UPD44164364F5-E60-EQ1 [NEC]

18M-BIT DDRII SRAM 4-WORD BURST OPERATION; 18M位DDRII SRAM 4字突发操作
UPD44164364F5-E60-EQ1
型号: UPD44164364F5-E60-EQ1
厂家: NEC    NEC
描述:

18M-BIT DDRII SRAM 4-WORD BURST OPERATION
18M位DDRII SRAM 4字突发操作

内存集成电路 静态存储器 双倍数据速率 时钟
文件: 总32页 (文件大小:391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD44164084, 44164184, 44164364  
18M-BIT DDRII SRAM  
4-WORD BURST OPERATION  
Description  
The µPD44164084 is a 2,097,152-word by 8-bit, the µPD44164184 is a 1,048,576-word by 18-bit and the  
µPD44164364 is a 524,288-word by 36-bit synchronous double data rate static RAM fabricated with advanced CMOS  
technology using full CMOS six-transistor memory cell.  
The µPD44164084, µPD44164184 and µPD44164364 integrates unique synchronous peripheral circuitry and a  
burst counter. All input registers controlled by an input clock pair (K and /K) are latched on the positive edge of K and  
/K.  
These products are suitable for application which require synchronous operation, high speed, low voltage, high  
density and wide bit configuration.  
These products are packaged in 165-pin PLASTIC BGA.  
Features  
1.8 ± 0.1 V power supply and HSTL I/O  
DLL circuitry for wide output data valid window and future frequency scaling  
Pipelined double data rate operation  
Common data input/output bus  
Four-tick burst for reduced address frequency  
Two input clocks (K and /K) for precise DDR timing at clock rising edges only  
Two output clocks (C and /C) for precise flight time  
and clock skew matching-clock and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability with µs restart  
User programmable impedance output  
Fast clock cycle time : 4.0 ns (250 MHz), 5.0 ns (200 MHz), 6.0 ns (167 MHz)  
Simple control logic for easy depth expansion  
JTAG boundary scan  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. M15822EJ7V1DS00 (7th edition)  
Date Published July 2004 NS CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
2001  
µPD44164084, 44164184, 44164364  
Ordering Information  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
Organization Core Supply  
I/O  
Package  
(word x bit)  
Voltage  
V
Interface  
µPD44164084F5-E40-EQ1  
µPD44164084F5-E50-EQ1  
µPD44164084F5-E60-EQ1  
µPD44164184F5-E40-EQ1  
µPD44164184F5-E50-EQ1  
µPD44164184F5-E60-EQ1  
µPD44164364F5-E50-EQ1  
µPD44164364F5-E60-EQ1  
4.0  
5.0  
6.0  
4.0  
5.0  
6.0  
5.0  
6.0  
250  
200  
167  
250  
200  
167  
200  
167  
2 M x 8-bit  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
BGA (13 x 15)  
1 M x 18-bit  
512 K x 36-bit  
Data Sheet M15822EJ7V1DS  
2
µPD44164084, 44164184, 44164364  
Pin Configurations  
/××× indicates active low signal.  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[µPD44164084F5-EQ1]  
1
2
3
A
4
5
/NW1  
NC  
A
6
7
NC  
/NW0  
A
8
9
A
10  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
DQ1  
NC  
NC  
NC  
NC  
NC  
TMS  
11  
CQ  
DQ3  
NC  
NC  
DQ2  
NC  
NC  
ZQ  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
NC  
DQ6  
NC  
NC  
NC  
TCK  
R, /W  
A
/K  
/LD  
A
NC  
NC  
NC  
DQ4  
NC  
DQ5  
VDDQ  
NC  
NC  
NC  
NC  
NC  
DQ7  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
G
H
J
NC  
NC  
DQ0  
NC  
NC  
NC  
TDI  
K
L
M
N
P
R
VSS  
VSS  
A
A
C
A
A
A
A
/C  
A
A
A
: Address inputs  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
DQ0 to DQ7  
/LD  
R, /W  
/NW0, /NW1  
K, /K  
C, /C  
CQ, /CQ  
ZQ  
/DLL  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Nibble Write data select  
: Input clock  
: Output clock  
: Echo clock  
: Output impedance matching  
: DLL disable  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
NC  
: No connection  
Remark Refer to Package Drawing for the index mark.  
Data Sheet M15822EJ7V1DS  
3
µPD44164084, 44164184, 44164364  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[µPD44164184F5-EQ1]  
1
2
VSS  
3
4
5
/BW1  
NC  
A
6
7
NC  
/BW0  
A1  
8
9
A
10  
VSS  
NC  
11  
CQ  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
A
R, /W  
A
/K  
/LD  
A
DQ9  
NC  
NC  
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
DQ8  
NC  
NC  
VSS  
A0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ7  
NC  
NC  
DQ10  
DQ11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
DQ6  
DQ5  
NC  
DQ12  
NC  
NC  
G
H
J
DQ13  
VDDQ  
NC  
NC  
VREF  
NC  
VREF  
DQ4  
NC  
ZQ  
NC  
K
L
NC  
DQ14  
NC  
DQ3  
DQ2  
NC  
DQ15  
NC  
NC  
M
N
P
R
NC  
DQ1  
NC  
NC  
DQ16  
DQ17  
A
VSS  
VSS  
NC  
NC  
A
A
C
A
A
NC  
DQ0  
TDI  
TCK  
A
A
/C  
A
A
TMS  
A0, A1, A  
DQ0 to DQ17  
/LD  
R, /W  
/BW0, /BW1  
K, /K  
C, /C  
CQ, /CQ  
ZQ  
: Address inputs  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
: Output clock  
: Echo clock  
: Output impedance matching  
: DLL disable  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
NC  
: No connection  
/DLL  
Remark Refer to Package Drawing for the index mark.  
Data Sheet M15822EJ7V1DS  
4
µPD44164084, 44164184, 44164364  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[µPD44164364F5-EQ1]  
1
2
3
4
5
/BW2  
/BW3  
A
6
7
/BW1  
/BW0  
A1  
8
9
A
10  
VSS  
11  
CQ  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
NC  
R, /W  
A
/K  
/LD  
A
DQ27  
NC  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
VDDQ  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
VSS  
A0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ17  
NC  
DQ29  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ15  
NC  
DQ30  
DQ31  
VREF  
NC  
G
H
J
NC  
VREF  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
NC  
DQ33  
NC  
M
N
P
R
DQ11  
NC  
DQ35  
NC  
VSS  
VSS  
A
A
C
A
A
DQ9  
TMS  
TCK  
A
A
/C  
A
A
A0, A1, A  
DQ0 to DQ35  
/LD  
R, /W  
/BW0 to /BW3  
K, /K  
C, /C  
CQ, /CQ  
ZQ  
: Address inputs  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
: Output clock  
: Echo clock  
: Output impedance matching  
: DLL disable  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
NC  
: No connection  
/DLL  
Remark Refer to Package Drawing for the index mark.  
Data Sheet M15822EJ7V1DS  
5
µPD44164084, 44164184, 44164364  
Pin Identification  
Symbol  
Description  
A0  
A1  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the  
rising edge of K. Balls 3A, 10A, and 2A are reserved for the next higher-order address inputs on future devices.  
All transactions operate on a burst of four words (two clock periods of bus activity). A0 and A1 are used as the  
lowest two address bits for BURST READ and BURST WRITE operations permitting a random burst start  
address on x18 and x36 devices. These inputs are ignored when device is deselected or once BURST  
operation is in progress.  
DQ0 to DQxx Synchronous Data IOs: Input data must meet setup and hold times around the rising edges of K and /K. Output  
data is synchronized to the respective C and /C data clocks or to K and /K if C and /C are tied to HIGH.  
x8 device uses DQ0 to DQ7.  
x18 device uses DQ0 to DQ17.  
x36 device uses DQ0 to DQ35.  
/LD  
Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition  
includes address and read/write direction. All transactions operate on a burst of 4 data (two clock periods of bus  
activity).  
R, /W  
Synchronous Read/Write Input: When /LD is LOW, this input designates the access type (READ when R, /W is  
HIGH, WRITE when R, /W is LOW) for the loaded address. R, /W must meet the setup and hold times around  
the rising edge of K.  
/BWx  
/NWx  
Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble  
to be registered and written during WRITE cycles. These signals must meet setup and hold times around the  
rising edges of K and /K for each of the two rising edges comprising the WRITE cycle. See Pin Configurations  
for signal to data relationships.  
K, /K  
C, /C  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data  
on the rising edge of K and the rising edge of /K. /K is ideally 180 degrees out of phase with K. All synchronous  
inputs must meet setup and hold times around the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of  
/C is used as the output timing reference for first and third output data. The rising edge of C is used as the  
output reference for second and fourth output data. Ideally, /C is 180 degrees out of phase with C. C and /C  
may be tied HIGH to force the use of K and /K as the output reference clocks instead of having to provide C and  
/C clocks. If tied HIGH, C and /C must remain HIGH and not be toggled during device operation.  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous  
data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q  
tristates.  
Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus  
impedance. DQ and CQ output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to  
ground. This pin cannot be connected directly to GND or left unconnected. Also, in this product, there is no  
function to minimize the output impedance by connecting ZQ directly to VDDQ.  
CQ, /CQ  
ZQ  
/DLL  
DLL Disable: When LOW, this input causes the DLL to be bypassed for stable low frequency operation.  
TMS  
TDI  
IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left Not Connected if the JTAG function is not  
used in the circuit.  
TCK  
IEEE 1149.1 Clock Input: 1.8V I/O levels. This pin must be tied to VSS if the JTAG function is not used in the  
circuit.  
TDO  
VREF  
VDD  
IEEE 1149.1 Test Output: 1.8V I/O level.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
Power Supply: 1.8V nominal. See DC Characteristics and Operating Conditions for range.  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5V. 1.8V is also permissible. See DC Characteristics  
and Operating Conditions for range.  
VSS  
NC  
Power Supply: Ground  
No Connect: These signals are internally connected and appear in the JTAG scan chain as the logic level  
applied to the ball sites. These signals may be connected to ground to improve package heat dissipation.  
Data Sheet M15822EJ7V1DS  
6
µPD44164084, 44164184, 44164364  
Block Diagram  
CLK  
Burst  
Logic  
A1'  
A1  
D1  
D0  
Q1  
Q0  
A0  
A0'  
R
Address  
Register  
Address  
/LD  
/W  
E
Compare  
/C  
C
A0''  
A0'''  
Output control  
Logic  
Write address  
Register  
K
E
E
A0'  
Input  
Register  
/A0'  
A0'  
ZQ  
0
2 :1  
MUX  
Memory  
Array  
CLK  
/A0'  
K
1
A0'  
Output Buffer  
E
DQ  
0
1
/K  
Input  
Register  
E
A0'''  
Output Enable  
Register  
C
R, /W  
R, /W  
Register  
E
Data Sheet M15822EJ7V1DS  
7
µPD44164084, 44164184, 44164364  
Burst Sequence  
Linear Burst Sequence Table  
[µPD44164184, µPD44164364]  
A1, A0  
0, 0  
A1, A0  
0, 1  
A1, A0  
1, 0  
A1, A0  
1, 1  
External Address  
1st Internal Burst Address  
2nd Internal Burst Address  
3rd Internal Burst Address  
0, 1  
1, 0  
1, 1  
0, 0  
1, 0  
1, 1  
0, 0  
0, 1  
1, 1  
0, 0  
0, 1  
1, 0  
Truth Table  
Operation  
WRITE cycle  
/LD R, /W  
CLK  
DQ  
L
L
L H  
L H  
L H  
Data in  
Data out  
High-Z  
Load address, input write data on two  
consecutive K and /K rising edge  
READ cycle  
Input data  
Input clock  
D(A1)  
D(A2)  
D(A3)  
D(A4)  
K(t+1) ↑  
/K(t+1) ↑  
K(t+2) ↑  
/K(t+2) ↑  
L
H
Load address, read data on two  
consecutive C and /C rising edge  
NOP (No operation)  
Output data  
Q(A1)  
Q(A2)  
Q(A3)  
Q(A4)  
Output clock /C(t+1) ↑  
C(t+2) /C(t+2) C(t+3) ↑  
H
X
X
X
STANDBY(Clock stopped)  
Stopped Previous state  
Remarks 1. H : High level, L : Low level, × : don’t care, : rising edge.  
2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C rising edges  
except if C and /C are HIGH then Data outputs are delivered at K and /K rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. A1 refers to the address input during a WRITE or READ cycle. A2, A3 and A4 refer to the next internal  
burst address in accordance with the linear burst sequence.  
7. It is recommended that K = /K = C = /C when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
Data Sheet M15822EJ7V1DS  
8
µPD44164084, 44164184, 44164364  
Byte Write Operation  
[µPD44164084]  
Operation  
K
L H  
/K  
/NW0  
/NW1  
Write DQ0 to DQ7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Write DQ0 to DQ3  
Write DQ4 to DQ7  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
[µPD44164184]  
Operation  
K
L H  
/K  
/BW0  
/BW1  
Write DQ0 to DQ17  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Write DQ0 to DQ8  
Write DQ9 to DQ17  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
[µPD44164364]  
Operation  
K
L H  
/K  
/BW0  
/BW1  
/BW2  
/BW3  
Write DQ0 to DQ35  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
Write DQ0 to DQ8  
Write DQ9 to DQ17  
Write DQ18 to DQ26  
Write DQ27 to DQ35  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
Data Sheet M15822EJ7V1DS  
9
µPD44164084, 44164184, 44164364  
Bus Cycle State Diagram  
LOAD NEW  
ADDRESS  
Count = 0  
Load, Count = 4  
Load, Count = 4  
READ DOUBLE  
Write  
Read  
WRITE DOUBLE  
Count = Count + 2  
Count = Count + 2  
Always  
Count = 2  
Always  
Count = 2  
Load  
NOP,  
NOP,  
Count = 4  
Count = 4  
ADVANCE ADDRESS  
BY TWO  
ADVANCE ADDRESS  
BY TWO  
NOP  
NOP  
Supply voltage provided  
Power UP  
Remarks 1. A0 and A1 are internally advanced in accordance with the burst order table.  
Bus cycle is terminated after burst count = 4.  
2. State transitions: L = (/LD = LOW); /L = (/LD = HIGH); R = (/R, W = HIGH); W = (/R, W = LOW).  
3. State machine control timing sequence is controlled by K.  
Data Sheet M15822EJ7V1DS  
10  
µPD44164084, 44164184, 44164364  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol Conditions  
MIN.  
–0.5  
–0.5  
–0.5  
–0.5  
0
TYP.  
MAX.  
Unit  
V
VDD  
VDDQ  
VIN  
+2.9  
Output supply voltage  
Input voltage  
VDD  
VDD + 0.5 (2.9 V MAX.)  
VDDQ + 0.5 (2.9 V MAX.)  
70  
V
V
Input / Output voltage  
Operating ambient temperature  
Storage temperature  
VI/O  
TA  
V
°C  
°C  
Tstg  
–55  
+125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70 °C)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit  
V
Note  
Output supply voltage  
High level input voltage  
Low level input voltage  
Clock input voltage  
VDDQ  
VIH (DC)  
VIL (DC)  
VIN  
1.4  
VDD  
V
1
VREF + 0.1  
–0.3  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.95  
V
1, 2  
1, 2  
1, 2  
V
–0.3  
V
Reference voltage  
VREF  
0.68  
V
Notes 1. During normal operation, VDDQ must not exceed VDD.  
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions (TA = 0 to 70 °C)  
Parameter  
High level input voltage  
Low level input voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Conditions  
MIN.  
VREF + 0.2  
TYP.  
MAX.  
Unit  
V
Note  
1
1
VREF – 0.2  
V
Note 1. Overshoot: VIH (AC) VDD + 0.7 V for t TKHKH/2  
Undershoot: VIL (AC) – 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
Data Sheet M15822EJ7V1DS  
11  
µPD44164084, 44164184, 44164364  
DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
TYP.  
MAX.  
Unit  
Note  
x8, x18 x36  
Input leakage current  
I/O leakage current  
Operating supply current  
(Read Write cycle)  
ILI  
–2  
–2  
+2  
+2  
µA  
µA  
ILO  
IDD  
VIN VIL or VIN VIH, –E40  
620  
540  
470  
320  
mA  
II/O = 0 mA  
–E50  
–E60  
620  
570  
Cycle = MAX.  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH, –E40  
mA  
II/O = 0 mA  
–E50  
–E60  
270  
250  
Cycle = MAX.  
High level output voltage  
Low level output voltage  
VOH(Low) |IOH| 0.1 mA  
VOH Note1  
VOL(Low) IOL 0.1 mA  
VOL Note2  
VDDQ – 0.2  
VDDQ/2–0.12  
VSS  
VDDQ  
VDDQ/2+0.12  
0.2  
V
V
V
V
3, 4  
3, 4  
3, 4  
3, 4  
VDDQ/2–0.12  
VDDQ/2+0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I and Class II standards.  
Capacitance (TA = 25 °C, f = 1MHz)  
Parameter  
Input capacitance  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
Unit  
pF  
4
6
5
5
7
6
Input / Output capacitance  
Clock Input capacitance  
CI/O  
VI/O = 0 V  
Vclk = 0 V  
pF  
Cclk  
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Data Sheet M15822EJ7V1DS  
12  
µPD44164084, 44164184, 44164364  
AC Characteristics (TA = 0 to 70 °C, VDD = 1.8 ± 0.1 V)  
AC Test Conditions  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.25 V  
0.75 V  
Test Points  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
V
DDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
Data Sheet M15822EJ7V1DS  
13  
µPD44164084, 44164184, 44164364  
Read and Write Cycle  
-E40  
-E50  
-E60  
Parameter  
Symbol  
Unit Note  
(250 MHz)  
(200 MHz)  
(167 MHz)  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Clock  
Average Clock cycle time (K, /K, C, /C) TKHKH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
4.0  
8.4  
0.2  
5.0  
8.4  
0.2  
2.3  
2.8  
3.55  
6.0  
8.4  
0.2  
Clock phase jitter (K, /K, C, /C)  
Clock HIGH time (K, /K, C, /C)  
Clock LOW time (K, /K, C, /C)  
Clock to /clock (K/K., C/C.)  
Clock to /clock (/KK., /CC.)  
TKC var  
TKHKL  
TKLKH  
TKH /KH  
T /KHKH  
1.6  
1.6  
1.8  
1.8  
0
0
0
0
2.0  
2.0  
2.2  
2.2  
0
0
0
2.4  
2.4  
2.7  
2.7  
0
0
Clock to data clock 200 to 250 MHz TKHCH  
1.8  
2.3  
2.8  
3.55  
(KC., /K/C.)  
167 to 200 MHz  
133 to 167 MHz  
< 133 MHz  
2.8  
3.55  
DLL lock time (K, C)  
K static to DLL reset  
TKC lock  
TKC reset  
Cycle  
ns  
3
1,024  
30  
1,024  
30  
1,024  
30  
Output Times  
C, /C HIGH to output valid  
C, /C HIGH to output hold  
C, /C HIGH to echo clock valid  
C, /C HIGH to echo clock hold  
CQ, /CQ HIGH to output valid  
CQ, /CQ HIGH to output hold  
C HIGH to output High-Z  
TCHQV  
TCHQX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–0.45  
–0.45  
–0.3  
–0.45  
0.45  
0.45  
0.3  
0.45  
–0.45  
–0.45  
–0.35  
–0.45  
0.45  
0.45  
0.35  
0.45  
–0.5  
–0.5  
–0.4  
–0.5  
0.5  
0.5  
0.4  
0.5  
TCHCQV  
TCHCQX  
TCQHQV  
TCQHQX  
TCHQZ  
4
4
C HIGH to output Low-Z  
TCHQX1  
Setup Times  
Address valid to K rising edge  
Synchronous load input (/LD),  
read write input (R, /W) valid to  
K rising edge  
TAVKH  
TIVKH  
ns  
ns  
5
5
0.5  
0.5  
0.6  
0.6  
0.7  
0.7  
Data inputs and write data select  
inputs (/BWx, /NWx) valid to  
K, /K rising edge  
TDVKH  
ns  
5
0.35  
0.4  
0.5  
Hold Times  
K rising edge to address hold  
K rising edge to  
TKHAX  
TKHIX  
ns  
ns  
5
5
0.5  
0.5  
0.6  
0.6  
0.7  
0.7  
synchronous load input (/LD),  
read write input (R, /W) hold  
K, /K rising edge to data inputs and  
write data select inputs (/BWx, /NWx)  
hold  
TKHDX  
ns  
5
0.35  
0.4  
0.5  
Data Sheet M15822EJ7V1DS  
14  
µPD44164084, 44164184, 44164364  
Notes 1. The device will operate at clock frequencies slower than TKHKH(MAX.).  
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
3. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention.  
DLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept inactive during these cycles.  
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
5. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions  
unless otherwise noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. If C, /C are tied HIGH, K, /K become the references for C, /C timing parameters.  
5. VDDQ is 1.5 V DC.  
Data Sheet M15822EJ7V1DS  
15  
µPD44164084, 44164184, 44164364  
Read and Write Timing  
NOP  
1
READ  
(burst of 4)  
READ  
(burst of 4)  
NOP  
NOP  
WRITE  
(burst of 4)  
WRITE  
(burst of 4)  
READ  
(burst of 4)  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
TKHKH  
K
TKHKL TKLKH  
TKLKH  
TKH/KH  
T/KHKH  
/K  
/LD  
TIVKH  
TKHIX  
R, /W  
TAVKH  
TKHAX  
Address  
DQ  
A2  
A1  
A3  
A4  
A0  
TKHDX  
TKHDX  
TDVKH  
TDVKH  
D21  
D22  
D23  
D24  
D31 D32  
D33  
D34  
Q41  
Q01 Q02 Q03  
TCHQX  
Q04  
Q11  
Q12  
Q13  
Q14  
Qx2  
TCQHQX  
TCHQX  
TCQHQV  
TCHQX1  
TCHQV  
TKHCH  
TKHCH  
TCHQV  
TCHQZ  
CQ  
TCHCQX  
TCHCQV  
/CQ  
C
TCHCQX  
TCHCQV  
TKHKL TKLKH TKHKH TKH/KH T/KHKH  
/C  
Remarks 1. Q01 refers to output from address A0.  
Q02 refers to output from the next internal burst address following A0, etc.  
2. Outputs are disable (high impedance) one clock cycle after a NOP.  
3. The second NOP cycle is not necessary for correct device operation;  
however, at high clock frequencies it may be required to prevent bus contention.  
Data Sheet M15822EJ7V1DS  
16  
µPD44164084, 44164184, 44164364  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
2R  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs  
propagate from the falling edge of TCK.  
TMS  
TDI  
10R  
11R  
Test Mode Select. This is the command input for the TAP controller state machine.  
Test Data Input. This is the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is determined by the state of the TAP  
controller state machine and the instruction that is currently loaded in the TAP instruction.  
Test Data Output. Output changes in response to the falling edge of TCK. This is the  
output side of the serial registers placed between TDI and TDO.  
TDO  
1R  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
ILI  
Conditions  
MIN.  
–5.0  
–5.0  
TYP.  
MAX.  
+5.0  
+5.0  
Unit  
µA  
Note  
JTAG Input leakage current  
JTAG I/O leakage current  
0 V VIN VDD  
ILO  
0 V VIN VDDQ,  
µA  
Outputs disabled  
JTAG input high voltage  
JTAG input low voltage  
JTAG output high voltage  
VIH  
VIL  
1.3  
–0.3  
1.6  
1.4  
VDD + 0.3  
V
V
V
V
V
V
+0.5  
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 µA  
| IOHT | = 2 mA  
IOLC = 100 µA  
IOLT = 2 mA  
JTAG output low voltage  
0.2  
0.4  
Data Sheet M15822EJ7V1DS  
17  
µPD44164084, 44164184, 44164364  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
Data Sheet M15822EJ7V1DS  
18  
µPD44164084, 44164184, 44164364  
JTAG AC Characteristics (TA = 0 to 70 °C)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Note  
Clock  
Clock cycle time  
Clock frequency  
Clock high time  
Clock low time  
tTHTH  
fTF  
100  
10  
ns  
MHz  
ns  
tTHTL  
tTLTH  
40  
40  
ns  
Output time  
TCK low to TDO unknown  
TCK low to TDO valid  
TDI valid to TCK high  
TCK high to TDI invalid  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
20  
ns  
ns  
ns  
ns  
10  
10  
Setup time  
TMS setup time  
Capture setup time  
tMVTH  
tCS  
10  
10  
ns  
ns  
Hold time  
TMS hold time  
Capture hold time  
tTHMX  
tCH  
10  
10  
ns  
ns  
JTAG Timing Diagram  
t
THTH  
TCK  
TMS  
TDI  
t
MVTH  
t
THTL  
t
TLTH  
t
THMX  
t
DVTH  
t
THDX  
t
TLOV  
t
TLOX  
TDO  
Data Sheet M15822EJ7V1DS  
19  
µPD44164084, 44164184, 44164364  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Bypass register  
ID register  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The second column is  
the name of the input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
107  
bit  
Boundary register  
bit  
ID Register Definition  
Part number Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 0001 0101  
0000 0000 0001 0110  
0000 0000 0001 0111  
ID [11:1] vendor ID no.  
00000010000  
ID [0] fix bit  
µPD44164084  
µPD44164184  
µPD44164364  
2M x 8  
1M x 18  
XXXX  
XXXX  
XXXX  
1
1
1
00000010000  
512K x 36  
00000010000  
Data Sheet M15822EJ7V1DS  
20  
µPD44164084, 44164184, 44164364  
SCAN Exit Order  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
no.  
x8  
x18 x36  
no.  
x8  
x18  
x36  
no.  
x8  
x18  
NC  
x36  
NC  
1
2
/C  
C
A
A
A
A
A
A
A
6R  
6P  
6N  
7P  
7N  
7R  
8R  
8P  
9R  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
NC  
NC  
NC  
NC  
NC  
NC  
10D  
9E  
73  
74  
NC  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
DQ4 DQ11 DQ20  
3
NC DQ7 DQ17 10C  
75  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ29  
NC  
4
NC  
NC  
NC  
NC DQ16 11D  
76  
5
NC  
NC  
NC  
NC  
9C  
9D  
77  
NC  
6
78  
DQ12 DQ30  
7
DQ3 DQ8 DQ8 11B  
79  
NC  
NC  
NC  
DQ21  
NC  
8
NC  
NC  
NC  
NC DQ7 11C  
80  
9
NC  
NC  
CQ  
NC  
NC  
9B  
10B  
11A  
Internal  
9A  
81  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
NC DQ0 DQ0 11P  
82  
DQ5 DQ13 DQ22 3G  
NC  
NC  
NC  
NC DQ9 10P  
83  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ31 2G  
NC  
NC  
NC  
NC  
10N  
9P  
84  
NC  
NC  
1J  
2J  
A
85  
NC DQ1 DQ11 10M  
A
8B  
86  
DQ14 DQ23  
3K  
3J  
NC  
NC  
NC  
NC DQ10 11N  
A
A1  
A0  
/LD  
A1  
A0  
7C  
87  
NC  
NC  
NC  
DQ32  
NC  
NC  
NC  
NC  
NC  
9M  
9N  
NC  
6C  
88  
2K  
1K  
2L  
3L  
1M  
1L  
3N  
8A  
89  
NC  
18 DQ0 DQ2 DQ2 11L  
NC  
NC /BW1 7A  
90  
DQ6 DQ15 DQ33  
19  
20  
21  
22  
23  
24  
25  
NC  
NC  
NC  
NC DQ1 11M  
55 /NW0 /BW0 /BW0 7B  
91  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ24  
NC  
NC  
NC  
NC  
NC  
9L  
56  
57  
58  
K
6B  
6A  
92  
10L  
/K  
93  
NC  
NC DQ3 DQ3 11K  
NC  
NC /BW3 5B  
94  
DQ16 DQ25  
NC  
NC  
NC  
NC DQ12 10K  
59 /NW1 /BW1 /BW2 5A  
95  
NC  
NC  
NC  
DQ34 3M  
NC  
NC  
NC  
NC  
9J  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
R, /W  
A
4A  
5C  
4B  
3A  
1H  
1A  
96  
NC  
NC  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
9K  
97  
26 DQ1 DQ4 DQ13 10J  
A
98  
DQ7 DQ17 DQ26  
27  
28  
29  
30  
31  
32  
33  
34  
NC  
NC DQ4 11J  
A
A
NC  
99  
NC  
NC  
NC  
NC  
NC  
NC  
A
DQ35  
NC  
ZQ  
NC  
NC  
11H  
10G  
9G  
/DLL  
/CQ  
100  
101  
102  
103  
104  
105  
106  
107  
NC  
NC  
NC  
NC  
NC  
NC DQ9 DQ27 2B  
NC DQ5 DQ5 11F  
NC  
NC  
NC  
NC DQ18 3B  
A
NC  
NC  
NC  
NC DQ14 11G  
NC  
NC  
NC  
NC  
1C  
1B  
A
NC  
NC  
NC  
NC  
9F  
A
10F  
NC DQ10 DQ19 3D  
A
35 DQ2 DQ6 DQ6 11E  
36 NC NC DQ15 10E  
NC  
NC  
NC DQ28 3C  
NC NC 1D  
A
Data Sheet M15822EJ7V1DS  
21  
µPD44164084, 44164184, 44164364  
JTAG Instructions  
Instructions  
EXTEST  
Description  
The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-  
scan register cells at output pins are used to apply test vectors, while those at input pins capture test  
results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,  
the output driver is turned on and the PRELOAD data is driven onto the output pins.  
IDCODE  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed  
in the test-logic-reset state.  
The BYPASS instruction is loaded in the instruction register when the bypass register is placed between  
TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the  
board level scan path to be shortened to facilitate testing of other devices in the scan path.  
SAMPLE / PRELOAD SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /  
PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR  
state loads the data in the RAMs input and DQ pins into the boundary scan register. Because the RAM  
clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the  
I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing  
the TAP to sample metastable input will not harm the device, repeatable results cannot be expected.  
RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus  
hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any other TAP operation except  
capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state  
then places the boundary scan register between the TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM DQ pins are forced to an  
inactive drive state (high impedance) and the boundary register is connected between TDI and TDO  
when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
1
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
1
1
0
1
1
1
Note 1. TRISTATE all DQ pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
Data Sheet M15822EJ7V1DS  
22  
µPD44164084, 44164184, 44164364  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and  
may be left unconnected. But they may also be tied to VDD through a 1 kresistor.  
TDO should be left unconnected.  
Data Sheet M15822EJ7V1DS  
23  
Test Logic Operation (Instruction Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
IDCODE  
New Instruction  
Output Inactive  
TDO  
Test Logic (Data Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
Instruction  
IDCODE  
Output Inactive  
TDO  
µPD44164084, 44164184, 44164364  
Package Drawing  
165-PIN PLASTIC BGA (13x15)  
B
E
w S  
B
ZD  
ZE  
11  
10  
9
8
A
7
6
D
5
4
3
2
1
R P M M L K J H G F E D C B A  
w
S A  
INDEX MARK  
A
A2  
A1  
y1  
S
S
y
e
S
(UNIT:mm)  
ITEM DIMENSIONS  
M
φ
φ
x
b
S A B  
D
E
13.00 0.10  
15.00 0.10  
0.15  
w
e
1.00  
A
1.40 0.11  
0.40 0.05  
1.00  
A1  
A2  
b
0.50 0.05  
0.08  
x
y
0.10  
y1  
ZD  
ZE  
0.20  
1.50  
0.50  
P165F5-100-EQ1  
Data Sheet M15822EJ7V1DS  
26  
µPD44164084, 44164184, 44164364  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
µPD44164084F5-EQ1: 165-pin PLASTIC BGA (13 x 15)  
µPD44164184F5-EQ1: 165-pin PLASTIC BGA (13 x 15)  
µPD44164364F5-EQ1: 165-pin PLASTIC BGA (13 x 15)  
Data Sheet M15822EJ7V1DS  
27  
µPD44164084, 44164184, 44164364  
Revision History  
Edition/  
Page  
Previous  
edition  
7th edition/ Throughout Throughout  
Feb. 2004 p.12 p.12  
Type of  
revision  
Location  
Description  
Date  
This  
edition  
(Previous edition This edition)  
Deletion  
Ordering Information  
µPD44164364F5-E40-EQ1  
Modification DC Characteristics IDD (MAX.)  
MAX.  
x8, x18  
Unit  
MAX.  
x8, x18  
Unit  
mA  
x36  
TBD  
530  
480  
x36  
-E40  
-E50  
-E60  
560  
480  
410  
mA  
-E40  
-E50  
-E60  
620  
540  
470  
620  
570  
DC Characteristics ISB1 (MAX.)  
MAX.  
x8, x18  
Unit  
MAX.  
Unit  
mA  
x36  
x8, x18  
320  
x36  
-E40  
-E50  
-E60  
250  
210  
190  
mA  
-E40  
-E50  
-E60  
270  
250  
p.26  
p.26  
Modification Package Drawing  
Preliminary version Standardized version  
Data Sheet M15822EJ7V1DS  
28  
µPD44164084, 44164184, 44164364  
[MEMO]  
Data Sheet M15822EJ7V1DS  
29  
µPD44164084, 44164184, 44164364  
[MEMO]  
Data Sheet M15822EJ7V1DS  
30  
µPD44164084, 44164184, 44164364  
NOTES FOR CMOS DEVICES  
1
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
V
IH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
Data Sheet M15822EJ7V1DS  
31  
µPD44164084, 44164184, 44164364  
The information in this document is current as of July, 2004. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD44164365AF5-E33-EQ2

DDR SRAM, 512KX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44164365AF5-E33-EQ2-A

DDR SRAM, 512KX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44164365AF5-E40-EQ2-A

DDR SRAM, 512KX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44164365AF5-E40-EQ2-A

512KX36 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44164365AF5-E50-EQ2

IC,SYNC SRAM,DDR,512KX36,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44164365AF5-E50-EQ2-A

512KX36 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44164365F5-E50-EQ1

18M-BIT DDRII SRAM SEPARATE I/O 2-WORD BURST OPERATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44164365F5-E60-EQ1

18M-BIT DDRII SRAM SEPARATE I/O 2-WORD BURST OPERATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44165082

18M-BIT QDRII SRAM 2-WORD BURST OPERATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44165082AF5-E40-EQ2

2MX8 QDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44165082AF5-E40-EQ2-A

2MX8 QDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44165082AF5-E40Y-EQ2-A

QDR SRAM, 2MX8, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC