TBM50-200-8LA [NEC]

Piezoelectric Ceramics; 压电陶瓷
TBM50-200-8LA
型号: TBM50-200-8LA
厂家: NEC    NEC
描述:

Piezoelectric Ceramics
压电陶瓷

文件: 总31页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
CONTENTS  
References  
3
4
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
Design Materials  
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
NEPEC NPM Ceramics  
9
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
Applications  
15  
16  
19  
20  
26  
27  
28  
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
Langevin Bolt-On Transducers  
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
Transducers for Cleaning Equipment  
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
Molded Waterproof Transducers  
High-Frequency Transducers  
Aerial Microphone Transducers  
Sonar Transducers  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
INTRODUCTION  
Increasingly, we can see the unique properties of mechanical vibration and ultrasonic waves put to use in many ways. And the  
single most important key to the effective monitoring or use of vibration is the transducer. Today's transducers are called on for  
standards of performance that are higher than  
ever before.  
For best results in any application, the piezoelectric materials in the transducer should be selected with the specific use in  
mind. This catalog contains a wealth  
of information to help you evaluate transducer characteristics.  
And when it comes to the materials themselves, look to NEC TOKIN's NEPEC® NPM piezoelectric ceramics. Using zicron  
and lead titanate as the main components, NEPEC materials have a wealth of features:  
1) A wide selection range, especially for mechanical  
characteristics and degree of electromechanical coupling.  
2) High stability against temperature and humidity variations  
and aging.  
3) Remarkably fine ceramics that can be machined into a  
variety of sizes and shapes.  
4) Excellent resistance to voltage, permitting transducers  
with polarization in any direction.  
5) A wide range of potential uses.  
This catalog describes NEC TOKIN's standard piezoelectric ceramics, and it also describes NEC TOKIN's line of transducers.  
If you cannot find the desired material characteristics or transducer for your application in these pages, please contact us  
directly; our engineering staff can work with you to develop materials for your purpose.  
References  
Please refer to the following bibliography if you want more details of basic theory and applications of transducers:  
1) Ultrasonic technology handbook (J. Tomoyoshi et al, Nikkan Kogyo Shinbun)  
2) Ceramic dielectrics (K. Okazaki, Gakkensha)  
3) Physical Acaustic Vol I Part A (Mason, Academic Bress)  
4) Piezoelectric ceramic materials (T.Tanaka, Denpa Shinbun)  
5) Piezoelectric ceramics and their applications (Electronic materials Association, Denpa Shinbun)  
6) New ultrasonic wave technologies (E. Mori, Nikkan Kogyo Shinbun)  
7) Ultrasonic engineering (H. Wada, Nikkan Kogyo Shinbun)  
8) Ultrasonic circuit (S. Ishiwata, Nikkan Kogyo)  
9) Ultrasonics in medicine (compiled by The Japan Society of Ultrasonics in Medicine, Igaku Shoin)  
10) Simple applications of ultrasonics (S. Fujimori, Sanpo)  
11) Electromechanical functional parts (compiled by Specialized Committee of The Institute of Electrical Engineers of Japan)  
12) Test methods for piezoelectric ceramic transducers (EMAS-6001 to EMAS-6004)  
(Piezoelectric Ceramic Engineering Committee, Electronic Materials Association)  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Design Materials  
Outline  
A piezoelectric material responds mechanically when  
voltage is applied, and conversely, generates a voltage in  
response to a mechanical change.  
piezoelectric effect (such as igniters and pickups), those  
that utilize resonance (e.g., filters), and those that utilize  
the electrostrictive effect (such as piezoelectric buzzers  
and displacement elements).  
In addition to barium titanate and lead zircotitanate,  
popular as piezoelectric ceramics, NEC TOKIN offers multi-  
component solid ceramics developed from conventional  
lead zircotitanate ceramics. They meet a wide range of  
specifications for a wide range of applications. The main  
applications include: those that use the piezoelectric  
effect (such as sensors and pickups), those that utilize  
resonance (such as transducers for ultrasonic motors and  
cleaning equipments), and those that utilize the  
To create piezoelectric ceramics, polycrystalline  
ceramics are fired and baked at a high temperature. Then  
electrodes are mounted and a DC field applied in order to  
polarize the ceramic material; once polarized, the  
material exhibits piezoelectric properties, allowing it to  
be used as a piezoelectric ceramic transducer. These  
transducers are also called electrostriction transducers,  
since ceramic crystals are deformed by electricity.  
Barium titanate and lead zircotitanate are the most  
popular piezoelectric ceramics. In addition, NEC TOKIN  
also uses a variety of other materials, including  
conventional lead zircotitanate.  
electrostrictive effect (such as piezoelectric sound  
elements and displacement elements). In addition, they  
can be used as ultrasonic vibrators and transducers.  
This results in piezoelectric materials that can be used  
in a wide variety of applications: those that use the  
4
Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Evaluation of Transducer Characteristics  
NEC TOKIN evaluates the characteristics of  
transducer materials based on a number of parameters.  
Practically, frequencies minimizing and maximizing  
the impedance shown in Fig. 2 are generally treated as  
fr and fa, respectively.  
1) Resonant Frequency  
When an AC voltage is applied to the transducer and  
frequency f is varied to be in agreement with the  
natural frequency of the transducer, it vibrates very  
violently. This frequency is called resonance  
frequency fr.  
A constant voltage circuit or a low voltage circuit  
was used for measurement of the resonance and anti-  
resonance frequencies. Recently. these frequencies  
can be measured easily with an impedance analyzer  
such as the HP4194A of Hewlett-Packard.  
Resonance frequency fr obtained from the  
equivalent circuit near the resonance frequency and  
anti-resonance frequency fa can be expressed by the  
following equations:  
fr  
fa  
Frequency (Hz)  
Fig. 1-2 Impedance characteristic of piezoelectric transducer  
L1  
C1  
R1  
Resonant frequency fr can be defined in a number  
of different ways, depending on the mechanical  
structure and oscillation of the transducer.  
a) Radial vibration  
C0  
Fig. 1-1 Equivalent circuit of transducer  
N
fr = 1 Hz · · · · · · · · · · (1)  
[
]
D
fr = 1/ 2  
π L C  
1 1  
{
}
t
fa=1/ 2  
π L C C / C + C  
(
)
}
{
1
0
1
1
0
D
D>3t  
Fig. 1-3  
Radial vibration is in the direction of the arrows. The  
coefficient of electromechanical coupling for this type  
of vibration us called Kr.  
Piezoelectric Ceramics Vol.04  
5
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
b) Lengthwise vibration  
e) Shear vibration  
N2  
N5  
t
fr =  
Hz  
· · · · · · · · · · (2)  
[
]
· · · · · · · · · · (5)  
Hz  
fr =  
[
]
t
t
>4a  
a>t  
Fig. 1-7  
Fig. 1-4  
The direction of vibration is the same as the  
The direction of vibration is perpendicular to the  
polarization direction; it is a simple vibration in one  
plane only. The coefficient of electromechanical  
polarization direction. Orientation of the drive field  
direction is perpendicular to it. A drive electrode is  
located perpendicular to the direction of polarization.  
The electromechanical coupling coefficient is  
coupling is known as K31  
.
expressed by K15  
.
Where  
N
N
1
: Frequency constant of radial vibration (Hz-m)  
: Frequency constant of lengthwise vibration  
(Hz-m)  
: Frequency constant of longitudinal vibration  
(Hz-m)  
: Frequency constant of thickness vibration  
(Hz-m)  
: Frequency constant shear vibration (Hz-m)  
c) Longitudinal vibration  
2
N3  
l
N
N
N
3
4
5
fr =  
Hz  
· · · · · · · · · · (3)  
[
]
D
a
D : Diameter of disc or column (m)  
: Length of plate, column, or cylinder (m)  
a,b: Width of square plate or column (Hz-m)  
t
: Thickness of disc, square plate, or cylinder (m)  
>3(a,b,D)  
Fig. 1-5  
2) Coefficient of electromechanical coupling  
The coefficient of electromechanical coupling repre-  
sents the mechanical energy accumulated in a ceramic  
or crystal; it is related to the total electrical input. This  
coefficient k can be calculated for each individual  
vibration mode by using the resonant (fr or fm) and  
antiresonant frequencies (fa or fn) and the applicable  
formula shown here:  
The directions of polarization and vibration are the  
same, vibration is simple vibration. The electro-  
mechanical coupling coefficient is known as K33  
.
d) Thickness vibration  
N4  
t
fr =  
Hz · · · · · · · · · · (4)  
[
]
fa fr  
fr  
b
· · · · · · · · · · · · · · · · · · · · · (6)  
Kr= 2.51  
t
t
r
· · · · · · · · · · · · · · · · · · · · · · · · · (7)  
=
K31  
D
r tanr  
t
3(a,b,D)  
π fa  
2 fr  
Fig. 1-6  
r =  
Here, thickness is small compared with the area of the  
radiation plane; the effect of vibration is the same as  
that of longitudinal vibration. Generally, vibration is in  
two directions, and discrimination can be made  
between the two. The electromechanical coupling  
coefficient for this type of vibration is called Kt.  
6
Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
4) Young's modulus  
π fr  
π
2
fr  
fa  
· · · · · · · · · · · · · · · · (8)  
· · · · · · · · · · · · · · · · (9)  
· · · · · · · · · · · · · · · (10)  
=
cot  
K33  
2 fa  
For different modes of vibration, Young's modulus is  
calculated by Eq. 12, based on the sonic velocity and  
density of the material.  
π fr  
π
2
fr  
fa  
Kt=  
cot  
2 fa  
YE = ρν2 N/m2 · · · · · · · · · · · · · · · · · · · · · · (12)  
[
]
π fr  
π
fr  
fa  
=
cot  
K15  
Where ρ: Density (kg/m3)  
2 fa  
2
ν(=2fr ): Sonic velocity (m/sec.)  
N: Newton  
Where  
Kr : Electromechanical coupling coefficient for radial  
vibration  
31: Electromechanical coupling coefficient for  
lengthwise vibration  
33: Electromechanical coupling coefficient for  
longitudinal vibration  
Kt : Electromechanical coupling coefficient for thick-  
ness vibration  
5) Mechanical Q  
K
The mechanical Q is the "sharpness' of mechanical  
vibration at resonant frequency, and is calculated with  
Eq 13.  
K
fa2  
Qm =  
· · · · · · · · · · · · (13)  
2πfr Zr C(fa2 fr2)  
K
15: Electromechanical coupling coefficient for shear  
vibration  
Where fr : Resonant frequency (Hz)  
fa : Antiresonant frequency (Hz)  
Zr : Resonant resistance (Ω)  
fr : Resonant frequency [Hz]  
fa : Antiresonant frequency [Hz]  
C : Static capacitance (F)  
3) Relative dielectric constant  
Where a simpler method is called for, mechanical Q  
may be calculated with Eq. 14, using frequencies f  
1
When the electric flux density caused by applying an  
electric field E between electrodes of a transducer  
under a constant stress is regarded as D, the relative  
dielectric constant is obtained by dividing the constant,  
and f which are each 3 dB from the resonant frequency.  
2
fr  
f  
Qm =  
· · · · · · · · · · · · · · · · · · · · · · · · · · (14)  
f1  
2
T
defined by D/E=ε , by the vacuum dielectric constant  
The values shown for material characteristics in this  
catalog are calculated using Eq. 13.  
ε
0
. This relative dielectric constant is expressed by  
/ε0when the direction of polarization and applied  
T
ε
33  
electric field are the same; it is expressed by  
ε
T
11  
/ε0 when these directions are perpendicular.  
6) Piezoelectric constant  
Calculation of relative dielectric constant is shown in  
Eq. 11. Static capacitance is usually measured at 1kHz  
using an all-purpose bridge or a C meter.  
There are two types of piezoelectric constants, the  
piezoelectric strain constant and the coefficient of  
voltage output.  
tC  
ε0S  
ε3T3 /ε  
0
=
· · · · · · · · · · · · · · · · · · · · · · · · · · · (11)  
a) PiezoeIectric strain constant  
T
This is a measure of the strain that occurs when a  
specified electric field is applied to a material that is in  
the condition of zero stress. This constant is calculated  
with Eq. 15.  
(ε 11/ε  
0
is also calculated using the same equation.)  
Where  
ε
0
: Relative dielectric constant in vacuum  
(8.854x10-12 F/m)  
t
S
: Distance between electrodes (m)  
: Electrode area (m2)  
εT  
· · · · · · · · · · · · · · · · · · · · · · · (15)  
m/V  
d = k  
(
)
YE  
C : Static capacitance (F)  
Where k : Coefficient of electromechanical coupling  
T
ε
: Dielectric constant  
YE: Young's modulus (Newton/m2)  
E
P
E
P
ε3T3 /ε  
0
ε1T1 /ε  
0
Fig.1-8  
Piezoelectric Ceramics Vol.04  
7
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
9) Aging rate  
b) VoItage output constant  
This is the intensity of the electric field caused when  
a specified amount of stress is applied to a material  
that is in the condition of zero displacement. Voltage  
output constant is calculated with Eq. 16.  
The aging rate is an index of the change in resonant  
frequency and static capacitance with age. To  
calculate this rate, after polarization the electrodes of a  
transducer are shorted together, and are heated for a  
specified period of time. Measurements are taken of  
the resonant frequency and static capacity every 2n  
days. (That is, at 1, 2, 4, and 8 days.) The aging rate  
is calculated with Eq. 19.  
d
ε
g = V m/N · · · · · · · · · · · · · · · · · · · · · · · · (16)  
(
)
Constants d and constants g can be d31,d33, or d15  
,
and g31, g33, or g15, depending on the type of vibration.  
1
Xt  
2
Xt  
1
· · · · · · · · · · · · (19)  
(AR) =  
logt  
2
logt  
1
Xt1  
7) Curie temperature  
Where (AR): Aging rate for resonant frequency or  
static capacitance  
This is the temperature at which polarization  
disappears and the piezoelectric qualities are lost. It is  
also the temperature at which the value of the  
dielectric constant becomes maximum.  
t
1 2 : Number of days aged after polarization  
t1,Xt2 : Resonant frequency or static  
,t  
X
capacitance at t  
1 and t2 days after  
polarization  
8) Temperature coefficient  
10) Density  
The temperature coefficient is a measure of the  
variation of the resonant frequency and static  
capacitance with change in temperature. Temperature  
coefficient is calculated with Eqs. 17 and 18.  
The density is calculated with Eq. 20, after  
determining the volume and weight of the specified  
ceramic material.  
W
V
D =  
kg/m3  
· · · · · · · · · · · · · · · · · · · · · · · · · (20)  
1
Δt  
f(t1  
) f(t2)  
f20  
(
)
· · · · (17)  
TK(f) =  
× 106(PPm/°C)  
Where W : Weight (kg) of ceramic material  
1
Δt  
C(t  
1
) C(t  
2)  
× 106(PPm/°C)  
V : Volume (m3) of material  
TK(C) =  
· · (18)  
C20  
Where TK(f) : Temperature coefficient of resonant  
frequency (PPm/˚C  
) : Resonant frequency at temperature  
˚C(Hz)  
) : Resonant frequency at temperature  
˚C(Hz)  
)
f (t  
1
2
t1  
f (t  
t2  
f
20  
: Resonant frequency at temperature  
20˚C(Hz)  
TK(C) : Temperature coefficient of static  
capacitance (PPm/˚C  
): Static capacitance (F) at temperature  
˚C  
): Static capacitance (F) at temperature  
˚C  
C20 : Static capacitance at 20˚C(F)  
Δt : Temperature difference (t2– ) (˚C  
)
C (t  
1
2
t1  
C (t  
t2  
t
1
)
8
Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
NEPEC® NPM Ceramics  
Characteristics of Standard Materials  
Table 1-1 shows the material characteristics of NEC  
TOKIN's standard NEPEC® NPM ceramic materials.  
Notes  
1. Frequency constants;  
N1 : Radial frequency constant (fr×D)  
N2 : Lengthwise frequency constant (fr× )  
N3 : Longitudial frequency constant (fa× )  
N4 : Thickness frequency constant (fa× )  
N5 : Shear frequency constant (fa× )  
2. The temperature and aging characteristics shown are  
values of radial vibration for a sample of 17.7φ×1.0t  
(mm) in size.  
3. The values of Kr (electromechanical coupling  
coefficient) shown in parentheses are approximate  
values. All others are exact.  
Piezoelectric Ceramics Vol.04  
9
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Table 1-1. Characteristics of Standard NEPEC® NPM Materials  
Material  
Characteristics  
Unit  
N-61  
N-8  
N-10  
N-21  
N-6  
T
1400  
1400  
1100  
5440  
1800  
ε33  
/
ε0  
ε0  
Relative  
dielectric  
constant  
T
1350  
0.3  
1300  
0.3  
1400  
0.4  
ε
11  
/
5000  
2.0  
2000  
2.0  
tanδ (%)  
Loss factor  
N1  
N2  
N3  
N4  
N5  
[Radial]  
(Hz-m)  
(Hz-m)  
(Hz-m)  
(Hz-m)  
(Hz-m)  
2160  
1600  
1510  
1960  
970  
2160  
1570  
1490  
2010  
1170  
2240  
1670  
1520  
2000  
920  
2040  
1410  
1370  
1800  
1110  
1960  
1410  
1310  
1940  
860  
[Lengthwise]  
[Longitudinal]  
[Thickness]  
[Shear]  
Frequency  
constant  
(0.65)  
0.55  
(0.67)  
0.56  
(0.67)  
0.56  
(0.57)  
0.50  
(0.78)  
0.62  
Kr [Radial]  
K
31 [Transverse]  
33 [Logitudinal]  
0.34  
0.68  
0.55  
0.71  
12.7  
15.4  
7.9  
0.33  
0.67  
0.52  
0.66  
13.1  
15.6  
7.6  
0.34  
0.67  
0.52  
0.78  
11.2  
15.2  
8.9  
0.34  
0.68  
0.62  
0.66  
14.8  
18.1  
6.8  
0.38  
0.73  
0.52  
0.77  
16.5  
19.9  
6.1  
Electro-  
mechanical  
coupling  
constant  
K
Kt [Thickness]  
15 [Shear]  
K
SE11 (× 10-12m2/N)  
SE33 (× 10-12m2/N)  
YE11 (× 1010N/m2)  
YE33 (× 1010N/m2)  
Elastic  
constant  
6.5  
6.4  
6.6  
5.5  
5.0  
-133  
302  
419  
-10.4  
23.5  
45.1  
0.32  
300  
300  
1800  
2300  
0.4  
-132  
296  
464  
-10.7  
23.8  
39.4  
0.31  
600  
400  
700  
3000  
0.4  
-99  
-287  
635  
930  
-6.0  
13.2  
21.0  
0.34  
200  
900  
3800  
3500  
0.5  
-198  
417  
d
d
d
g
g
g
δ
31 (× 10-12m/V)  
33 (× 10-12m/V)  
15 (× 10-12m/V)  
31 (× 10-3Vm/N)  
33 (× 10-3Vm/N)  
15 (× 10-3Vm/N)  
226  
652  
-13.1  
30.0  
44.4  
0.24  
-250  
-550  
3700  
3600  
0.5  
711  
Piezo-  
electric  
constant  
-12.1  
25.4  
41.0  
0.34  
-300  
-150  
3500  
3000  
0.1  
Poisson's ratio  
- 20~20°C  
20~60°C  
- 20~20°C  
20~60°C  
TK (fr)  
(PPm/˚C)  
Temperature  
coefficient  
TK (˚C)  
(PPm/˚C)  
fr (%/10 Years)  
C (%/10 Years)  
Aging rate  
-2  
-2  
-5  
-5  
-5  
Mechanical  
quality factor  
1500  
1800  
1600  
70  
75  
Qm  
Curie  
temperature  
325  
315  
320  
145  
330  
Tc (˚C)  
3
3
Density  
D (× 10 kg/m )  
7.77  
7.79  
7.72  
8.00  
7.82  
(× 10-7/˚C)  
(Room Temperature  
~200°C)  
Thermal  
expansion  
coefficient  
30  
12  
11  
14  
29  
10 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Characteristics and Main Applications by Material  
Table 1-2 shows characteristics and main applications by material. Use materials that match your use.  
Table 1-2. General Characteristics and Main Applications  
ltem  
Material  
N-6  
N-61  
N-8  
N-10  
N-21  
Dielectric Constant  
Electromechanical Coupling Coefficient  
Piezoelectric Modules  
Piezoelectric Output Constant  
Mechanical Quality Coefficient  
Resonant Frequency Temperature Coefficient  
Dielectric Constant Temperature Coefficient  
Aging Characteristics  
Pickups, microphones, speakers,  
underwater receiving transducers,  
and other acoustic equipment.  
Transducers to generate ultrasonic signals, pressure  
generating elements and medical equipment transducers.  
Main Applications  
= Particularly good value  
= Good value  
= Lower value  
Materials for actuators  
High-power piezoelectric Materials  
Actuator materials not listed in the catalog exemplified  
here. Please contact us for further details.  
The vibration energy of the piezoelectric transducer is  
in proportion to the square of the transducer tip end  
vibration speed.  
There are high-power materials not listed in the catalog  
that do not generate heat at high vibration velocities.  
Please contact us for details.  
350  
New series  
300  
N10  
1
P = Mv2  
Vibration energy  
250  
2
M : Equivalent mass  
v : Transducer tip end vibration speed  
200  
N21  
150  
100  
150  
200  
Tc/˚C  
250  
300  
350  
30  
N-8  
25  
20  
New material  
15  
10  
5
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
Transducer tip-end vibration speed (m/s)  
Piezoelectric Ceramics Vol.04 11  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Terminal Layout  
The three types of terminal layout are shown in Table 1-3 for the disc and cylindrical shapes.  
Layout of terminals for the column, square plate, and square column shapes are the same as right. For inquiries  
about special terminal configurations,  
Table 1-3  
Terminals  
P-terminal  
S-terminal  
O-terminal  
Disc  
Cylinder  
Terminals (solder dots) provided on  
positive and negative electrode surfaces.  
Negative electrode terminal is available Negative electrode terminal is available  
Description  
on positive electrode surface.  
on side face.  
External Surface  
Table 1-4. Types of External Coating  
NEC TOKIN transducers are coated for protection, for  
uniformity of the electromechanical interface, and to  
ensure an attractive external view. Table 1-4 shows  
the different types of surface coatings available. Select  
the coating that is best for your requirements.  
Coating  
Surfaces  
Standard  
Color  
Coating  
Features  
Synthetic resin; resists  
water and oil.  
Suitable for fish-finding  
sonars and air excitation.  
All surfaces  
are coated  
M Coating  
Silver gray  
Dark brown  
(Bakelite  
color)  
Bakelite resin; resists  
All surfaces  
B Coating  
solvents. Suitable for  
are coated  
ultrasonic cleaning.  
Specification Example  
(
)
(
)
(
)
Shape mm  
Material  
fr kHz  
K
C pF  
×
×
×
24  
25.8  
26500  
19600  
Cylinder  
Disc  
NR 38 34 30  
N
N
-
-
21  
21  
0.25  
0.25  
×
36 31 30  
×
6400  
3000  
7000  
2700  
5600  
4600  
8900  
7400  
6500  
ND 10 0.3  
N
N
N
N
N
N
N
N
-
-
-
-
-
-
-
-
21  
21  
8
6
6
6
6
6
0.57  
0.6  
0.55  
0.6  
0.6  
0.6  
×
4000  
2100  
54  
54  
43  
20 0.5  
×
20 1.0  
×
40 2.5  
×
40 3.0  
×
50 2.5  
×
43  
36  
50 3.0  
0.6  
0.6  
×
60 5.0  
×
×
100  
80  
100  
80  
48  
40  
98  
90  
7
7
13.5  
16.5  
×
N
N
N
N
-
-
-
-
21  
21  
21  
21  
0.65  
0.65  
0.65  
0.65  
Column  
ND  
NS  
10 13.5  
10 16.5  
×
×
×
6500  
5000  
4000  
6500  
5000  
4000  
3000  
13500  
10500  
14000  
42000  
32500  
33000  
28500  
20 20 0.3  
20 20 0.4  
25 25 0.5  
80 15 0.3  
80 15 0.4  
100 15 0.5  
100 15 0.6  
N
N
N
N
N
N
N
-
-
-
-
-
-
-
21  
21  
21  
21  
21  
21  
21  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
Square Plate  
×
×
×
×
×
×
×
×
×
×
×
×
12 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Selected Material Characteristics  
a) Temperature characteristics  
b) Aging characteristics  
Sample: Disc (17.7mmφ × 1mm t)  
Sample: Disc (17.7mm φ × 1mm t)  
150  
150  
140  
130  
120  
110  
140  
130  
N-8  
N-8  
N-61  
N-6  
N-61  
N-6  
120  
110  
N-10  
N-21  
N-21  
-20  
0
20  
40  
60  
4
6 8  
2
4
6 8 100  
2
4
6 8  
1000  
10  
Temp (°C)  
Days  
Fig.1-9. Variation in Resonant Frequency  
with Temperature  
Fig.1-12. Variation in Resonant Frequency  
with Aging  
Sample: Disc (17.7mm φ × 1mm t)  
Sample: Disc (17.7mm φ × 1mm t)  
0.80  
0.70  
0.60  
0.80  
0.70  
0.60  
N-21  
N-10  
N-21  
N-6  
N-61  
N-6  
N-61  
N-8  
0.50  
0.40  
0.30  
0.50  
0.40  
0.30  
-20  
0
20  
40  
60  
4
6 8  
2
4
6 8 100  
Days  
2
4
6 8  
1000  
10  
Temp (°C)  
Fig.1-10. Variation in Electromechanical Coupling  
Coefficient with Temperature  
Fig.1-13. Variation in Electromechanical Coupling  
Coefficient with Aging  
Sample: Disc (17.7mm φ × 1mm t)  
Sample: Disc (17.7mm φ × 1mm t)  
13000  
11000  
9000  
3600  
3200  
N-10  
N-21  
N-6  
N-61  
2800  
2400  
2000  
1600  
1200  
7000  
5000  
3000  
N-21  
N-6  
N-61  
N-8  
N-1  
N-8  
1000  
-20  
0
20  
40  
60  
4
6 8  
2
4
6 8 100  
2
4
6 8  
1000  
10  
Temp (°C)  
Days  
Fig.1-11. Variation in Static Capacitance  
with Temperature  
Fig.1-14. Variation in Static Capacitance with Aging  
Piezoelectric Ceramics Vol.04 13  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
c) Thermal aging characteristics  
d) Characteristics of high-voltage aging  
Test Conditions  
φ
φ
Sample: Ring (60mm × 45mm × 16mm t)  
Material: N-6 Applied Voltage: 2,000V (in air)  
Frequency: 5.5kHz Duration: 10 min.  
φ
Sample: Disc (17.7mm × 1mm t)  
Conditions of Burn-in 200°C × 1h  
150  
140  
130  
21  
20  
19  
0.37  
0.36  
N-6  
120  
110  
0.35  
0.34  
1100  
1000  
N-21  
100  
900  
800  
90  
1
2
4
6
8
2
4 6 8  
100  
1
2
4
6 8  
Days  
2
4 6 8  
100  
10  
(Before Test)  
10  
(Before Test)  
Hours  
Fig.1-15. Variation in Resonant Frequency  
with Thermal Aging  
Fig.1-18. Variation in Dielectric Strength (Test 1)  
Test Conditions  
Sample: Ring (40mm  
Material: N-6  
φ
× 3mm t)  
Sample: Disc (17.7mm  
Conditions of Burn-in 200°C × 1h  
φ
× 1mm t)  
Applied Voltage: 2,800V (rms)  
Pluse Width: 100m sec.  
0.80  
0.70  
Pluse Interval: 1sec. Duration: 10min.  
58  
57  
N-21  
N-6  
0.60  
0.50  
0.40  
56  
0.58  
0.57  
0.56  
0.55  
5000  
4900  
4800  
4700  
0.30  
(Before Test)  
1
2
4
6 8  
Days  
2
4 6 8  
100  
10  
1
2
4
6
8
2
4 6 8  
100  
10  
(Before Test)  
Hours  
Fig.1-16. Variation in Electromechanical Coupling  
Coefficient with Thermal Aging  
Fig.1-19. Variation in Dielectric Strength (Test 2)  
Test Conditions  
φ
Sample: Disc (17.7mm × 1mm t)  
φ
φ
Sample: Ring (51.4mm × 44.8mm × 3.67mm t)  
Material: N-6 Applied Voltage: 1,000V(50Hz AC)  
Duration: 1min.  
Conditions of Burn-in 200°C × 1h  
4000  
3500  
3000  
2500  
N-21  
N-6  
220  
210  
200  
0.33  
0.32  
2000  
1500  
0.31  
0.31  
20300  
20200  
1000  
(Before Test)  
20100  
20000  
1
2
4
6 8  
Days  
2
4 6 8  
100  
10  
1
2
4
6
8
2
4 6 8  
100  
10  
(Before Test)  
Hours  
Fig.1-17. Variation in Static Capacitance  
with Thermal Aging  
Fig.1-20. Variation in Dielectric Strength (Test 3)  
14 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Applications  
The job of a transducer is to convert electrical energy  
into mechanical energy, and vice versa. And  
transducers using NEC TOKIN piezoelectric ceramics  
are uniquely suited to performing this job in a wide  
variety of applications. To help classify transducers,  
we divide their applications into two general areas:  
1) conversion of electrical energy into mechanical  
energy for hydraulic or motive power, and 2)  
converting mechanical into electrical energy for  
communications and electronics.  
Mechanical  
power  
16  
19  
20  
26  
27  
28  
Langevin Bolt-On Transducers  
· · · · · · · · · · · · · · · · · · ·  
applications  
Transducers for Cleaning Equipment  
· · · · · · · · · · · · · ·  
· · · · · · · · · · · · · · · · · ·  
Piezoelectric Ceramics  
Molded Waterproof Transducers  
High-Frequency Transducers  
Aerial Microphone Transducers  
<NPM>  
· · · · · · · · · · · · · · · · · · · ·  
Electrical and  
communications  
· · · · · · · · · · · · · · · · · ·  
Sonar Transducers  
· · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
Piezoelectric Ceramics Vol.04 15  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Langevin Bolt-on Transducers  
Outline  
NEC TOKIN's Langevin-type transducers are used where  
powerful ultrasonic waves must be generated, such as  
in cleaning equipment, ultrasonic treatment machines,  
and welders for plastic. For application flexibility and  
ease of installation, these transducers are mounted in  
a structure that can be bolted almost anywhere.  
NEC TOKIN's high-performance NEPEC® N-61 is  
excellent for use in these Langevin transducers. NEC  
TOKIN produces a number of this type of transducer,  
all featuring high quality and excellent output levels,  
and all based on a unique NEC TOKIN design.  
Features  
Markings  
Product models are classified as shown in the example  
here:  
High mechanical Q and excellent electro-acoustic  
conversion efficiency, providing a high output  
amplitude.  
NBL 45 28 2 H  
Piezoelectric element offers a high speed of  
vibration  
N-61 ceramics have extended temperature range,  
ensuring good amplitude linearity.  
Bolt-on mounting gives fast, easy installation and  
high reliability.  
H = Horn construction; output  
surface has step or horn  
shape.  
S = Straight construction  
2 = Number of piezoelectric  
elements (2 elements)  
28 = Resonant frequency (28kHz)  
45 = Diameter of acoustic wave  
radiation ( φ 45mm)  
<For Cleaning Equipment>  
Specifications of Standard Models  
Table 2-1  
Type  
Item  
45282H-A  
28.0  
40  
45402H-A  
40.2  
15  
Resonant frequency  
Dynamic admittance  
Mechanical Q  
fo (kHz)  
Yo (mS)  
Qm  
500  
500  
Static capacitance  
Maximum allowable velocity  
Maximum allowable power  
Applications  
C (pF)  
4000  
40  
4000  
50  
V (cm / S)  
P (W)  
50  
50  
Cleaning Equipment  
Note: Maximum allowable power is based on the data where one unit is measured with a water load on one side.  
16 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Shape and Dimensions  
NBL-45282H-A  
NBL-45402H-A  
13  
8
13  
27  
11.5  
M10.P1  
11  
39  
11.5 19  
10  
11  
M10.P1  
53.5  
79.5  
Fig. 2-1  
Temperature Characteristics  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
6000  
5000  
4000  
3000  
20  
50  
100  
150  
20  
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
40  
30  
20  
1 × 10 5  
5 × 10 4  
1 × 10 4  
20  
50  
100  
150  
20  
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Fig. 2-2. Temperature Characteristics of NBL-45282H-A  
Piezoelectric Ceramics Vol.04 17  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
<For Treatment Machines>  
Specifications of Standard Models  
Table 2-2  
Type  
Item  
NBL15602S  
NBL20602S  
Resonant frequency  
Dynamic admittance  
Mechanical Q  
fo (kHz)  
Ymo (mS)  
Qm  
60  
25  
60  
20  
500  
850  
50  
400  
1250  
40  
Static capacitance  
Maximum allowable velocity  
Maximum Allowable power  
Applications  
C (pF)  
V0-P (cm / S)  
P (W)  
2.5  
3.7  
Treatment Machines  
Note) Maximum allowable input in no-load state  
Shape and Dimensions  
NBL15602S  
NBL20602S  
(40.8)  
(40.4)  
φ
φ
Fig. 2-3  
Horn Installation Reference Example  
(89.1)  
(89.9)  
φ
φ
φ
φ
Fig. 2-4  
Vibration  
No-load state  
10  
No-load state  
7
6
Horn installation example  
Horn installation example  
8
6
4
2
0
5
μ
μ
4
3
2
1
NBL15602S  
NBL15602S  
0
0
1
2
3
4
0
1
2
3
4
5
Input Power P(W)  
Input Power P(W)  
Fig. 2-5  
18 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Transducers for Cleaning Equipment  
Outline  
In the past, transducers for cleaning equipment have  
been found almost exclusively in ultrasonic cleaners  
for industrial and business use. Today, however, small  
cleaning equipment for glasses, false teeth, gemstones,  
etc. is increasingly found in individual households as  
well. NEC TOKIN's transducers for cleaning  
equipment utilize our N-6 material, providing  
ultrasonic generators that are compact and  
extraordinarily temperature-resistant.  
Specification Example  
Specifications  
Table 2-3  
Cleaning vessel  
D (mm)  
40  
t (mm)  
2.5  
fr (kHz)  
54  
Kr  
C (PF)  
5600  
4600  
8900  
7400  
6500  
0.60  
0.60  
0.60  
0.60  
0.60  
NEC TOKIN  
27-01  
40  
3.0  
54  
50  
2.5  
43  
50  
3.0  
43  
D
60  
5.0  
36  
Piezoelectric transducer  
fabricated from N-6  
Fig. 2-6. Product Diagram  
Temperature Characteristics  
(fr)  
(kr)  
(Insulation Resistance)  
58  
56  
54  
52  
0.80  
0.70  
0.60  
0.50  
106  
105  
104  
103  
0
0
0
50  
100  
150  
200  
50  
100  
150  
200  
0
50  
100  
150  
200  
Temperature (°C)  
Temperature (°C)  
Temperature (˚C)  
Fig. 2-7. Variation in N-6 Characteristics with Temperature  
Piezoelectric Ceramics Vol.04 19  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Molded Waterproof Transducers  
Outline  
Transducers that can withstand salt water and under-  
water pressures are used to generate ultrasonic signals  
for fish finders, sonar equipment, depth gauges, and  
Doppler-effect velocity and current meters.  
NEC TOKIN’s molded transducers are highly reliable,  
even in the face of severe underwater conditions.  
Completely waterproof, they offer excellent  
mechanical strength and temperature characteristics,  
thanks in part to their unique NEC TOKIN design and  
technology. By using a variety of different materials  
for our molded transducers, we can offer a large  
variety of frequency, input, and directivity  
characteristics.  
Features  
High reliability, thanks to NEC TOKIN’s own molding  
technology, including solid urethane rubber molding  
and baked neoprene rubber.  
Excellent noise characteristics.  
Wide range of frequencies and molding materials  
available.  
Markings  
Product models are classified as shown in the  
following example:  
T GM 60-50 A-10 LA  
Cable type L: Chloroprene, LA: Vinyl  
Cable length (m)  
No. of transducers included A: 3, B: 2  
Resonant frequency (kHz)  
Transducer outside diameter (mm)  
Molding material GM: Rubber molding, MM: Metal molding, BM: Plastic molding  
Transducer material T: VPT, N: NPM  
20 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Specifications of Standard Models  
Table 2-6  
Resonant Frequency  
Impedance (Ω)  
at Resonance  
Static Capacitance  
Insulation Resistance  
Model  
Directivity  
Shape  
(kHz)  
(pF)  
(MΩ)  
40  
7500  
7500  
8000  
3400  
2500  
4500  
2400  
5500  
7500  
8000  
2500  
23000  
5500  
15000  
12700  
9000  
4300  
2800  
2800  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
500 and over  
50˚  
45˚  
150 ~ 400  
150 ~ 400  
150 ~ 350  
200 ~ 600  
300 ~ 800  
200 ~ 400  
100 ~ 400  
50 ~ 200  
30 ~ 100  
100 ~ 300  
200 ~ 400  
50 ~ 150  
70 ~ 150  
100 ~ 300  
50 ~ 200  
50 ~ 200  
150 ~ 400  
150 ~ 350  
200 ~ 450  
A
A
A
A
A
A
A
A
A
B
B
E
E
D
D
D
D
C
C
TGM60-40-10L  
45  
TGM60-45-10L  
50  
44˚  
TGM60-50-10L  
75  
36˚  
TGM42-75-10L  
75  
20˚  
TGM80-75-12L  
100  
12˚  
TGM100-100-15L  
200  
11˚  
TGM50-200-10L  
200  
7˚  
TGM80-200-20L  
200  
6˚  
TGM100-200-20L  
50  
44˚  
TMM60-50-10LA  
200  
11˚  
TMM50-200-10LA  
50  
12˚×44˚  
×11˚  
13˚×44˚  
11˚×38˚  
11˚×36˚  
11˚  
TGM60-50A-15L  
200  
TGM50-200A-15L  
50  
TGM60-50B-12L  
68  
TGM46-68B-12L  
75  
TGM42-75B-12L  
200  
TGM50-200B-12L  
50  
60˚  
NBM40-50-8LA  
200  
11˚  
TBM50-200-8LA  
Physical Characteristics  
Type A  
Type B  
Type C  
f
f
f
e
e
φa  
φb  
a
b
φb  
Type D  
Type E  
f
f
Two  
elements  
Three  
elements  
a
b
a
b
Fig. 2-10. Shape and Construction  
Piezoelectric Ceramics Vol.04 21  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Table 2-7  
e
Dimensions  
f (cable)  
Shape  
Model  
a
b
c
d
TGM60-40-10L  
TGM60-45-10L  
TGM60-50-10L  
TGM42-75-10L  
TGM80-75-12L  
TGM100-100-15L  
TGM50-200-10L  
TGM80-200-20L  
TGM100-200-20L  
TMM60-50-10LA  
TMM50-200-10LA  
TGM60-50A-15L  
TGM50-200A-15L  
TGM60-50B-12L  
TGM46-68B-12L  
TGM42-75B-12L  
TGM50-200B-12L  
NBM40-50-8LA  
TBM50-200-8LA  
69.5  
69.5  
89.5  
89.5  
5.0  
5.0  
5.0  
4.0  
5.0  
4.0  
5.0  
7.0  
7.0  
78.0  
78.0  
60.0  
43.0  
65.0  
55.0  
60.0  
45.0  
45.0  
60.0  
60.0  
60.0  
27.0  
30.0  
40.0  
60.0  
30.0  
30.0  
69.5  
89.5  
47.8  
61.0  
104.0  
120.0  
69.5  
120.0  
130.0  
89.0  
φ
11, two-core shield captire cable (chloroprene)  
A
100.0  
124.0  
120.0  
140.0  
W • 1.11d/  
inch  
φ
φ
80.0  
100.0  
226.0  
56  
120  
7, two-core shield captire cable (vinyl)  
B
E
60.0  
206.0  
7.0  
160.0  
11, two-core shield captire cable (chloroprene)  
50.0  
φ
φ
140.0  
160.0  
68.0  
5.0  
60.0  
11, two-core shield captire cable (chloroprene)  
5, two-core shield captire cable (vinyl)  
D
C
M • 22  
P1.5  
31.0 120.0  
22 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Typical Directivity Patterns (1)  
0
0
0
0
(dB)  
10  
(dB)  
10  
330  
30  
330  
30  
20  
20  
30  
30  
300  
60  
300  
60  
40  
40  
50  
50  
270  
90  
270  
90  
240  
120  
240  
120  
TGM60-50-10L  
TGM60-75-10L  
0
0
(dB)  
10  
330  
30  
20  
30  
300  
60  
40  
50  
270  
90  
240  
120  
TGM50-200-10L  
0
0
0
0
(dB)  
10  
(dB)  
10  
330  
30  
330  
30  
20  
20  
30  
30  
300  
60  
300  
60  
40  
40  
50  
50  
270  
90  
270  
90  
240  
120  
240  
120  
TGM60-50A-15L  
TGM60-50A-15L  
Fig. 2-11. Directvity  
Piezoelectric Ceramics Vol.04 23  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
0
0
0
0
(dB)  
10  
(dB)  
10  
330  
30  
330  
30  
20  
20  
30  
30  
300  
60  
300  
60  
40  
40  
50  
50  
270  
90  
270  
90  
240  
120  
240  
120  
TGM60-50B-12L  
TGM60-50B-12L  
0
0
0
0
(dB)  
10  
(dB)  
10  
330  
30  
330  
30  
20  
20  
30  
30  
300  
60  
300  
60  
40  
40  
50  
50  
270  
90  
270  
90  
240  
120  
240  
120  
TGM60-75A-15L  
TGM60-75A-15L  
0
0
0
0
(dB)  
10  
(dB)  
10  
330  
30  
330  
30  
20  
20  
30  
30  
300  
60  
300  
60  
40  
40  
50  
50  
270  
90  
270  
90  
240  
120  
240  
120  
TGM50-200A-15L  
TGM50-200A-15L  
Fig. 2-11. Directvity  
24 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Typical Directivity Patterns (2)  
0
0
0
0
(dB)  
10  
(dB)  
10  
330  
30  
330  
30  
20  
20  
30  
30  
300  
60  
300  
60  
40  
40  
50  
50  
270  
90  
270  
90  
240  
120  
240  
120  
TMM60-50-10LA  
TBM50-200-11  
0
0
0
0
(dB)  
10  
(dB)  
10  
330  
30  
330  
30  
20  
20  
30  
30  
300  
60  
300  
60  
40  
40  
50  
50  
270  
90  
270  
90  
240  
120  
240  
120  
NBM40-50-11  
NBM50-118-9L  
Fig. 2-11. Directivity  
Note: Transducers with non-standard shapes and dimensions  
are also available. For inquiries, see page 34.  
Piezoelectric Ceramics Vol.04 25  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
High-Frequency Transducers  
Outline  
Compared to ordinary piezoelectric transducers, these  
types operate at much higher frequencies: usually in  
the 1~10 MHz range. One of the primary applications  
of high-frequency transducers is as a sensor for flaw  
detection. Another important application area is  
medical equipment; in fact, with ultrasonic diagnosis  
becoming ever more widespread, HF piezoelectric  
transducers are the focus of increasing attention.  
Here are some of the types of ultrasonic diagnosis  
that require HP transducers:  
Fetus phonocardiographs  
Doppler system:  
Blood flowmeter  
Features  
Tomography Electron scanning  
Pulse echo  
High impedance at resonant frequency.  
Excellent electromechanical coupling in thickness  
vibration mode.  
High sensitivity.  
Both thickness and radial vibration offer good  
anisotropic properties.  
Mechanical scanning  
system:  
Cranial disease diagnosis  
Cardiac wall displacement measurement  
The vibration mode of these transducers is usually  
thickness resonance, and the frequency is high. For  
this reason, thin plate transducers with low impedance  
at resonance are needed. The dielectric constant of  
NEC TOKIN NEPEC® is low, and its impedance  
characteristics and other performance parameters are  
excellent for use in high-frequency transducers.  
Thickness resonance spurious emissions are low, and  
resolution is excellent.  
Specifications Example  
Table 2-8  
Dimensions (mm)  
Characteristics  
C (PF) Terminal  
Shape  
Material  
t
f
(kHz)  
r
Kr  
0.60  
0.55  
0.57  
K31  
d
0.5  
4,000  
2,100  
6,400  
6,500  
5,000  
4,000  
6,500  
5,000  
4,000  
3,000  
7,000  
2,700  
S
S
S
P
P
P
P
P
P
P
20  
20  
10  
20  
20  
25  
15  
15  
15  
15  
21  
8
d
t
1.0  
0.3  
0.3  
0.4  
0.5  
0.3  
0.4  
0.5  
0.6  
3,000  
21  
21  
21  
21  
21  
21  
21  
21  
20  
20  
25  
80  
80  
100  
100  
0.30  
0.30  
0.30  
0.30  
0.30  
0.30  
0.30  
13,500  
10,500  
14,000  
42,000  
32,500  
33,000  
28,500  
d
t
d
t
26 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Aerial Microphone Transducers  
Outline  
Ultrasonic aerial microphones generate ultrasonic  
waves that are radiated through the air and reflected  
from a target to measure distance. These microphones  
are used for traffic control, obstacle detection, as robot  
sensors, and in other similar applications.  
Transducers for aerial microphones are of two types,  
bimorph and cylindrical , with different vibration  
modes. Such transducers are most often used together with  
a horn mounted in the radiation plane. NEC TOKIN  
aerial microphone transducers have good output  
power, receiving sensitivity and directivity-all  
important in this type of application.  
Features  
Good temperature characteristics.  
Cylindrical transducers are moisture-resistant,  
ensuring stable operation outdoors.  
High mechanical coupling, high sensitivity.  
Specifications of Standard Models  
Circuit Example  
Lead wires  
Metal case  
H
Shape  
Table 2-9. N-21 Specification Example  
D (mm) d (mm) H (mm) fr (kHz)  
K
C (PF)  
28000  
19600  
Direction of sound waves  
Cylindrical  
38  
36  
34  
31  
30  
30  
23.7  
25.8  
0.25  
0.25  
transducer  
Reflector  
Ultrasonic wave  
Bimorph transducer  
External case  
(resonance plate)  
t
Shape  
Silicone rubber ring  
Table 2-10. N-6 Specification Example  
Terminal  
D (mm)  
t (mm)  
fr (kHz)  
Δf (kHz)  
C (PF)  
18.7  
1.5  
23.5  
2.0  
2100  
Fig. 2-12. Details of Construction  
Piezoelectric Ceramics Vol.04 27  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Sonar Transducers  
Outline  
Depth finders, underwater detectors, and fish finders  
all utilize the principle of sonar, in which sound waves  
are radiated through the water to detect and measure  
the distance to the target. Although there are  
differences in the resolution and distance capabilities  
required of sonar transducers, in general all should  
have the best possible sensitivity, resolution,  
directivity, and reliability. Sonar transducers  
fabricated of NEC TOKIN’s superior NEPEC® material  
score high marks in all departments, and are available  
for a wide variety of applications.  
Characteristics of Sonar Transducer Materials  
Table 2-11  
Transducer type  
Vibration mode  
Operating frequency  
Main features  
Remarks  
Easy frequency adjustment  
High mechanical strength  
a
b
c
d
Disc  
Thickness vibration  
70 ~ 500  
Easy frequency adjustment  
Good electromechanical coupling  
Square column  
Cylinder  
Longitudinal vibration  
Thickness vibration  
40 ~ 100  
Dimensions and characteristics  
are determined according to the  
requirements of specific  
customers.  
100 ~ 500  
Adjustment of mechanical  
Q and frequency are easy  
Diameter direction vibration  
10 ~ 200  
Low frequency can be obtained at  
low impedance  
Langevin  
Longitudinal vibration  
20 ~ 100  
Direction of sound wave radiation  
(Displacement direction)  
Direction of polarization  
(a)  
( )  
b
(c)  
(d)  
Fig. 2-13  
Types and Features  
Table 2-12  
T
Features  
Material  
N-6  
K
31  
ε
33  
/
ε
0
Qm  
1500  
75  
Tc (˚C)  
325  
0.34  
0.38  
1400  
1800  
Excellent stability at high output levels  
Low Qm and high sensitivity  
N-21  
300  
28 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Piezoelectric Ceramics Vol.04 29  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
30 Piezoelectric Ceramics Vol.04  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  
Precautions  
• The names of the products and the specifications in this  
catalog are subject to change without notice for the sake  
of improvement. The manufacturer also reserves the right  
to discontinue any of these products. At the time of  
delivery, please ask for specification sheets to check the  
contents before use.  
• When ordering transducers or other finished products  
Specify model name and number when placing an  
order for transducer products such as molded trans-  
ducers for underwater use. Also note any special require-  
ments.  
• This catalog is current as of March 2010.  
• Material selection, installation and activation of piezoelec-  
tric ceramics should be decided upon by users according  
to the application. For proper evaluation and decision,  
products should be tested repeatedly in both realistic and  
abnormal operating conditions.  
• The manufacturer’s warranty will not cover any disadvan-  
tage or damage caused by improper use of the products,  
deviating from the characteristics, specifications, or  
conditions for use described in this catalog.  
• Please be advised that the manufacturer accepts no  
responsibility for any infraction on third party patents or  
industrial copyrights by users of the manufacturer’s  
products. The manufacturer is responsible only when  
such infractions are attributable to the structural design of  
the product and its manufacturing process.  
• No part of this document may be reproduced without  
written permission from the manufacturer.  
• Export Control  
For customers outside Japan  
NEC-TOKIN products should not be used or sold for  
use in the development, production, stockpiling or  
utilization of any conventional weapons or mass-  
destructive weapons (nuclear weapons, chemical or  
biological weapons, or missiles), or any other weapons.  
For customers in Japan  
For products which are controlled items subject to the'  
Foreign Exchange and Foreign Trade Law' of Japan,  
the export license specified by the law is required for  
export.  
• When ordering NEPEC Piezoelectric Materials  
Specify the following items when placing an order with  
NEC TOKIN for NEPEC :  
1) Shape (disc, column, cylinder, square plate, sphere,  
or bimorph).  
2) Desired material and application.  
3) Dimensions.  
4) Vibration mode and resonant frequency used.  
5) Whether special surface treatment is required, and if  
so, what type.  
6) S, P, or other designated terminal.  
●All specifications in this catalog and production status of products are subject to change without notice. Prior to the purchase, please contact NEC TOKIN for updated product data.  
●Please request for a specification sheet for detailed product data prior to the purchase.  
●Before using the product in this catalog, please read "Precautions" and other safety precautions listed in the printed version catalog.  
2010.03.19 9307PIEVOL04E  

相关型号:

TBMA1004P4

SMD Power Inductor
TAI-TECH

TBMA1004P4-100MN-D

SMD Power Inductor
TAI-TECH

TBMA1004P4-150MN-D

SMD Power Inductor
TAI-TECH

TBMA1004P4-220MN-D

SMD Power Inductor
TAI-TECH

TBMA1004P4-5R6MN-D

SMD Power Inductor
TAI-TECH

TBMA1004P4-7R5MN-D

SMD Power Inductor
TAI-TECH

TBMA1004P4-R43MN-D

SMD Power Inductor
TAI-TECH

TBME106K050LBSB0823

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 50V, 10% +Tol, 10% -Tol, 10uF, Surface Mount, 2917, CHIP
KYOCERA AVX

TBME106M050LBS0724

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 50V, 20% +Tol, 20% -Tol, 10uF, Surface Mount, 2917, CHIP
KYOCERA AVX

TBME107J020CLSD0024

Tantalum Capacitor, Polarized, Tantalum, 20V, 5% +Tol, 5% -Tol, 100uF, 2917,
KYOCERA AVX

TBME107J020CRST0945

Tantalum Capacitor, Polarized, Tantalum, 20V, 5% +Tol, 5% -Tol, 100uF, 2917,
KYOCERA AVX

TBME107J020LGDT0823

Tantalum Capacitor, Polarized, Tantalum, 20V, 5% +Tol, 5% -Tol, 100uF, 2917,
KYOCERA AVX