MC-4R64CEE6C-845 [NEC]

Direct Rambus DRAM RIMM Module 64M-BYTE 32M-WORD x 16-BIT; 直接Rambus DRAM RIMM模块64M - 32M字节,字×16位
MC-4R64CEE6C-845
型号: MC-4R64CEE6C-845
厂家: NEC    NEC
描述:

Direct Rambus DRAM RIMM Module 64M-BYTE 32M-WORD x 16-BIT
直接Rambus DRAM RIMM模块64M - 32M字节,字×16位

存储 内存集成电路 动态存储器
文件: 总16页 (文件大小:126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MOS INTEGRATED CIRCUIT  
MC-4R64CEE6B, 4R64CEE6C  
Direct RambusTM DRAM RIMMTM Module  
64M-BYTE (32M-WORD x 16-BIT)  
Description  
The Direct Rambus RIMM module is a general-purpose high-performance memory module subsystem suitable for  
use in a broad range of applications including computer memory, personal computers, workstations, and other  
applications where high bandwidth and low latency are required.  
MC-4R64CEE6B, 4R64CEE6C modules consists of four 128M Direct Rambus DRAM (Direct RDRAM™) devices  
(µPD488448). These are extremely high-speed CMOS DRAMs organized as 8M words by 16 bits. The use of  
Rambus Signaling Level (RSL) technology permits 600MHz, 711MHz or 800MHz transfer rates while using  
conventional system and board design technologies.  
Direct RDRAM devices are capable of sustained data transfers at 1.25 ns per two bytes (10 ns per sixteen bytes).  
The architecture of the Direct RDRAM enables the highest sustained bandwidth for multiple, simultaneous,  
randomly addressed memory transactions. The separate control and data buses with independent row and column  
control yield over 95 % bus efficiency. The Direct RDRAM's 32 banks support up to four simultaneous transactions  
per device.  
Features  
184 edge connector pads with 1mm pad spacing  
64 MB Direct RDRAM storage  
Each RDRAM has 32 banks, for 128 banks total on module  
Gold plated contacts  
RDRAMs use Chip Scale Package (CSP)  
Serial Presence Detect support  
Operates from a 2.5 V supply  
Low power and powerdown self refresh modes  
Separate Row and Column buses for higher efficiency  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. M14537EJ1V1DS00 (1st edition)  
Date Published November 1999 NS CP (K)  
Printed in Japan  
The mark shows major revised points.  
1999  
©
MC-4R64CEE6B, 4R64CEE6C  
Order information  
Part number  
Organization I/O Freq. RAS access time  
Package  
Mounted devices  
MHz  
ns  
MC-4R64CEE6B - 845  
MC-4R64CEE6B - 745  
MC-4R64CEE6B - 653  
MC-4R64CEE6C - 845  
MC-4R64CEE6C - 745  
MC-4R64CEE6C - 653  
32M x 16  
800  
711  
600  
800  
711  
600  
45  
45  
53  
45  
45  
53  
184 edge connector pads RIMM 4 pieces of  
with heat spreader  
µPD488448FB  
Edge connector : Gold plated  
FBGA (D2BGATM) package  
4 pieces of  
µPD488448FF  
FBGA (µBGA ) package  
2
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
Module Pad Configuration  
GND  
LDQA8  
GND  
LDQA6  
GND  
LDQA4  
GND  
LDQA2  
GND  
LDQA0  
GND  
LCTMN  
GND  
LCTM  
GND  
NC  
GND  
LROW1  
GND  
LCOL4  
GND  
LCOL2  
GND  
LCOL0  
GND  
LDQB1  
GND  
LDQB3  
GND  
B1  
B2  
GND  
LDQA7  
GND  
LDQA5  
GND  
LDQA3  
GND  
LDQA1  
GND  
LCFM  
GND  
LCFMN  
GND  
NC  
GND  
LROW2  
GND  
LROW0  
GND  
LCOL3  
GND  
LCOL1  
GND  
LDQB0  
GND  
LDQB2  
GND  
A1  
A2  
B3  
A3  
B4  
A4  
B5  
A5  
B6  
A6  
B7  
A7  
B8  
A8  
B9  
A9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
B45  
B46  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
LDQB4  
GND  
LDQB6  
GND  
LDQB8  
GND  
LCMD  
LDQB5  
GND  
LDQB7  
GND  
LSCK  
V
CMOS  
V
CMOS  
SOUT  
SIN  
CMOS  
VCMOS  
V
NC  
NC  
GND  
NC  
GND  
NC  
V
DD  
V
DD  
VDD  
VDD  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
LCFM, LCFMN,  
Side B  
Side A  
RCFM, RCFMN : Clock from master  
LCTM, LCTMN,  
RCTM, RCTMN : Clock to master  
LCMD, RCMD : Serial Command Pad  
LROW2 - LROW0,  
B47  
B48  
B49  
B50  
B51  
B52  
B53  
B54  
B55  
B56  
B57  
B58  
B59  
B60  
B61  
B62  
B63  
B64  
B65  
B66  
B67  
B68  
B69  
B70  
B71  
B72  
B73  
B74  
B75  
B76  
B77  
B78  
B79  
B80  
B81  
B82  
B83  
B84  
B85  
B86  
B87  
B88  
B89  
B90  
B91  
B92  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
REF  
GND  
SCL  
VDD  
SDA  
SVDD  
SWP  
VDD  
RSCK  
GND  
RDQB7  
GND  
RDQB5  
GND  
RDQB3  
GND  
RDQB1  
GND  
RCOL0  
GND  
RCOL2  
GND  
RCOL4  
GND  
RROW1  
GND  
NC  
GND  
RCTM  
GND  
RCTMN  
GND  
RDQA0  
GND  
RDQA2  
GND  
RDQA4  
GND  
RDQA6  
GND  
RDQA8  
GND  
A47  
A48  
A49  
A50  
A51  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
A63  
A64  
A65  
A66  
A67  
A68  
A69  
A70  
A71  
A72  
A73  
A74  
A75  
A76  
A77  
A78  
A79  
A80  
A81  
A82  
A83  
A84  
A85  
A86  
A87  
A88  
A89  
A90  
A91  
A92  
V
REF  
V
RROW2 - RROW0 : Row bus  
LCOL4 - LCOL0,  
GND  
SA0  
VDD  
SA1  
SVDD  
SA2  
RCOL4 - RCOL0 : Column bus  
LDQA8 - LDQA0,  
VDD  
RCMD  
GND  
RDQA8 - RDQA0 : Data bus A  
LDQB8 - LDQB0,  
RDQB8  
GND  
RDQB6  
GND  
RDQB4  
GND  
RDQB2  
GND  
RDQB0  
GND  
RCOL1  
GND  
RCOL3  
GND  
RROW0  
GND  
RROW2  
GND  
NC  
GND  
RCFMN  
GND  
RCFM  
GND  
RDQA1  
GND  
RDQA3  
GND  
RDQB8 - RDQB0 : Data bus B  
LSCK, RSCK : Clock input  
SA0 - SA2  
SCL, SDA  
: Serial Presence Detect Address  
: Serial Presence Detect Clock  
SIN, SOUT : Serial I/O  
DD  
SV  
: SPD Voltage  
SWP  
: Serial Presence Detect Write Protect  
: Supply voltage for serial pads  
: Supply voltage  
CMOS  
V
DD  
V
REF  
V
: Logic threshold  
GND  
NC  
: Ground reference  
RDQA5  
GND  
RDQA7  
GND  
: These pads are not connected  
3
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
Module Pad Names  
Pad  
A1  
Signal Name  
Pad  
B1  
Signal Name  
GND  
Pad  
A47  
A48  
A49  
A50  
A51  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
A63  
A64  
A65  
A66  
A67  
A68  
A69  
A70  
A71  
A72  
A73  
A74  
A75  
A76  
A77  
A78  
A79  
A80  
A81  
A82  
A83  
A84  
A85  
A86  
A87  
A88  
A89  
A90  
A91  
A92  
Signal Name  
NC  
Pad  
B47  
B48  
B49  
B50  
B51  
B52  
B53  
B54  
B55  
B56  
B57  
B58  
B59  
B60  
B61  
B62  
B63  
B64  
B65  
B66  
B67  
B68  
B69  
B70  
B71  
B72  
B73  
B74  
B75  
B76  
B77  
B78  
B79  
B80  
B81  
B82  
B83  
B84  
B85  
B86  
B87  
B88  
B89  
B90  
B91  
B92  
Signal Name  
NC  
GND  
LDQA8  
GND  
A2  
B2  
LDQA7  
GND  
NC  
NC  
A3  
B3  
NC  
NC  
A4  
LDQA6  
GND  
B4  
LDQA5  
GND  
NC  
NC  
A5  
B5  
VREF  
VREF  
A6  
LDQA4  
GND  
B6  
LDQA3  
GND  
GND  
GND  
A7  
B7  
SCL  
SA0  
A8  
LDQA2  
GND  
B8  
LDQA1  
GND  
VDD  
VDD  
A9  
B9  
SDA  
SA1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
LDQA0  
GND  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
B45  
B46  
LCFM  
GND  
SVDD  
SVDD  
SWP  
SA2  
LCTMN  
GND  
LCFMN  
GND  
VDD  
VDD  
RSCK  
GND  
RCMD  
GND  
LCTM  
GND  
NC  
GND  
RDQB7  
GND  
RDQB8  
GND  
NC  
LROW2  
GND  
GND  
RDQB5  
GND  
RDQB6  
GND  
LROW1  
GND  
LROW0  
GND  
RDQB3  
GND  
RDQB4  
GND  
LCOL4  
GND  
LCOL3  
GND  
RDQB1  
GND  
RDQB2  
GND  
LCOL2  
GND  
LCOL1  
GND  
RCOL0  
GND  
RDQB0  
GND  
LCOL0  
GND  
LDQB0  
GND  
RCOL2  
GND  
RCOL1  
GND  
LDQB1  
GND  
LDQB2  
GND  
RCOL4  
GND  
RCOL3  
GND  
LDQB3  
GND  
LDQB4  
GND  
RROW1  
GND  
RROW0  
GND  
LDQB5  
GND  
LDQB6  
GND  
NC  
RROW2  
GND  
LDQB7  
GND  
LDQB8  
GND  
GND  
RCTM  
GND  
NC  
LSCK  
VCMOS  
SOUT  
VCMOS  
NC  
LCMD  
VCMOS  
SIN  
GND  
RCTMN  
GND  
RCFMN  
GND  
VCMOS  
NC  
RDQA0  
GND  
RCFM  
GND  
GND  
GND  
RDQA2  
GND  
RDQA1  
GND  
NC  
NC  
VDD  
VDD  
RDQA4  
GND  
RDQA3  
GND  
VDD  
VDD  
NC  
NC  
RDQA6  
GND  
RDQA5  
GND  
NC  
NC  
NC  
NC  
RDQA8  
GND  
RDQA7  
GND  
NC  
NC  
4
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
Module Connector Pad Description  
(1/2)  
Signal  
I/O  
Type  
Description  
GND  
Ground reference for RDRAM core and interface. 72 PCB connector pads.  
LCFM  
I
RSL  
Clock from master. Interface clock used for receiving RSL signals from the  
Channel. Positive polarity.  
LCFMN  
I
RSL  
VCMOS  
RSL  
Clock from master. Interface clock used for receiving RSL signals from the  
Channel. Negative polarity.  
LCMD  
I
Serial Command used to read from and write to the control registers. Also used  
for power management.  
LCOL4..LCOL0  
LCTM  
I
I
Column bus. 5-bit bus containing control and address information for column  
accesses.  
RSL  
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Positive polarity.  
LCTMN  
I
RSL  
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Negative polarity.  
LDQA8..LDQA0  
LDQB8..LDQB0  
I/O  
I/O  
RSL  
Data bus A. A 9-bit bus carrying a byte of read or write data between the Channel  
and the RDRAM. LDQA8 is non-functional on modules with x16 RDRAM devices.  
Data bus B. A 9-bit bus carrying a byte of read or write data between the Channel  
and the RDRAM. LDQB8 is non-functional on modules with x16 RDRAM devices.  
Row bus. 3-bit bus containing control and address information for row accesses.  
RSL  
LROW2..LROW0  
LSCK  
I
I
RSL  
VCMOS  
Serial clock input. Clock source used to read from and write to the RDRAM  
control registers.  
NC  
These pads are not connected. These 24 connector pads are reserved for future  
use.  
RCFM  
I
RSL  
RSL  
VCMOS  
RSL  
RSL  
RSL  
RSL  
Clock from master. Interface clock used for receiving RSL signals from the  
Channel. Positive polarity.  
RCFMN  
I
Clock from master. Interface clock used for receiving RSL signals from the  
Channel. Negative polarity.  
RCMD  
I
Serial Command Input used to read from and write to the control registers. Also  
used for power management.  
RCOL4..RCOL0  
RCTM  
I
Column bus. 5-bit bus containing control and address information for column  
accesses.  
I
I
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Positive polarity.  
RCTMN  
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Negative polarity.  
RDQA8..RDQA0  
I/O  
Data bus A. A 9-bit bus carrying a byte of read or write data between the Channel  
and the RDRAM. RDQA8 is non-functional on modules with x16 RDRAM  
devices.  
RDQB8..RDQB0  
RROW2..RROW0  
I/O  
I
RSL  
RSL  
Data bus B. A 9-bit bus carrying a byte of read or write data between the Channel  
and the RDRAM. RDQB8 is non-functional on modules with x16 RDRAM  
devices.  
Row bus. 3-bit bus containing control and address information for row accesses.  
5
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
(2/2)  
Signal  
I/O  
I
Type  
Description  
RSCK  
VCMOS  
Serial clock input. Clock source used to read from and write to the RDRAM  
control registers.  
SA0  
SA1  
SA2  
SCL  
SDA  
SIN  
I
SVDD  
SVDD  
SVDD  
SVDD  
SVDD  
VCMOS  
Serial Presence Detect Address 0.  
I
I
Serial Presence Detect Address 1.  
Serial Presence Detect Address 2.  
Serial Presence Detect Clock.  
I
I/O  
I/O  
Serial Presence Detect Data (Open Collector I/O).  
Serial I/O for reading from and writing to the control registers. Attaches to SIO0  
of the first RDRAM on the module.  
SOUT  
I/O  
VCMOS  
Serial I/O for reading from and writing to the control registers. Attaches to SIO1  
of the last RDRAM on the module.  
SVDD  
SWP  
I
SPD Voltage. Used for signals SCL, SDA, SWP, SA0, SA1 and SA2.  
SVDD  
Serial Presence Detect Write Protect (active high). When low, the SPD can be  
written as well as read.  
VCMOS  
VDD  
CMOS I/O Voltage. Used for signals CMD, SCK, SIN, SOUT.  
Supply voltage for the RDRAM core and interface logic.  
Logic threshold reference voltage for RSL signals.  
VREF  
6
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
Block Diagram  
SIO 0  
SIO 1  
SCK  
U1  
CMD  
V
REF  
SIO 0  
SIO 1  
SCK  
U2  
CMD  
VREF  
SIO 0  
SIO 1  
SCK  
U3  
CMD  
VREF  
SIO 0  
SIO 1  
SCK  
U4  
CMD  
V
REF  
SERIAL PD  
V
DD  
2 per  
RDRAM  
0.1 µF  
SVDD  
SVDD  
0.1 µF  
V
CC  
SCL  
SCL  
SDA  
A2  
SDA  
U0  
SWP  
WP  
A0  
1 per  
VREF  
V
CMOS  
1 per  
2 RDRAMs  
0.1 µF  
A1  
2 RDRAMs  
Plus one  
Near Connector  
0.1 µF  
47kΩ  
SA0 SA1 SA2  
Remarks 1. Rambus Channel signals form a loop through the RIMM module, with the exception of the SIO chain.  
2. See Serial Presence Detection Specification for information on the SPD device and its contents.  
7
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
Electrical Specification  
Absolute Maximum Ratings  
Symbol  
Parameter  
MIN.  
0.3  
0.5  
50  
MAX.  
VDD + 0.3  
VDD + 1.0  
+100  
Unit  
V
VI,ABS  
Voltage applied to any RSL or CMOS signal pad with respect to GND  
Voltage on VDD with respect to GND  
VDD,ABS  
TSTORE  
V
Storage temperature  
°C  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
DC Recommended Electrical Conditions  
Symbol  
VDD  
Parameter and conditions  
Supply voltage  
MIN.  
MAX.  
Unit  
V
2.50 0.13  
2.5 0.13  
1.8 0.1  
1.4 0.2  
VREF 0.5  
VREF + 0.2  
0.3  
2.50 + 0.13  
2.5 + 0.25  
1.8 + 0.2  
1.4 + 0.2  
VREF 0.2  
VREF + 0.5  
0.5VCMOS 0.25  
VCMOS + 0.3  
0.3  
VCMOS  
CMOS I/O power supply at pad  
2.5V controllers  
1.8V controllers  
V
VREF  
Reference voltage  
V
V
VIL  
RSL input low voltage  
VIH  
RSL input high voltage  
V
VIL,CMOS  
VIH,CMOS  
VOL,CMOS  
VOH,CMOS  
IREF  
CMOS input low voltage  
V
CMOS input high voltage  
0.5VCMOS+0.25  
V
CMOS output low voltage, IOL,CMOS = 1 mA  
CMOS output high voltage, IOH,CMOS = 0.25 mA  
VREF current, VREF,MAX  
V
VCMOS 0.3  
40.0  
V
+40.0  
µA  
µA  
µA  
ISCK,CMD  
ISIN,SOUT  
CMOS input leakage current, (0 VCMOS VDD)  
CMOS input leakage current, (0 VCMOS VDD)  
40.0  
+40.0  
10.0  
+10.0  
8
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
AC Electrical Specifications  
Symbol  
TYP.  
28  
MAX.  
30.8  
1.25  
1.25  
1.25  
+21  
Unit  
Parameter and Conditions  
MIN.  
25.2  
Z
Module Impedance  
Average clock delay from finger to finger of all RSL clock nets  
(CTM, CTMN,CFM, and CFMN)  
-845  
-745  
-653  
ns  
TPD  
TPD  
Propagation delay variation of RSL signals with respect to TPD Note1,2  
21  
ps  
ps  
TPD-CMOS Propagation delay variation of SCK and CMD signals with respect to  
100  
+100  
an average clock delay Note1  
Attenuation Limit  
-845  
-745  
-653  
-845  
-745  
-653  
-845  
-745  
-653  
-845  
-745  
-653  
12  
12  
8
%
%
%
Vα/VIN  
VXF/VIN  
VXB/VIN  
RDC  
Forward crosstalk coefficient  
2
(300ps input rise time 20% - 80%)  
2
2
crosstalk coefficient  
1.5  
1.5  
1.5  
0.6  
0.6  
0.6  
Backward  
(300ps input rise time 20% - 80%)  
DC Resistance Limit  
Notes 1. TPD or Average clock delay is defined as the average delay from finger to finger of all RSL clock nets (CTM,  
CTMN, CFM, and CFMN).  
2. If the RIMM module meets the following specification, then it is compliant to the specification.  
If the RIMM module does not meet these specifications, then the specification can be adjusted by the  
PD  
“Adjusted T Specification” table.  
Adjusted TPD Specification  
Symbol  
Parameter and conditions  
Adjusted MIN./MAX.  
Absolute  
Unit  
ps  
MIN.  
30  
MAX.  
+30  
+/ [17+(18*N* Z0)] Note  
TPD  
Propagation delay variation of RSL signals with respect to TPD  
Note N = Number of RDRAM devices installed on the RIMM module.  
%
Z0 = delta Z0 = (MAX. Z0 MIN. Z0) / (MIN. Z0)  
(MAX. Z0 and MIN. Z0 are obtained from the loaded (high impedance) impedance coupons of all RSL layers  
on the module.)  
9
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
RIMM Module Current Profile  
RIMM module power conditions  
IDD  
MAX.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
One RDRAM in Read , balance in NAP mode  
One RDRAM in Read , balance in Standby mode  
One RDRAM in Read , balance in Active mode  
One RDRAM in Write, balance in NAP mode  
One RDRAM in Write, balance in Standby mode  
One RDRAM in Write, balance in Active mode  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
10  
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
Timing Parameters  
The following timing parameters are from the RDRAMs pins, not the RIMM. Please refer to the RDRAM data sheet  
(µPD488448, 488488) for detailed timing diagrams.  
Para-  
meter  
Description  
MIN.  
-745  
28  
MAX.  
Units  
-845  
28  
-653  
28  
tRC  
Row Cycle time of RDRAM banks - the interval between ROWA packets with  
ACT commands to the same bank.  
tCYCLE  
tCYCLE  
tCYCLE  
Note 2  
tRAS  
RAS-asserted time of RDRAM bank - the interval between ROWA packet with ACT  
command and next ROWR packet with PRERNote 1 command to the same bank.  
20  
8
20  
8
20  
8
64 s  
µ
tRP  
Row Precharge time of RDRAM banks - the interval between ROWR packet with  
PRERNote 1 command and next ROWA packet with ACT command to the same  
bank.  
tPP  
Precharge-to-precharge time of RDRAM device - the interval between  
successive ROWR packets with PRERNote 1 commands to any banks of the  
same device.  
8
8
8
tCYCLE  
tRR  
RAS-to-RAS time of RDRAM device - the interval between successive ROWA  
packets with ACT commands to any banks of the same device.  
8
9
8
7
8
7
tCYCLE  
tRCD  
RAS-to-CAS Delay - the interval from ROWA packet with ACT command to  
COLC packet with RD or WR command. Note - the RAS-to-CAS delay seen  
by the RDRAM core (tRCD-C) is equal to tRCD-C = 1 + tRCD because of differences  
in the row and column paths through the RDRAM interface.  
tCYCLE  
tCAC  
CAS Access delay - the interval from RD command to Q read data. The  
equation for tCAC is given in the TPARM register.  
8
8
8
12  
tCYCLE  
tCWD  
tCC  
CAS Write Delay - interval from WR command to D write data.  
6
4
6
4
6
4
6
tCYCLE  
tCYCLE  
CAS-to-CAS time of RDRAM bank – the interval between successive COLC  
commands.  
tPACKET  
tRTR  
Length of ROWA, ROWR, COLC, COLM or COLX packet.  
4
8
4
8
4
8
4
tCYCLE  
tCYCLE  
Interval from COLC packet with WR command to COLC packet which causes  
retire, and to COLM packet with bytemask.  
tOFFP  
The interval (offset) from COLC packet with RDA command, or from COLC  
packet with retire command (after WRA automatic precharge), or from COLC  
packet with PREC command, or from COLX packet with PREX command to  
the equivalent ROWR packet with PRER. The equation for tOFFP is given in the  
TPARM register.  
4
4
4
4
tCYCLE  
tRDP  
Interval from last COLC packet with RD command to ROWR packet with  
PRER.  
4
4
4
4
4
4
tCYCLE  
tRTP  
Interval from last COLC packet with automatic retire command to ROWR  
packet with PRER.  
tCYCLE  
Notes 1. Or equivalent PREC or PREX command.  
2. This is a constraint imposed by the core, and is therefore in units of ms rather than tCYCLE.  
11  
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
Package Drawings  
[MC-4R64CEE6B]  
184 EDGE CONNECTOR PADS RIMM (SOCKET TYPE)  
EEPROM  
A (AREA B)  
R
128 M Direct RDRAM  
M1 (AREA B)  
V
T
P
S
A
O N  
M
Q
M2 (AREA A)  
L
B
K
H
I
J
G
D
B
E
F
C
A1 (AREA A)  
ITEM MILLIMETERS  
A
133.35 TYP.  
133.35±0.13  
55.175  
A1  
B
B1  
C
1.00±0.10  
11.50  
detail of A part  
detail of B part  
C1  
C1  
D
3.00±0.10  
45.00  
32.00  
E
W
R1.00  
R1.00  
45.00  
F
5.675  
G
H
I
47.625  
25.40  
Y
B1  
Z
47.625  
J
X
6.35  
K
1.00 TYP.  
31.75±0.13  
11.97  
L
M
M1  
M2  
N
O
P
19.78  
29.21  
17.78  
4.00±0.10  
R 2.00  
Q
R
S
3.00±0.10  
φ
2.44  
T
1.27±0.10  
2.24 MAX.  
0.80±0.10  
2.99  
V
W
X
Y
0.15  
Z
2.00±0.10  
12  
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
[MC-4R64CEE6C]  
184 EDGE CONNECTOR PADS RIMM (SOCKET TYPE)  
EEPROM  
A (AREA B)  
R
128 M Direct RDRAM  
M1 (AREA B)  
V
T
P
S
A
O N  
M
Q
M2 (AREA A)  
L
B
K
H
I
J
G
D
B
E
F
C
A1 (AREA A)  
ITEM MILLIMETERS  
A
133.35 TYP.  
133.35±0.13  
55.175  
A1  
B
B1  
C
1.00±0.10  
11.50  
detail of A part  
detail of B part  
C1  
C1  
D
3.00±0.10  
45.00  
32.00  
E
W
R1.00  
R1.00  
45.00  
F
5.675  
G
H
I
47.625  
25.40  
Y
B1  
Z
47.625  
J
X
6.35  
K
1.00 TYP.  
31.75±0.13  
11.97  
L
M
M1  
M2  
N
O
P
19.78  
29.21  
17.78  
4.00±0.10  
R 2.00  
Q
R
S
3.00±0.10  
φ
2.44  
T
1.27±0.10  
2.43 MAX.  
0.80±0.10  
2.99  
V
W
X
Y
0.15  
Z
2.00±0.10  
13  
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
[MC-4R64CEE6B, MC-4R64CEE6C]  
184 EDGE CONNECTOR PADS RIMM (SOCKET TYPE)  
A
B
E
F
G
H
C
D
C
Pad A1  
Pad A92  
DESCRIPTION  
PCB length  
ITEM  
MIN.  
TYP.  
MAX.  
UNIT  
mm  
A
B
C
D
E
F
133.22 133.35 133.48  
PCB height for 1.25" RIMM Module  
31.62  
31.75  
45.00  
55.175  
17.78  
1.27  
-
31.88  
45.05  
-
mm  
mm  
mm  
mm  
mm  
mm  
mm  
Center-center pad width from pad A1 to A46,  
A47 to A92, B1 to B46 or B47 to B92  
44.95  
Spacing from PCB left edge to connector key notch  
-
Spacing from contact pad PCB edge  
to side edge retainer notch  
PCB thickness  
-
-
1.17  
1.37  
3.09  
4.46  
Heat spreader thickness from PCB surface (one side) to  
heat spreader top surface  
G
H
-
-
RIMM thickness  
-
14  
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
15  
Preliminary Data Sheet M14537EJ1V1DS00  
MC-4R64CEE6B, 4R64CEE6C  
Rambus, RDRAM and the Rambus Logo are registered trademarks of Rambus Inc.  
DirectRambus, DirectRDRAM, RIMM, RModule and RSocket are trademarks of Rambus Inc.  
µBGA is a registered trademark of Tessera Inc.  
D2BGA is a trademark of NEC Corporation.  
CAUTION FOR HANDLING MEMORY MODULES  
When handling or inserting memory modules, be sure not to touch any components on the modules, such as  
the memory IC, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these  
components to prevent damaging them.  
When re-packing memory modules, be sure the modules are NOT touching each other. Modules in contact  
with other modules may cause excessive mechanical stress, which may damage the modules.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98. 8  

相关型号:

MC-4R64CPE6C

Direct Rambus DRAM RIMM Module 64M-BYTE 32M-WORD x 16-BIT
NEC

MC-4R64CPE6C

Direct Rambus? DRAM RIMM? Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64CPE6C-653

Direct Rambus DRAM RIMM Module 64M-BYTE 32M-WORD x 16-BIT
NEC

MC-4R64CPE6C-653

Direct Rambus? DRAM RIMM? Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64CPE6C-745

Direct Rambus DRAM RIMM Module 64M-BYTE 32M-WORD x 16-BIT
NEC

MC-4R64CPE6C-745

Direct Rambus? DRAM RIMM? Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64CPE6C-845

Direct Rambus DRAM RIMM Module 64M-BYTE 32M-WORD x 16-BIT
NEC

MC-4R64CPE6C-845

Direct Rambus? DRAM RIMM? Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64FKE6D

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64FKE6D-653

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64FKE6D-745

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64FKE6D-840

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA