and ODT pin HIGH. ODT is disabled with MR11[1:0]=00b or ODT pin LOW.  
Asynchronous ODT Timing Example for RL = 12  
Automatic ODT Timing During READ Operation Example for RL = m  
NOTE 1 The automatic RTT turn-off delay, tAODToff, is referenced from the rising edge of “RL-2” clock at Tm-2.  
NOTE 2 The automatic RTT turn-on delay, tAODTon, is referenced from the rising edge of “RL+ BL/2clock at Tm+4  
153  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
ODT Timing During Power Down, Self Refresh, Deep Power Down Entry/Exit Example  
NOTE 1 Upon exit of Deep Power Down mode, a complete power-up initialization sequence is required.  
154  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Power-Down  
Power-down is entered synchronously when CKE is registered LOW and  is HIGH at the rising edge of clock. A NOP  
command must be driven in the clock cycle following the power-down command. CKE must not go LOW while MRR,  
MRW, READ, or WRITE operations are in progress. CKE can go LOW while any other operations such as row activation,  
PRECHARGE, auto precharge, or REFRESH are in progress, but the power-down IDD specification will not be applied  
until such operations are complete.  
Entering power-down deactivates the input and output buffers, excluding CK, , and CKE. To ensure that there is  
enough time to account for internal delay on the CKE signal path, two NOP commands are required after CKE is driven  
LOW, this timing period is defined as tCPDED. CKE LOW will result in deactivation of input receivers after tCPDED has  
expired. In power-down mode, CKE must be held LOW; all other input signals are “Don’t Care.” CKE LOW must be  
maintained until tCKE is satisfied. VREFCA must be maintained at a valid level during power-down.  
VDDQ can be turned off during power-down. If VDDQ is turned off, VREFDQ must also be turned off. Prior to exiting  
power-down, both VDDQ and VREFDQ must be within their respective minimum/maximum operating ranges.  
No refresh operations are performed in power-down mode. The maximum duration in power-down mode is only limited by  
the refresh requirements outlined in section “REFRESH Command”.  
The power-down state is exited when CKE is registered HIGH. The controller must drive  HIGH in conjunction with  
CKE HIGH when exiting the power-down state. CKE HIGH must be maintained until tCKE,min is satisfied. A valid,  
executable command can be applied with power-down exit latency tXP after CKE goes HIGH. Power-down exit latency is  
defined in the AC timing parameter table.  
If power-down occurs when all banks are idle, this mode is referred to as idle powerdown; if power-down occurs when  
there is a row active in any bank, this mode is referred to as active power-down.  
155  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Basic Power-Down Entry and Exit Timing  
2 x tCK(min)  
  
CK  
tIHCKE tCPDED  
tISCKE  
Input clock frequency may be changed or the  
input clock stopped during power-down1.  
tIHCKE  
tCKE(min)  
tISCKE  
CKE  
  
tXP(min)  
tCKE(min)  
Enter  
PD  
Exit  
PD  
Valid  
NOP NOP  
NOP  
N
Valid  
Cmd  
Enter power-down mode  
Exit power-down mode  
NOTE 1 Input clock frequency can be changed or the input clock can be stopped or floated during power-down, provided that  
upon exiting power-down, the clock is stable and within specified limits for a minimum of 2 clock cycles prior to  
power-down exit and the clock frequency is between the minimum and maximum specified frequency for the speed  
grade in use.  
156  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
CKE-Intensive Environment  
  
CK  
tCKE  
tCKE  
tCKE  
tCKE  
CKE  
REFRESH-to-REFRESH Timing in CKE-Intensive Environments  
  
CK  
tCKE  
tXP  
tCKE  
tREFI  
tCKE  
tXP  
tCKE  
CKE  
REFRESH  
REFRESH  
Cmd  
NOTE 1 The pattern shown can repeat over an extended period of time. With this pattern, all AC and DC timing and voltage  
specifications with temperature and voltage drift are ensured.  
READ to Power-Down Entry  
T0  
T1  
T2  
Tx  
Tx+1 Tx+2 Tx+3 Tx+4 Tx+5 Tx+6 Tx+7 Tx+8 Tx+9  
  
CK  
Cmd  
RD  
CKE1,2  
tISCKE  
RL  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DQ  
  
DQS  
NOTE 1 CKE must be held HIGH until the end of the burst operation.  
NOTE 2 CKE can be registered LOW at RL + RU(tDQSCK(MAX)/tCK) + BL/2 + 1 clock cycles after the clock on which the READ  
command is registered.  
157  
Version 1.4  
02/2018  
Nanya Technology Corp.  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
READ with Auto Precharge to Power-Down Entry  
T0  
T1  
T2  
Tx  
Tx+1 Tx+2 Tx+3 Tx+4 Tx+5 Tx+6 Tx+7 Tx+8 Tx+9  
  
CK  
PRE 4  
Cmd  
RD w/AP  
tISCKE  
CKE1,2  
BL/2 3  
RL  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DQ  
  
DQS  
NOTE 1 CKE must be held HIGH until the end of the burst operation.  
NOTE 2 CKE can be registered LOW at RL + RU(tDQSCK/tCK)+ BL/2 + 1 clock cycles after the clock on which the READ command is  
registered.  
NOTE 3 BL/2 with tRTP = 7.5ns and tRAS (MIN) is satisfied.  
NOTE 4 Start internal PRECHARGE.  
WRITE to Power-Down Entry  
T0  
T1  
Tm  
Tm+1 Tm+2 Tm+3 Tm+4 Tm+5 Tx  
Tx+1 Tx+2 Tx+3 Tx+4  
  
CK  
Cmd  
WRITE  
WL  
CKE1  
tISCKE  
BL/2  
DIN DIN DIN DIN DIN DIN DIN DIN  
DQ  
tWR  
  
DQS  
NOTE 1 CKE can be registered LOW at WL + 1 + BL/2 + RU(tWR/tCK) clock cycles after the clock on which the WRITE command is  
registered.  
158  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
WRITE with Auto Precharge to Power-Down Entry  
T0  
T1  
Tm  
Tm+1 Tm+2 Tm+3 Tm+4 Tm+5 Tx  
Tx+1 Tx+2 Tx+3 Tx+4  
  
CK  
PRE2  
Cmd  
WRITE w/AP  
CKE1  
tISCKE  
WL  
DIN DIN DIN DIN DIN DIN DIN DIN  
DQ  
tWR  
  
DQS  
NOTE 1 CKE can be registered LOW at WL + 1 + BL/2 + RU(tWR/tCK) + 1 clock cycles after the WRITE command is registered.  
NOTE 2 Start internal PRECHARGE.  
REFRESH Command to Power-Down Entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
  
CK  
REFRESH  
Cmd  
tCKE  
CKE1  
tIHCKE  
tISCKE  
NOTE 1 CKE can go LOW tIHCKE after the clock on which the REFRESH command is registered.  
ACTIVATE Command to Power-Down Entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
  
CK  
ACTIVATE  
Cmd  
tCKE  
CKE1  
tIHCKE  
tISCKE  
NOTE 1 CKE can go LOW tIHCKE after the clock on which the ACTIVATE command is registered.  
159  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
PRECHARGE Command to Power-Down Entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
  
CK  
PRE  
tCKE  
Cmd  
CKE1  
tIHCKE  
tISCKE  
NOTE 1 CKE can go LOW tIHCKE after the clock on which the PRECHARGE command is registered.  
MRR to Power-Down Entry  
T0  
T1  
T2  
Tx  
Tx+1 Tx+2 Tx+3 Tx+4 Tx+5 Tx+6 Tx+7 Tx+8 Tx+9  
  
CK  
MRR  
Cmd  
CKE1  
tISCKE  
RL  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DQ  
  
DQS  
NOTE 1 CKE can be registered LOW RL + RU(tDQSCK/tCK)+ BL/2 + 1 clock cycles after the clock on which the MRR command is  
registered.  
MRW to Power-Down Entry  
T11  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
  
CK  
MRW  
Cmd  
tMRW  
tISCKE  
CKE1  
NOTE 1 CKE can be registered LOW tMRW after the clock on which the MRW command is registered.  
160  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Deep Power-Down (DPD)  
Deep power-down (DPD) is entered when CKE is registered LOW with  LOW, CA0 HIGH, CA1 HIGH, and CA2 LOW  
at the rising edge of the clock. All banks must be in the idle state with no activity on the data bus prior to entering the DPD  
mode. During DPD, CKE must be held LOW. The contents of the SDRAM will be lost upon entry into DPD mode.  
In DPD mode, all input buffers except CKE, all output buffers, and the power supply to internal circuitry are disabled within  
the device. To ensure that there is enough time to account for internal delay on the CKE signal path, two NOP commands  
are required after CKE is driven LOW, this timing period is defined as tCPDED.  
CKE LOW will result in deactivation of command and address receivers after tCPDED has expired. VREFDQ can be at  
any level between 0 and VDDQ, and VREFCA can be at any level between 0 and VDDCA during DPD. All power supplies,  
including VREF, must be within the specified limits prior to exiting DPD (see “AC and DC Operating Conditions”).  
DPD mode is exited when CKE is registered HIGH, while meeting tISCKE, and the clock must be stable. The device must  
be fully re-initialized using the power-up initialization sequence. The SDRAM is ready for normal operation after the  
initialization sequence is completed. For the description of ODT operation and specifications during DPD entry and exit,  
see “ODT During Deep Power Down”.  
Deep Power-Down Entry and Exit Timing  
2 x tCK(min)  
  
CK  
tIHCKE tCPDED  
tISCKE  
tIHCKE  
Input clock frequency may be changed or the  
input clock stopped during Deep  
Power-Down.  
CKE  
tISCKE  
  
tRP  
tDPD  
tINIT3=200us(min)1,2  
Exit  
Enter  
DPD  
Cmd NOP  
NOP NOP  
NOP N P RESET  
DPD  
Enter DPD mode  
Exit DPD mode  
NOTE 1 The initialization sequence can start at any time after Tx + 1.  
NOTE 2 tINIT3 and Tx + 1 and refer to timings in the initialization sequence.  
NOTE 3 Input clock frequency may be changed or the input clock can be stopped or floated during deep power-down, provided  
that upon exiting deep power-down, the clock is stable and within specified limits for a minimum of 2 clock cycles prior to  
deep power-down exit and the clock frequency is between the minimum and maximum frequency for the particular  
speed grade.  
161  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Input Clock Frequency Changes and Clock Stop Events  
The device supports input clock frequency change during CKE LOW under the following conditions:  
tCK(abs)min is met for each clock cycle;  
• Refresh requirements apply during clock frequency change;  
• During clock frequency change, only REFab or REFpb commands may be executing;  
• Any Activate or Precharge commands have executed to completion prior to changing the frequency;  
• The related timing conditions (tRCD, tRP) have been met prior to changing the frequency;  
• The initial clock frequency shall be maintained for a minimum of 2 clock cycles after CKE goes LOW;  
• The clock satisfies tCH(abs) and tCL(abs) for a minimum of 2 clock cycles prior to CKE going HIGH.  
After the input clock frequency is changed and CKE is held HIGH, additional MRW commands may be required to set the  
WR, RL etc. These settings may need to be adjusted to meet minimum timing requirements at the target clock frequency.  
The device supports clock stop during CKE LOW under the following conditions:  
• CK is held LOW and  is held HIGH or both are floated during clock stop;  
• Refresh requirements apply during clock stop;  
• During clock stop, only REFab or REFpb commands may be executing;  
• Any Activate or Precharge commands have executed to completion prior to stopping the clock;  
• The related timing conditions (tRCD, tRP) have been met prior to stopping the clock;  
• The initial clock frequency shall be maintained for a minimum of 2 clock cycles after CKE goes LOW;  
• The clock satisfies tCH(abs) and tCL(abs) for a minimum of 2 clock cycles prior to CKE going HIGH.  
The device supports input clock frequency change during CKE HIGH under the following conditions:  
• tCK(abs)min is met for each clock cycle;  
• Refresh requirements apply during clock frequency change;  
• Any Activate, Read, Write, Precharge, Mode Register Write, or Mode Register Read commands must have executed  
to completion, including any associated data bursts prior to changing the frequency;  
• The related timing conditions (tRCD, tWR, tWRA, tRP, tMRW, tMRR, etc.) have been met prior to changing the  
frequency;  
 shall be held HIGH during clock frequency change;  
• During clock frequency change, only REFab or REFpb commands may be executing;  
• The LPDDR3 SDRAM is ready for normal operation after the clock satisfies tCH(abs) and tCL(abs) for a minimum of  
2*tCK + tXP.  
After the input clock frequency is changed, additional MRW commands may be required to set the WR, RL etc. These  
settings may need to be adjusted to meet minimum timing requirements at the target clock frequency.  
162  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
LPDDR3 devices support clock stop during CKE HIGH under the following conditions:  
• CK is held LOW and  is held HIGH during clock stop;  
 shall be held HIGH during clock clock stop;  
• Refresh requirements apply during clock stop;  
• During clock stop, only REFab or REFpb commands may be executing;  
• Any Activate, Read, Write, Precharge, Mode Register Write, or Mode Register Read commands must have executed  
to completion, including any associated data bursts prior to stopping the clock;  
• The related timing conditions (tRCD, tWR, tWRA, tRP, tMRW, tMRR, etc.) have been met prior to stopping the clock;  
• The LPDDR3 SDRAM is ready for normal operation after the clock is restarted and satisfies tCH(abs) and tCL(abs) for  
a minimum of 2*tCK + tXP.  
163  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
NO OPERATION (NOP) Command  
The purpose of the NOP command is to prevent the device from registering any unwanted commands issued between  
operations. A NOP command can only be issued at clock cyclen when the CKE level is constant for clock cycle N-1 and  
clock cycle N. A NOP command has two possible encodings:  
1.  HIGH at the clock rising edge N.  
2.  LOW and CA0, CA1, CA2 HIGH at the clock rising edge N.  
The NOP command will not terminate a previous operation that is still in process, such as a burst READ or WRITE cycle.  
164  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
NTC Proprietary  
Level: Property  
LPDDR3 4Gb(SDP)/8Gb(DDP) SDRAM  
4Gb:NT6CL128M32CQ(M), NT6CL256M16CM  
8Gb:NT6CL256T32CQ(M), NT6CL128T64CR(4)  
Revision History  
Version  
Page  
Modified  
Description  
Released  
01/2018  
02/2018  
02/2018  
1.2  
All  
-
-
-
Official Release  
Align the title  
Align the title  
1.3  
P22  
1.4  
P22, 26  
165  
Version 1.4  
Nanya Technology Corp.  
02/2018  
All Rights Reserved ©  
http://www.nanya.com/  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY