RD15EB7 [NEC]

500 mW DHD ZENER DIODE DO-35; 500毫瓦DHD稳压二极管DO- 35
RD15EB7
型号: RD15EB7
厂家: NEC    NEC
描述:

500 mW DHD ZENER DIODE DO-35
500毫瓦DHD稳压二极管DO- 35

稳压二极管
文件: 总12页 (文件大小:96K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
ZENER DIODES  
RD2.0E to RD200E  
500 mW DHD ZENER DIODE  
(DO-35)  
DESCRIPTION  
PACKAGE DIMENSIONS  
NEC Type RD2.0E to RD200E Series are planar type zener diode in the  
popular DO-35 package with DHD (Double Heatsink Diode) construction  
having allowable power dissipation of 500 mW. To meet various application  
at customers, Vz (zener voltage) is classified into the tight tolerance under  
the specific suffix (B, B1 to B7).  
(in millimeters)  
φ
0.5  
FEATURES  
Cathode  
indication  
DHD (Double Heatsink Diode) Construction  
Vz: Applied E24 standard (RD130E to RD200E: 10 volts step)  
DO-35 Glass sealed package  
φ
2.0 MAX.  
ORDER INFORMATION  
RD2.0 E to RD39E with suffix “B1”, “B2”, “B3”, “B4”, “B5”, “B6” or “B7”  
should be applied for orders for suffix “B”.  
APPLICATIONS  
Circuits for Constant Voltage, Constant Current, Waveform Clipper, Surge absorber, etc.  
ABSOLUTE MAXIMUM RATINGS (TA = 25 ˚C)  
Forward Current  
IF  
200 mA  
500 mW  
Power Dissipation  
P
Surge Reverse Power  
Junction Temperature  
Storage Temperature  
PRSM  
Tj  
100 W (t = 10 µs)  
175 ˚C  
to see Fig. 17  
Tstg  
–65 to +175 ˚C  
Document No. D10213EJ5V0DS00 (5th edition)  
Date Published December 1998 N CP(K)  
Printed in Japan  
1981  
©
RD2.0E to RD200E  
ELECTRICAL CHARACTERISTICS (TA = 25 ˚C)  
Dynamic  
Knee Dynamic  
Impedance  
Zener Voltage  
Type  
Reverse Current  
Impedance  
VZ (V)Note 1  
Suffix  
IR (µA)  
Number  
RD2.0E  
RD2.2E  
RD2.4E  
RD2.7E  
RD3.0E  
RD3.3E  
RD3.6E  
RD3.9E  
ZZ ()Note 2  
ZZK ()Note 2  
MIN.  
1.88  
1.88  
2.02  
2.12  
2.12  
2.22  
2.33  
2.33  
2.43  
2.54  
2.54  
2.69  
2.85  
2.85  
3.01  
3.16  
3.16  
3.32  
3.47  
3.47  
3.62  
3.77  
3.77  
3.92  
4.05  
4.05  
4.20  
4.34  
4.47  
4.47  
4.59  
4.71  
4.85  
4.85  
4.97  
5.12  
5.29  
5.29  
5.46  
5.64  
5.81  
5.81  
5.99  
6.16  
6.32  
6.32  
6.52  
6.70  
MAX.  
2.20  
2.10  
2.20  
2.41  
2.30  
2.41  
2.63  
2.52  
2.63  
2.91  
2.75  
2.91  
3.22  
3.07  
3.22  
3.53  
3.38  
3.53  
3.83  
3.68  
3.83  
4.14  
3.98  
4.14  
4.53  
4.26  
4.40  
4.53  
4.91  
4.65  
4.77  
4.91  
5.35  
5.03  
5.18  
5.35  
5.88  
5.52  
5.70  
5.88  
6.40  
6.06  
6.24  
6.40  
6.97  
6.59  
6.79  
6.97  
IZ (mA)  
20  
MAX.  
IZ (mA)  
MAX.  
2 000  
IZ (mA)  
MAX.  
VR(V)  
0.5  
B
B1  
B2  
B
140  
120  
100  
100  
80  
20  
20  
20  
20  
20  
20  
20  
20  
1
1
1
1
1
1
1
1
120  
B1  
B2  
B
20  
20  
20  
20  
20  
20  
20  
2 000  
2 000  
1 000  
1 000  
1 000  
1 000  
1 000  
120  
120  
100  
50  
0.7  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
B1  
B2  
B
B1  
B2  
B
B1  
B2  
B
B1  
B2  
B
70  
20  
B1  
B2  
B
60  
10  
B1  
B2  
B
50  
5
B1  
B2  
B3  
B
RD4.3E  
RD4.7E  
RD5.1E  
RD5.6E  
RD6.2E  
RD6.8E  
20  
20  
20  
20  
20  
20  
40  
25  
20  
13  
10  
8
20  
20  
20  
20  
20  
20  
1 000  
900  
800  
500  
300  
150  
1
1
5
5
5
5
5
2
1.0  
1.0  
1.5  
2.5  
3.0  
3.5  
B1  
B2  
B3  
B
B1  
B2  
B3  
B
1
B1  
B2  
B3  
B
1
B1  
B2  
B3  
B
1
B1  
B2  
B3  
0.5  
2
RD2.0E to RD200E  
Dynamic  
Knee Dynamic  
Impedance  
Zener Voltage  
VZ (V)Note 1  
Reverse Current  
Type  
Number  
Impedance  
Suffix  
IR (µA)  
ZZ ()Note 2  
ZZK ()Note 2  
MIN.  
6.88  
MAX.  
7.64  
IZ (mA)  
20  
MAX.  
IZ (mA)  
MAX.  
IZ (mA)  
MAX.  
VR(V)  
B
B1  
B2  
B3  
B
6.88  
7.19  
RD7.5E  
RD8.2E  
RD9.1E  
RD10E  
RD11E  
RD12E  
RD13E  
RD15E  
RD16E  
RD18E  
8
20  
120  
0.5  
0.5  
4.0  
7.11  
7.41  
7.33  
7.64  
7.56  
8.41  
B1  
B2  
B3  
B
7.56  
7.90  
20  
20  
20  
10  
10  
10  
10  
10  
10  
8
20  
20  
20  
10  
10  
10  
10  
10  
10  
120  
120  
120  
120  
110  
110  
110  
150  
150  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
5.0  
6.0  
7.0  
8.0  
9.0  
10  
7.82  
8.15  
8.07  
8.41  
8.33  
9.29  
B1  
B2  
B3  
B
8.33  
8.70  
8
8.61  
8.99  
8.89  
9.29  
9.19  
10.30  
9.59  
B1  
B2  
B3  
B
9.19  
8
9.48  
9.90  
9.82  
10.30  
11.26  
10.63  
10.95  
11.16  
12.30  
11.63  
11.92  
12.30  
13.62  
12.71  
13.16  
13.62  
15.02  
14.09  
14.56  
15.02  
16.50  
15.50  
15.96  
16.50  
18.30  
17.06  
17.67  
18.30  
20.72  
18.92  
19.57  
20.22  
20.72  
22.61  
21.08  
21.65  
22.09  
22.61  
10.18  
10.18  
10.50  
10.82  
11.13  
11.13  
11.50  
11.80  
12.18  
12.18  
12.59  
13.03  
13.48  
13.48  
13.95  
14.42  
14.87  
14.87  
15.33  
15.79  
16.34  
16.34  
16.90  
17.51  
18.11  
18.11  
18.73  
19.38  
19.88  
20.23  
20.23  
20.76  
21.22  
21.68  
B1  
B2  
B3  
B
10  
12  
14  
16  
18  
23  
B1  
B2  
B3  
B
B1  
B2  
B3  
B
B1  
B2  
B3  
B
11  
B1  
B2  
B3  
B
12  
B1  
B2  
B3  
B
13  
B1  
B2  
B3  
B4  
B
RD20E  
RD22E  
10  
28  
30  
10  
200  
200  
0.5  
0.5  
0.2  
0.2  
15  
17  
B1  
B2  
B3  
B4  
5
5
3
RD2.0E to RD200E  
Dynamic  
Knee Dynamic  
Impedance  
Zener Voltage  
VZ (V)Note 1  
Reverse Current  
Type  
Number  
Impedance  
Suffix  
IR (µA)  
ZZ ()Note 2  
ZZK ()Note 2  
MIN.  
22.26  
22.26  
23.75  
23.29  
23.81  
24.26  
24.26  
24.97  
25.63  
26.29  
26.99  
26.99  
27.70  
28.36  
29.02  
29.68  
29.68  
30.32  
30.90  
31.49  
32.14  
32.14  
32.79  
33.40  
34.01  
34.68  
34.68  
35.36  
36.00  
36.63  
37.36  
38.14  
38.94  
40  
MAX.  
24.81  
23.12  
23.73  
24.27  
24.81  
27.64  
25.52  
26.26  
26.95  
27.64  
30.51  
28.39  
29.13  
29.82  
30.51  
33.11  
31.22  
31.88  
32.50  
33.11  
35.77  
33.79  
34.49  
35.13  
35.77  
40.80  
36.47  
37.19  
37.85  
38.52  
39.29  
40.11  
40.80  
45  
IZ (mA)  
5
MAX.  
IZ (mA)  
MAX.  
IZ (mA)  
MAX.  
VR(V)  
B
B1  
B2  
B3  
B4  
B
B1  
B2  
B3  
B4  
B
RD24E  
RD27E  
RD30E  
RD33E  
RD36E  
35  
5
200  
0.5  
0.5  
0.5  
0.5  
0.5  
0.2  
19  
5
5
5
5
45  
55  
65  
75  
5
5
5
5
250  
250  
250  
250  
0.2  
0.2  
0.2  
0.2  
21  
23  
25  
27  
B1  
B2  
B3  
B4  
B
B1  
B2  
B3  
B4  
B
B1  
B2  
B3  
B4  
B
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B
RD39E  
5
85  
5
250  
0.5  
0.2  
30  
RD43E  
RD47E  
RD51E  
RD56E  
RD62E  
RD68E  
RD75E  
RD82E  
RD91E  
RD100E  
RD110E  
RD120E  
RD130E  
RD140E  
RD150E  
RD160E  
RD170E  
RD180E  
RD190E  
RD200E  
5
5
5
5
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
90  
5
5
5
5
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
33  
36  
39  
B
B
44  
48  
49  
54  
90  
110  
B
53  
60  
110  
43  
B
B
58  
64  
66  
72  
200  
200  
47  
52  
B
70  
79  
300  
57  
B
B
77  
85  
87  
96  
300  
400  
63  
69  
B
94  
106  
400  
76  
B
B
104  
114  
116  
126  
750  
900  
84  
91  
B
120  
140  
1100  
1300  
1500  
1700  
1900  
2200  
2400  
2500  
100  
110  
120  
130  
140  
140  
150  
160  
B
B
130  
140  
150  
160  
B
150  
170  
B
B
160  
170  
180  
190  
B
180  
200  
B
190  
210  
Note 1. tested with pulse (40 ms)  
2. ZZ and ZZK are measured at IZ by given a very small A.C. current signal.  
3. Suffix B is Suffix B1, B2, B3, B4, B5, B6 or B7.  
4
RD2.0E to RD200E  
TYPICAL CHARACTERISTICS (TA = 25 ˚C)  
Fig. 1 ZENER CURRENT vs.  
ZENER VOLTAGE  
Fig. 2 ZENER CURRENT vs.  
ZENER VOLTAGE  
T = 25 ˚C  
A
P = 500 mW  
RD5.1E  
RD2.0E  
RD2.2E  
RD2.4E  
RD2.7E  
RD3.0E  
RD3.3E  
RD3.3E  
RD3.6E  
RD4.3E  
T = 25 ˚C  
A
TYP.  
TYP.  
RD5.6E RD6.8E  
P = 500 mW  
RD11E  
100 m  
100 m  
10 m  
1 m  
RD7.5E  
RD8.2E  
RD9.1E  
RD10E  
RD6.2E  
RD12E  
RD13E  
10 m  
RD4.7E  
1 m  
100  
10  
1
µ
µ
µ
100  
10  
1
µ
µ
µ
100 n  
100 n  
10 n  
1 n  
10 n  
1 n  
0
1
2
3
4
5
6
7
8
9
0
7
8
9
10 11 12 13 14 15  
V
z
– Zener Voltage – V  
Vz  
– Zener Voltage – V  
Fig. 4 ZENER CURRENT vs.  
ZENER VOLTAGE  
Fig. 3 ZENER CURRENT vs.  
ZENER VOLTAGE  
T
TYP.  
A
= 25 ˚C  
T = 25 ˚C  
A
TYP.  
P = 500 mW  
100 m  
10 m  
1 m  
P = 500 mW  
100 m  
10 m  
1 m  
RD27E  
RD30E  
RD15E  
RD16E  
RD22E  
RD18E  
RD24E  
RD20E  
100  
10  
1
µ
µ
µ
100  
10  
1
µ
µ
µ
100 n  
100 n  
10 n  
1 n  
10 n  
1 n  
0
16 18 20 22 24 26 28 30 32  
– Zener Voltage – V  
0
12 13 14 15 16 17 18 19 20  
– Zener Voltage – V  
V
z
Vz  
5
RD2.0E to RD200E  
Fig. 5 ZENER CURRENT vs.  
ZENER VOLTAGE  
Fig. 6 ZENER CURRENT vs.  
ZENER VOLTAGE  
TA = 25 ˚C  
TYP.  
TA = 25˚C  
TYP.  
100 m  
10 m  
1 m  
100 m  
10 m  
1 m  
RD68E  
RD62E  
RD56E  
RD47E  
RD82E  
RD91E  
RD100E  
RD110E  
RD120E  
RD33E  
RD36E  
RD39E  
RD75E  
RD43E  
µ
µ
100  
100  
10µ  
1µ  
10µ  
1µ  
100 n  
10 n  
1 n  
100 n  
10 n  
1 n  
0 25  
30  
35  
40  
0 30  
60  
90  
120  
Vz – Zener Voltage – V  
Vz – Zener Voltage – V  
Fig. 7 ZENER CURRENT vs.  
ZENER VOLTAGE  
TA = 25 ˚C  
TYP.  
100 m  
10 m  
1 m  
RD170E  
RD190E  
RD140E  
RD160E  
RD180E  
RD200E  
RD130E  
RD150E  
µ
100  
10 µ  
1 µ  
100 n  
10 n  
1 n  
0
120  
150  
180  
210  
Vz – Zener Voltage – V  
6
RD2.0E to RD200E  
Fig. 9 POWER DISSIPATION vs.  
AMBIENT TEMPERATURE  
Fig. 8 POWER DISSIPATION vs.  
AMBIENT TEMPERATURE  
600  
500  
400  
300  
200  
100  
600  
500  
400  
300  
200  
100  
RD130E to  
RD200E  
RD2.0E to  
RD120E  
= 5 mm  
= 5 mm  
= 10 mm  
10 mm  
P.C Board  
7 mm  
t = 0.035 mm  
P.C Board  
7 mm  
t = 0.035 mm  
P.C Board  
φ
3 mm  
t = 0.035 mm  
0
20 40 60 80 100 120 140 160 180 200  
TA – Ambient Temperature – ˚C  
0
20 40 60 80 100 120 140 160 180 200  
TA – Ambient Temperature – ˚C  
Fig. 11 THERMAL RESISTANCE vs.  
SIZE OF P.C BOARD  
Fig. 10 THERMAL RESISTANCE vs.  
SIZE OF P.C BOARD  
600  
500  
400  
300  
200  
100  
600  
500  
400  
300  
200  
100  
Junction to ambient  
Junction to ambient  
S
S
= 5 mm  
RD130E to  
RD200E  
RD2.0E to  
RD120E  
= 10 mm  
= 5 mm  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
S – Size of P.C Board – mm2  
S – Size of P.C Board – mm2  
Fig. 13 DYNAMIC IMPEDANCE vs.  
ZENER CURRENT  
Fig. 12 DYNAMIC IMPEDANCE vs.  
ZENER CURRENT  
1 000  
100  
RD130EtoRD200E  
TA = 25˚C  
RD2.0E to  
RD120E  
TA = 25 ˚C  
TYP.  
TYP.  
RD200E  
10 000  
1000  
RD190E  
RD180E  
RD170E  
RD3.3E  
RD2.0E  
RD5.1E  
RD51E  
RD3.9E  
RD4.7E  
RD160E  
RD150E  
RD140E  
RD15E  
RD100E  
RD91E  
RD130E  
10  
1
100  
10  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
IZ – Zener Current – mA  
IZ – Zener Current – mA  
7
RD2.0E to RD200E  
Fig. 14 ZENER VOLTAGE TEMPERATURE  
COEFFICIENT vs. ZENER VOLTAGE  
Fig. 15 ZENER VOLTAGE TEMPERATURE  
COEFFICIENT vs. ZENER VOLTAGE  
0.1  
40  
32  
24  
0.1  
0.09  
0.08  
120  
TYP.  
TYP.  
0.08  
0.06  
%/˚C  
100  
%/˚C  
mV/˚C  
0.04  
0.02  
16  
8
mV/˚C  
80  
60  
40  
20  
0
0.07  
0.06  
0.05  
0
0
0.02  
0.04  
0.06  
0.08  
– 8  
16  
– 24  
– 32  
– 40  
RD2.0E to RD39E  
RD34E to RD120E  
0
4
8
12 16 20 24 28 32 36 40 44  
0
40 50 60 70 80 90 100 110 120  
– Zener Voltage – V  
V
Z
– Zener Voltage – V  
V
Z
Fig. 16 ZENER VOLTAGE TEMPERATURE  
COEFFICIENT vs. ZENER VOLTAGE  
TYP.  
220  
0.12  
%/˚C  
200  
180  
160  
140  
120  
100  
0
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
mV/˚C  
RD130E to RD200E  
0
120 130 140 150 160 170 180 190 200  
– Zener Voltage – V  
VZ  
8
RD2.0E to RD200E  
Fig. 17 SURGE REVERSE POWER RATINGS  
1 000  
T
A
= 25˚C  
Repetitive  
t
T
100  
10  
1
1µ  
10µ  
100µ  
1 m  
– Pulse Width – s  
10 m  
100 m  
t
T
GENERAL PURPOSE INFORMATION  
Power Dissipation  
Total power dissipation P can be calculated by the maximum junction temperature, ambient temperature and  
thermal resistance.  
TjMAX. – TA  
Rth  
TjMAX. : Maximum Junction Temperature  
P =  
TA  
:
:
Ambient Temperature  
Rth  
Thermal Resistance (to see Fig. 10, 11)  
9
RD2.0E to RD200E  
[MEMO]  
10  
RD2.0E to RD200E  
[MEMO]  
11  
RD2.0E to RD200E  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY