UPD44164085F5-E50-EQ1 [NEC]

18M-BIT DDRII SRAM SEPARATE I/O 2-WORD BURST OPERATION; 18M - BIT DDRII SRAM独立的I / O 2字突发操作
UPD44164085F5-E50-EQ1
型号: UPD44164085F5-E50-EQ1
厂家: NEC    NEC
描述:

18M-BIT DDRII SRAM SEPARATE I/O 2-WORD BURST OPERATION
18M - BIT DDRII SRAM独立的I / O 2字突发操作

存储 内存集成电路 静态存储器 双倍数据速率
文件: 总32页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD44164085, 44164185, 44164365  
18M-BIT DDRII SRAM SEPARATE I/O  
2-WORD BURST OPERATION  
Description  
The µPD44164085 is a 2,097,152-word by 8-bit, the µPD44164185 is a 1,048,576-word by 18-bit and the  
µPD44164365 is a 524,288-word by 36-bit synchronous double data rate static RAM fabricated with advanced CMOS  
technology using full CMOS six-transistor memory cell.  
The µPD44164085, µPD44164185 and µPD44164365 integrates unique synchronous peripheral circuitry and a  
burst counter. All input registers controlled by an input clock pair (K and /K) are latched on the positive edge of K and  
/K.  
These products are suitable for application which require synchronous operation, high speed, low voltage, high  
density and wide bit configuration.  
These products are packaged in 165-pin PLASTIC BGA.  
Features  
1.8 ± 0.1 V power supply and HSTL I/O  
DLL circuitry for wide output data valid window and future frequency scaling  
Separate independent read and write data ports  
DDR read or write operation initiated each cycle  
Pipelined double data rate operation  
Separate data input/output bus  
Two-tick burst for low DDR transaction size  
Two input clocks (K and /K) for precise DDR timing at clock rising edges only  
Two output clocks (C and /C) for precise flight time and clock skew matching-clock  
and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability with µs restart  
User programmable impedance output  
Fast clock cycle time : 4.0 ns (250 MHz), 5.0 ns (200 MHz), 6.0 ns (167 MHz)  
Simple control logic for easy depth expansion  
JTAG boundary scan  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. M15823EJ7V1DS00 (7th edition)  
Date Published July 2004 NS CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
2001  
µPD44164085, 44164185, 44164365  
Ordering Information  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
Organization Core Supply  
I/O  
Package  
(word x bit)  
Voltage  
V
Interface  
µPD44164085F5-E40-EQ1  
µPD44164085F5-E50-EQ1  
µPD44164085F5-E60-EQ1  
µPD44164185F5-E40-EQ1  
µPD44164185F5-E50-EQ1  
µPD44164185F5-E60-EQ1  
µPD44164365F5-E50-EQ1  
µPD44164365F5-E60-EQ1  
4.0  
5.0  
6.0  
4.0  
5.0  
6.0  
5.0  
6.0  
250  
200  
167  
250  
200  
167  
200  
167  
2 M x 8-bit  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
BGA (13 x 15)  
1 M x 18-bit  
512 K x 36-bit  
Data Sheet M15823EJ7V1DS  
2
µPD44164085, 44164185, 44164365  
Pin Configurations  
/××× indicates active low signal.  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[µPD44164085F5-EQ1]  
1
2
3
A
4
5
/NW1  
NC  
A
6
7
NC  
/NW0  
A
8
9
A
10  
VSS  
NC  
NC  
NC  
D2  
11  
CQ  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
NC  
NC  
D4  
R, /W  
A
/K  
/LD  
A
NC  
NC  
NC  
Q4  
NC  
Q5  
VDDQ  
NC  
NC  
D6  
NC  
NC  
Q7  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
D5  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
VREF  
Q1  
G
H
J
VREF  
NC  
NC  
Q6  
K
L
NC  
NC  
NC  
NC  
NC  
TMS  
M
N
P
R
NC  
D7  
VSS  
VSS  
NC  
TCK  
A
A
C
A
A
A
A
/C  
A
A
A
: Address inputs  
: Data inputs  
: Data outputs  
: Synchronous load  
: Read Write input  
: Nibble Write data select  
: Input clock  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
D0 to D7  
Q0 to Q7  
/LD  
R, /W  
/NW0, /NW1  
K, /K  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
C, /C  
: Output clock  
CQ, /CQ  
ZQ  
/DLL  
: Echo clock  
: Output impedance matching  
: DLL disable  
NC  
: No connection  
Remark Refer to Package Drawing for the index mark.  
Data Sheet M15823EJ7V1DS  
3
µPD44164085, 44164185, 44164365  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[µPD44164185F5-EQ1]  
1
2
3
4
5
/BW1  
NC  
A
6
7
NC  
/BW0  
A
8
9
A
10  
VSS  
NC  
Q7  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
Q9  
NC  
R, /W  
A
/K  
/LD  
A
D9  
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
A
VSS  
A
VSS  
D11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q12  
D13  
VREF  
NC  
NC  
NC  
VREF  
Q4  
G
H
J
K
L
NC  
D3  
Q15  
NC  
NC  
Q1  
M
N
P
R
D17  
NC  
VSS  
VSS  
NC  
D0  
A
A
C
A
A
TCK  
A
A
/C  
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
D0 to D17  
Q0 to Q17  
/LD  
R, /W  
/BW0, /BW1  
K, /K  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
C, /C  
: Output clock  
CQ, /CQ  
ZQ  
/DLL  
: Echo clock  
: Output impedance matching  
: DLL disable  
NC  
: No connection  
Remark Refer to Package Drawing for the index mark.  
Data Sheet M15823EJ7V1DS  
4
µPD44164085, 44164185, 44164365  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[µPD44164365F5-EQ1]  
1
2
3
4
5
/BW2  
/BW3  
A
6
7
/BW1  
/BW0  
A
8
9
10  
VSS  
Q17  
Q7  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
/CQ  
Q27  
D27  
D28  
Q29  
Q30  
D30  
/DLL  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
VSS  
NC  
R, /W  
A
/K  
/LD  
A
NC  
Q18  
Q28  
D20  
D29  
Q21  
D22  
VREF  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D18  
D19  
Q19  
Q20  
D21  
Q22  
VDDQ  
D23  
Q23  
D24  
D25  
Q25  
Q26  
A
K
D17  
D16  
Q16  
Q15  
D14  
Q13  
VDDQ  
D12  
Q12  
D11  
D10  
Q10  
Q9  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
D15  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q14  
D13  
VREF  
Q4  
G
H
J
K
L
D3  
Q11  
Q1  
M
N
P
R
VSS  
VSS  
D9  
A
A
C
A
A
D0  
A
A
/C  
A
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
D0 to D35  
Q0 to Q35  
/LD  
R, /W  
/BW0 to /BW3  
K, /K  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
C, /C  
: Output clock  
CQ, /CQ  
ZQ  
/DLL  
: Echo clock  
: Output impedance matching  
: DLL disable  
NC  
: No connection  
Remark Refer to Package Drawing for the index mark.  
Data Sheet M15823EJ7V1DS  
5
µPD44164085, 44164185, 44164365  
Pin Identification  
Symbol  
Description  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the  
rising edge of K. Balls 9A, 3A, 10A, and 2A are reserved for the next higher-order address inputs on future  
devices. All transactions operate on a burst of two words (one clock period of bus activity). These inputs are  
ignored when device is deselected.  
D0 to Dxx  
Synchronous Data Inputs: Input data must meet setup and hold times around the rising edges of K and /K  
during WRITE operations. See Pin Configurations for ball site location of individual signals.  
x8 device uses D0 to D7.  
x18 device uses D0 to D17.  
x36 device uses D0 to D35.  
Q0 to Qxx  
Synchronous Data Outputs: Output data is synchronized to the respective C and /C or to K and /K rising edges  
if C and /C are tied HIGH. This bus operates in response to /R commands. See Pin Configurations for ball site  
location of individual signals.  
x8 device uses Q0 to Q7.  
x18 device uses Q0 to Q17.  
x36 device uses Q0 to Q35.  
/LD  
Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition  
includes address and read/write direction. All transactions operate on a burst of 2 data (one clock period of bus  
activity).  
R, /W  
Synchronous Read/Write Input: When /LD is LOW, this input designates the access type (READ when R, /W is  
HIGH, WRITE when R, /W is LOW) for the loaded address. R, /W must meet the setup and hold times around  
the rising edge of K.  
/BWx  
/NWx  
Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble  
to be registered and written during WRITE cycles. These signals must meet setup and hold times around the  
rising edges of K and /K for each of the two rising edges comprising the WRITE cycle. See Pin Configurations  
for signal to data relationships.  
K, /K  
C, /C  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data  
on the rising edge of K and the rising edge of /K. /K is ideally 180 degrees out of phase with K. All synchronous  
inputs must meet setup and hold times around the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of  
/C is used as the output timing reference for first output data. The rising edge of C is used as the output  
reference for second output data. Ideally, /C is 180 degrees out of phase with C. C and /C may be tied HIGH to  
force the use of K and /K as the output reference clocks instead of having to provide C and /C clocks. If tied  
HIGH, C and /C must remain HIGH and not be toggled during device operation.  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous  
data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q  
tristates.  
Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus  
impedance. DQ and CQ output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to  
ground. This pin cannot be connected directly to GND or left unconnected. Also, in this product, there is no  
function to minimize the output impedance by connecting ZQ directly to VDDQ.  
CQ, /CQ  
ZQ  
/DLL  
DLL Disable: When LOW, this input causes the DLL to be bypassed for stable low frequency operation.  
TMS  
TDI  
IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left Not Connected if the JTAG function is not  
used in the circuit.  
TCK  
IEEE 1149.1 Clock Input: 1.8V I/O levels. This pin must be tied to VSS if the JTAG function is not used in the  
circuit.  
TDO  
VREF  
VDD  
IEEE 1149.1 Test Output: 1.8V I/O level.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
Power Supply: 1.8V nominal. See DC Characteristics and Operating Conditions for range.  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5V. 1.8V is also permissible. See DC Characteristics  
and Operating Conditions for range.  
VSS  
NC  
Power Supply: Ground  
No Connect: These signals are internally connected and appear in the JTAG scan chain as the logic level  
applied to the ball sites. These signals may be connected to ground to improve package heat dissipation.  
Data Sheet M15823EJ7V1DS  
6
µPD44164085, 44164185, 44164365  
Block Diagrams  
[µPD44164085]  
20  
ADDRESS  
/LD  
ADDRESS  
REGISTRY  
& LOGIC  
20  
R, /W  
K
/K  
R, /W  
/NW0  
/NW1  
220 x 16  
DATA  
16  
16  
8
2
16  
8
D0 to D7  
Q0 to Q7  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
MUX  
MUX  
MUX  
/LD  
CQ,  
/CQ  
K
K
K
C, /C  
OR  
K, /K  
/K  
[µPD44164185]  
19  
ADDRESS  
/LD  
ADDRESS  
REGISTRY  
& LOGIC  
19  
R, /W  
K
/K  
R, /W  
/BW0  
/BW1  
219 x 36  
DATA  
36  
36  
18  
2
36  
18  
Q0 to Q17  
REGISTRY  
& LOGIC  
D0 to D17  
MEMORY  
ARRAY  
/LD  
CQ,  
/CQ  
K
K
K
C, /C  
OR  
K, /K  
/K  
[µPD44164365]  
18  
ADDRESS  
/LD  
ADDRESS  
REGISTRY  
& LOGIC  
18  
R, /W  
K
/K  
R, /W  
/BW0  
/BW1  
/BW2  
/BW3  
218 x 72  
DATA  
72  
72  
36  
2
72  
Q0 to Q35  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
36  
D0 to D35  
CQ,  
/CQ  
/LD  
K
K
K
C, /C  
OR  
/K  
K, /K  
Data Sheet M15823EJ7V1DS  
7
µPD44164085, 44164185, 44164365  
Truth Table  
Operation  
/LD R, /W  
CLK  
D or Q  
Data in  
WRITE cycle  
L
L
L H  
Load address, input write data on two  
consecutive K and /K rising edge  
READ cycle  
Input data  
Input clock  
D(A+0)  
D(A+1)  
K(t+1) ↑  
/K(t+1) ↑  
L
H
L H  
Data out  
Load address, read data on two  
consecutive C and /C rising edge  
NOP (No operation)  
Output data  
Output clock  
Q(A+0)  
Q(A+1)  
/C(t+1) ↑  
C(t+2) ↑  
H
X
X
X
L H  
High-Z  
Previous state  
STANDBY(Clock stopped)  
Stopped  
Remarks 1. H : High level, L : Low level, × : don’t care, : rising edge.  
2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C rising edges  
except if C and /C are HIGH then Data outputs are delivered at K and /K rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. It is recommended that K = /K = C = /C when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
Data Sheet M15823EJ7V1DS  
8
µPD44164085, 44164185, 44164365  
Byte Write Operation  
[µPD44164085]  
Operation  
K
L H  
/K  
/NW0  
/NW1  
Write D0 to D7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Write D0 to D3  
Write D4 to D7  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
[µPD44164185]  
Operation  
Write D0 to D17  
K
L H  
/K  
/BW0  
/BW1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Write D0 to D8  
Write D9 to D17  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
[µPD44164365]  
Operation  
Write D0 to D35  
K
L H  
/K  
/BW0  
/BW1  
/BW2  
/BW3  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
Data Sheet M15823EJ7V1DS  
9
µPD44164085, 44164185, 44164365  
Bus Cycle State Diagram  
LOAD NEW  
ADDRESS  
Count = 0  
Load, Count = 2  
Load, Count = 2  
READ DOUBLE  
Write  
Read  
WRITE DOUBLE  
Count = Count + 2  
Count = Count + 2  
Load  
NOP,  
NOP,  
Count = 2  
Count = 2  
NOP  
NOP  
Supply voltage provided  
Power UP  
Remark State machine control timing sequence is controlled by K.  
Data Sheet M15823EJ7V1DS  
10  
µPD44164085, 44164185, 44164365  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol Conditions  
MIN.  
–0.5  
–0.5  
–0.5  
–0.5  
0
TYP.  
MAX.  
Unit  
V
VDD  
VDDQ  
VIN  
+2.9  
Output supply voltage  
Input voltage  
VDD  
VDD + 0.5 (2.9 V MAX.)  
VDDQ + 0.5 (2.9 V MAX.)  
70  
V
V
Input / Output voltage  
Operating ambient temperature  
Storage temperature  
VI/O  
TA  
V
°C  
°C  
Tstg  
–55  
+125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70 °C)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit  
V
Note  
Output supply voltage  
High level input voltage  
Low level input voltage  
Clock input voltage  
VDDQ  
VIH (DC)  
VIL (DC)  
VIN  
1.4  
VDD  
V
1
VREF + 0.1  
–0.3  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.95  
V
1, 2  
1, 2  
1, 2  
V
–0.3  
V
Reference voltage  
VREF  
0.68  
V
Notes 1. During normal operation, VDDQ must not exceed VDD.  
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions (TA = 0 to 70 °C)  
Parameter  
High level input voltage  
Low level input voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Conditions  
MIN.  
VREF + 0.2  
TYP.  
MAX.  
Unit  
V
Note  
1
1
VREF – 0.2  
V
Note 1. Overshoot: VIH (AC) VDD + 0.7 V for t TKHKH/2  
Undershoot: VIL (AC) – 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
Data Sheet M15823EJ7V1DS  
11  
µPD44164085, 44164185, 44164365  
DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
TYP.  
MAX.  
Unit  
Note  
x8, x18 x36  
Input leakage current  
I/O leakage current  
Operating supply current  
(Read Write cycle)  
ILI  
–2  
–2  
+2  
+2  
µA  
µA  
ILO  
IDD  
VIN VIL or VIN VIH, –E40  
650  
550  
480  
320  
mA  
II/O = 0 mA  
–E50  
–E60  
650  
570  
Cycle = MAX.  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH, –E40  
mA  
II/O = 0 mA  
–E50  
–E60  
270  
250  
Cycle = MAX.  
High level output voltage  
Low level output voltage  
VOH(Low) |IOH| 0.1 mA  
VOH Note1  
VOL(Low) IOL 0.1 mA  
VOL Note2  
VDDQ – 0.2  
VDDQ/2 – 0.12  
VSS  
VDDQ  
VDDQ/2 + 0.12  
0.2  
V
V
V
V
3, 4  
3, 4  
3, 4  
3, 4  
VDDQ/2 – 0.12  
VDDQ/2 + 0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I and Class II standards.  
Capacitance (TA = 25 °C, f = 1MHz)  
Parameter  
Input capacitance  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
Unit  
pF  
4
6
5
5
7
6
Input / Output capacitance  
Clock Input capacitance  
CI/O  
VI/O = 0 V  
Vclk = 0 V  
pF  
Cclk  
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Data Sheet M15823EJ7V1DS  
12  
µPD44164085, 44164185, 44164365  
AC Characteristics (TA = 0 to 70 °C, VDD = 1.8 ± 0.1 V)  
AC Test Conditions  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.25 V  
0.75 V  
Test Points  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
V
DDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
Data Sheet M15823EJ7V1DS  
13  
µPD44164085, 44164185, 44164365  
Read and Write Cycle  
-E40  
-E50  
-E60  
Parameter  
Symbol  
Unit Note  
(250 MHz)  
(200 MHz)  
(167 MHz)  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Clock  
Average Clock cycle time (K, /K, C, /C) TKHKH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
4.0  
8.4  
0.2  
5.0  
8.4  
0.2  
2.3  
2.8  
3.55  
6.0  
8.4  
0.2  
Clock phase jitter (K, /K, C, /C)  
Clock HIGH time (K, /K, C, /C)  
Clock LOW time (K, /K, C, /C)  
Clock to /clock (K/K., C/C.)  
Clock to /clock (/KK., /CC.)  
TKC var  
TKHKL  
TKLKH  
TKH /KH  
T /KHKH  
1.6  
1.6  
1.8  
1.8  
0
0
0
0
2.0  
2.0  
2.2  
2.2  
0
0
0
2.4  
2.4  
2.7  
2.7  
0
0
Clock to data clock 200 to 250 MHz TKHCH  
1.8  
2.3  
2.8  
3.55  
(KC., /K/C.)  
167 to 200 MHz  
133 to 167 MHz  
< 133 MHz  
2.8  
3.55  
DLL lock time (K, C)  
K static to DLL reset  
TKC lock  
TKC reset  
Cycle  
ns  
3
1,024  
30  
1,024  
30  
1,024  
30  
Output Times  
C, /C HIGH to output valid  
C, /C HIGH to output hold  
C, /C HIGH to echo clock valid  
C, /C HIGH to echo clock hold  
CQ, /CQ HIGH to output valid  
CQ, /CQ HIGH to output hold  
C HIGH to output High-Z  
TCHQV  
TCHQX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–0.45  
–0.45  
–0.3  
–0.45  
0.45  
0.45  
0.3  
0.45  
–0.45  
–0.45  
–0.35  
–0.45  
0.45  
0.45  
0.35  
0.45  
–0.5  
–0.5  
–0.4  
–0.5  
0.5  
0.5  
0.4  
0.5  
TCHCQV  
TCHCQX  
TCQHQV  
TCQHQX  
TCHQZ  
4
4
C HIGH to output Low-Z  
TCHQX1  
Setup Times  
Address valid to K rising edge  
Synchronous load input (/LD),  
read write input (R, /W) valid to  
K rising edge  
TAVKH  
TIVKH  
ns  
ns  
5
5
0.5  
0.5  
0.6  
0.6  
0.7  
0.7  
Data inputs and write data select  
inputs (/BWx, /NWx) valid to  
K, /K rising edge  
TDVKH  
ns  
5
0.35  
0.4  
0.5  
Hold Times  
K rising edge to address hold  
K rising edge to  
TKHAX  
TKHIX  
ns  
ns  
5
5
0.5  
0.5  
0.6  
0.6  
0.7  
0.7  
synchronous load input (/LD),  
read write input (R, /W) hold  
K, /K rising edge to data inputs and  
write data select inputs (/BWx, /NWx)  
hold  
TKHDX  
ns  
5
0.35  
0.4  
0.5  
Data Sheet M15823EJ7V1DS  
14  
µPD44164085, 44164185, 44164365  
Notes 1. The device will operate at clock frequencies slower than TKHKH(MAX.).  
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
3. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention.  
DLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept inactive during these cycles.  
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
5. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions  
unless otherwise noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. If C, /C are tied HIGH, K, /K become the references for C, /C timing parameters.  
5. VDDQ is 1.5 V DC.  
Data Sheet M15823EJ7V1DS  
15  
µPD44164085, 44164185, 44164365  
Read and Write Timing  
NOP  
WRITE  
(burst of 2)  
WRITE  
(burst of 2)  
READ  
(burst of 2)  
READ  
(burst of 2)  
READ  
(burst of 2)  
NOP  
1
2
3
4
5
6
7
8
K
TKHKL TKLKH  
TKHKH  
TKH/KH  
T/KHKH  
/K  
/LD  
TKHIX  
TIVKH  
R, /W  
A0  
A2  
A4  
TDVKH TKHDX  
A1  
A3  
Address  
TDVKH TKHDX  
TKHAX  
TAVKH  
Data in  
D21  
D22  
D31  
D32  
Data out  
Q01  
Q02  
Q11  
Q12  
Q41  
Q42  
Qx2  
TCHQX1  
TCHQZ  
TCQHQV  
TCHQX  
TCHQX  
TCHQV  
TCHQV  
CQ  
TCHCQX  
TCHCQV  
/CQ  
TCHCQX  
TCHCQV  
TKHCH  
C
TKHKL TKLKH  
TKHKH  
TKH/KH T/KHKH  
TKHCH  
/C  
Remarks 1. Q01 refers to output from address A0+0.  
Q02 refers to output from the next internal burst address following A0, i.e., A0+1.  
2. Outputs are disable (high impedance) one clock cycle after a NOP.  
3. In this example, if address A3=A4, data Q41=D31, Q42=D32.  
Write data is forwarded immediately as read results.  
Data Sheet M15823EJ7V1DS  
16  
µPD44164085, 44164185, 44164365  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
2R  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs  
propagate from the falling edge of TCK.  
TMS  
TDI  
10R  
11R  
Test Mode Select. This is the command input for the TAP controller state machine.  
Test Data Input. This is the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is determined by the state of the TAP  
controller state machine and the instruction that is currently loaded in the TAP instruction.  
Test Data Output. Output changes in response to the falling edge of TCK. This is the  
output side of the serial registers placed between TDI and TDO.  
TDO  
1R  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
ILI  
Conditions  
MIN.  
–5.0  
–5.0  
TYP.  
MAX.  
+5.0  
+5.0  
Unit  
µA  
Note  
JTAG Input leakage current  
JTAG I/O leakage current  
0 V VIN VDD  
ILO  
0 V VIN VDDQ,  
µA  
Outputs disabled  
JTAG input high voltage  
JTAG input low voltage  
JTAG output high voltage  
VIH  
VIL  
1.3  
–0.3  
1.6  
1.4  
VDD + 0.3  
V
V
V
V
V
V
+0.5  
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 µA  
| IOHT | = 2 mA  
IOLC = 100 µA  
IOLT = 2 mA  
JTAG output low voltage  
0.2  
0.4  
Data Sheet M15823EJ7V1DS  
17  
µPD44164085, 44164185, 44164365  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
Data Sheet M15823EJ7V1DS  
18  
µPD44164085, 44164185, 44164365  
JTAG AC Characteristics (TA = 0 to 70 °C)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Note  
Clock  
Clock cycle time  
Clock frequency  
Clock high time  
Clock low time  
tTHTH  
fTF  
100  
10  
ns  
MHz  
ns  
tTHTL  
tTLTH  
40  
40  
ns  
Output time  
TCK low to TDO unknown  
TCK low to TDO valid  
TDI valid to TCK high  
TCK high to TDI invalid  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
20  
ns  
ns  
ns  
ns  
10  
10  
Setup time  
TMS setup time  
Capture setup time  
tMVTH  
tCS  
10  
10  
ns  
ns  
Hold time  
TMS hold time  
Capture hold time  
tTHMX  
tCH  
10  
10  
ns  
ns  
JTAG Timing Diagram  
t
THTH  
TCK  
TMS  
TDI  
t
MVTH  
t
THTL  
t
TLTH  
t
THMX  
t
DVTH  
t
THDX  
t
TLOV  
t
TLOX  
TDO  
Data Sheet M15823EJ7V1DS  
19  
µPD44164085, 44164185, 44164365  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Bypass register  
ID register  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The second column is  
the name of the input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
107  
bit  
Boundary register  
bit  
ID Register Definition  
Part number Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 0001 1000  
0000 0000 0001 1001  
0000 0000 0001 1010  
ID [11:1] vendor ID no.  
00000010000  
ID [0] fix bit  
µPD44164085  
µPD44164185  
µPD44164365  
2M x 8  
1M x 18  
XXXX  
XXXX  
XXXX  
1
1
1
00000010000  
512K x 36  
00000010000  
Data Sheet M15823EJ7V1DS  
20  
µPD44164085, 44164185, 44164365  
SCAN Exit Order  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
no.  
x8  
x18 x36  
no.  
x8  
x18  
x36  
no.  
x8  
x18  
x36  
1
/C  
C
A
A
A
A
A
A
A
6R  
6P  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
NC  
NC  
NC  
NC  
NC  
NC  
Q3  
D3  
NC  
NC  
Q7  
D7  
NC  
NC  
Q8  
D8  
NC  
NC  
CQ  
D15 10D  
73  
74  
NC  
Q4  
D4  
NC  
Q11  
D11  
NC  
NC  
Q12  
D12  
NC  
NC  
Q13  
D13  
NC  
NC  
Q14  
D14  
NC  
NC  
Q15  
D15  
NC  
NC  
Q16  
D16  
NC  
NC  
Q17  
D17  
NC  
NC  
A
Q28  
Q20  
D20  
D29  
Q29  
Q21  
D21  
D30  
Q30  
Q22  
D22  
D31  
Q31  
Q23  
D23  
D32  
Q32  
Q24  
D24  
D33  
Q33  
Q25  
D25  
D34  
Q34  
Q26  
D26  
D35  
Q35  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1J  
2
Q15  
Q7  
9E  
10C  
11D  
9C  
3
6N  
75  
4
7P  
D7  
76  
NC  
NC  
NC  
NC  
NC  
NC  
Q5  
D5  
5
7N  
D16  
Q16  
Q8  
77  
6
7R  
9D  
78  
7
8R  
11B  
11C  
9B  
79  
8
8P  
D8  
80  
9
9R  
NC  
NC  
D17  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q0  
D0  
Q0  
D0  
NC  
NC  
Q1  
D1  
Q0  
D0  
D9  
Q9  
Q1  
D1  
11P  
10P  
10N  
9P  
Q17 10B  
11A  
82  
83  
84  
NC  
NC  
NC  
NC  
NC  
NC  
Q6  
D6  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
D7  
Internal  
A
A
NC  
9A  
8B  
7C  
6C  
8A  
85  
2J  
10M  
11N  
9M  
9N  
A
86  
3K  
3J  
A
87  
NC D10  
NC Q10  
A
88  
2K  
1K  
2L  
/LD  
89  
Q2  
D2  
Q2  
D2  
11L  
11M  
9L  
NC  
NC /BW1 7A  
90  
55 /NW0 /BW0 /BW0 7B  
91  
3L  
NC  
NC  
NC  
NC  
NC  
NC  
Q1  
D1  
NC D11  
NC Q11  
56  
57  
58  
K
6B  
6A  
92  
1M  
1L  
10L  
11K  
10K  
9J  
/K  
93  
Q3  
D3  
Q3  
D3  
NC  
NC /BW3 5B  
94  
3N  
3M  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
59 /NW1 /BW1 /BW2 5A  
95  
NC D12  
NC Q12  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
R, /W  
A
4A  
5C  
4B  
3A  
1H  
1A  
2B  
3B  
1C  
1B  
3D  
3C  
1D  
96  
9K  
97  
Q4  
D4  
ZQ  
Q4  
D4  
10J  
11J  
11H  
A
98  
A
NC  
/DLL  
/CQ  
Q9  
D9  
NC  
99  
100  
101  
102  
103  
104  
105  
106  
107  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q2  
D2  
NC D13 10G  
NC Q13  
9G  
11F  
11G  
9F  
NC  
NC  
NC  
NC  
Q18  
D18  
D27  
Q27  
Q5  
D5  
Q5  
D5  
A
NC  
NC  
A
NC D14  
NC Q14  
A
10F  
11E  
10E  
NC Q10 Q19  
A
Q6  
D6  
Q6  
D6  
NC  
NC  
D10 D19  
NC D28  
A
Data Sheet M15823EJ7V1DS  
21  
µPD44164085, 44164185, 44164365  
JTAG Instructions  
Instructions  
EXTEST  
Description  
The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-  
scan register cells at output pins are used to apply test vectors, while those at input pins capture test  
results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,  
the output driver is turned on and the PRELOAD data is driven onto the output pins.  
IDCODE  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed  
in the test-logic-reset state.  
The BYPASS instruction is loaded in the instruction register when the bypass register is placed between  
TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the  
board level scan path to be shortened to facilitate testing of other devices in the scan path.  
SAMPLE / PRELOAD SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /  
PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR  
state loads the data in the RAMs input and Q pins into the boundary scan register. Because the RAM  
clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the  
I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing  
the TAP to sample metastable input will not harm the device, repeatable results cannot be expected.  
RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus  
hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any other TAP operation except  
capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state  
then places the boundary scan register between the TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM Q pins are forced to an inactive  
drive state (high impedance) and the boundary register is connected between TDI and TDO when the  
TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
1
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
1
1
0
1
1
1
Note 1. TRISTATE all Q pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
Data Sheet M15823EJ7V1DS  
22  
µPD44164085, 44164185, 44164365  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and  
may be left unconnected. But they may also be tied to VDD through a 1 kresistor.  
TDO should be left unconnected.  
Data Sheet M15823EJ7V1DS  
23  
Test Logic Operation (Instruction Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
IDCODE  
New Instruction  
Output Inactive  
TDO  
Test Logic (Data Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
Instruction  
IDCODE  
Output Inactive  
TDO  
µPD44164085, 44164185, 44164365  
Package Drawing  
165-PIN PLASTIC BGA (13x15)  
B
E
w
S
B
ZD  
ZE  
11  
10  
9
8
A
7
6
D
5
4
3
2
1
R P M M L K J H G F E D C B A  
w
S A  
INDEX MARK  
A
A2  
y1  
S
S
y
e
S
A1  
(UNIT:mm)  
ITEM DIMENSIONS  
M
φ
φ
x
b
S A B  
D
E
13.00 0.10  
15.00 0.10  
0.15  
w
e
1.00  
A
1.40 0.11  
0.40 0.05  
1.00  
A1  
A2  
b
0.50 0.05  
0.08  
x
y
0.10  
y1  
ZD  
ZE  
0.20  
1.50  
0.50  
P165F5-100-EQ1  
Data Sheet M15823EJ7V1DS  
26  
µPD44164085, 44164185, 44164365  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
µPD44164085F5-EQ1: 165-pin PLASTIC BGA (13 x 15)  
µPD44164185F5-EQ1: 165-pin PLASTIC BGA (13 x 15)  
µPD44164365F5-EQ1: 165-pin PLASTIC BGA (13 x 15)  
Data Sheet M15823EJ7V1DS  
27  
µPD44164085, 44164185, 44164365  
Revision History  
Edition/  
Page  
Previous  
edition  
7th edition/ Throughout Throughout  
Feb. 2004 p.12 p.12  
Type of  
revision  
Location  
Description  
Date  
This  
edition  
(Previous edition This edition)  
Deletion  
Ordering Information  
µ PD44164365F5-E40-EQ1  
Modification DC Characteristics IDD (MAX.)  
MAX.  
x8, x18  
Unit  
MAX.  
x8, x18  
Unit  
mA  
x36  
TBD  
600  
520  
x36  
-E40  
-E50  
-E60  
600  
500  
430  
mA  
-E40  
-E50  
-E60  
650  
550  
480  
650  
570  
DC Characteristics ISB1 (MAX.)  
MAX.  
x8, x18  
Unit  
MAX.  
Unit  
mA  
x36  
x8, x18  
320  
x36  
-E40  
-E50  
-E60  
250  
210  
190  
mA  
-E40  
-E50  
-E60  
270  
250  
p.26  
p.26  
Modification Package Drawing  
Preliminary version Standardized version  
Data Sheet M15823EJ7V1DS  
28  
µPD44164085, 44164185, 44164365  
[MEMO]  
Data Sheet M15823EJ7V1DS  
29  
µPD44164085, 44164185, 44164365  
[MEMO]  
Data Sheet M15823EJ7V1DS  
30  
µPD44164085, 44164185, 44164365  
NOTES FOR CMOS DEVICES  
1
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
V
IH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
Data Sheet M15823EJ7V1DS  
31  
µPD44164085, 44164185, 44164365  
The information in this document is current as of July, 2004. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD44164085F5-E60-EQ1

18M-BIT DDRII SRAM SEPARATE I/O 2-WORD BURST OPERATION
NEC

UPD44164092AF5-E33-EQ2

DDR SRAM, 2MX9, CMOS, PBGA165, 13 X 5 MM, PLASTIC, BGA-165
NEC

UPD44164092AF5-E33-EQ2-A

2MX9 DDR SRAM, PBGA165, 13 X 5 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44164092AF5-E33-EQ2-A

DDR SRAM, 2MX9, CMOS, PBGA165, 13 X 5 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44164092AF5-E40-EQ2

DDR SRAM, 2MX9, CMOS, PBGA165, 13 X 5 MM, PLASTIC, BGA-165
NEC

UPD44164092AF5-E40-EQ2-A

DDR SRAM, 2MX9, CMOS, PBGA165, 13 X 5 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44164092AF5-E50-EQ2

DDR SRAM, 2MX9, CMOS, PBGA165, 13 X 5 MM, PLASTIC, BGA-165
NEC

UPD44164092AF5-E50-EQ2-A

DDR SRAM, 2MX9, CMOS, PBGA165, 13 X 5 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44164092AF5-E50Y-EQ2

IC,SYNC SRAM,DDR,2MX9,CMOS,BGA,165PIN,PLASTIC
NEC

UPD44164092AF5-E50Y-EQ2-A

IC,SYNC SRAM,DDR,2MX9,CMOS,BGA,165PIN,PLASTIC
RENESAS

UPD44164094AF5-E33-EQ2

2MX9 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, PLASTIC, BGA-165
NEC

UPD44164094AF5-E33-EQ2-A

2MX9 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS