UPD703102GJ-33-XXX-UEN [NEC]

Microcontroller, 32-Bit, MROM, 33MHz, MOS, PQFP144, 20 X 20 MM, PLASTIC, LQFP-144;
UPD703102GJ-33-XXX-UEN
型号: UPD703102GJ-33-XXX-UEN
厂家: NEC    NEC
描述:

Microcontroller, 32-Bit, MROM, 33MHz, MOS, PQFP144, 20 X 20 MM, PLASTIC, LQFP-144

微控制器
文件: 总126页 (文件大小:735K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ
PD703100-33, 703100-40, 703101-33, 703102-33  
V850E/MS1TM  
32/16-BIT SINGLE-CHIP MICROCONTROLLERS  
The µPD703101-33 and µPD703102-33 are members of the V850 FamilyTM of 32-bit single-chip microcontrollers  
designed for real-time control operations. These microcontrollers provide on-chip features, including a 32-bit CPU  
core, ROM, RAM, interrupt controller, real-time pulse unit, serial interface, A/D converter, and DMA controller.  
The µPD703100-33 and µPD703100-40 are ROM-less versions of the µPD703101-33 and µPD703102-33  
products.  
The µPD703100-A33, µPD703100-A40, µPD703101-A33, and µPD703102-A33 are also available as products  
having a 3.3-V power supply for external pins.  
Detailed function descriptions are provided in the following user’s manuals. Be sure to read them before  
designing.  
V850E/MS1 User’s Manual Hardware:  
U12688E  
V850E/MS1 User’s Manual Architecture: U12197E  
FEATURES  
Number of instructions: 81  
Minimum instruction execution time 25 ns (@ 40-MHz operation) ····· µPD703100-40  
30 ns (@ 33-MHz operation) ····· µPD703100-33, 703101-33, 703102-33  
General registers 32 bits × 32  
Instruction set optimized for control applications  
Internal memory ROM: None (µPD703100-33, 703100-40),  
96 Kbytes (µPD703101-33),  
128 Kbytes (µPD703102-33)  
RAM : 4 Kbytes  
Advanced on-chip interrupt controller  
Real-time pulse unit suitable for control operations  
Powerful serial interface (on-chip dedicated baud rate generator)  
On-chip clock generator  
10-bit resolution A/D converter: 8 channels  
DMA controller: 4 channels  
Power saving functions  
APPLICATIONS  
Office automation equipment: printers, facsimile machines, PPCs, etc.  
Multimedia equipment: digital still cameras, video printers, etc.  
Consumer equipment: single-lens reflex cameras, etc.  
Industrial equipment: motor controllers, NC machine tools, etc.  
The information in this document is subject to change without notice.  
Document No. U13995EJ1V0DS00 (1st edition)  
Date Published April 1999 N CP(K)  
Printed in Japan  
©
1999  
µPD703100-33, 703100-40, 703101-33, 703102-33  
ORDERING INFORMATION  
Maximum Operating  
Frequency (MHz)  
Internal ROM  
(bytes)  
Part Number  
Package  
µPD703100GJ-33-8EU  
µPD703100GJ-40-8EU  
µPD703101GJ-33-xxx-8EU  
µPD703102GJ-33-xxx-8EU  
144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
33 MHz  
40 MHz  
33 MHz  
33 MHz  
None  
None  
96 Kbytes  
128 Kbytes  
Remark xxx indicates ROM code suffix.  
PIN CONFIGURATION (Top view)  
144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
µPD703100GJ-33-8EU  
µPD703100GJ-40-8EU  
µPD703101GJ-33-xxx-8EU  
µPD703102GJ-33-xxx-8EU  
INTP103/DMARQ3/P07  
INTP102/DMARQ2/P06  
INTP101/DMARQ1/P05  
INTP100/DMARQ0/P04  
TI10/P03  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
A16/P60  
A17/P61  
A18/P62  
A19/P63  
A20/P64  
A21/P65  
A22/P66  
A23/P67  
TCLR10/P02  
TO101/P01  
TO100/P00  
V
SS  
9
HVDD  
INTP113/DMAAK3/P17  
INTP112/DMAAK2/P16  
INTP111/DMAAK1/P15  
INTP110/DMAAK0/P14  
TI11/P13  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
CS0/RAS0/P80  
CS1/RAS1/P81  
CS2/RAS2/P82  
CS3/RAS3/P83  
CS4/RAS4/IOWR/P84  
CS5/RAS5/IORD/P85  
CS6/RAS6/P86  
CS7/RAS7/P87  
LCAS/LWR/P90  
UCAS/UWR/P91  
RD/P92  
WE/P93  
BCYST/P94  
OE/P95  
HLDAK/P96  
HLDRQ/P97  
VSS  
TCLR11/P12  
TO111/P11  
TO110/P10  
INTP123/TC3/P107  
INTP122/TC2/P106  
INTP121/TC1/P105  
INTP120/TC0/P104  
TI12/P103  
TCLR12/P102  
TO121/P101  
TO120/P100  
ANI7/P77  
ANI6/P76  
ANI5/P75  
ANI4/P74  
ANI3/P73  
ANI2/P72  
ANI1/P71  
ANI0/P70  
AVDD  
AVSS  
AVREF  
REFRO/PX5  
WAIT/PX6  
CLKOUT/PX7  
TO150/P120  
TO151/P121  
TCLR15/P122  
TI15/P123  
INTP150/P124  
INTP151/P125  
INTP152/P126  
74  
73  
2
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
PIN NAMES  
A0 to A23  
ADTRG  
ANI0 to ANI7  
AVDD  
: Address Bus  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
P100 to P107  
P110 to P117  
P120 to P127  
PA0 to PA7  
PB0 to PB7  
PX5 to PX7  
RAS0 to RAS7  
RD  
: Port 5  
: AD Trigger Input  
: Port 6  
: Analog Input  
: Port 7  
: Analog Power Supply  
: Analog Reference Voltage  
: Analog Ground  
: Port 8  
AVREF  
: Port 9  
AVSS  
: Port 10  
BCYST  
CKSEL  
CLKOUT  
CS0 to CS7  
CVDD  
: Bus Cycle Start Timing  
: Clock Generator Operating Mode Select  
: Clock Output  
: Port 11  
: Port 12  
: Port A  
: Chip Select  
: Port B  
: Clock Generator Power Supply  
: Clock Generator Ground  
: Data Bus  
: Port X  
CVSS  
: Row Address Strobe  
: Read  
D0 to D15  
DMAAK0 to DMAAK3 : DMA Acknowledge  
DMARQ0 to DMARQ3 : DMA Request  
REFRQ  
: Refresh Request  
: Reset  
RESET  
HLDAK  
HLDRQ  
HVDD  
: Hold Acknowledge  
RXD0, RXD1  
SCK0 to SCK3  
SI0 to SI3  
: Receive Data  
: Serial Clock  
: Serial Input  
: Serial Output  
: Terminal Count Signal  
: Hold Request  
: Power Supply for External Pins  
INTP100 to INTP103, : Interrupt Request from Peripherals  
INTP110 to INTP113,  
SO0 to SO3  
TC0 to TC3  
INTP120 to INTP123,  
TCLR10 to TCLR15: Timer Clear  
INTP130 to INTP133,  
TI10 to TI15  
TO100, TO101,  
TO110, TO111,  
TO120, TO121,  
TO130, TO131,  
TO140, TO141,  
TO150, TO151  
TXD0, TXD1  
UCAS  
: Timer Input  
INTP140 to INTP143,  
: Timer Output  
INTP150 to INTP153  
IORD  
IOWR  
LCAS  
LWR  
: I/O Read Strobe  
: I/O Write Strobe  
: Lower Column Address Strobe  
: Lower Write Strobe  
MODE0 to MODE3 : Mode  
: Transmit Data  
: Upper Column Address Strobe  
: Upper Write Strobe  
: Power Supply for Internal Unit  
: Ground  
NMI  
: Non-Maskable Interrupt Request  
OE  
: Output Enable  
: Port 0  
UWR  
P00 to P07  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P47  
VDD  
: Port 1  
VSS  
: Port 2  
WAIT  
: Wait  
: Port 3  
WE  
: Write Enable  
: Port 4  
X1, X2  
: Crystal  
3
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
INTERNAL BLOCK DIAGRAM  
NMI  
HLDRQ  
CPU  
BCU  
ROM  
HLDAK  
INTP100 to INTP103,  
INTC  
INTP110 to INTP113,  
CS0 to CS7/RAS0 to RAS7  
INTP120 to INTP123,  
INTP130 to INTP133,  
INTP140 to INTP143,  
INTP150 to INTP153  
IOWR  
Instruction queue  
PC  
IORD  
Multiplier  
(32 × 32 64)  
Note  
DRAMC  
REFRQ  
BCYST  
WE  
TO100, TO101,  
TO110, TO111,  
TO120, TO121,  
TO130, TO131,  
TO140, TO141,  
TO150, TO151  
RD  
Barrel  
shifter  
OE  
Page ROM  
controller  
RPU  
RAM  
System registers  
UWR/UCAS  
LWR/LCAS  
WAIT  
TCLR10 to TCLR15  
TI10 to TI15  
ALU  
General registers  
(32 bits × 32)  
A0 to A23  
D0 to D15  
DMARQ0 to DMARQ3  
DMAAK0 to DMARQ3  
TC0 to TC3  
4 Kbytes  
DMAC  
SIO  
SO0/TXD0  
SI0/RXD0  
SCK0  
UART0/CSI0  
BRG0  
UART1/CSI1  
BRG1  
SO1/TXD1  
SI1/RXD1  
SCK1  
CKSEL  
CLKOUT  
X1  
Port  
CG  
X2  
CVDD  
CVSS  
SO2  
SI2  
CSI2  
SCK2  
MODE0 to MODE3  
RESET  
BRG2  
System  
controller  
SO3  
SI3  
CSI3  
SCK3  
VDD  
VSS  
ANI0 to ANI7  
AVREF  
AVSS  
ADC  
AVDD  
ADTRG  
Note µPD703100-33, 703100-40: None  
µPD703101-33: 96 Kbytes (mask ROM)  
µPD703102-33: 128 Kbytes (mask ROM)  
4
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
CONTENTS  
1. DIFFERENCES AMONG PRODUCTS...........................................................................................  
2. PIN FUNCTIONS .............................................................................................................................  
2.1 Port Pins .................................................................................................................................  
7
8
8
2.2 Non-port Pins ......................................................................................................................... 11  
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins..................................... 15  
3. FUNCTION BLOCKS ...................................................................................................................... 18  
3.1 Internal Units.......................................................................................................................... 18  
3.1.1 CPU ........................................................................................................................................... 18  
3.1.2 Bus control unit (BCU)............................................................................................................... 18  
3.1.3 ROM .......................................................................................................................................... 18  
3.1.4 RAM........................................................................................................................................... 19  
3.1.5 Ports .......................................................................................................................................... 19  
3.1.6 Interrupt controller (INTC).......................................................................................................... 19  
3.1.7 Clock generator (CG)................................................................................................................. 19  
3.1.8 Real-time pulse unit (RPU)........................................................................................................ 19  
3.1.9 Serial interface (SIO) ................................................................................................................. 19  
3.1.10 A/D converter (ADC).................................................................................................................. 19  
4. CPU FUNCTIONS............................................................................................................................ 20  
5. BUS CONTROL FUNCTIONS........................................................................................................ 20  
6. MEMORY ACCESS CONTROL FUNCTIONS.............................................................................. 21  
6.1 SRAM Connection.................................................................................................................. 21  
6.2 Page ROM Controller (ROMC) .............................................................................................. 22  
6.2.1 Features..................................................................................................................................... 22  
6.2.2 Page ROM connection............................................................................................................... 22  
6.3 DRAM Controller.................................................................................................................... 24  
6.3.1 Features..................................................................................................................................... 24  
6.3.2 DRAM Connections ................................................................................................................... 24  
7. DMA FUNCTIONS (DMA CONTROLLER) ................................................................................... 26  
8. INTERRUPT/EXCEPTION PROCESSING FUNCTIONS............................................................... 28  
8.1 Features.................................................................................................................................. 28  
9. CLOCK GENERATION FUNCTIONS ............................................................................................ 33  
10. TIMER/COUNTER FUNCTIONS (REAL-TIME PULSE UNIT)..................................................... 34  
5
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
11. SERIAL INTERFACE FUNCTION.................................................................................................. 37  
11.1 Asynchronous Serial Interfaces 0, 1 (UART0, UART1)....................................................... 37  
11.2 Clocked Serial Interfaces 0 to 3 (CSI0 to CSI3) ................................................................... 38  
11.3 Dedicated Baud Rate Generators 0 to 2 (BRG0 to BRG2).................................................. 40  
12. A/D CONVERTER............................................................................................................................ 41  
13. PORT FUNCTIONS ......................................................................................................................... 42  
14. RESET FUNCTION.......................................................................................................................... 53  
15. INSTRUCTION SET......................................................................................................................... 54  
16. ELECTRICAL SPECIFICATIONS (PRELIMINARY VALUES)...................................................... 64  
17. PACKAGE DRAWING..................................................................................................................... 120  
18. RECOMMENDED SOLDERING CONDITIONS ............................................................................. 121  
6
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
1. DIFFERENCES AMONG PRODUCTS  
Product Name  
µPD703100  
–40 –A33  
µPD703101  
–33 –A33  
µPD703102  
–33 –A33  
µPD70F3102  
Item  
–33  
–A40  
–33  
–A33  
Internal ROM  
None  
96 Kbytes  
128 Kbytes  
(mask ROM)  
128 Kbytes  
(mask ROM)  
(flash memory)  
Maximum operating  
frequency  
33 MHz 40 MHz 33 MHz 40 MHz  
33 MHz  
HVDD  
4.5 to 5.5 V  
3.0 to 3.6 V  
4.5 to  
5.5 V  
3.0 to  
3.6 V  
4.5 to  
5.5 V  
3.0 to  
4.5 to  
5.5 V  
3.0 to  
3.6 V  
3.6 V  
Operation mode  
Single-chip  
mode 0, 1  
None  
None  
Provided  
Flash memory  
programming  
mode  
Provided  
Flash memory  
None  
Provided (VPP)  
programming pin  
Electrical  
Power consumptions differ (refer to the data sheet of each product).  
specifications  
Package  
144LQFP  
144LQFP  
157FBGA  
144LQFP  
144LQFP  
157FBGA  
144LQFP  
144LQFP  
157FBGA  
144LQFP  
144LQFP  
157FBGA  
Others  
Noise tolerance and noise radiation will differ due to the differences in circuit scale and mask layout.  
Remark 144LQFP: 144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
157FBGA: 157-pin plastic FBGA (14 × 14 mm)  
7
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
2. PIN FUNCTIONS  
2.1 Port Pins  
(1/3)  
Pin Name  
P00  
I/O  
I/O  
Function  
Alternate Function  
TO100  
Port 0  
8-bit I/O port  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P40 to P47  
TO101  
Input/output mode can be specified in 1-bit units  
TCLR10  
TI10  
INTP100/DMARQ0  
INTP101/DMARQ1  
INTP102/DMARQ2  
INTP103/DMARQ3  
TO110  
I/O  
Port 1  
8-bit I/O port  
TO111  
Input/output mode can be specified in 1-bit units  
TCLR11  
TI11  
INTP110/DMAAK0  
INTP111/DMAAK1  
INTP112/DMAAK2  
INTP113/DMAAK3  
NMI  
I
Port 2  
P20 is an input only port.  
I/O  
When a valid edge is input, this pin operates as NMI input. Also, bit 0  
of the P2 register indicates the NMI input status.  
P21 to P27 are 7-bit I/O port.  
TXD0/SO0  
RXD0/SO0  
SCK0  
Input/output mode can be specified in 1-bit units  
TXD1/SO1  
RXD1/SI1  
SCK1  
I/O  
Port 3  
TO130  
8-bit I/O port.  
TO131  
Input/output mode can be specified in 1-bit units  
TCLR13  
TI13  
INTP130  
INTP131/SO2  
INTP132/SI2  
INTP133/SCK2  
D0 to D7  
I/O  
Port 4  
8-bit I/O port  
Input/output mode can be specified in 1-bit units  
8
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(2/3)  
Pin Name  
I/O  
I/O  
Function  
Alternate Function  
D8 to D15  
P50 to P57  
Port 5  
8-bit I/O port  
Input/output mode can be specified in 1-bit units  
P60 to P67  
P70 to P77  
I/O  
Port 6  
A16 to A23  
8-bit I/O port  
Input/output mode can be specified in 1-bit units  
I
Port 7  
ANI0 to ANI7  
8-bit input only port  
P80  
I/O  
Port 8  
CS0/RAS0  
CS1/RAS1  
CS2/RAS2  
CS3/RAS3  
CS4/RAS4/IOWR  
CS5/RAS5/IORD  
CS6/RAS6  
CS7/RAS7  
LCAS/LWR  
UCAS/UWR  
RD  
8-bit I/O port  
P81  
Input/output mode can be specified in 1-bit units  
P82  
P83  
P84  
P85  
P86  
P87  
P90  
I/O  
I/O  
I/O  
Port 9  
8-bit I/O port  
P91  
Input/output mode can be specified in 1-bit units  
P92  
P93  
WE  
P94  
BCYST  
P95  
OE  
P96  
HLDAK  
P97  
HLDRQ  
P100  
P101  
P102  
P103  
P104  
P105  
P106  
P107  
P110  
P111  
P112  
P113  
P114  
P115  
P116  
P117  
Port 10  
TO120  
8-bit I/O port  
TO121  
Input/output mode can be specified in 1-bit units  
TCLR12  
TI12  
INTP120/TC0  
INTP121/TC1  
INTP122/TC2  
INTP123/TC3  
TO140  
Port 11  
8-bit I/O port  
TO141  
Input/output mode can be specified in 1-bit units  
TCLR14  
TI14  
INTP140  
INTP141/SO3  
INTP142/SI3  
INTP143/SCK3  
9
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(3/3)  
Pin Name  
P120  
I/O  
I/O  
Function  
Alternate Function  
Port 12  
TO150  
TO151  
TCLR15  
TI15  
8-bit I/O port  
P121  
P122  
P123  
P124  
P125  
P126  
P127  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PX5  
PX6  
PX7  
Input/output mode can be specified in 1-bit units  
INTP150  
INTP151  
INTP152  
INTP153/ADTRG  
A0  
I/O  
I/O  
I/O  
Port A  
8-bit I/O port  
A1  
Input/output mode can be specified in 1-bit units  
A2  
A3  
A4  
A5  
A6  
A7  
Port B  
A8  
8-bit I/O port  
A9  
Input/output mode can be specified in 1-bit units  
A10  
A11  
A12  
A13  
A14  
A15  
Port X  
REFRQ  
WAIT  
CLKOUT  
3-bit I/O port  
Input/output mode can be specified in 1-bit units  
10  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
2.2 Non-port Pins  
(1/4)  
Pin Name  
TO100  
I/O  
Function  
Pulse signal output for timers 10 to 15  
Alternate Function  
P00  
O
TO101  
TO110  
TO111  
TO120  
TO121  
TO130  
TO131  
TO140  
TO141  
TO150  
TO151  
TCLR10  
TCLR11  
TCLR12  
TCLR13  
TCLR14  
TCLR15  
TI10  
P01  
P10  
P11  
P100  
P101  
P30  
P31  
P110  
P111  
P120  
P121  
I
External clear signal input for timers 10 to 15  
P02  
P12  
P102  
P32  
P112  
P122  
I
External count clock input for timers 10 to 15  
P03  
TI11  
P13  
TI12  
P103  
TI13  
P33  
TI14  
P113  
TI15  
P123  
INTP100  
INTP101  
INTP102  
INTP103  
INTP110  
INTP111  
INTP112  
INTP113  
INTP120  
INTP121  
INTP122  
INTP123  
I
I
I
External maskable interrupt request input, shared as external capture  
trigger input for timer 10  
P04/DMARQ0  
P05/DMARQ1  
P06/DMARQ2  
P07/DMARQ3  
P14/DMAAK0  
P15/DMAAK1  
P16/DMAAK2  
P17/DMAAK3  
P104/TC0  
P105/TC1  
P106/TC2  
P107/TC3  
External maskable interrupt request input, shared as external capture  
trigger input for timer 11  
External maskable interrupt request input, shared as external capture  
trigger input for timer 12  
11  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(2/4)  
Pin Name  
INTP130  
I/O  
I
Function  
Alternate Function  
P34  
External maskable interrupt request input, shared as external capture  
trigger input for timer 13  
INTP131  
INTP132  
INTP133  
INTP140  
INTP141  
INTP142  
INTP143  
INTP150  
INTP151  
INTP152  
INTP153  
SO0  
P35/SO2  
P36/SI2  
P37/SCK2  
P114  
I
I
External maskable interrupt request input, shared as external capture  
trigger input for timer 14  
P115/SO3  
P116/SI3  
P117/SCK3  
P124  
External maskable interrupt request input, shared as external capture  
trigger input for timer 15  
P125  
P126  
P127/ADTRG  
P22/TXD0  
P25/TXD1  
P35/INTP131  
P115/INTP141  
P23/RXD0  
P26/RXD1  
P36/INTP132  
P116/INTP142  
P24  
O
Serial transmit data output (3-wire) for CSI0 to CSI3  
Serial receive data input (3-wire) for CSI0 to CSI3  
Serial clock I/O (3-wire) for CSI0 to CSI3  
SO1  
SO2  
SO3  
SI0  
I
SI1  
SI2  
SI3  
SCK0  
I/O  
SCK1  
P27  
SCK2  
P37/INTP133  
P117/INTP143  
P22/SO0  
P25/SO1  
P23/SI0  
SCK3  
TXD0  
O
I
Serial transmit data output for UART0 and UART1  
Serial receive data input for UART0 and UART1  
16-bit data bus for external memory  
TXD1  
RXD0  
RXD1  
P26/SI1  
D0 to D7  
D8 to D15  
A0 to A7  
A8 to A15  
A16 to A23  
LWR  
I/O  
O
P40 to P47  
P50 to P57  
PA0 to PA7  
PB0 to PB7  
P60 to P67  
P90/LCAS  
P91/UCAS  
P92  
24-bit address bus for external memory  
O
O
O
O
O
Lower byte write-enable signal output for external data bus  
Higher byte write-enable signal output for external data bus  
Read strobe signal output for external data bus  
Write enable signal output for DRAM  
UWR  
RD  
WE  
P93  
OE  
Output enable signal output for DRAM  
P95  
12  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(3/4)  
Pin Name  
LCAS  
I/O  
O
Function  
Alternate Function  
P90/LWR  
Column address strobe signal output for DRAM’s lower data  
Column address strobe signal output for DRAM’s higher data  
Low address strobe signal output for DRAM  
UCAS  
O
P91/UWR  
RAS0 to RAS3  
RAS4  
O
P80/CS0 to P83/CS3  
P84/CS4/IOWR  
P85/CS5/IORD  
P86/CS6  
RAS5  
RAS6  
RAS7  
P87/CS7  
BCYST  
CS0 to CS3  
O
O
Strobe signal output indicating start of bus cycle  
Chip select signal output  
P94  
P80/RAS0 to  
P83/RAS3  
CS4  
P84/RAS4/IOWR  
P85/RAS5/IORD  
P86/RAS6  
CS5  
CS6  
CS7  
P87/RAS7  
WAIT  
REFRQ  
IOWR  
IORD  
I
Control signal input for inserting waits in bus cycle  
Refresh request signal output for DRAM  
DMA write strobe signal output  
PX6  
O
O
O
I
PX5  
P84/RAS4/CS4  
P85/RAS5/CS5  
DMA read strobe signal output  
DMARQ0 to  
DMARQ3  
DMA request signal input  
P04/INTP100 to  
P07/INTP103  
DMAAK0 to  
DMAAK3  
O
O
DMA acknowledge signal output  
P14/INTP110 to  
P17/INTP113  
TC0 to TC3  
DMA end (terminal count) signal output  
P104/INTP120 to  
P107/INTP123  
HLDAK  
HLDRQ  
ANI0 to ANI7  
NMI  
O
I
Bus hold acknowledge output  
Bus hold request input  
P96  
P97  
I
Analog input to A/D converter  
Non-maskable interrupt request input  
System clock output  
P70 to P77  
I
P20  
PX7  
CLKOUT  
CKSEL  
O
I
Input for specifying clock generator’s operation mode  
Specify operation modes  
MODE0 to  
MODE3  
I
RESET  
X1  
I
I
System reset input  
Oscillator connection for system clock. Input is via X1 when using an  
external clock.  
X2  
I
ADTRG  
AVREF  
AVDD  
AVSS  
A/D converter external trigger input  
Reference voltage input for A/D converter  
Positive power supply for A/D converter  
Ground potential for A/D converter  
P127/INTP153  
I
13  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(4/4)  
Pin Name  
CVDD  
I/O  
Function  
Positive power supply for dedicated clock generator  
Ground potential for dedicated clock generator  
Positive power supply (power supply for internal units)  
Positive power supply (power supply for external pins)  
Ground potential  
Alternate Function  
CVSS  
VDD  
HVDD  
VSS  
14  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins  
Table 2-1 shows the I/O circuit type of each pin and recommended connection of unused pins. Figure 2-1 shows  
the various circuit types using partially abridged diagrams.  
When connecting to VDD or VSS via a resistor, a resistance value in the range of 1 to 10 kis recommended.  
Table 2-1. I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins (1/2)  
Pin  
I/O Circuit Type  
Recommended Connection of Unused Pins  
P00/TO100, P01/TO101  
P02/TCLR10, P03/TI10  
5
Input : Independently connect to HVDD or VSS via a resistor  
Output: Leave open  
5-K  
P04/INTP100/DMARQ0 to  
P07/INTP103/DMARQ3  
P10/TO110, P11/TO111  
P12/TCLR11, P13/TI11  
5
5-K  
P14/INTP110/DMAAK0 to  
P17/INTP113/DMAAK3  
P20/NMI  
2
5
Connect directly to VSS  
P21  
Input : Independently connect to HVDD or VSS via a resistor  
Output: Leave open  
P22/TXD0/SO0  
P23/RXD0/SI0  
5-K  
P24/SCK0  
P25/TXD1/SO1  
P26/RXD1/SI1  
5
5-K  
P27/SCK1  
P30/TO130, P31/TO131  
P32/TCLR13,P33/TI13  
P34/INTP130  
5
5-K  
P35/INTP131/SO2  
P36/INTP132/SI2  
P37/INTP133/SCK2  
P40/D0 to P47/D7  
P50/D8 to P57/D15  
P60/A16 to P67/A23  
P70/ANI0 to P77/ANI7  
P80/CS0/RAS0 to P83/CS3/RAS3  
5
9
5
Connect directly to VSS  
Input : Independently connect to HVDD or VSS via a resistor  
Output: Leave open  
P84/CS4/RAS4/IOWR,  
P85/CS5/RAS5/IORD  
P86/CS6/RAS6, P87/CS7/RAS7  
P90/LCAS/LWR  
P91/UCAS/UWR  
15  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Table 2-1. I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins (2/2)  
Pin  
I/O Circuit Type  
5
Recommended Connection of Unused Pins  
P92/RD  
Input : Independently connect to HVDD or VSS via a resistor  
Output: Leave open  
P93/WE  
P94/BCYST  
P95/OE  
P96/HLDAK  
P97/HLDRQ  
P100/TO120, P101/TO121  
P102/TCLR12, P103/TI12  
5-K  
P104/INTP120/TC0 to  
P107/INTP123/TC3  
P110/TO140, P111/TOI41  
P112/TCLR14, P113/TI14  
P114/INTP140  
5
5-K  
P115/INTP141/SO3  
P116/INTP142/SI3  
P117/INTP143/SCK3  
P120/TO150, P121/TO151  
P122/TCLR15, P123/TI15  
P124/INTP150 to P126/INTP152  
P127/INTP153/ADTRG  
PA0/A0-PA7/A7  
PB0/A8-PB7/A15  
PX5/REFRQ  
5
5-K  
5
PX6/WAIT  
PX7/CLKOUT  
CKSEL  
1
2
Connect directly to HVDD  
RESET  
MODE0 to MODE2  
MODE3  
Connect to VSS via a resistor (RVPP)  
Connect directly to VSS  
AVREF, AVSS  
AVDD  
Connect directly to HVDD  
16  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 2-1. Pin I/O Circuits  
Type 1  
Type 5-K  
V
DD  
V
DD  
data  
P-ch  
IN/OUT  
P-ch  
IN  
output  
N-ch  
disable  
N-ch  
input  
enable  
Type 2  
Type 9  
P-ch  
N-ch  
Comparator  
IN  
+
IN  
VREF (threshold voltage)  
input enable  
Schmitt trigger input with hysteresis characteristics  
Type 5  
V
DD  
data  
P-ch  
IN/OUT  
output  
disable  
N-ch  
input  
enable  
Caution Replace VDD by HVDD when referencing the circuit diagrams shown above.  
17  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
3. FUNCTION BLOCKS  
3.1 Internal Units  
3.1.1 CPU  
The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic  
operations, data transfers, and almost all other instruction processing.  
Other dedicated on-chip hardware, such as the multiplier (16 bits × 16 bits 32 bits, or 32 bits × 32 bits 64  
bits) and the barrel shifter (32 bits) help accelerate processing of complex instructions.  
3.1.2 Bus control unit (BCU)  
The BCU starts a required external bus cycle based on the physical address obtained by the CPU. When an  
instruction is fetched from external memory area and the CPU does not send a bus cycle start request, the BCU  
generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in an  
internal instruction queue of the CPU.  
The BCU contains DRAM controller (DRAMC), page ROM controller, and DMA controller (DMAC).  
(a) DRAM controller (DRAMC)  
The DRAM controller generates the RAS, UCAS, and LCAS signals (2CAS control) and controls access to the  
DRAM.  
It supports high-speed page DRAM and EDO DRAM, and has two types of cycles for accessing DRAM.  
These types of cycles are referred to as normal access (off-page) and page access (on-page).  
The DRAM controller also has a refresh function that is associated with the CBR refresh cycle.  
(b) Page ROM controller  
The page ROM controller supports access to ROM that has the page access function.  
It compares the address with that of the preceding bus cycle and controls the waits for normal access (off-  
page) and page access (on-page). The page ROM controller can support page sizes of 8 to 64 bytes.  
(c) DMA controller (DMAC)  
The DMA controller transfers data between memory and an I/O device in place of the CPU.  
The two address modes are flyby (one-cycle) transfer and two-cycle transfer. The three bus modes are single  
transfer, single-step transfer, and block transfer.  
3.1.3 ROM  
The µPD703101-33 contains 96-Kbytes mask ROM, and the µPD703102-33 contains 128-Kbytes mask ROM.  
The CPU can access ROM in one clock cycle when an instruction is fetched.  
When single-chip mode 0 is set, ROM is mapped to the address space starting at 00000000H. When single-chip  
mode 1 is set, ROM is mapped to the address space starting at 00100000H. When ROM-less mode 0 or 1 is set,  
ROM cannot be accessed.  
The µPD703100-33 and µPD703100-40 have no internal ROM.  
18  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
3.1.4 RAM  
RAM is mapped to the 4-Kbyte address space starting at FFFFE000H. The CPU can access RAM in one clock  
cycle when an instruction is fetched or data is accessed.  
3.1.5 Ports  
In addition to the 123 pins (ports 0 to 12, A, B, and X) comprising I/O ports (of which nine pins comprise an input-  
only port), various port pin and control pin functions can be selected for these pins.  
3.1.6 Interrupt controller (INTC)  
This controller handles hardware interrupt requests (NMI, INTP100 to INTP103, INTP110 to INTP113, INTP120 to  
INTP123, INTP130 to INTP133, INTP140 to INTP143, and INTP150 to INTP153) from on-chip peripheral I/O and  
external hardware. Eight interrupt priority levels can be specified for these interrupt requests, and multiplexed  
servicing control can be performed for interrupt sources.  
3.1.7 Clock generator (CG)  
A frequency of five times (using an on-chip PLL) or one-half times (not using an on-chip PLL) that of the input  
clock (fXX) is supplied as the internal system clock (φ). Either an external oscillator is connected to pins X1 and X2  
(only when the on-chip PLL synthesizer is used) or an external clock is input from the X1 pin as the input clock.  
3.1.8 Real-time pulse unit (RPU)  
The RPU includes a six-channel 16-bit timer/event counter and a two-channel 16-bit interval timer, which enables  
measurement of pulse intervals and frequency as well as programmable pulse output.  
3.1.9 Serial interface (SIO)  
Four channels are comprised of two kinds of serial interfaces: an asynchronous serial interface (UART) and a  
clocked serial interface (CSI). Two of these four channels are switchable between the UART and CSI and the other  
two channels are fixed as CSI.  
For UART, data is transferred via the TXD and RXD pins. For CSI, data is transferred via the SO, SI, and SCK  
pins.  
The serial clock source can be selected from dedicated baud rate generator output or the internal system clock.  
3.1.10 A/D converter (ADC)  
This is a high-speed, high-resolution 10-bit A/D converter that includes eight analog input pins. It converts using  
the successive approximation method.  
19  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
4. CPU FUNCTIONS  
{ RISC-based architecture  
{ Uses five-stage pipeline control to enable single-clock execution of almost all instructions  
{ Minimum instruction execution time  
25 ns (@ 40-MHz operation) ... µPD703100-40  
30 ns (@ 33-MHz operation) ... µPD703100-33, 703101-33, 703102-33  
{ Memory space  
Program space : 64-Mbyte linear  
Data space : 4-Gbyte linear  
{ General registers 32 bits × 32  
{ Internal 32-bit architecture  
{ 5-stage pipeline control  
{ Multiply/divide instructions  
{ Saturated operation instructions  
{ 32-bit shift instruction: 1 clock  
{ Long/short format  
{ Four types of bit manipulation instructions  
Set  
Clear  
Not  
Test  
5. BUS CONTROL FUNCTIONS  
{ 16-bit/8-bit data bus sizing function  
{ 8-space chip select output function  
{ Wait functions  
Programmable wait function for up to seven states for each memory block  
External wait function using WAIT pin  
{ Idle state insertion function  
{ Bus mastering arbitration function  
{ Bus hold function  
{ Alternate function for port pins are connectable to external bus  
20  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
6. MEMORY ACCESS CONTROL FUNCTIONS  
6.1 SRAM Connection  
The following figure shows an SRAM connection example.  
Figure 6-1. SRAM Connection Example  
A1 to A17  
D0 to D7  
D8 to D15  
CSn  
A0 to A16  
I/O1 to I/O8  
CS  
UWR  
LWR  
WE  
OE  
RD  
5 V  
5 V  
HVDD  
VCC  
V850E/MS1  
1-Mbit (128 K × 8) SRAM  
A0 to A16  
I/O1 to I/O8  
CS  
WE  
OE  
5 V  
VCC  
1-Mbit (128 K × 8) SRAM  
Remark n = 0 to 7  
21  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
6.2 Page ROM Controller (ROMC)  
The page ROM controller (ROMC) supports access to ROM (page ROM) that has the page access function.  
It compares the address with that of the preceding bus cycle and performs wait control for normal access (off-  
page) and page access (on-page). The page ROM controller can support page widths of 8 to 64 bytes.  
6.2.1 Features  
{ Can be connected directly to 8-bit or 16-bit page ROM  
{ For 16-bit bus width, it supports 4-, 8-, 16-, or 32-word page access  
For 8-bit bus width, it supports 8-, 16-, 32-, or 64-word page access  
{ Enables waits to be set (0 to 7 waits) independently for off-page and on-page access  
6.2.2 Page ROM connection  
The following figure shows page ROM connection examples.  
Figure 6-2. Page ROM Connection Examples (1/2)  
(a) 16-Mbit (1 M × 16) page ROM  
A1 to A20  
D0 to D15  
A0 to A19  
O1 to O16  
RD  
OE  
CE  
CSn  
V
DD  
WORD/BYTE  
16-Mbit (1 M × 16) page ROM  
V850E/MS1  
Remark n = 0 to 7  
22  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 6-2. Page ROM Connection Examples (2/2)  
(b) 16-Mbit (2 M × 8) page ROM  
A1 to A20  
D0 to D7  
A0 to A19  
O0 to O7  
RD  
OE  
CE  
CSn  
WORD/BYTE  
D8 to D15  
16-Mbit (2 M × 8) page ROM  
V850E/MS1  
A0 to A19  
O0 to O7  
OE  
CE  
WORD/BYTE  
16-Mbit (2 M × 8) page ROM  
Remark n = 0 to 7  
23  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
6.3 DRAM Controller  
6.3.1 Features  
{ Generates the RAS, UCAS, and LCAS signals  
{ Can be connected directly to high-speed page DRAM and EDO DRAM  
{ Supports RAS hold mode  
{ Can assign 4 types of DRAM to 8 memory block spaces  
{ Supports 2CAS type DRAM  
{ Can be switched between row and column address multiplex widths  
{ Can insert waits (0 to 3 waits) at each of the following timings  
Row address pre-charge wait  
Row address hold wait  
Data access wait  
Column address pre-charge wait  
{ Supports CBR refresh and CBR self refresh  
6.3.2 DRAM Connections  
The following figure shows DRAM connection examples.  
Figure 6-3. DRAM Connection Examples (1/2)  
(a) 16-Mbit (1 M × 16) DRAM  
A0 to A9  
A1 to A10  
D0 to D15  
I/O1 to I/O16  
RASn  
LCAS  
UCAS  
WE  
RASn  
LCAS  
UCAS  
WE  
OE  
OE  
V850E/MS1  
16-Mbit (1 M × 16) DRAM  
Remark n = 0 to 7  
24  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 6-3. DRAM Connection Examples (2/2)  
(b) 4-Mbit (1 M × 4) DRAM  
A0 to A9  
A0 to A9  
A1 to A10  
D0 to D7  
D8 to D15  
RASn  
I/O1 to I/O4  
I/O1 to I/O4  
RAS  
CAS  
RAS  
CAS  
LCAS  
UCAS  
WE  
WE  
OE  
WE  
OE  
OE  
V850E/MS1  
4-Mbit (1 M × 4) DRAM  
4-Mbit (1 M × 4) DRAM  
A0 to A9  
A0 to A9  
I/O1 to I/O4  
I/O1 to I/O4  
RAS  
CAS  
RAS  
CAS  
WE  
OE  
WE  
OE  
4-Mbit (1 M × 4) DRAM  
4-Mbit (1 M × 4) DRAM  
Remark n = 0 to 7  
25  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
7. DMA FUNCTIONS (DMA CONTROLLER)  
{ 4 independent DMA channels  
{ Transfer units: 8 or 16 bits  
{ Maximum transfer count: 65536 (216)  
{ Two types of transfer  
Flyby (one-cycle) transfer  
Two-cycle transfer  
{ Three transfer modes  
Single transfer mode  
Single-step transfer mode  
Block transfer mode  
{ Transfer requests  
DMARQ0 to DMARQ3 pin (× 4)  
Requests from on-chip peripheral I/O (serial interface and real-time pulse unit)  
Requests by software  
{ Transfer objects  
Memory to I/O and vice versa  
Memory to memory and vice versa  
{ DMA transfer end output signal (TC0 to TC3)  
26  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 7-1. DMA Function Block Diagram  
Internal RAM  
Internal peripheral I/O  
Internal bus  
Internal peripheral I/O bus  
CPU  
DMA source address  
register (DSAnH/DSAnL)  
Data control  
Address control  
DMA destination address  
register (DDAnH/DDAnL)  
DMA byte count register  
(DBCn)  
TCn  
NMI  
Count control  
DMA addressing control  
register (DADCn)  
DMA channel control  
register (DCHCn)  
INTPmn  
Request from on-chip  
peripheral I/O  
Channel control  
DMA disable status  
register (DDISn)  
DMA restart register  
(DRSTn)  
DMARQn  
DMAAKn  
DMA trigger source  
register (DTFRn)  
DMAC  
Bus interface  
V850E/MS1  
External bus  
External ROM  
External I/O  
External RAM  
Remark m = 10 to 15, n=0 to 3  
27  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
8. INTERRUPT/EXCEPTION PROCESSING FUNCTIONS  
8.1 Features  
{ Interrupts  
Non-maskable interrupt: 1 source  
Maskable interrupt : 47 sources  
8-level programmable priority control  
Multiple interrupt control based on priority levels  
Mask specification for each maskable interrupt request  
Noise elimination, edge detection, and valid edge specification for external interrupt requests  
{ Exceptions  
Software exceptions: 32 sources  
Exception trap  
: 1 source (invalid instruction code exception)  
28  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 8-1. Interrupt Control Function Block Diagram  
Internal bus  
ISPR register  
xxICn register  
xxMKn (interrupt mask flag)  
INTOV10  
INTOV11  
INTOV12  
Handler  
address  
generator  
OVIF10  
OVIF11  
OVIF12  
INTOV13  
OVIF13  
INTOV14  
OVIF14  
INTOV15  
OVIF15  
INTP100/INTCC100  
CPU  
P10IF0  
P10IF1  
P10IF2  
P10IF3  
P11IF0  
P11IF1  
P11IF2  
P11IF3  
P12IF0  
P12IF1  
P12IF2  
P12IF3  
P13IF0  
P13IF1  
P13IF2  
P13IF3  
P14IF0  
P14IF1  
P14IF2  
P14IF3  
P15IF0  
P15IF1  
P15IF2  
P15IF3  
CMIF40  
CMIF41  
DMAIF0  
DMAIF1  
DMAIF2  
DMAIF3  
CSIF0  
INTP101/INTCC101  
INTP102/INTCC102  
INTP103/INTCC103  
INTP110/INTCC110  
INTP111/INTCC111  
INTP112/INTCC112  
INTP113/INTCC113  
INTP120/INTCC120  
INTP100  
INTP101  
INTP102  
INTP103  
INTM1  
(edge detection)  
Note  
Note  
Note  
Note  
Note  
Note  
PSW  
ID  
INTP110  
INTP111  
INTP112  
INTP113  
INTM2  
(edge detection)  
INTP121/INTCC121  
INTP122/INTCC122  
Interrupt request  
INTP120  
INTP121  
INTP122  
INTP123  
RPU  
INTM3  
(edge detection)  
Interrupt request  
acknowledge  
INTP123/INTCC123  
INTP130/INTCC130  
INTP131/INTCC131  
INTP132/INTCC132  
INTP133/INTCC133  
INTP140/INTCC140  
INTP141/INTCC141  
INTP142/INTCC142  
INTP143/INTCC143  
HALT mode  
release signal  
INTP130  
INTP131  
INTP132  
INTP133  
INTM4  
(edge detection)  
INTP140  
INTP141  
INTP142  
INTP143  
INTM5  
(edge detection)  
INTP150/INTCC150  
INTP151/INTCC151  
INTP152/INTCC152  
INTP150  
INTP151  
INTP152  
INTP153  
INTM6  
(edge detection)  
INTP153/INTCC153  
INTCM40  
INTCM41  
INTDMA0  
INTDMA1  
INTDMA2  
INTDMA3  
INTCSI0  
INTSER0  
INTSR0  
DMAC  
CSI0  
SEIF0  
SRIF0  
STIF0  
CSIF1  
SEIF1  
SRIF1  
UART0  
CSI1  
INTST0  
INTCSI1  
INTSER1  
INTSR1  
INTST1  
SIO  
UART1  
CSI2  
STIF1  
CSIF2  
CSIF3  
ADIF  
INTCSI2  
INTCSI3  
INTAD  
CSI3  
A/D converter  
NMI  
Note Noise elimination  
Remark xx: OV, CM, P10 to P15, DMA, CS, SE, SR, ST, AD  
n: None, or 10 to 15, 40, 41, 0 to 3  
29  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Table 8-1. List of Interrupts (1/3)  
Interrupt/Exception Source  
Excep-  
Default  
Handler  
Address  
Restore  
PC  
Type  
Category  
tion  
Control  
Generat-  
ing Unit  
Priority  
Name  
Generation Source  
RESET input  
Code  
Register  
Reset  
Interrupt  
Interrupt  
RESSET  
Pin  
0000H  
0010H  
00000000H  
00000010H  
Unde-  
fined  
Non-  
NMI  
NMI input  
Pin  
nextPC  
maskable  
Software  
exception  
Exception TRAP0nNote  
Exception TRAP1nNote  
TRAP instruction  
TRAP instruction  
004nNote  
005nNote  
0060H  
H
00000040H  
00000050H  
00000060H  
nextPC  
nextPC  
nextPC  
H
Exception  
trap  
Exception  
ILGOP  
Illegal instruction  
code  
Maskable  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
INTOV10  
INTOV11  
INTOV12  
INTOV13  
INTOV14  
INTOV15  
OVIC10  
OVIC11  
OVIC12  
OVIC13  
OVIC14  
OVIC15  
P10IC0  
Timer 10 overflow  
Timer 11 overflow  
Timer 12 overflow  
Timer 13 overflow  
Timer 14 overflow  
Timer 15 overflow  
RPU  
RPU  
0
1
2
3
4
5
6
0080H  
0090H  
00000080H  
00000090H  
000000A0H  
000000B0H  
000000C0H  
000000D0H  
00000100H  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
RPU  
00A0H  
00B0H  
00C0H  
00D0H  
0100H  
RPU  
RPU  
RPU  
INTP100/  
Match between  
Pin/RPU  
INTCC100  
INTP100 and CC100  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
INTP101/  
P10IC1  
P10IC2  
P10IC3  
P11IC0  
P11IC1  
P11IC2  
P11IC3  
P12IC0  
P12IC1  
P12IC2  
Match between  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
7
0110H  
0120H  
0130H  
0140H  
0150H  
0160H  
0170H  
0180H  
0190H  
01A0H  
00000110H  
00000120H  
00000130H  
00000140H  
00000150H  
00000160H  
00000170H  
00000180H  
00000190H  
000001A0H  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
INTCC101  
INTP101 and CC101  
INTP102/  
Match between  
8
INTCC102  
INTP102 and CC102  
INTP103/  
Match between  
9
INTCC103  
INTP103 and CC103  
INTP110/  
Match between  
10  
11  
12  
13  
14  
15  
16  
INTCC110  
INTP110 and CC110  
INTP111/  
Match between  
INTCC111  
INTP111 and CC111  
INTP112/  
Match between  
INTCC112  
INTP112 and CC112  
INTP113/  
Match between  
INTCC113  
INTP113 and CC113  
INTP120/  
Match between  
INTCC120  
INTP120 and CC120  
INTP121/  
Match between  
INTCC121  
INTP121 and CC121  
INTP122/  
Match between  
INTCC122  
INTP122 and CC122  
Note n = 0 to FH  
30  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Table 8-1. List of Interrupts (2/3)  
Interrupt/Exception Source  
Excep-  
Default  
Handler  
Address  
Restore  
PC  
Type  
Category  
tion  
Control  
Generat-  
ing Unit  
Priority  
Name  
Generation Source  
Code  
Register  
Maskable  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
INTP123/  
P12IC3  
P13IC0  
P13IC1  
P13IC2  
P13IC3  
P14IC0  
P14IC1  
P14IC2  
P14IC3  
P15IC0  
P15IC1  
P15IC2  
P15IC3  
Match between  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
Pin/RPU  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
01B0H  
01C0H  
01D0H  
01E0H  
01F0H  
0200H  
0210H  
0220H  
0230H  
0240H  
0250H  
0260H  
0270H  
000001B0H  
000001C0H  
000001D0H  
000001E0H  
000001F0H  
00000200H  
00000210H  
00000220H  
00000230H  
00000240H  
00000250H  
00000260H  
00000270H  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
INTCC123  
INTP123 and CC123  
INTP130/  
Match between  
INTCC130  
INTP130 and CC130  
INTP131/  
Match between  
INTCC131  
INTP131 and CC131  
INTP132/  
Match between  
INTCC132  
INTP132 and CC132  
INTP133/  
Match between  
INTCC133  
INTP133 and CC133  
INTP140/  
Match between  
INTCC140  
INTP140 and CC140  
INTP141/  
Match between  
INTCC141  
INTP141 and CC141  
INTP142/  
Match between  
INTCC142  
INTP142 and CC142  
INTP143/  
Match between  
INTCC143  
INTP143 and CC143  
INTP150/  
Match between  
INTCC150  
INTP150 and CC150  
INTP151/  
Match between  
INTCC151  
INTP151 and CC151  
INTP152/  
Match between  
INTCC152  
INTP152 and CC152  
INTP153/  
INTC153  
Match between  
INTP153 and CC153  
Interrupt  
Interrupt  
Interrupt  
INTCM40  
INTCM41  
INTDMA0  
CMIC40  
CMIC41  
DMAIC0  
CM40 match signal  
CM41 match signal  
RPU  
RPU  
30  
31  
32  
0280H  
0290H  
02A0H  
00000280H  
00000290H  
000002A0H  
nextPC  
nextPC  
nextPC  
DMA channel 0  
DMAC  
transfer completion  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
INTDMA1  
INTDMA2  
INTDMA3  
INTCSI0  
DMAIC1  
DMAIC2  
DMAIC3  
CSIC0  
DMA channel 1  
DMAC  
DMAC  
DMAC  
SIO  
33  
34  
35  
36  
37  
02B0H  
02C0H  
02D0H  
0300H  
0310H  
000002B0H  
000002C0H  
000002D0H  
000000300H  
000000310H  
nextPC  
nextPC  
nextPC  
nextPC  
nextPC  
transfer completion  
DMA channel 2  
transfer completion  
DMA channel 3  
transfer completion  
CSI0 send/receive  
completion  
INTSER0  
SEIC0  
UART0 receive error  
SIO  
Note n = 0 to FH  
31  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Table 8-1. List of Interrupts (3/3)  
Interrupt/Exception Source  
Excep-  
Default  
Handler  
Address  
Restore  
PC  
Type  
Category  
tion  
Control  
Generat-  
ing Unit  
Priority  
Name  
Generation Source  
Code  
Register  
Maskable  
Interrupt  
Interrupt  
Interrupt  
INTSR0  
SRIC0  
STIC0  
CSIC1  
UART0 receive  
completion  
SIO  
SIO  
SIO  
38  
39  
40  
0320H  
0330H  
0340H  
00000320H  
00000330H  
00000340H  
nextPC  
nextPC  
nextPC  
INTST0  
UART0 send  
completion  
INTCSI1  
CSI1 send/receive  
completion  
Interrupt  
Interrupt  
INTSER1  
INTSR1  
SEIC1  
SRIC1  
UART1 receive error  
SIO  
SIO  
41  
42  
0350H  
0360H  
00000350H  
00000360H  
nextPC  
nextPC  
UART1 receive  
completion  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
INTST1  
INTCSI2  
INTCSI3  
INTAD  
STIC1  
CSIC2  
CSIC3  
ADIC  
UART1 send  
completion  
SIO  
SIO  
SIO  
ADC  
43  
44  
45  
46  
0370H  
0380H  
03C0H  
0400H  
00000370H  
00000380H  
000003C0H  
00000400H  
nextPC  
nextPC  
nextPC  
nextPC  
CSI2 send/receive  
completion  
CSI3 send/receive  
completion  
A/D conversion  
completion  
Remarks 1. Default priority: Priority that takes precedence when two or more maskable interrupt requests having  
the same priority level are generated at the same time. The highest priority is 0.  
Restore PC: The PC value that is saved in EIPC or FEPC when the interrupt or exception  
processing is started. However, the restore PC value that is saved when an interrupt is  
acknowledged during the execution of a division instruction (DIV, DIVH, DIVU, or  
DIVHU), is the PC value of the current instruction (DIV, DIVH, DIVU, or DIVHU).  
2. The execution address of the illegal instruction when an illegal opcode exception occurs is obtained  
according to the calculation “restore PC - 4.”  
32  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
9. CLOCK GENERATION FUNCTIONS  
{ Multiplier function using a PLL (Phase locked loop) synthesizer  
{ Clock sources  
Oscillation by connecting an oscillator: fXX = φ/5  
External clock: fXX = 2 × φ or φ/5  
{ Power saving modes  
HALT mode  
IDLE mode  
Software STOP mode  
Clock output inhibit mode  
{ Internal system clock output function  
Figure 9-1. Block Diagram of Clock Generation Function  
φ
X1  
CPU, on-chip peripheral I/O  
CLKOUT  
(fXX  
)
Clock generator  
(CG)  
X2  
CKSEL  
Time base counter (TBC)  
Remark φ : internal system clock frequency  
FXX: external oscillator or external clock frequency  
33  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
10. TIMER/COUNTER FUNCTIONS (REAL-TIME PULSE UNIT)  
{ Measures the pulse interval and frequency, and outputs a programmable pulse  
16-bit measurements are possible  
Can generate a variety of pulse patterns (interval pulse, one-shot pulse)  
{ Timer 1  
16-bit timer/event counter  
Count clock sources: 2 types (division of internal system clock, and external pulse input)  
Capture/compare common registers: 24  
Count clear pins: TCLR10 to TCLR15  
Interrupt sources: 30 types  
External pulse outputs: 12  
{ Timer 4  
16-bit interval timer  
Count clock can select division for internal system clock  
Compare registers: 2  
Interrupt sources: 2  
34  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 10-1. Block Diagram of Timer 1 (16-bit Timer/Event Counter)  
Internal system  
TM10  
φ
clock ( )  
TCLR10  
TI10  
Edge detection  
ETI10  
Clear and  
count control  
Clear and  
start  
PRS100,  
PRS101  
Note 2  
PRM  
101  
Edge detection  
OVF10  
φ
m
1/2  
1/4  
INTOV10  
TM10 (16 bits)  
Note 1  
1/4  
1/8  
1/16  
ALV101 ALV100  
INTP100  
INTP101  
INTP102  
INTP103  
S
R
Q
CC100  
CC101  
CC102  
CC103  
TO100  
TO101  
Note 3 Q  
Edge  
detection  
(INTM1)  
Noise  
elimination  
S
RNote 3  
Q
Q
IMS100 IMS101 IMS102 IMS103  
INTP100/INTCC100  
INTP101/INTCC101  
INTP102/INTCC102  
INTP103/INTCC103  
Selector  
Selector  
Selector  
Selector  
TCLR11  
TI11  
INTP110  
INTP111  
INTP112  
INTP113  
INTOV11  
TO110  
TO111  
TM11  
INTP110/INTCC110  
INTP111/INTCC111  
INTP112/INTCC112  
INTP113/INTCC113  
TCLR15  
TI15  
INTP150  
INTP151  
INTP152  
INTP153  
INTOV15  
TO150  
TO151  
TM15  
INTP150/INTCC150  
INTP151/INTCC151  
INTP152/INTCC152  
INTP153/INTCC153  
Notes 1. Internal count clock  
2. External count clock  
3. Reset priority  
35  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 10-2. Block Diagram of Timer 4 (16-bit Interval Timer)  
Internal system  
clock  
φ
(
)
TM40  
PRM400, PRM401  
PRS400  
Internal count  
clock  
1/2  
1/4  
1/8  
1/16  
1/32  
φ
m
TM40 (16 bits)  
CM40  
Clear and  
start  
INTCM40  
INTCM41  
TM41  
36  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
11. SERIAL INTERFACE FUNCTION  
The serial interface function provides two 6-channel serial interfaces.  
Up to four channels can be used at the same time.  
(1) Asynchronous serial interface (UART0 and UART1): 2 channels  
(2) Clocked serial interface (CSI0 to CSI3): 4 channels  
Caution UART0 and CSI0 share a pin, as do UART1 and CSI1. One or the other of each pair can be  
selected via a register (ASIM00, ASIM10).  
11.1 Asynchronous Serial Interfaces 0, 1 (UART0, UART1)  
{ Transfer rate  
150 bps to 76800 bps (using the dedicated baud rate generator when the internal system clock is  
33 MHz)  
Maximum 4.125 Mbps (using the φ/2 clock when the internal system clock is 33 MHz)  
{ Full duplex communications  
On-chip receive buffer (RXBn)  
{ 2-pin configuration  
TXDn: Transmit data output pin  
RXDn: Receive data input pin  
{ Receive error detection functions  
Parity error  
Framing error  
Overrun error  
{ Interrupt sources: 3 types  
Receive error interrupt (INTSERn)  
Receive completion interrupt (INTSRn)  
Transmission completion interrupt (INTSTn)  
{ The character length of transmission/reception data is specified by the ASIMn0 and ASIMn1 registers.  
{ Character length  
7, 8 bits  
9 bits (when adding an expansion bit)  
{ Parity function: odd, even, 0, none  
{ Transmission stop bit: 1, 2 bits  
{ On-chip dedicated baud rate generator  
{ Serial clock (SCKn) output function  
Remark n = 0, 1  
37  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 11-1. Block Diagram of Asynchronous Serial Interfaces 0, 1 (UART0, UART1)  
UART0  
RXE0  
RXB0/RXB0L  
Receive buffer  
Receive shift  
register  
RXD0  
TXD0  
TXS0/TXS0L  
Transmit shift  
register  
Transmit  
control  
parity addition  
INTST0  
Receive  
control  
parity check  
INTSER0  
INTSR0  
SCLS01, SCLS00  
Internal system  
clock (φ)  
SCK0  
1/16  
1/16  
BRG0  
1/2  
INTST1  
INTSER1  
INTSR1  
RXD1  
TXD1  
SCK1  
UART1  
BRG1  
11.2 Clocked Serial Interfaces 0 to 3 (CSI0 to CSI3)  
{ High-speed transfer  
Maximum 10 Mbps (when the internal system clock is operating at 40 MHz) ... µPD703100-40  
Maximum 8.25 Mbps (when the internal system clock is operating at 33 MHz) ... µPD703100-33, µPD703101-33,  
µPD703102-33  
{ Half-duplex communications  
{ Character length: 8 bits  
{ Can switch between MSB first or LSB first for data  
{ Either external serial clock input or internal serial clock output can be selected  
{ 3-wire type  
SOn: Serial data output  
SIn:  
Serial data input  
SCKn: Serial clock input/output  
{ Interrupt source: 1 type  
Transmission/reception completion interrupt (INTCSIn)  
Remark n = 0 to 3  
38  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 11-2. Block Diagram of Clocked Serial Interfaces 0 to 3 (CSI0 to CSI3)  
CSI0  
CTXE0  
Internal system  
clock (φ)  
SO0  
SI0  
CRXE0  
SO latch  
Serial I/O shift register  
(SIO0)  
CLS00, CLS01  
D
Q
1/2  
1/4  
Serial clock control  
circuit  
SCK0  
BRG0  
Interrupt  
control circuit  
Serial clock counter  
INTCSI0  
1/2  
1/4  
SO1  
SI1  
CSI1  
BRG1  
SCK1  
INTCSI1  
1/2  
1/4  
SO2  
SI2  
CSI2  
BRG2  
SCK2  
INTCSI2  
1/2  
1/4  
SO3  
SI3  
CSI3  
SCK3  
INTCSI3  
39  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
11.3 Dedicated Baud Rate Generators 0 to 2 (BRG0 to BRG2)  
{ Serial clock can be selected via either dedicated baud rate generator output or internal system clock (φ)  
{ Identical baud rates during transmission and reception  
Figure 11-3. Block Diagram of Dedicated Baud Rate Generators 0 to 2 (BRG0 to BRG2)  
BRG0  
BRGC0  
CSI0  
BRCE0  
BPR00 to BPR02  
Prescaler  
Match  
Internal system  
UART0  
clock (φ)  
Clear  
TMBRG0  
1/2  
CSI1  
BRG1  
BRG2  
UART1  
CSI2  
CSI3  
40  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
12. A/D CONVERTER  
{ Analog input: 8 channels  
{ On-chip 10-bit A/D converter  
{ On-chip A/D conversion result registers (ADCR0 to ADCR7)  
10 bits × 8  
{ A/D conversion trigger modes  
A/D trigger mode  
Timer trigger mode  
External trigger mode  
{ Successive approximation method  
Figure 12-1. A/D Converter Block Diagram  
Series resistor string  
ANI0  
ANI1  
ANI2  
ANI3  
ANI4  
ANI5  
ANI6  
ANI7  
AVREF  
Sample & hold circuit  
R/2  
R
R/2  
AVSS  
AVDD  
Voltage comparator  
9
9
0
SAR (10)  
10  
10  
INTAD  
0
ADCR0  
ADCR1  
ADCR2  
ADCR3  
ADCR4  
ADCR5  
ADCR6  
ADCR7  
INTCC110  
INTCC111  
INTCC112  
INTCC113  
Controller  
Noise  
Edge  
ADTRG  
elimination detection  
7
0
7
0
ADM0 (8)  
8
ADM1 (8)  
10  
8
Internal bus  
41  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
13. PORT FUNCTIONS  
{ Number of ports  
Dedicated input ports: 9  
Input/output ports  
: 114  
{ Shares pins with other peripheral function I/O  
{ Input and output can be specified in 1-bit units  
The block diagrams of the various ports are divided into 16 block types identified by A to P as shown in Table 13-  
1. Figures 13-1 to 13-16 show the block diagrams of each type.  
Table 13-1. List of Port Block Types  
Port Name  
Port 0  
Pin Name  
Port Function  
Function in Control Mode  
Block Type  
A, B, M  
P00 to P07  
8-bit input/output  
Input/output of real-time pulse unit (RPU), external  
interrupt input, DMA controller (DMAC) input  
Port 1  
Port 2  
Port 3  
P10 to P17  
P20 to P27  
P30 to P37  
8-bit input/output  
Input/output of real-time pulse unit (RPU), external  
interrupt input, DMA controller (DMAC) output  
A, B, K  
1-bit input,  
NMI input, serial interface (UART0/CSI0, UART1/CSI1)  
input/output  
A, C, D, I, J  
7-bit input/output  
8-bit input/output  
Input/output of real-time pulse unit (RPU), external  
interrupt input, serial interface (CSI2) input/output  
A, B, K, M,  
N
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
Port 9  
Port 10  
P40 to P47  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
8-bit input/output  
8-bit input/output  
8-bit input/output  
8-bit input/output  
8-bit input/output  
8-bit input/output  
8-bit input/output  
External data bus (D0 to D7)  
E
External data bus (D8 to D15)  
E
External address bus (A16 to A23)  
A/D converter (ADC) analog input  
External bus interface control signal output  
External bus interface control signal input/output  
F
G
O, P  
H, O  
A, B, K  
P100 to  
P107  
Input/output of real-time pulse unit (RPU), external  
interrupt input, DMA controller (DMAC) output  
Port 11  
Port 12  
P110 to  
P117  
8-bit input/output  
8-bit input/output  
Input/output of real-time pulse unit (RPU), external  
interrupt input, serial interface (CSI3) input/output  
A, B, K, M,  
N
P120 to  
P127  
Input/output of real-time pulse unit (RPU), external  
A, B  
interrupt input, A/D converter (ADC) external trigger input  
Port A  
Port B  
Port X  
PA0 to PA7  
PB0 to PB7  
PX5 to PX7  
8-bit input/output  
8-bit input/output  
3-bit input/output  
External address bus (A0 to A7)  
External address bus (A8 to A15)  
F
F
Refresh request signal output, wait insertion signal input,  
internal system clock output  
A, L  
42  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-1. Block Diagram of Type A  
WRPMC  
PMCmn  
PMmn  
WRPM  
Output signal  
in control mode  
WRPORT  
Pmn  
Pmn  
RDIN  
Address  
Remark m: port number  
n : bit number  
Figure 13-2. Block Diagram of Type B  
WRPMC  
PMCmn  
PMmn  
WRPM  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
Noise elimination  
Edge detection  
Input signal in  
control mode  
Remark m: port number  
n : bit number  
43  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-3. Block Diagram of Type C  
WRPMC  
WRPM  
SCKx output  
enable signal  
PMCmn  
PMmn  
Output signal in  
control mode  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
Input signal in  
control mode  
Remark mn: 24, 27  
: 0 (when mn = 24), 1 (when mn = 27)  
x
Figure 13-4. Block Diagram of Type D  
WRPMC  
WRPM  
PMCmn  
PMmn  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
Input signal in  
control mode  
Remark m: port number  
n : bit number  
44  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-5. Block Diagram of Type E  
MODE0 to MODE3 MM0 to MM3  
I/O control circuit  
WRPM  
PMmn  
Output signal in  
control mode  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
Input signal in  
control mode  
Remark m: port number  
n : bit number  
Figure 13-6. Block Diagram of Type F  
MODE0 to MODE3 MM0 to MM3  
I/O control circuit  
WRPM  
PMmn  
Output signal in  
control mode  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
Remark m: port number  
n : bit number  
45  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-7. Block Diagram of Type G  
P7n  
RDIN  
ANIn  
Input signal in  
control mode  
Sample & hold circuit  
Remark n = 0 to 7  
Figure 13-8. Block Diagram of Type H  
MODE0 to MODE3 MM0 to MM3  
I/O control circuit  
WRPM  
PMmn  
Pmn  
WRPORT  
P97  
Address  
RDIN  
Input signal in  
control mode  
46  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-9. Block Diagram of Type I  
1
P20  
Noise elimination  
Address  
RDIN  
NMI  
Edge detection  
Figure 13-10. Block Diagram of Type J  
WRPM  
PMmn  
Pmn  
WRPORT  
Pmn  
Address  
RDIN  
Remark m: port number  
n : bit number  
47  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-11. Block Diagram of Type K  
WRPCS  
WRPMC  
PCSmn  
PMCmn  
PMmn  
WRPM  
Output signal in  
control mode  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
Input signal in  
control mode  
Noise elimination  
Edge detection  
Remark m: port number  
n : bit number  
48  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-12. Block Diagram of Type L  
WRPMC  
PMCmn  
PMmn  
WRPM  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
Input signal in  
control mode  
Remark m: port number  
n : bit number  
49  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-13. Block Diagram of Type M  
WRPCS  
WRPMC  
PCSmnNote  
PMCmn  
PMmn  
WRPM  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
INTP100 to INTP103,  
INTP132, INTP142  
Noise elimination  
Edge detection  
DMARQ0 to DMARQ3,  
SI2, SI3  
Note When mn = 36: PCS35  
When mn = 116: PCS115  
Remark mn: 04 to 07, 36, 116  
50  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-14. Block Diagram of Type N  
WRPCS  
PCSm5  
PMCmn  
PMmn  
SCKx output  
enable signal  
WRPMC  
WRPM  
Output signal in  
control mode  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
Noise elimination  
Edge detection  
INTP133, INTP143  
SCK2, SCK3  
Remark mn: 37, 117  
x: 2 (when mn = 37), 3 (when mn = 117)  
51  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Figure 13-15. Block Diagram of Type O  
MODE0 to MODE3 MM0 to MM3  
WRPMC  
WRPM  
PMCmn  
I/O control circuit  
PMmn  
Output signal in  
control mode  
Pmn  
WRPORT  
Pmn  
Address  
RDIN  
Remark m: port number  
n : bit number  
Figure 13-16. Block Diagram of Type P  
WRPCS  
PCSmn  
MODE0 to MODE3 MM0 to MM3  
WRPMC  
WRPM  
PMCmn  
PMmn  
I/O control circuit  
Output signal in  
control mode  
WRPORT  
Pmn  
Pmn  
Address  
RDIN  
Remark m: port number  
n : bit number  
52  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
14. RESET FUNCTION  
When low-level signal is input to the RESET pin, a system reset is performed and the various on-chip hardware  
devices are initialized.  
When the RESET input changes from low to high, the reset state is canceled and the CPU begins program  
execution. (the contents of the various registers should be initialized within the program as necessary.)  
=
An on-chip noise elimination circuit, which uses analog delay ( 60 ns) to eliminate noise, is provided for the  
RESET pin.  
53  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
15. INSTRUCTION SET  
Table 15-1. Symbols Used to Describe Operands  
Symbol  
Description  
reg1  
reg2  
reg3  
General registers (r0 to r31): used as source registers  
General registers (r0 to r31): used mainly as destination registers  
General registers (r0 to r31): used mainly to store the remainders of division results and the higher 3 bits  
of multiplication results  
imm×  
disp×  
regID  
bit#3  
ep  
×-bit immediate  
×-bit displacement  
System register number  
3-bit data for specifying the bit number  
Element pointer (r30)  
cccc  
vector  
list×  
4-bit data indicating the condition code  
5-bit data used for specifying the trap vector (00H to 1FH)  
List of × registers  
Table 15-2. Symbols Used to Describe Opcodes  
Symbol  
Description  
1-bit data of code specifying reg1 or regID  
1-bit data of code specifying reg2  
1-bit data of code specifying reg3  
1-bit displacement data  
R
r
w
d
i
1-bit immediate data  
cccc  
bbb  
L
4-bit data indicating condition code  
3-bit data for specifying bit number  
1-bit data specifying register list  
54  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Table 15-3. Symbols Used in Operation  
Symbol  
Description  
Input for  
GR [ ]  
General register  
SR [ ]  
System register  
zero-extend (n)  
sign-extend (n)  
Extend n with zeros until word length  
Extend n with signs until word length  
Read data of size b from address a  
Write data b of address a by size c  
Read bit b of address a  
load-memory (a, b)  
store-memory (a, b, c)  
load-memory-bit (a, b)  
store-memory-bit (a, b, c)  
saturated (n)  
Write c to bit b of address a  
Execute saturation processing of n (n is a two’s complement)  
If, as a result of the calculation,  
n 7FFFFFFFH, let it be 7FFFFFFFH.  
n 80000000H, let it be 80000000H  
result  
Reflect the result in a flag  
Byte (8 bits)  
Byte  
Half-word  
Half word (16 bits)  
Word (32 bits)  
Add  
Word  
+
Subtract  
||  
Bit concatenation  
Multiply  
×
÷
Divide  
%
Remainder of division result  
Logical AND  
AND  
OR  
Logical OR  
XOR  
Exclusive OR  
Logical NOT  
NOT  
logically shift left by  
logically shift right by  
arithmetically shift right by  
Logical shift left  
Logical shift right  
Arithmetic shift right  
Table 15-4. Symbols Used for Execution Clock  
Symbol  
Description  
i : issue  
When executing another instruction immediately after executing an instruction  
When repeating the same instruction immediately after executing the instruction  
When referring to instruction execution results in the next instruction  
r : repeat  
l : latency  
55  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Table 15-5. Symbols Used in Flag Operations  
Identifier  
(Blank)  
Description  
No change  
Clear to 0  
0
×
R
Set or cleared according to the results  
Previously saved values are restored  
Table 15-6. Condition Codes  
Condition  
Condition Code  
(cccc)  
Condition Formula  
Description  
Name (cond)  
0000  
1000  
0001  
V
OV = 1  
OV = 0  
CY = 1  
Overflow  
No overflow  
Carry  
NV  
C/L  
Lower (Less than)  
1001  
0010  
1010  
NC/NL  
Z/E  
CY = 0  
Z = 1  
No carry  
Not lower (Greater than or equal)  
Zero  
Equal  
NZ/NE  
Z = 0  
Not zero  
Not equal  
0011  
1011  
0100  
1100  
0101  
1101  
0110  
1110  
0111  
1111  
NH  
H
(CY or Z) = 1  
(CY or Z) = 0  
S = 1  
Not higher (Less than or equal)  
Higher (Greater than)  
Negative  
N
P
S = 0  
Positive  
T
Always (unconditional)  
Saturated  
SA  
LT  
GE  
LE  
GT  
SAT = 1  
(S xor OV) = 1  
Less than signed  
(S xor OV) = 0  
Greater than or equal signed  
Less than or equal signed  
Greater than signed  
((S xor OV) or Z) = 1  
((S xor OV) or Z) = 0  
56  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Instruction Set  
(1/7)  
Execution  
Flags  
Clock  
Mnemonic  
Operand  
Opcode  
Operation  
i
r
l
CY OV  
S
×
×
×
Z
×
×
×
SAT  
ADD  
reg1,reg2  
imm5,reg2  
rr r r r 0 0 1 1 1 0 R R R R R GR[reg2]GR[reg2]+GR[reg1]  
1
1
1
1
1
1
1
1
1
×
×
×
×
×
×
rr r r r 0 1 0 0 1 0 i i i i i GR[reg2]GR[reg2]+sign-extend(imm5)  
ADDI  
imm16,reg1,reg2 r r r r r 1 1 0 0 0 0 r r r r r GR[reg2]GR[reg1]+sign-extend(imm16)  
i i ii i i i i i i i i i i i i  
AND  
reg1,reg2  
rr r r r 0 0 1 0 1 0 R R R R R GR[reg2]GR[reg2]AND GR[reg1]  
1
1
1
1
1
1
0
0
×
×
×
ANDI  
imm16,reg1,reg2 rr r r r 1 1 0 1 1 0 R R R R R GR[reg2]GR[reg1]AND zero-  
extend(imm16)  
0
ii i i i i i i i i i i i i i i  
Bcond  
disp9  
dd d d d 1 0 1 1 d d d c c c c if conditions are satisfied  
When  
2
2
2
then PC PC+sign-  
conditions are Note 2 Note 2 Note 2  
Note 1  
extend(disp9)  
satisfied  
When  
1
1
1
conditions are  
not satisfied  
GR[reg3]  
GR[reg2] (23 : 16) II GR[reg2]  
BSH  
reg2,reg3  
reg2,reg3  
imm6  
rr r r r 1 1 1 1 1 1 0 0 0 0 0  
ww w w w 0 1 1 0 1 0 0 0 0 1 0  
1
1
4
1
1
4
1
1
4
×
×
0
0
×
×
×
×
(31 : 24) II GR[reg2] (7 : 0) II GR[reg2] (15 : 8)  
GR[reg3]  
GR[reg2] (7 : 0) II GR[reg2] (15 : 8) II  
BSW  
CALLT  
rr r r r 1 1 1 1 1 1 0 0 0 0 0  
ww w w w 0 1 1 0 1 0 0 0 0 0 0  
GR[reg2] (23 : 16) II GR[reg2] (31 : 24)  
00 0 0 0 0 1 0 0 0 i i i i i i CTPCPC+2(return PC)  
CTPSWPSW  
adrCTBP+zero-extend(imm6 logically  
shift left by 1)  
PCCTBP+zero-extend(Load-  
memory(adr, Half-word))  
CLR1  
CMOV  
CMP  
bit#3,  
10 b b b 1 1 1 1 1 0 R R R R R adrGR[reg1]+sign-extend(disp16)  
3
3
3
×
×
disp 16[reg1]  
Z flagsNot(Load-memory-bit(adr,bit#3))  
Note 3 Note 3 Note 3  
dd d d d d d d d d d d d d d d  
Store-memory-bit (adr,bit#3,0)  
reg2,[reg1]  
rr r r r 1 1 1 1 1 1 R R R R R adrGR[reg1]  
Z flagsNot(Load-memory-bit(adr,reg2))  
3
3
3
Note 3 Note 3 Note 3  
00 0 0 0 0 0 0 1 1 1 0 0 1 0 0  
Store-memory-bit (adr,reg2,0)  
cccc,imm5,reg2,  
reg3  
rr r r r 1 1 1 1 1 1 i i i i i if condition are satisfied then  
1
1
1
1
1
1
GR[reg3]sign-extended(imm5)  
else GR[reg3]GR[reg2]  
ww w w w 0 1 1 0 0 0 c c c c 0  
cccc,reg1,reg2,  
reg3  
rr r r r 1 1 1 1 1 1 R R R R R if conditions are satisfied  
then GR[reg3]GR[reg1]  
else GR[reg3]GR[reg2]  
ww w w w 0 1 1 0 0 1 c c c c 0  
reg1,reg2  
rr r r r 0 0 1 1 1 1 R R R R R resultGR[reg2]GR[reg1]  
rr r r r 0 1 0 0 1 1 i i i i i resultGR[reg2]sign-extend(imm5)  
00 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PCCTPC  
1
1
3
1
1
3
1
1
3
×
×
×
×
×
×
×
×
imm5,reg2  
CTRET  
DI  
R
R
R
R
R
00 0 0 0 0 0 1 0 1 0 0 0 1 0 0 PSW CTPSW  
00 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PSW.ID1  
1
1
1
00 0 0 0 0 0 1 0 1 1 0 0 0 0 0  
57  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(2/7)  
Execution  
Flags  
Clock  
Mnemonic  
DISPOSE  
Operand  
Opcode  
Operation  
i
r
l
CY OV  
S
Z
SAT  
imm5,list12  
00 0 0 0 1 1 0 0 1 i i i i i L spsp+zero-extend(imm5 logically shift left N+1 N+1 N+1  
by 2)  
Note 4 Note 4 Note 4  
LL L L L L L L L L L 0 0 0 0 0  
GR[reg in list12]Load-memory(sp,Word)  
spsp+4  
repeat 2 steps above untill all regs in list12  
is loaded  
imm5,list12,[reg1] 00 0 0 0 1 1 0 0 1 i i i i i L spsp+zero-extend(imm5 logically shif left N+3 N+3 N+3  
by 2)  
Note 4 Note 4 Note 4  
LL L L L L L L L L L R R R R R  
GR[reg in list12]Load-memory(sp,Word)  
Note 5  
spsp+4  
repeat 2 steps above until all regs in list 12  
is loaded  
PCGR[reg1]  
DIV  
reg1,reg2,reg3  
rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]GR[reg2]÷GR[reg1]  
35 35 35  
w w w w w 0 1 0 1 1 0 0 0 0 0 0 GR[reg3] GR[reg2]%GR[reg1]  
DIVH  
reg1,reg2  
r r r r r 0 0 0 0 1 0 R R R R R GR[reg2]GR[reg2]÷GR[reg1] Note 6  
r r r r r 1 1 1 1 1 1 R R R R R GR[reg2]GR[reg2]÷GR[reg1] Note 6  
35 35 35  
35 35 35  
×
×
×
×
×
×
reg1,reg2,reg3  
w w w w w 0 1 0 1 0 0 0 0 0 0 0 GR[reg3] GR[reg2]%GR[reg1]  
DIVHU  
DIVU  
EI  
reg1,reg2,reg3  
reg1,reg2,reg3  
r r r r r 1 1 1 1 1 1 R R R R R GR[reg2]GR[reg2]÷GR[reg1] Note 6  
34 34 34  
34 34 34  
×
×
×
×
×
×
w w w w w 0 1 0 1 0 0 0 0 0 1 0 GR[reg3] GR[reg2]%GR[reg1]  
r r r r r 1 1 1 1 1 1 R R R R R GR[reg2]GR[reg2]÷GR[reg1]  
w w w w w 0 1 0 1 1 0 0 0 0 1 0 GR[reg3] GR[reg2]%GR[reg1]  
10 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PSW.ID0  
1
1
1
1
1
1
1
1
1
00 0 0 0 0 0 1 0 1 1 0 0 0 0 0  
HALT  
HSW  
00 0 0 0 1 1 1 1 1 1 0 0 0 0 0 Stop  
00 0 0 0 0 0 1 0 0 1 0 0 0 0 0  
reg2,reg3  
rr r r r 1 1 1 1 1 1 0 0 0 0 0 GR[reg3]GR[reg2] (15 : 0) II GR[reg2]  
×
0
×
×
(31: 6)  
w w w w w 0 1 1 0 1 0 0 0 1 0 0  
JARL  
disp22,reg2  
rr r r r 1 1 1 1 0 d d d d d d GR[reg2]PC+4  
2
2
2
PCPC+sign–extend(disp22)  
dd d d d d d d d d d d d d d 0  
Note 7  
JMP  
JR  
[reg1]  
00 0 0 0 0 0 0 0 1 1 R R R R R PCGR[reg1]  
3
2
3
2
3
2
disp22  
00 0 0 0 1 1 1 1 0 d d d d d d PCPC+sign-extend(disp22)  
dd d d d d d d d d d d d d d 0  
Note 7  
LD.B  
disp16[reg1],reg2 rr r r r 1 1 1 0 0 0 R R R R R adrGR[reg1]+signe-extend(disp16)  
1
1
n
GR[reg2]sign-extend(Load-memory  
Note 9  
dd d d d d d d d d d d d d d d  
(adr,Byte))  
58  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(3/7)  
Execution  
Flags  
Clock  
Mnemonic  
LD.BU  
Operand  
Opcode  
Operation  
i
r
l
CY OV  
S
Z
SAT  
disp16[reg1],reg2 rr r r r 1 1 1 1 0 b R R R R R adrGR[reg1]+sign-extend(disp16)  
1
1
n
GR[reg2]zero-extend(Load-memory  
Note 11  
dd d d d d d d d d d d d d d 1  
(adr,Byte))  
Notes 8, 10  
LD.H  
disp16[reg1],reg2 rr r r r 1 1 1 0 0 1 R R R R R adrGR[reg1]+sign-extend(disp16)  
1
1
1
1
n
dd d d d d d d d d d d d d d 0 GR[reg2] sign-extend(Load-memory  
Note 9  
Note 8 (adr,Half-word))  
LD.HU  
disp16[reg1],reg2 rr r r r 1 1 1 1 1 1 R R R R R adrGR[reg1]+sign-extend(disp16)  
n
GR[reg2]zero-extend(Load-memory  
Note 11  
dd d d d d d d d d d d d d d 1  
(adr,Half-word))  
Note 8  
LD.W  
LDSR  
disp16[reg1],reg2 rr r r r 1 1 1 0 0 1 R R R R R adrGR[reg1]+signe-extend(disp16)  
dd d d d d d d d d d d d d d 1 GR[reg2] Load-memory(adr,Word)  
1
1
1
1
n
Note 9  
reg2,regID  
rr r r r 1 1 1 1 1 1 R R R R R SR[regID]GR[reg2]  
Other than  
1
regID=PSW  
00 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
Note 12  
×
×
×
×
×
regID=PSW  
MOV  
reg1,reg2  
rr r r r 0 0 0 0 0 0 R R R R R GR[reg2]GR[reg1]  
1
1
2
1
1
2
1
1
2
imm5,reg2  
imm32,reg1  
rr r r r 0 1 0 0 0 0 i i i i i GR[reg2]sign-extend(imm5)  
00 0 0 0 1 1 0 0 0 1 R R R R R GR[reg1]imm32  
ii i i i i i i i i i i i i i i  
ii i i i i i i i i i i i i i i  
MOVEA  
MOVHI  
MUL  
imm16,reg1,reg2 rr r r r 1 1 0 0 0 1 R R R R R GR[reg2]GR[reg1]+ sign-extend(imm16)  
1
1
1
1
1
1
1
1
2
2
ii i i i i i i i i i i i i i i  
imm16,reg1,reg2 rr r r r 1 1 0 0 1 0 R R R R R GR[reg2]GR[reg1]+(imm16 II 016)  
ii i i i i i i i i i i i i i i  
GR[reg3] II GR[reg2]  
GR[reg2] GR[reg1]  
← ×  
reg1,reg2,reg3  
imm9,reg2,reg3  
rr r r r 1 1 1 1 1 1 R R R R R  
ww w w w 0 1 0 0 0 1 0 0 0 0 0  
2
Note 14  
rr r r r 1 1 1 1 1 1 i i i i i GR[reg3] II GR[reg2]GR[reg2] × sign-  
w w w w w 0 1 0 0 1 1 1 1 1 0 0 extend(imm9)  
2
Note 14  
Note 13  
MULH  
MULHI  
reg1,reg2  
rr r r r 0 0 0 1 1 1 R R R R R GR[reg2]GR[reg2]Note 6 × GR[reg1]Note 6  
1
1
1
1
1
1
2
2
2
rr r r r 0 1 0 1 1 1 i i i i i  
GR[reg2]  
GR[reg2]Note 6  
← ×  
sign-extend (imm5)  
imm5,reg2  
imm16,reg1,reg2 rr r r r 1 1 0 1 1 R R R R R R GR[reg2]GR[reg1]Note 6 × imm16  
ii i i i i i i i i i i i i i i  
59  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(4/7)  
Execution  
Flags  
Clock  
Mnemonic  
MULU  
Operand  
Opcode  
Operation  
i
r
l
CY OV  
S
Z
SAT  
GR[reg3] II GR[reg2]  
GR[reg2] GR[reg1]  
← ×  
reg1,reg2,reg3  
imm9,reg2,reg3  
rr r r r 1 1 1 1 1 1 R R R R R  
w w w w w 0 1 0 0 0 1 0 0 0 1 0  
1
2
2
Note 14  
r r r r r 1 1 1 1 1 1 i i i i i GR[reg3] II GR[reg2]GR[reg2] × zero-  
ww w w w 0 1 0 0 1 1 1 1 1 1 0 extend(imm9)  
1
2
2
Note 14  
NOP  
NOT  
NOT1  
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pass at least one clock cycle doing nothing  
rr r r r 0 0 0 0 0 1 R R R R R GR[reg2]NOT(GR[reg1])  
1
1
3
1
1
3
1
1
3
reg1,reg2  
0
×
×
×
bit#3,disp16[reg1] 01 b b b 1 1 1 1 1 0 R R R R R adrGR[reg1]+sign-extend(disp16)  
dd d d d d d d d d d d d d d d Z flag Not(Load-memory-bit(adr,bit#3))  
Note 3 Note 3 Note 3  
Store-memory-bit(adr,bit#3,Z flag)  
reg2,[reg1]  
reg1,reg2  
rr r r r 1 1 1 1 1 1 R R R R R adrGR[reg1]  
3
3
3
×
Z flagNot(Load-memory-bit(adr,reg2))  
Note 3 Note 3 Note 3  
00 0 0 0 0 0 0 1 1 1 0 0 0 1 0  
Store-memory-bit(adr,reg2,Z flag)  
OR  
rr r r r 0 0 1 0 0 0 R R R R R GR[reg2]GR[reg2] OR GR[reg1]  
1
1
1
1
1
1
0
0
×
×
×
×
ORI  
imm16,reg1,reg2 rr r r r 1 1 0 1 0 0 R R R R R GR[reg2]GR[reg1] OR zero-  
ii i i i i i i i i i i i i i i extend(imm16)  
PREPARE list12,imm5  
00 0 0 0 1 1 1 1 0 i i i i i L Store-memory(sp-4,GR[reg in list12],Word) N+1 N+1 N+1  
LL L L L L L L L L L 0 0 0 0 1 sp sp-4  
Note 4 Note 4 Note 4  
repeat 1 step above until all regs in list12 is  
stored spsp-zero-extend(imm5)  
list12,imm5,  
00 0 0 0 1 1 1 1 0 i i i i i L Store-memory(sp-4,GR[reg in list12],Word) N+2 N+2 N+2  
sp/immNote 15  
LL L L L L L L L L L f f 0 1 1 spsp-4  
Note 4 Note 4 Note 4  
imm16/imm32  
repeat 1 step above until all regs in list12 is Note 17 Note 17 Note 17  
Note 16 stored spsp-zero-extend(imm5)  
RETI  
00 0 0 0 1 1 1 1 1 1 0 0 0 0 0 if PSW.EP=1  
then PC  
3
3
3
R
R
R
R
R
EIPC  
00 0 0 0 0 0 1 0 1 0 0 0 0 0 0  
PSW  
EIPSW  
else if PSW.NP = 1  
then  
else  
PC  
PSW FEPSW  
PC  
EIPC  
PSW EIPSW  
FEPC  
SAR  
reg1,reg2  
imm5,reg2  
cccc,reg2  
rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]GR[reg2]arithmetically shift right  
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 by GR[reg1]  
1
1
1
1
1
1
1
1
1
×
×
0
0
×
×
×
×
rr r r r 0 1 0 1 0 1 i i i i i GR[reg2]GR[reg2]arithmetically shift right  
by zero-extend(imm5)  
SASF  
rr r r r 1 1 1 1 1 0 c c c c c if conditions are satisfied  
00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 then GR[reg2] (GR[reg2] Logically shift  
left by 1)  
OR 00000001H  
else GR[reg2](GR[reg2] Logically shift  
left by 1)  
OR 00000000H  
60  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(5/7)  
Execution  
Flags  
Clock  
Mnemonic  
SATADD  
Operand  
Opcode  
Operation  
i
r
l
CY OV  
S
×
×
Z
×
×
SAT  
×
reg1,reg2  
rr r r r 0 0 0 1 1 0 R R R R R GR[reg2]saturated(GR[reg2]+GR[reg1])  
1
1
1
1
1
1
×
×
×
×
imm5,reg2  
rr r r r 0 1 0 0 0 1 i i i i i GR[reg2]saturated(GR[reg2]+sign-  
×
extend(imm5)  
SATSUB  
SATSUBI  
reg1,reg2  
rr r r r 0 0 0 1 0 1 R R R R R GR[reg2]saturated(GR[reg2]GR[reg1])  
1
1
1
1
1
1
×
×
×
×
×
×
×
×
×
×
imm16,reg1,reg2 rr r r r 1 1 0 0 1 1 R R R R R GR[reg2]saturated(GR[reg1]sign-  
ii i i i i i i i i i i i i i i extend(imm16)  
SATSUBR reg1,reg2  
rr r r r 0 0 0 1 0 0 R R R R R GR[reg2]saturated(GR[reg1]GR[reg2])  
rr r r r 1 1 1 1 1 1 0 c c c c If conditions are satisfied  
1
1
1
1
1
1
×
×
×
×
×
SETF  
cccc,reg2  
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 then GR[reg2] 00000001H  
else GR[reg2]00000000H  
SET1  
bit#3,disp16[reg1] 00 b b b 1 1 1 1 1 0 R R R R R adrGR[reg1]+sign-extend(disp16)  
3
3
3
×
×
dd d d d d d d d d d d d d d d Z flag Not(Load-memory-bit(adr,bit#3))  
Note 3 Note 3 Note 3  
Store-memory-bit(adr,bit#3,1)  
reg2,[reg1]  
rr r r r 1 1 1 1 1 1 R R R R R adrGR[reg1]  
3
3
3
00 0 0 0 0 0 0 1 1 1 0 0 0 0 0 Z flag Not(Load-memory-bit(adr,reg2))  
Note 3 Note 3 Note 3  
Store-memory-bit(adr,reg2,1)  
SHL  
SHR  
reg1,reg2  
rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]GR[reg2] logically shift left by  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
×
×
×
×
0
0
0
0
×
×
×
×
×
×
×
×
GR[reg1]  
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0  
imm5,reg2  
reg1,reg2  
rr r r r 0 1 0 1 1 0 i i i i i GR[reg2]GR[reg2] logically shift left by  
zero-extend(imm5)  
rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]GR[reg2] logically shift right by  
GR[reg1]  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
imm5,reg2  
disp7[ep],reg2  
rr r r r 0 1 0 1 0 0 i i i i i GR[reg2]GR[reg2] logically shift right by  
zero-extend(imm5)  
SLD.B  
rr r r r 0 1 1 0 d d d d d d d adrep+zero-extend(disp7)  
GR[reg2]sign-extend(Load-  
n
Note 9  
memory(adr,Byte))  
SLD.BU  
SLD.H  
disp4[ep],reg2  
rr r r r 0 0 0 0 1 1 0 d d d d adrep+zero-extend(disp4)  
GR[reg2]zero-extend(Load-  
1
1
1
1
1
1
n
Note 9  
Note 18  
memory(adr,Byte))  
disp8[ep],reg2  
rr r r r 1 0 0 0 d d d d d d d adrep+zero-extend(disp8)  
n
GR[reg2]sign-extend(Load-  
Note 9  
Note 19  
memory(adr,Half-word))  
SLD.HU  
disp5[ep],reg2  
rr r r r 0 0 0 0 1 1 1 d d d d adrep+zero-extend(disp5)  
GR[reg2]zero-extend(Load-  
n
Note 9  
Notes 18, 20  
memory(adr,Half-word))  
SLD.W  
SST.B  
disp8[ep],reg2  
rr r r r 1 0 1 0 d d d d d d 0 adrep+zero-extend(disp8)  
1
1
1
1
n
GR[reg2]Load-memory(adr,Word))  
Note 9  
Note 21  
reg2,disp7[ep]  
rr r r r 0 1 1 1 d d d d d d d adrep+zero-extend(disp7)  
1
Store-memory(adr,GR[reg2],Byte)  
61  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(6/7)  
Execution  
Flags  
Clock  
Mnemonic  
Operand  
Opcode  
Operation  
i
r
l
CY OV  
S
Z
SAT  
SST.H  
SST.W  
ST.B  
reg2,disp8[ep]  
reg2,disp8[ep]  
rr r r r 1 0 0 1 d d d d d d d adrep+zero-extend(disp8)  
Note 19 Store-memory(adr,GR[reg2],Half-word)  
1
1
1
rr r r r 1 0 1 0 d d d d d d 1 adrep+zero-extend(disp8)  
Note 21 Store-memory(adr,GR[reg2],Word)  
1
1
1
1
1
1
1
1
1
reg2,disp16[reg1] rr r r r 1 1 1 0 1 0 R R R R R adrGR[reg1]+sign-extend(disp16)  
Store-memory(adr,GR[reg2],Byte)  
dd d d d d d d d d d d d d d d  
ST.H  
reg2,disp16[reg1] rr r r r 1 1 1 0 1 1 R R R R R adrGR[reg1]+sign-extend(disp16)  
dd d d d d d d d d d d d d d 0 Store-memory(adr,GR[reg2],Half-word)  
Note 8  
ST.W  
STSR  
reg2,disp16[reg1] rr r r r 1 1 1 0 1 1 R R R R R adrGR[reg1]+sign-extend(disp16)  
dd d d d d d d d d d d d d d 1 Store-memory(adr,GR[reg2],Word)  
Note 8  
1
1
1
1
1
1
regID,reg2  
rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]SR[regID]  
00 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
SUB  
reg1,reg2  
reg1,reg2  
reg1  
rr r r r 0 0 1 1 0 1 R R R R R GR[reg2]GR[reg2]GR[reg1]  
rr r r r 0 0 1 1 0 0 R R R R R GR[reg2]GR[reg1]GR[reg2]  
1
1
5
1
1
5
1
1
5
×
×
×
×
×
×
×
×
SUBR  
SWITCH  
00 0 0 0 0 0 0 0 1 0 R R R R R adr(PC+2)+(GR[reg1] logically shift left  
by 1)  
PC(PC+2)+sign-extend((Load-  
memory(adr,Hafl-word))  
logically shift left by 1)  
SXB  
reg1  
00 0 0 0 0 0 0 1 0 1 R R R R R GR[reg1]sign-extend  
1
1
3
1
1
3
1
1
3
(GR[reg1] (7 : 0)  
SXH  
TRAP  
reg1  
00 0 0 0 0 0 0 1 1 1 R R R R R GR[reg1]sign-extend  
(GR[reg1] (15 : 0))  
vector  
00 0 0 0 1 1 1 1 1 1 i i i i i EIPC  
00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 EIPSW  
PC+4 (restore PC)  
PSW  
ECR.EICC  
Interrupt code  
1  
PSW.EP  
PSW.ID  
PC  
1  
00000040H (when vector  
is 00H to 0FH)  
00000050H (when vector  
is 10H to 1FH)  
TST  
reg1,reg2  
rr r r r 0 0 1 0 1 1 R R R R R resultGR[reg2] AND GR[reg1]  
1
3
1
3
1
3
0
×
×
×
TST1  
bit#3,disp16[reg1] 11 b b b 1 1 1 1 1 0 R R R R R adrGR[reg1]+sign-extend(disp16)  
dd d d d d d d d d d d d d d d Z flag Not(Load-memory-bit(adr,bit#3))  
Note 3 Note 3 Note 3  
reg2,[reg1]  
rr r r r 1 1 1 1 1 1 R R R R R adrGR[reg1]  
3
3
3
×
00 0 0 0 0 0 0 1 1 1 0 0 1 1 0 Z flag Not(Load-memory-bit(adr,reg2))  
Note 3 Note 3 Note 3  
62  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(7/7)  
Execution  
Flags  
Clock  
Mnemonic  
Operand  
Opcode  
Operation  
i
r
l
CY OV  
S
×
×
Z
×
×
SAT  
XOR  
reg1,reg2  
rr r r r 0 0 1 0 0 1 R R R R R GR[reg2]GR[reg2] XOR GR[reg1]  
1
1
1
1
1
1
0
0
XORI  
imm16,reg1,reg2 rr r r r 1 1 0 1 0 1 R R R R R GR[reg2]GR[reg1] XOR zero-extend  
(imm16)  
ii i i i i i i i i i i i i i i  
ZXB  
ZXH  
reg1  
reg1  
00 0 0 0 0 0 0 1 0 0 R R R R R GR[reg1]zero-extend(GR[reg1] (7 : 0))  
00 0 0 0 0 0 0 1 1 0 R R R R R GR[reg1]zero-extend(GR[reg1] (15 : 0))  
1
1
1
1
1
1
Notes 1. dddddddd: Higher 8 bits of disp9.  
2. 3 clocks if the final instruction includes PSW write access.  
3. If there is no wait state (3 + the number of read access wait states).  
4. N is the total number of list 12 read registers. (according to the number of wait states. Also, if there are  
no wait states, N is the number of list 12 registers.)  
5. RRRRR other than 00000.  
6. Only the lower half word data are valid.  
7. ddddddddddddddddddddd: Higher 21 bits of disp22.  
8. ddddddddddddddd: Higher 15 bits of disp16.  
9. According to the number of wait states (1 if there are no wait states).  
10. b: bit 0 of disp16.  
11. According to the number of wait states (2 if there are no wait states).  
12. In this instruction, for convenience of mnemonic description, the source register is made reg2, but the  
reg1 field is used in the op code. Therefore, the meaning of the register specification in the mnemonic  
description and in the opcode differs from other instructions.  
rrrrr  
: regID specification  
RRRRR: reg2 specification  
13. 11111: Lower 5 bits of imm9.  
1111 : Lower 4 bits of imm9.  
14. 1 when r = w (the lower 32 bits of the results are not written in the register) or w = r0 (the higher 32 bits  
of the results are not written in the register).  
15. sp/imm: specified by bits 19 and 20 of the sub opcode.  
16. ff = 00: load sp in ep.  
01: load sign expanded 16-bit immediate data (bits 47 to 32) in ep.  
10: load 16-bit logically left shifted 16-bit immediate data (bits 47 to 32) in ep.  
11: load 32-bit immediate data (bits 63 to 32) in ep.  
17. If imm=imm32, N + 3 clocks.  
18. rrrrr other than 00000.  
19. ddddddd: Higher 7 bits of disp8.  
20. dddd: Higher 4 bits of disp5.  
21. dddddd: Higher 6 bits of disp8.  
63  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
16. ELECTRICAL SPECIFICATIONS (PRELIMINARY VALUES)  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Symbol  
VDD  
Condition  
Rating  
0.5 to +4.6  
0.5 to +7.0  
0.5 to +4.6  
0.5 to +0.5  
0.5 to HVDD + 0.5  
0.5 to +0.5  
0.5 to HVDD + 0.5  
0.5 to VDD + 0.5  
0.5 to VDD + 1.0  
4.0  
Unit  
V
Power supply voltage  
VDD pin  
HVDD  
CVDD  
CVSS  
AVDD  
AVSS  
VI  
HVDD pin, HVDD VDD  
CVDD pin  
V
V
CVSS pin  
V
AVDD pin  
V
AVSS pin  
V
Input voltage  
X1 pin, except MODE3 pin  
MODE3 pin  
V
V
Clock input voltage  
VK  
IOL  
X1, VDD = 3.0 to 3.6 V  
1 pin  
V
Low-level output current  
mA  
mA  
mA  
mA  
V
Total of all pins  
1 pin  
100  
High-level output current  
LOH  
4.0  
Total of all pins  
HVDD = 5.0 V ± 10 %  
100  
Output voltage  
VO  
0.5 to HVDD + 0.5  
0.5 to HVDD + 0.5  
0.5 to AVDD + 0.5  
0.5 to HVDD + 0.5  
0.5 to AVDD + 0.5  
40 to +70  
Analog input voltage  
VIAN  
P70/ANI0 to  
AVDD > HVDD  
V
P77/ANI7 pins  
HVDD AVDD  
V
A/D converter reference input  
voltage  
AVREF  
AVDD > HVDD  
HVDD AVDD  
µPD703100-40  
V
V
Operating ambient temperature  
Storage temperature  
TA  
°C  
°C  
°C  
µPD703100-33, 703101-33, 703102-33  
40 to +85  
Tstg  
60 to +150  
Caution  
1. Do not make direct connections of the output (or input/output) pins of the IC product with  
each other, and also avoid direct connections to VDD, VCC, or GND. However, the open drain  
pins or the open collector pins can be directly connected with each other. A direct  
connection can also be made for an external circuit designed with timing specifications that  
prevent conflicting output from pins subject to high-impedance state.  
2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily  
for any parameter. That is, the absolute maximum ratings are rated values at which the  
product is on the verge of suffering physical damage, and therefore the product must be  
used under conditions that ensure that the absolute maximum ratings are not exceeded.  
The ratings and conditions shown below for DC characteristics and AC characteristics are  
within the range for normal operation and quality assurance.  
64  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Capacitance (TA = 25°C, VDD = HVDD = CVDD = VSS = 0 V)  
Parameter  
Input capacitance  
Symbol  
CI  
Condition  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
fc = 1 MHz  
Unmeasured pins returned to 0 V.  
Input/output capacitance  
Output capacitance  
CIO  
pF  
15  
CO  
pF  
15  
Operating Conditions  
Operation  
Mode  
Operating Ambient  
Temperature (TA)  
Power Supply Voltage  
(VDD, HVDD)  
Internal Operating Clock Frequency (φ)  
Direct mode  
µPD703100-40  
2 to 40 MHz  
40 to +70°C  
40 to +85°C  
40 to +70°C  
40 to +85°C  
VDD = 3.0 to 3.6 V,  
HVDD = 5.0 V ±10%  
µPD703100-33, 703101-33, 703102-33  
µPD703100-40  
2 to 33 MHz  
20 to 40 MHz  
20 to 33 MHz  
PLL mode  
µPD703100-33, 703101-33, 703102-33  
Recommended Oscillation Circuits  
(a) Ceramic resonator or crystal resonator connection (TA = –40 to +70°C ... µPD703100-40,  
TA = –40 to +85°C ... µPD703100-33, µPD703101-33, µPD703102-33)  
X1  
X2  
C1  
C2  
Cautions 1. Connect the oscillation circuit as closely to the X1 and X2 pins as possible.  
2. Do not wire any other signal lines in the area indicated by the broken line.  
3. Throughly evaluate the matching between the µPD703100-33, µPD703100-40, µPD703101-33,  
and µPD703102-33 and the oscillators.  
(b) External clock input (TA = –40 to +70°C ... µPD703100-40, TA = –40 to +85°C ... µPD703100-33, µPD703101-  
33, µPD703102-33)  
X1  
X2  
Open  
External clock  
Caution Input CMOS-level voltage to the X1 pin.  
65  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
DC Characteristics (TA = –40 to +70°C ... µPD703100-40,TA = –40 to +85°C ... µPD703100-33, µPD703101-33,  
µPD703102-33, VDD = CVDD = 3.0 to 3.6 V, HVDD = 5.0 ±10%, VSS=0 V)  
Parameter  
Symbol  
VIH  
Condition  
Except Note 1  
MIN.  
2.2  
TYP.  
MAX.  
HVDD + 0.3  
HVDD + 0.3  
+0.8  
Unit  
V
High-level input voltage  
Note 1  
0.8HVDD  
0.5  
V
Low-level input voltage  
VIL  
VXH  
VXL  
Except Note 1 and Note 2  
V
Note 1  
0.5  
0.2HVDD  
VDD + 0.3  
VDD + 0.3  
0.15VDD  
0.15VDD  
V
High-level clock input voltage  
Low-level clock input voltage  
X1 pin  
Direct mode  
PLL mode  
Direct mode  
PLL mode  
0.8VDD  
0.8VDD  
0.3  
V
V
X1 pin  
V
0.3  
V
Schmitt-triggered input  
threshold voltage  
HVT+  
Note 1, rising edge  
Note 1, falling edge  
Note 1  
3.0  
2.0  
V
HVT  
V
Schmitt-triggered input  
hysteresis width  
HVT+  
0.5  
V
–HVT  
High-level output voltage  
VOH  
IOH = 2.5 mA  
IOH = 100 µA  
IOL = 2.5 mA  
0.7HVDD  
V
V
HVDD 0.4  
Low-level output voltage  
VOL  
ILIH  
0.45  
10  
V
High-level input leakage  
current  
Except V  
I = HVDD or Note 2  
µA  
Low-level input leakage  
current  
ILIL  
ILOH  
ILOL  
ILIAN  
Except V  
I = 0 V or Note 2  
10  
10  
µA  
µA  
µA  
µA  
High-level output leakage  
current  
VO = HVDD  
VO = 0 V  
Note 2  
Low-level output leakage  
current  
10  
Analog pin input leakage  
current  
T.B.D.  
otes 1. P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3,  
P34/INTP130, P35/INTP131/SO2, P36/INTP132/S12, P37/INTP133/SCK2, P104/INTP120/TC0 to  
P107/INTP123/TC3, Pl14/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3,  
P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13,  
P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14,  
P123/TI15, P20/NMI, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2,  
RESET  
2. When the P70/ANI0 to P77/ANI7 pins are used as analog input.  
Remark TYP. values are reference values for when TA = 25°C, VDD = CVDD = 3.3 V, and HVDD = 5.0 V.  
66  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
DC Characteristics (TA = –40 to +70°C ... µPD703100-40,TA = –40 to +85°C ... µPD703100-33, µPD703101-33,  
µPD703102-33, VDD = CVDD = 3.0 to 3.6 V, HVDD = 5.0 ±10%, VSS = 0 V)  
Parameter  
Symbol  
IDD1  
Condition  
VDD + CVDD  
MIN.  
TYP.  
MAX.  
Unit  
mA  
mA  
mA  
Power supply  
current  
During  
Direct mode  
2.0 × fx  
1.8 × fx  
3.6 × fx  
3.0 × fx  
3.6 × fx  
normal  
HVDD  
operation  
PLL mode  
VDD + CVDD  
2.7 × fx  
17.0  
HVDD  
1.3 × fx  
3.6  
3.0 × fx  
mA  
HALT mode  
IDD2  
Direct mode  
PLL mode  
VDD + CVDD  
HVDD  
1.4 × fx  
0.8 × fx  
2.5 × fx  
1.6 × fx  
2.5 × fx  
mA  
mA  
mA  
VDD + CVDD  
1.8 × fx  
10.0  
HVDD  
0.8 × fx  
1.0  
1.6 × fx  
mA  
IDLE mode  
IDD3  
Direct mode  
PLL mode  
VDD + CVDD  
HVDD  
1.5  
10  
1.8  
10  
20  
10  
3.0  
50  
mA  
µA  
mA  
µA  
µA  
µA  
VDD + CVDD  
HVDD  
3.0  
50  
STOP  
mode  
IDD4  
VDD + CVDD  
HVDD  
100  
50  
Remarks 1. TYP. values are reference values for when TA = 25°C, VDD = CVDD = 3.3 V, and HVDD = 5.0 V.  
2. Direct mode:  
fX = 2 to 40 MHz (µPD703100-40)  
fX = 2 to 33 MHz (µPD703100-33, µPD703101-33, µPD703102-33)  
PLL mode:  
fX = 20 to 40 MHz (µPD703100-40)  
fX = 20 to 33 MHz (µPD703100-33, µPD703101-33, µPD703102-33)  
67  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Data Hold Characteristics(TA = –40 to +70°C ... µPD703100-40, TA = –40 to +85°C ... µPD703100-33, µPD703101-  
33, µPD703102-33)  
Parameter  
Data hold voltage  
Symbol  
VDDDR  
Condition  
MIN.  
1.5  
TYP.  
MAX.  
3.6  
Unit  
V
STOP mode, VDD = VDDDR  
HVDDDR  
STOP mode,  
VDDDR  
5.5  
V
HVDD = HVDDDR  
Data hold current  
IDDDR  
tRVD  
VDD = VDDDR  
T.B.D.  
T.B.D.  
µA  
µs  
Power supply voltage rise  
time  
200  
Power supply voltage fall time  
tFVD  
tHVD  
200  
0
µs  
Power supply voltage hold  
time (to STOP mode setting)  
ms  
STOP mode release signal  
input time  
tDREL  
VIHDR  
VILDR  
0
ns  
V
Data hold high-level input  
voltage  
Note  
Note  
0.8 HVDDDR  
HVDDDR  
Data hold low-level input  
voltage  
0
0.2 HVDDDR  
V
Note P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3,  
P34/INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2, P104/INTP120/TC0 to  
P107/INTP123/TC3, P114/INTP140, P115/INTP141/SO3, Pl16/INTP142/SI3, P117/INTP143/SCK3,  
P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13,  
P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12,P113/TI14,  
P123/TI15, P20/NMI, P23/RXD0/SI0 ,P24/SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, RESET  
Remark TYP. values are reference values for when TA = 25°C.  
STOP mode setting  
VDDDR  
VDD  
t
FVD  
tRVD  
t
HVD  
tDREL  
HVDD  
V
IHDR  
RESET (input)  
NMI (input)  
VIHDR  
(Released by falling edge)  
NMI (input)  
(Released by rising edge)  
VILDR  
68  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
AC Characteristics (TA = –40 to +70°C ... µPD703100-40, TA = –40 to +85°C ... µPD703100-33, µPD703101-33,  
µPD703102-33, VDD = CVDD = 3.0 to 3.6 V, HVDD = 5.0 ±10%, VSS = 0 V, output pin load  
capacitance: CL = 50 pF)  
AC Test Input Waveform  
(a) P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/  
INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2, P104/INTP120/TC0 to P107/INTP123/  
TC3, P114/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/  
INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14,  
P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/  
SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, RESET  
HVDD  
0.8HVDD  
0.2HVDD  
0.8HVDD  
0.2HVDD  
Test  
points  
Input signal  
0 V  
(b) Pins other than those listed in (a) above  
2.4 V  
2.2 V  
2.2 V  
0.8 V  
Test  
points  
Input signal  
0.8 V  
0.4 V  
AC Test Output Test Points  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
Test  
points  
Output Signal  
69  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Load Condition  
DUT  
(Measured Device)  
CL = 50 pF  
Caution In cases where the load capacitance is greater than 50 pF due to the circuit configuration, insert  
a buffer or other element to reduce the devide's load capacitance 50 pF.  
(1) Clock timing  
Parameter  
X1 input cycle  
Symbol  
Condition  
µPD703100-40  
MIN.  
12.5  
15  
MAX.  
250  
Unit  
ns  
<1>  
tCYX  
Direct  
mode  
µPD703100-33,  
703101-33,  
250  
ns  
703102-33  
PLL mode  
µPD703100-40  
125  
150  
250  
250  
ns  
ns  
µPD703100-33,  
703101-33,  
703102-33  
X1 input high-level width  
X1 input low-level width  
X1 input rise time  
<2>  
<3>  
<4>  
<5>  
tWXH  
tWXL  
tXR  
tXF  
Direct mode  
PLL mode  
Direct mode  
PLL mode  
Direct mode  
PLL mode  
Direct mode  
PLL mode  
5
50  
5
ns  
ns  
ns  
50  
ns  
4
ns  
10  
4
ns  
X1 input fall time  
ns  
10  
40  
33  
ns  
CPU operating frequency  
φ
µPD703100-40  
2
2
MHz  
MHz  
µPD703100-33, 703101-33,  
703102-33  
CLKOUT output cycle  
<6>  
<7>  
tCYK  
tWKH  
tWKL  
tKR  
30  
500  
ns  
ns  
ns  
ns  
ns  
ns  
CLKOUT input high-level width  
CLKOUT input low-level width  
CLKOUT input rise time  
0.5T – 7  
0.5T – 4  
<8>  
<9>  
5
5
CLKOUT input fall time  
<10>  
<11>  
tKF  
CLKOUT output delay time from X1 ↓  
tDXK  
Direct mode  
T.B.D.  
T.B.D.  
Remark T = tCYK  
Parameter  
Symbol  
φP  
Condition  
PLL mode  
TYP.  
T.B.D.  
Unit  
Free-running oscillation frequency  
MHz  
70  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
<1>  
<2>  
<3>  
<4>  
<5>  
X1  
(PLL mode)  
<1>  
<3>  
<2>  
<4>  
X1  
(Direct mode)  
<5>  
<11>  
<9>  
<11>  
CLKOUT (output)  
<10>  
<7>  
<8>  
<6>  
(2) Output waveform (other than X1, CLKOUT)  
Parameter  
Symbol  
Condition  
MIN.  
MAX.  
10  
Unit  
ns  
Output rise time  
Output fall time  
<12>  
<13>  
tOR  
tOF  
10  
ns  
<12>  
<13>  
Signals other than X1, CLKOUT  
71  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(3) Reset timing  
Parameter  
RESET high-level width  
RESET low-level width  
Symbol  
Condition  
MIN.  
500  
MAX.  
Unit  
ns  
<14>  
<15>  
tWRSH  
tWRSL  
When power supply is on, and  
STOP mode has been released  
500 + TOS  
ns  
Other than when power supply is  
on, and STOP mode has been  
released  
500  
ns  
Remark TOS: Oscillation stabilization time  
<14>  
<15>  
RESET (input)  
72  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
[MEMO]  
73  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(4) SRAM, external ROM, or external I/O access timing  
(a) Access timing (SRAM, external ROM, or external I/O) (1/2)  
Parameter  
Symbol  
<16> tDKA  
Condition  
Unit  
ns  
MIN.  
2
MAX.  
10  
Address, CSn output delay time (from  
CLKOUT )  
Address, CSn output hold time (from  
<17>  
<18>  
<19>  
<20>  
<21>  
<22>  
<23>  
tHKA  
2
2
2
2
2
2
2
10  
14  
14  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKOUT )  
RD, IORD delay time  
(from CLKOUT )  
tDKRDL  
tHKRDH  
tDKWRL  
tHKWRH  
tDKBSL  
tHKBSH  
RD, IORD delay time  
(from CLKOUT )  
UWR, LWR, IOWR delay time (from  
CLKOUT )  
UWR, LWR, IOWR delay time (from  
CLKOUT )  
BCYST delay time (from CLKOUT  
)  
BCYST delay time (from CLKOUT  
)  
WAIT setup time (to CLKOUT )  
WAIT hold time (from CLKOUT )  
<24>  
<25>  
<26>  
tSWK  
tHKW  
tSKID  
15  
2
ns  
ns  
ns  
Data input setup time  
18  
(to CLKOUT )  
Data input hold time  
<27>  
<28>  
<29>  
tHKID  
tDKOD  
tHKOD  
2
2
2
ns  
ns  
ns  
(from CLKOUT )  
Data output delay time  
10  
10  
(from CLKOUT )  
Data output hold time  
(from CLKOUT )  
Remarks 1. Maintain at least one of the data input hold times tHKID and tHRDID.  
2. n = 0 to 7  
74  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(a) Access timing (SRAM, external ROM, or external I/O) (2/2)  
T1  
TW  
T2  
CLKOUT (Output)  
<16>  
<22>  
<17>  
A0 to A23 (Output)  
CSn (Output)  
<23>  
BCYCT (Output)  
<18>  
<20>  
<19>  
RD, IORD (Output)  
[Read time]  
<21>  
<27>  
UWR, LWR, IOWR (Output)  
[Write time]  
<26>  
D0 to 15 (I/O)  
[Read time]  
<28>  
<29>  
D0 to 15 (I/O)  
[Write time]  
<25>  
<25>  
<24>  
<24>  
WAIT (Input)  
Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero.  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
75  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(b) Read timing (SRAM, external ROM, or external I/O) (1/2)  
Parameter  
Symbol  
<30>  
Condition  
MIN.  
MAX.  
Unit  
ns  
Data input setup time (to address)  
Data input setup time (to RD)  
RD, IORD low-level width  
RD, IORD high-level width  
tSAID  
tSRDID  
tWRDL  
tWRDH  
tDARD  
(1.5 + wD + w) T – 28  
(1 + wD + w) T – 32  
<31>  
<32>  
<33>  
<34>  
ns  
(1 + wD + w) T – 10  
T – 10  
ns  
ns  
RD, IORD delay time from address,  
0.5T – 10  
ns  
CSn  
Address delay time from RD, IORD ↑  
<35>  
<36>  
<37>  
<38>  
<39>  
<40>  
tDRDA  
tHRDID  
tDRDOD  
tSAW  
(0.5 + i) T – 10  
0
ns  
ns  
ns  
ns  
ns  
ns  
Data input hold time (from RD, IORD )  
Data output delay time from RD, IORD  
WAIT setup time (to address)  
WAIT setup time (to BCYST )  
WAIT hold time (to BCYST )  
(0.5 + i) T – 10  
Note  
Note  
Note  
T – 25  
T – 25  
tSBSW  
tHBSW  
0
Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero.  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wD: the number of waits due to the DWC1 and DWC2 registers.  
4. i: the number of idle states that are inserted when a write cycle follows a read cycle.  
5. Maintain at least one of the data input hold times tHKID and tHRDID.  
6. n = 0 to 7  
76  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(b) Read timing (SRAM, external ROM, or external I/O) (2/2)  
T1  
TW  
T2  
CLKOUT (Output)  
A0 to A23 (Output)  
CSn (Output)  
UWR, LWR, IOWR (Output)  
RD, IORD (Output)  
D0 to 15 (I/O)  
<33>  
<32>  
<35>  
<37>  
<34>  
<31>  
<30>  
<36>  
<38>  
WAIT (Input)  
<39>  
<40>  
BCYST (Output)  
Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero.  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
77  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(c) Write timing (SRAM, external ROM, or external I/O) (1/2)  
Parameter  
Symbol  
<38>  
Condition  
Note  
MIN.  
MAX.  
T – 25  
T – 25  
Unit  
ns  
WAIT setup time (to address)  
WAIT setup time (to BCYST )  
WAIT hold time (from BCYST )  
tSAW  
tSBSW  
tHBSW  
tDAWR  
<39>  
<40>  
<41>  
Note  
ns  
Note  
0
ns  
UWR, LWR, IOWR delay time from  
0.5T – 10  
ns  
address, CSn  
Address setup time (to UWR, LWR,  
<42>  
<43>  
tSAWR  
(1.5 + wD + w) T – 10  
0.5T – 10  
ns  
ns  
IOWR )  
Address delay time from UWR, LWR,  
tDWRA  
IOWR ↑  
UWR, LWR, IOWR high-level width  
UWR, LWR, IOWR low-level width  
<44>  
<45>  
<46>  
tWWRH  
tWWRL  
tSODWR  
T – 10  
ns  
ns  
ns  
(1 + wD + w) T – 10  
(1.5 + wD + w) T – 10  
Data output setup time  
(to UWR, LWR, IOWR )  
Data output hold time  
<47>  
tHWROD  
0.5T – 10  
ns  
(from UWR, LWR, IOWR )  
Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero.  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wD: the number of waits due to the DWC1 and DWC2 registers.  
4. n = 0 to 7  
78  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(c) Write timing (SRAM, external ROM, or external I/O) (2/2)  
T1  
TW  
T2  
CLKOUT (Output)  
A0 to A23 (Output)  
CSn (Output)  
RD, IORD (Output)  
UWR, LWR, IOWR (Output)  
D0 to 15 (I/O)  
<42>  
<43>  
<41>  
<45>  
<44>  
<46>  
<47>  
<38>  
WAIT (Input)  
<39>  
<40>  
BCYST (Output)  
Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero.  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
79  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(d) DMA flyby transfer timing (SRAM external I/O transfer) (1/2)  
Parameter  
Symbol  
<24> tSWK  
tHKW  
Condition  
Unit  
ns  
MIN.  
15  
2
MAX.  
WAIT setup time (to CLKOUT )  
WAIT hold time (from CLKOUT )  
RD low-level width  
<25>  
<32>  
ns  
tWRDL  
(1 + w  
D
+ w  
F
+ w)  
ns  
T – 10  
RD high-level width  
<33>  
<34>  
<35>  
<37>  
<38>  
<39>  
<40>  
<41>  
<42>  
<43>  
tWRDH  
tDARD  
tDRDA  
tDRDOD  
tSAW  
T – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD delay time from address, CSn  
Address delay time from RD ↑  
Data output delay time from RD ↑  
WAIT setup time (to address)  
WAIT setup time (to BCYST )  
WAIT hold time (from BCYST )  
IOWR delay time from address  
Address setup time (to IOWR )  
0.5T – 10  
(0.5 + i) T – 10  
(0.5 + i) T – 10  
Note  
Note  
Note  
T – 25  
T – 25  
tSBSW  
tHBSW  
tDAWR  
tSAWR  
tDWRA  
0
0.5T – 10  
(1.5 + wD + w) T – 10  
0.5T – 10  
Address delay time from UWR, LWR,  
IOWR ↑  
IOWR high-level width  
<44>  
<45>  
<48>  
tWWRH  
tWWRL  
tDWRRD  
T – 10  
(1 + wD + w) T – 10  
0
ns  
ns  
ns  
ns  
ns  
ns  
IOWR low-level width  
RD delay time from IOWR ↑  
wF = 0  
wF = 1  
T – 10  
IOWR delay time from DMAAKm ↓  
DMAAKm delay time from IOWR ↑  
<49>  
<50>  
tDDAWR  
tDWRDA  
0.5T – 10  
(0.5 + wF) T – 10  
Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero.  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wD: the number of waits due to the DWC1 and DWC2 registers.  
4. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.  
5. i: the number of idle states that are inserted when a write cycle follows a read cycle.  
6. n = 0 to 7, m = 0 to 3  
80  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(d) DMA flyby transfer timing (SRAM external I/O transfer) (2/2)  
T1  
TW  
T2  
CLKOUT (Output)  
A0 to A23 (Output)  
CSn (Output)  
<33>  
<32>  
<35>  
RD (Output)  
UWR, LWR (Output)  
DMAAKm (Output)  
IORD (Output)  
<34>  
<48>  
<49>  
<41>  
<50>  
<43>  
<42>  
<45>  
<44>  
IOWR (Output)  
D0 to 15 (I/O)  
<37>  
<38>  
<24>  
<25>  
<24>  
<25>  
WAIT (Input)  
<40>  
<39>  
BCYST (Output)  
Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero and wF = 0.  
2. The broken lines indicate high impedance.  
3. n = 0 to 7, m = 0 to 3  
81  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(e) DMA flyby transfer timing (external I/O SRAM transfer) (1/2)  
Parameter  
Symbol  
<24> tSWK  
tHKW  
Condition  
MIN.  
15  
MAX.  
Unit  
ns  
WAIT setup time (to CLKOUT )  
WAIT hold time (from CLKOUT )  
IORD low-level width  
<25>  
<32>  
2
ns  
tWRDL  
(1 + wD + wF + w)  
T – 10  
ns  
IORD high-level width  
<33>  
<34>  
<35>  
<37>  
<38>  
<39>  
<40>  
<41>  
<42>  
<43>  
tWRDH  
tDARD  
tDRDA  
tDRDOD  
tSAW  
T – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IORD delay time from address, CSn  
Address delay time from IORD ↑  
Data output delay time from IORD ↑  
WAIT setup time (to address)  
0.5T – 10  
(0.5 + i) T – 10  
(0.5 + i) T – 10  
Note  
Note  
Note  
T – 25  
T – 25  
WAIT setup time (to BCYST )  
WAIT hold time (from BCYST )  
UWR, LWR delay time from address  
Address setup time (to UWR, LWR )  
tSBSW  
tHBSW  
tDAWR  
tSAWR  
tDWRA  
0
0.5T – 10  
(1.5 + wD + w) T – 10  
0.5T – 10  
Address delay time from UWR, LWR,  
IOWR ↑  
UWR, LWR high-level width  
<44>  
<45>  
<48>  
tWWRH  
tWWRL  
tDWRRD  
T – 10  
(1 + wD + w) T – 10  
0
ns  
ns  
ns  
ns  
ns  
ns  
UWR, LWR low-level width  
IORD delay time from UWR, LWR↑  
wF = 0  
wF = 1  
T – 10  
IORD delay time from DMAAKm ↓  
DMAAKm delay time from IORD ↑  
<51>  
<52>  
tDDARD  
tDRDDA  
0.5T – 10  
0.5T – 10  
Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero.  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wD: the number of waits due to the DWC1 and DWC2 registers.  
4. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.  
5. i: the number of idle states that are inserted when a write cycle follows a read cycle.  
6. n = 0 to 7, m = 0 to 3  
82  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(e) DMA flyby transfer timing (external I/O SRAM transfer) (2/2)  
T1  
TW  
T2  
CLKOUT (Output)  
A0 to A23 (Output)  
CSn (Output)  
<42>  
<45>  
<43>  
<35>  
<41>  
<44>  
UWR, LWR (Output)  
<48>  
RD (Output)  
<51>  
<52>  
DMAAKm (Output)  
IOWR (Output)  
IORD (Output)  
D0 to 15 (I/O)  
<34>  
<33>  
<32>  
<35>  
<37>  
<38>  
<24>  
<25>  
<24>  
<25>  
WAIT (Input)  
<40>  
<39>  
BCYST (Output)  
Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero and wF = 0.  
2. The broken lines indicate high impedance.  
3. n = 0 to 7, m = 0 to 3  
83  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(5) Page ROM access timing (1/2)  
Parameter  
Symbol  
<24>  
Condition  
MIN.  
15  
MAX.  
Unit  
ns  
WAIT setup time (to CLKOUT )  
WAIT hold time (from CLKOUT )  
tSWK  
tHKW  
tSKID  
<25>  
<26>  
2
ns  
Data input setup time  
18  
ns  
(to CLKOUT )  
Data input hold time  
<27>  
<30>  
tHKID  
2
ns  
ns  
(from CLKOUT )  
Off-page data input setup time (to  
address)  
tSAID  
(1.5 + wD + w) T – 28  
(1 + wD + w) T – 32  
Off-page data input setup time (to RD)  
Off-page RD low-level width  
RD high-level width  
<31>  
<32>  
<33>  
<36>  
<37>  
<53>  
tSRDID  
tWRDL  
ns  
ns  
ns  
ns  
ns  
ns  
(1 + wD + w) T – 10  
0.5T – 10  
tWRDH  
tHRDID  
tDRDOD  
tWORDL  
Data input hold time (from RD)  
Data output delay time from RD ↑  
On-page RD low-level width  
0
(0.5 + i) T – 10  
(1.5 + wPR + w)  
T – 10  
On-page data input setup time  
(to address)  
<54>  
<55>  
tSOAID  
(1.5 + wPR + w) T – 28  
(1.5 + wPR + w) T – 32  
ns  
ns  
On-page data input setup time (to RD)  
tSORDID  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wD: the number of waits due to the DWC1 and DWC2 registers.  
4. wPR: the number of waits due to the PRC register.  
5. i: the number of idle states that are inserted when a write cycle follows a read cycle.  
6. Maintain at least one of the data input hold times tHKID and tHRDID.  
84  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(5) Page ROM access timing (2/2)  
T1  
TDW  
TW  
T2  
TO1 TPRW  
TW  
TO2  
CLKOUT (Output)  
Off-page address Note  
CSn (Output)  
On-page address Note  
UWR, LWR (Output)  
RD (Output)  
<26>  
<30>  
<31>  
<54>  
<33>  
<53>  
<55>  
<32>  
<37>  
<36>  
<27>  
<36>  
<27>  
<26>  
<25>  
D0 to 15 (I/O)  
<25>  
<24>  
<24>  
<25>  
<24>  
<25>  
<24>  
WAIT (Input)  
BCYST (Output)  
Note On-page and off-page addresses are as follows.  
PRC register  
On-page Addresses  
Off-page Addresses  
MA5  
MA4  
MA3  
0
0
0
1
0
0
1
1
0
1
1
1
A0, A1  
A0 to A2  
A0 to A3  
A0 to A4  
A2 to A23  
A3 to A23  
A4 to A23  
A5 to A23  
Remarks 1. This is the timing for the following case.  
Number of waits due to the DWC1 and DWC2 registers (TDW): 1  
Number of waits due to the PRC register (TPRW)  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
: 1  
85  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(6) DRAM access timing  
(a) Read timing (high-speed page DRAM access, normal access: off-page) (1/3)  
Parameter  
Symbol  
<24>  
Condition  
MIN.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WAIT setup time (to CLKOUT )  
WAIT hold time (from CLKOUT )  
Data input setup time (to CLKOUT )  
Data input hold time (from CLKOUT )  
Data output delay time from OE ↑  
Row address setup time  
tSWK  
tHKW  
tSKID  
tHKID  
tDRDOD  
tASR  
15  
<25>  
<26>  
<27>  
<37>  
<56>  
<57>  
<58>  
<59>  
<60>  
2
18  
2
(0.5 + i) T – 10  
(0.5 + wRP) T – 10  
(0.5 + wRH) T – 10  
0.5T – 10  
Row address hold time  
tRAH  
tASC  
tCAH  
tRC  
Column address setup time  
Column address hold time  
(1.5 + wDA + w) T – 10  
Read/write cycle time  
(3 + wRP + wRH + wDA + w)  
T – 10  
RAS precharge time  
RAS pulse time  
<61>  
<62>  
tRP  
(0.5 + wRP) T – 10  
ns  
ns  
tRAS  
(2.5 + wRH + wDA + w)  
T – 10  
RAS hold time  
<63>  
<64>  
<65>  
<66>  
<67>  
tRSH  
tRAL  
tCAS  
tCRP  
tCSH  
(1.5 + wDA + w) T – 10  
(2 + wDA + w) T – 10  
(1 + wDA + w) T – 10  
(1 + wRP) T – 10  
ns  
ns  
ns  
ns  
ns  
Column address read time for RAS  
CAS pulse width  
CAS-RAS precharge time  
CAS hold time  
(2 + wRH + wDA + w)  
T – 10  
WE setup time  
<68>  
<69>  
<70>  
<71>  
<72>  
tRCS  
tRRH  
tRCH  
tCPN  
tOEA  
(2 + wRP + wRH) T – 10  
0.5T – 10  
ns  
ns  
ns  
ns  
ns  
WE hold time (from RAS )  
WE hold time (from CAS )  
CAS precharge time  
T – 10  
(2 + wRP + wRH) T – 10  
Output enable access time  
(2 + wRP + wRH + wDA + w)  
T – 28  
RAS access time  
<73>  
tRAC  
(2 + wRH + wDA + w)  
T – 28  
ns  
Access time from column address  
CAS access time  
<74>  
<75>  
tAA  
(1.5 + wDA + w) T – 28  
(1 + wDA + w) T – 28  
ns  
ns  
tCAC  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
5. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
6. i: the number of idle states that are inserted when a write cycle follows a read cycle.  
86  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(a) Read timing (high-speed page DRAM access, normal access: off-page) (2/3)  
Parameter  
RAS column address delay time  
RAS-CAS delay time  
Symbol  
<76>  
Condition  
Unit  
ns  
MIN.  
(0.5 + wRH) T – 10  
(1 + wRH) T – 10  
0
MAX.  
tRAD  
tRCD  
tOEZ  
<77>  
<78>  
ns  
Output buffer turn-off delay time (from  
ns  
OE )  
Output buffer turn-off delay time (from  
<79>  
tOFF  
0
CAS )  
Remarks 1. T = tCYK  
2. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
87  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(a) Read timing (high-speed page DRAM access, normal access: off-page) (3/3)  
TRPW  
T1  
TRHW  
T2  
TDAW  
TW  
T3  
CLKOUT (Output)  
A0 to A23 (Output)  
RASn (Output)  
<58>  
<56>  
<57>  
<59>  
Row address  
Column address  
<63>  
<64>  
<76>  
<61>  
<62>  
<60>  
<67>  
<77>  
<65>  
<66>  
UCAS (Output)  
LCAS (Output)  
<69>  
<70>  
<71>  
<68>  
<73>  
<75>  
WE (Output)  
OE (Output)  
<79>  
<74>  
<27>  
<72>  
<37>  
<78>  
<26>  
D0 to D15 (I/O)  
<24>  
<25>  
<24>  
<25>  
WAIT (Input)  
Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13).  
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1  
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1  
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
88  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
[MEMO]  
89  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(b) Read timing (high-speed page DRAM access: on-page) (1/2)  
Parameter  
Symbol  
<26>  
Condition  
MIN.  
18  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data input setup time (to CLKOUT )  
Data input hold time (from CLKOUT )  
Data output delay time from OE ↑  
Column address setup time  
Column address hold time  
RAS hold time  
tSKID  
tHKID  
tDRDOD  
tASC  
tCAH  
tRSH  
tRAL  
<27>  
<37>  
<58>  
<59>  
<63>  
<64>  
<65>  
<68>  
<69>  
<70>  
<72>  
<74>  
<75>  
<78>  
2
(0.5 + i) T – 10  
(0.5 + wCP) T – 10  
(1.5 + wDA) T – 10  
(1.5 + wDA) T – 10  
(2 + wCP + wDA) T – 10  
(1 + wDA) T – 10  
(1 + wCP) T – 10  
0.5T – 10  
Column address read time for RAS  
CAS pulse width  
tCAS  
tRCS  
tRRH  
tRCH  
tOEA  
tAA  
WE setup time (to CAS )  
WE hold time (from RAS )  
WE hold time (from CAS )  
Output enable access time  
Access time from column address  
CAS access time  
T – 10  
(1 + wCP + wDA) T – 28  
(1.5 + wCP + wDA) T – 28  
tCAC  
tOEZ  
(1 + wDA) T – 28  
Output buffer turn-off delay time (from  
0
0
OE )  
Output buffer turn-off delay time (from  
<79>  
tOFF  
ns  
CAS )  
Access time from CAS precharge  
CAS precharge time  
<80>  
<81>  
<82>  
<83>  
tACP  
tCP  
(2 + wCP + wDA) T – 28  
ns  
ns  
ns  
ns  
(1 + wCP) T – 10  
High-speed page mode cycle time  
RAS hold time for CAS precharge  
tPC  
(2 + wCP + wDA) T – 10  
tRHCP  
(2.5 + wCP + wDA) T – 10  
Remarks 1. T = tCYK  
2. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
3. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. i: the number of idle states that are inserted when a write cycle follows a read cycle.  
90  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(b) Read timing (high-speed page DRAM access: on-page) (2/2)  
TCPW  
TO1  
TDAW  
TO2  
CLKOUT (Output)  
A0 to A23 (Output)  
RASn (Output)  
<58>  
<59>  
<63>  
Column address  
<64>  
<83>  
<81>  
<65>  
<82>  
UCAS (Output)  
LCAS (Output)  
<69>  
<70>  
<68>  
WE (Output)  
OE (Output)  
<75>  
<79>  
<37>  
<72>  
<26>  
<74>  
<80>  
<78>  
<27>  
D0 to D15 (I/O)  
WAIT (Input)  
Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13).  
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1  
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
91  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(c) Write timing (high-speed page DRAM access, normal access: off-page) (1/2)  
Parameter  
WAIT setup time (to CLKOUT )  
WAIT hold time (from CLKOUT )  
Row address setup time  
Symbol  
<24>  
Condition  
MIN.  
15  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSWK  
tHKW  
tASR  
tRAH  
tASC  
tCAH  
tRC  
<25>  
<56>  
<57>  
<58>  
<59>  
<60>  
2
(0.5 + wRP) T – 10  
(0.5 + wRH) T – 10  
0.5T – 10  
Row address hold time  
Column address setup time  
Column address hold time  
Read/write cycle time  
(1.5 + wDA + w) T – 10  
(3 + wRP + wRH + wDA + w)  
T – 10  
RAS precharge time  
RAS pulse time  
<61>  
<62>  
tRP  
(0.5 + wRP) T – 10  
ns  
ns  
tRAS  
(2.5 + wRH + wDA + w)  
T – 10  
RAS hold time  
<63>  
<64>  
<65>  
<66>  
<67>  
tRSH  
tRAL  
tCAS  
tCRP  
tCSH  
(1.5 + wDA + w) T – 10  
(2 + wDA + w) T – 10  
(1 + wDA + w) T – 10  
(1 + wRH) T – 10  
ns  
ns  
ns  
ns  
ns  
Column address read time (from RAS  
CAS pulse width  
)
CAS-RAS precharge time  
CAS hold time  
(2 + wRH + wDA + w)  
T – 10  
CAS precharge time  
<71>  
<76>  
<77>  
<84>  
tCPN  
tRAD  
tRCD  
tWCS  
(2 + wRP + wRH) T – 10  
(0.5 + wRH) T – 10  
(1 + wRH) T – 10  
ns  
ns  
ns  
ns  
RAS column address delay time  
RAS-CAS delay time  
WE setup time (to CAS )  
(1 + wRP + wRH )  
T – 10  
WE hold time (from CAS )  
Data setup time (to CAS )  
Data hold time (from CAS )  
<85>  
<86>  
<87>  
tWCH  
tDS  
(1 + wDA + w) T – 10  
ns  
ns  
ns  
(1.5 + wRP + wRH  
)
T – 10  
tDH  
(1.5 + wDA + w) T – 10  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
5. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
92  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(c) Write timing (high-speed page DRAM access, normal access: off-page) (2/2)  
TRPW  
T1  
TRHW  
T2  
TDAW  
TW  
T3  
CLKOUT (Output)  
A0 to A23 (Output)  
RASn (Output)  
<58>  
<56>  
<61>  
<57>  
<59>  
Row address  
Column address  
<63>  
<64>  
<76>  
<62>  
<60>  
<67>  
<77>  
<65>  
<66>  
UCAS (Output)  
LCAS (Output)  
<71>  
OE (Output)  
WE (Output)  
<84>  
<85>  
<86>  
<87>  
D0 to D15 (I/O)  
<24>  
<25>  
<24>  
<25>  
WAIT (Input)  
Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13).  
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1  
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1  
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
93  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(d) Write timing (high-speed page DRAM access: on-page) (1/2)  
Parameter  
Symbol  
<58>  
Condition  
MIN.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Column address setup time  
Column address hold time  
RAS hold time  
tASC  
tCAH  
tRSH  
tRAL  
tCAS  
tCP  
(0.5 + wCP) T – 10  
(1.5 + wDA) T – 10  
(1.5 + wDA) T – 10  
(2 + wCP + wDA) T – 10  
(1 + wDA) T – 10  
(1 + wCP) T – 10  
<59>  
<63>  
<64>  
<65>  
<81>  
<83>  
Column address read time (from RAS  
CAS pulse width  
)
CAS precharge time  
RAS hold time for CAS precharge  
tRHCP  
(2.5 + wCP + wDA  
)
T – 10  
WE setup time (to CAS )  
WE hold time (from CAS )  
Data setup time (to CAS )  
Data hold time (from CAS )  
WE read time (from RAS )  
WE read time (from CAS )  
Data setup time (to WE )  
Data hold time (from WE )  
WE pulse width  
<84>  
<85>  
<86>  
<87>  
<88>  
<89>  
<90>  
<91>  
<92>  
tWCS  
tWCH  
tDS  
wCP 1  
wCPT – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1 + wDA) T – 10  
(0.5 + wCP) T – 10  
(1.5 + wDA) T – 10  
(1.5 + wDA) T – 10  
(1 + wDA) T – 10  
0.5T – 10  
tDH  
tRWL  
tCWL  
tDSWE  
tDHWE  
tWP  
wCP = 0  
wCP = 0  
wCP = 0  
wCP = 0  
wCP = 0  
(1.5 + wDA) T – 10  
(1 + wDA) T – 10  
Remarks 1. T = tCYK  
2. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
3. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
94  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(d) Write timing (high-speed page DRAM access: on-page) (2/2)  
TCPW  
TO1  
TDAW  
TO2  
CLKOUT (Output)  
A0 to A23 (Output)  
RASn (Output)  
<58>  
<59>  
<63>  
Column address  
<64>  
<83>  
<81>  
<65>  
UCAS (Output)  
LCAS (Output)  
<89>  
<88>  
OE (Output)  
WE (Output)  
<84>  
<85>  
<92>  
<91>  
<90>  
<86>  
<87>  
D0 to D15 (I/O)  
WAIT (Input)  
Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13).  
Number of waits due to the CPCxx bit of the DRCn register (TCPW ): 1  
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
95  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(e) Read timing (EDO DRAM) (1/3)  
Parameter  
Symbol  
<26>  
Condition  
MIN.  
18  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data input setup time (to CLKOUT )  
Data input hold time (from CLKOUT )  
Data output delay time from OE ↑  
Row address setup time  
tSKID  
tHKID  
tDRDOD  
tASR  
tRAH  
tASC  
tCAH  
tRP  
<27>  
<37>  
<56>  
<57>  
<58>  
<59>  
<61>  
<64>  
<66>  
<67>  
<68>  
<69>  
<70>  
<73>  
<74>  
<75>  
<76>  
<77>  
<78>  
2
(0.5 + i) T – 10  
(0.5 + wRP) T – 10  
(0.5 + wRH) T – 10  
0.5T – 10  
Row address hold time  
Column address setup time  
Column address hold time  
RAS precharge time  
(0.5 + wDA) T – 10  
(0.5 + wRP) T – 10  
(2 + wCP + wDA) T – 10  
(1 + wRP) T – 10  
Column address read time (from RAS  
CAS-RAS precharge time  
CAS hold time  
)
tRAL  
tCRP  
tCSH  
tRCS  
tRRH  
tRCH  
tRAC  
tAA  
(1.5 + wRH + wDA) T – 10  
WE setup time (to CAS )  
WE hold time (from RAS )  
WE hold time (from CAS )  
RAS access time  
(2 + wRP + wRH) T – 10  
0.5T – 10  
1.5T – 10  
(2 + wRH + wDA) T – 28  
Access time from column address  
CAS access time  
(1.5 + wDA) T – 28  
(1 + wDA) T – 28  
tCAC  
tRAD  
tRCD  
tOEZ  
Column address delay time from RAS  
RAS-CAS delay time  
(0.5 + wRH) T – 10  
(1 + wRH) T – 10  
0
Output buffer turn-off delay time (from  
OE)  
Access time from CAS precharge  
CAS precharge time  
<80>  
<81>  
<83>  
<93>  
<94>  
<95>  
<96>  
<97>  
<98>  
tACP  
tCP  
tRHCP  
tHPC  
(1.5 + wCP + wDA  
)
T – 28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(0.5 + wCP) T – 10  
(2 + wCP + wDA) T – 10  
(1 + wDA + wCP) T – 10  
RAS hold time for CAS precharge  
Read cycle time  
RAS pulse width  
tRASP  
tHCAS  
tOCH1  
tOCH2  
tDHC  
(2.5 + wRH + wDA) T – 10  
CAS pulse width  
(0.5 + wDA) T – 10  
(2 + wRH + wDA) T – 10  
(0.5 + wDA) T – 10  
0
CAS hold time from OE  
Off-page  
On-page  
Data input hold time (from CAS )  
Remarks 1. T = tCYK  
2. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
5. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
6. i: the number of idle states that are inserted when a write cycle follows a read cycle.  
96  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(e) Read timing (EDO DRAM) (2/3)  
Parameter  
Symbol  
<99> tOEA1  
Condition  
MIN.  
MAX.  
Unit  
ns  
Output enable access  
time  
Off-page  
On-page  
(2 + wPR + wRH + wDA)  
T – 28  
<100>  
tOEA2  
(1 + wCP + wDA  
)
T – 28  
ns  
Remarks 1. T = tCYK  
2. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
5. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
97  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(e) Read timing (EDO DRAM) (3/3)  
TRPW  
T1  
TRHW  
T2  
TDAW TCPW  
TB  
TDAW  
TE  
CLKOUT (Output)  
A0 to A23 (Output)  
RASn (Output)  
<58>  
<57>  
<56>  
<59>  
Row address  
<76>  
Column address  
Column address  
<64>  
<74>  
<61>  
<94>  
<67>  
<83>  
<75>  
<66>  
<77>  
<95>  
<93>  
<81>  
UCAS (Output)  
LCAS (Output)  
<69>  
<70>  
<68>  
<95>  
<80>  
WE (Output)  
OE (Output)  
<97>  
<96>  
<100> <26>  
<37>  
<75>  
<98>  
<27>  
<27>  
<78>  
<74>  
<26>  
D0 to D15 (I/O)  
BCYST (Output)  
WAIT (Input)  
Data  
Data  
<73>  
<99>  
Note For on-page access from another cycle during the RASn low level signal.  
Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13).  
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1  
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1  
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1  
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
98  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
[MEMO]  
99  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(f) Write timing (EDO DRAM) (1/2)  
Parameter  
Row address setup time  
Row address hold time  
Column address setup time  
Column address hold time  
RAS precharge time  
Symbol  
<56>  
Condition  
MIN.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tASR  
tRAH  
tASC  
tCAH  
tRP  
(0.5 + wRP) T – 10  
(0.5 + wRH) T – 10  
0.5T – 10  
<57>  
<58>  
<59>  
<61>  
<63>  
<64>  
(0.5 + wDA) T – 10  
(0.5 + wRP) T – 10  
(1.5 + wDA) T – 10  
(2 + wCP + wDA) T – 10  
RAS hold time  
tRSH  
tRAL  
Column address read time  
(from RAS )  
CAS-RAS precharge time  
CAS hold time  
<66>  
<67>  
<76>  
<77>  
<81>  
<83>  
<85>  
<87>  
<88>  
tCRP  
tCSH  
tRAD  
tRCD  
tCP  
(1 + wRP) T – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1.5 + wRH + wDA) T – 10  
Column address delay time from RAS  
RAS-CAS delay time  
(0.5 + wRH) T – 10  
(1 + wRH) T – 10  
CAS precharge time  
(0.5 + wCP) T – 10  
(2 + wCP + wDA) T – 10  
(1 + wDA) T – 10  
RAS hold time for CAS precharge  
WE hold time (from CAS )  
Data hold time (from CAS )  
tRHCP  
tWCH  
tDH  
(0.5 + wDA) T – 10  
(1.5 + wDA) T – 10  
WE read time  
On-page  
On-page  
On-page  
tRWL  
wCP = 0  
wCP = 0  
wCP = 0  
(from RAS )  
WE read time  
<89>  
tCWL  
(0.5 + wDA) T – 10  
ns  
(from CAS )  
WE pulse width  
Write cycle time  
RAS pulse width  
CAS pulse width  
<92>  
<93>  
tWP  
tHPC  
(1 + wDA) T – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1 + wDA + wCP) T – 10  
<94>  
tRASP  
tHCAS  
tWCS1  
tWCS2  
tDS1  
(2.5 + wRH + wDA  
)
T – 10  
(0.5 + wDA) T – 10  
T – 10  
wCPT – 10  
T – 10  
(0.5 + wCP) T – 10  
<95>  
WE setup time  
Off-page  
On-page  
Off-page  
On-page  
<101>  
<102>  
<103>  
<104>  
(1 + wRP + wRH  
)
(to CAS )  
wCP 1  
Data setup time  
(1.5 + wRP + wRH  
)
(to CAS )  
tDS2  
Remarks 1. T = tCYK  
2. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
5. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
100  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(f) Write timing (EDO DRAM) (2/2)  
TRPW  
T1  
TRHW  
T2  
TDAW TCPW  
TB  
TDAW  
TE  
CLKOUT (Output)  
A0 to A23 (Output)  
RASn (Output)  
<58>  
<57>  
<56>  
<59>  
<58>  
<59>  
Row address  
<76>  
Column address  
Column address  
<64>  
<61>  
<94>  
<67>  
<77>  
<83>  
<66>  
<95>  
<89>  
<81>  
<63>  
UCAS (Output)  
LCAS (Output)  
<93>  
<88>  
<95>  
RD (Output)  
OE (Output)  
<102>  
<85>  
<101>  
<85>  
<92>  
WE (Output)  
D0 to D15 (I/O)  
BCYST (Output)  
WAIT (Input)  
<103>  
<87>  
<104>  
<87>  
Data  
Data  
Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13).  
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1  
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1  
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1  
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
101  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) external I/O transfer) (1/3)  
Parameter  
Symbol  
Condition  
MIN.  
MAX.  
Unit  
ns  
WAIT setup time (to CLKOUT )  
WAIT hold time (from CLKOUT )  
Data output delay time from OE ↑  
IOWR delay time from address  
<24>  
tSWK  
tHKW  
15  
2
<25>  
<37>  
<41>  
<42>  
ns  
tDRDOD  
tDAWR  
tSAWR  
(0.5 + i) T – 10  
(0.5 + wRP) T – 10  
ns  
ns  
Address setup time  
(2 + wRP + wRH + wDA)  
T – 10  
ns  
(to UWR, LWR IOWR )  
Address delay time from IOWR ↑  
RD delay time from IOWR ↑  
<43>  
<48>  
tDWRA  
0.5T – 10  
0
ns  
ns  
ns  
ns  
tDWRRD  
wF = 0  
wF = 1  
T – 10  
IOWR low-level width  
<50>  
tWWRL  
(2 + wRH + wDA + w)  
T – 10  
Row address setup time  
Row address hold time  
Column address setup time  
Column address hold time  
<56>  
<57>  
<58>  
<59>  
tASR  
tRAH  
tASC  
tCAH  
(0.5 + wRP) T – 10  
(0.5 + wRH) T – 10  
0.5T – 10  
ns  
ns  
ns  
ns  
(1.5 + wDA + wF + w)  
T – 10  
Read/write cycle time  
<60>  
tRC  
(3 + wRP + wRH + wDA +  
wF +w) T – 10  
ns  
RAS precharge time  
RAS hold time  
<61>  
<63>  
tRP  
(0.5 + wRP) T – 10  
ns  
ns  
tRSH  
(1.5 + wDA + wF + w)  
T – 10  
Column address read time for RAS  
CAS pulse width  
<64>  
<65>  
tRAL  
(2 + wCP + wDA + w  
F
+ w)  
ns  
ns  
T – 10  
tCAS  
(1 + wDA + wF + w)  
T – 10  
CAS-RAS precharge time  
CAS hold time  
<66>  
<67>  
tCRP  
tCSH  
(1 + wRP) T – 10  
ns  
ns  
F
(2 + wRH + wDA + w +w)  
T – 10  
WE setup time (to CAS )  
WE hold time (from RAS )  
WE hold time (from CAS )  
CAS precharge time  
<68>  
<69>  
<70>  
<71>  
<76>  
<77>  
tRCS  
tRRH  
tRCH  
tCPN  
tRAD  
tRCD  
(2 + wRP + wRH) T – 10  
0.5T – 10  
ns  
ns  
ns  
ns  
ns  
ns  
1.5T – 10  
(2 + wRP + wRH) T – 10  
(0.5 + wRH) T – 10  
(1 + wRH) T – 10  
RAS column address delay time  
RAS-CAS delay time  
102  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
5. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
6. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
7. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.  
8. i: the number of idle states that are inserted when a write cycle follows a read cycle.  
103  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) R external I/O transfer) (2/3)  
Parameter  
Symbol  
<78> tOEZ  
Condition  
MIN.  
0
MAX.  
Unit  
ns  
Output buffer turn-off delay time (from  
OE )  
Output buffer turn-off delay time (from  
<79>  
tOFF  
0
ns  
CAS )  
CAS precharge time  
<81>  
<82>  
tCP  
tPC  
(0.5 + wCP) T – 10  
ns  
ns  
High-speed page mode cycle time  
(2 + wCP + wDA + w  
F
+ w)  
T – 10  
RAS hold time for CAS precharge  
RAS pulse width  
<83>  
<94>  
<96>  
<97>  
tRHCP  
tRASP  
tOCH1  
tOCH2  
(2.5 + wCP + wDA + w  
F
+ w)  
ns  
ns  
ns  
ns  
T – 10  
(2.5 + wRH + wDA + w  
T – 10  
F
+ w)  
OE CAS hold time  
(from CAS )  
Off-page  
On-page  
(2.5 + wRP + wRH + wDA  
+ wF + w) T – 10  
(1.5 + wCP + wDA + w  
F
+ w)  
T – 10  
CAS delay time from DMAAKm ↓  
CAS delay time from IOWR ↓  
<105>  
<106>  
tDDACS  
tDRDCS  
(1.5 + wRH) T – 10  
(1 + wRH) T – 10  
ns  
ns  
Remarks 1. T=tCYK  
2. w: the number of waits due to WAIT.  
3. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
5. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
6. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
7. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.  
8. m = 0 to 3  
104  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) external I/O transfer) (3/3)  
TRPW T1 TRHW T2 TDAW TW  
T3 TCPW TO1 TDAW TW TO2  
CLKOUT (Output)  
A0 to A23 (Output)  
RASn (Output)  
<58>  
<57>  
<56>  
<59>  
Row address  
<76>  
Column address  
Column address  
<64>  
<61>  
<94>  
<60>  
<69>  
<77>  
<65>  
<83>  
<63>  
<66>  
<67>  
<81>  
UCAS (Output)  
LCAS (Output)  
<70>  
<71>  
<82>  
<96>  
<79>  
RD (Output)  
OE (Output)  
<105>  
<48>  
<97>  
DMAAKm (Output)  
WE (Output)  
<68>  
IORD (Output)  
IOWR (Output)  
D0 to D15 (I/O)  
WAIT (Input)  
<106>  
<42>  
<43>  
<78>  
<37>  
<41>  
<50>  
<24>  
Data  
Data  
<25>  
<24>  
<24>  
<25>  
<25>  
BCYST (Output)  
Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13).  
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1  
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1  
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1  
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1  
Number of waits that are inserted for a source-side access during a DMA flyby transfer: 0  
2. The broken lines indicate high impedance.  
3. n = 0 to 7, m = 0 to 3  
105  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(h) DMA flyby transfer timing (external I/O DRAM (EDO, high-speed page) transfer) (1/3)  
Parameter  
Symbol  
<24>  
Condition  
MIN.  
15  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WAIT setup time (to CLKOUT )  
WAIT hold time (from CLKOUT )  
IORD low-level width  
tSWK  
tHKW  
tWRDL  
tWRDH  
tDARD  
tDRDA  
tASR  
<25>  
<32>  
<33>  
<34>  
<35>  
<56>  
<57>  
<58>  
<59>  
<60>  
2
(2 + wRH + wDA + wF + w) T – 10  
T – 10  
IORD high-level width  
IORD delay time from address, CSn  
Address delay time from IORD ↑  
Row address setup time  
0.5T – 10  
(0.5 + i) T – 10  
(0.5 + wRP) T – 10  
(0.5 + wRH) T – 10  
0.5T – 10  
Row address hold time  
tRAH  
Column address setup time  
Column address hold time  
Read/write cycle time  
tASC  
tCAH  
(1.5 + wDA + wF) T – 10  
tRC  
(3 + wRP + wRH + wDA + wF + w)  
T – 10  
RAS precharge time  
<61>  
<63>  
<64>  
<65>  
<66>  
<67>  
<71>  
<76>  
<77>  
<81>  
<82>  
<83>  
<85>  
<88>  
<89>  
<92>  
<94>  
<101>  
<102>  
tRP  
tRSH  
tRAL  
tCAS  
tCRP  
tCSH  
tCPN  
tRAD  
tRCD  
tCP  
(0.5 + wRP) T – 10  
(1.5 + wDA + wF) T – 10  
(2 + wCP + wDA + wF + w) T – 10  
(1 + wDA + wF) T – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RAS hold time  
Column address read time for RAS  
CAS pulse width  
CAS-RAS precharge time  
CAS hold time  
(1 + wRP) T – 10  
(2 + wRH + wDA + wF + w) T – 10  
(2 + wRP + wRH + w) T – 10  
(0.5 + wRH) T – 10  
CAS precharge time  
RAS column address delay time  
RAS-CAS delay time  
(1 + wRH + w) T – 10  
CAS precharge time  
(0.5 + wCP + w) T – 10  
(2 + wCP + wDA + wF + w) T – 10  
(2.5 + wCP + wDA + w) T – 10  
(1 + wDA) T – 10  
High-speed page mode cycle time  
RAS hold time for CAS precharge  
WE hold time (from CAS )  
WE read time (from RAS )  
WE read time (from CAS )  
WE pulse width  
tPC  
tRHCP  
tWCH  
tRWL  
tCWL  
tWP  
wCP = 0  
wCP = 0  
wCP = 0  
(1.5 + wDA + w) T – 10  
(1 + wDA + w) T – 10  
(1 + wDA + w) T – 10  
RAS pulse width  
tRASP  
tWCS1  
tWCS2  
(2.5 + wRH + wDA + wF + w) T – 10  
(1 + wRH + wRP + w) T – 10  
wCPT – 10  
WE setup time  
Off-page  
On-page  
wCP = 0  
(to CAS )  
wCP 1  
106  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
5. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
6. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
7. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.  
8. i: the number of idle states that are inserted when a write cycle follows a read cycle.  
9. n = 0 to 7  
107  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(h) DMA flyby transfer timing (external I/O DRAM (EDO, high-speed page) transfer) (2/3)  
Parameter  
Symbol  
Condition  
Unit  
ns  
MIN.  
(1.5 + wRH + w) T – 10  
(1 + wRH + w) T – 10  
0
MAX.  
CAS delay time from DMAAKm ↓  
CAS delay time from IORD ↓  
IORD delay time from WE ↑  
<105>  
tDDACS  
tDRDCS  
tDWERD  
<106>  
<107>  
ns  
wF= 0  
wF= 1  
ns  
T – 10  
ns  
Remarks 1. T = tCYK  
2. w: the number of waits due to WAIT.  
3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to  
13).  
4. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.  
5. m = 0 to 3  
108  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(h) DMA flyby transfer timing (external I/O DRAM (EDO, high-speed page) transfer) (3/3)  
TRPW T1 TRHW TW  
T2 TDAW T3 TCPW TW  
TO1 TDAW TO2  
CLKOUT (Output)  
A0 to A23 (Output)  
RASn (Output)  
<56>  
<57>  
<58>  
<59>  
Row address  
<76>  
<61>  
Column address  
Column address  
<64>  
<94>  
<60>  
<77>  
<65>  
<66>  
<67>  
<81>  
<63>  
UCAS (Output)  
LCAS (Output)  
<71>  
<82>  
<83>  
RD (Output)  
OE (Output)  
<102>  
<88>  
<89>  
<101>  
<105>  
<85>  
WE (Output)  
<92>  
DMAAKm (Output)  
IOWR (Output)  
IORD (Output)  
D0 to D15 (I/O)  
WAIT (Input)  
<106>  
<107>  
<35>  
<34>  
<32>  
<24>  
<25>  
<33>  
Data  
Data  
<24>  
<24>  
<25>  
<25>  
BCYST (Output)  
Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13).  
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1  
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1  
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1  
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1  
Number of waits that are inserted for a source-side access during a DMA flyby transfer: 0  
2. The broken lines indicate high impedance.  
3. n = 0 to 7, m = 0 to 3  
109  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(i) CBR refresh timing  
Parameter  
RAS precharge time  
RAS pulse width  
Symbol  
Condition  
MIN.  
(1.5 + wRRW) T – 10  
(1.5 + w  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
<61>  
tRP  
tRAS  
RCW Note) T – 10  
<62>  
<108>  
<109>  
<110>  
<111>  
(1.5 + w  
RCW Note) T – 10  
CAS hold time  
tCHR  
tWRFL  
tRPC  
tDKRF  
REFRQ pulse width  
RAS precharge CAS hold time  
(3 + w  
RRW + wRCW Note) T – 10  
(0.5 + wRRW) T – 10  
2
REFRQ active delay time  
10  
10  
(from CLKOUT )  
REFRQ inactive delay time  
<112>  
<113>  
tHKRF  
2
ns  
ns  
(from CLKOUT )  
CAS setup time  
tCSR  
T – 10  
Note At least one clock cycle is inserted by default for wRCW regardless of the settings of the RCW0 to RCW2 bits  
of the RWC register.  
Remarks 1. T = tCYK  
2. wRRW: the number of waits due to the RRW0 and RRW1 bits of the RWC register.  
3. wRCW: the number of waits due to the RCW0 to RCW2 bits of the RWC register.  
TRRW  
T1  
T2  
TRCWNote  
TRCW  
T3  
TI  
CLKOUT (Output)  
REFRQ (Output)  
RASn (Output)  
<111>  
<112>  
<109>  
<61>  
<62>  
<110>  
<110>  
<113>  
<108>  
UCAS (Output)  
LCAS (Output)  
Note This TRCW is always inserted regardless of the settings of the RCW0 to RCW2 bits of the RWC register.  
Remarks 1. This is the timing for the following case.  
Number of waits due to the RRW0 and RRW1 bits of the RWC register (TRRW): 1  
Number of waits due to the RCW0 to RCW2 bits of the RWC register (TRCW): 2  
2. n = 0 to 7  
110  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(j) CBR self-refresh timing  
Parameter  
Symbol  
<111> tDKRF  
Condition  
MIN.  
2
MAX.  
10  
Unit  
ns  
REFRQ active delay time  
(from CLKOUT )  
REFRQ inactive delay time  
<112>  
tHKRF  
2
10  
ns  
(from CLKOUT )  
CAS hold time  
<114>  
<115>  
tCHS  
tRPS  
5  
ns  
ns  
RAS precharge time  
(1 + 2wSRW) T – 10  
Remarks 1. T = tCYK  
2. wSRW: the number of waits due to the SRW0 to SRW2 bits of the RWC register.  
TRRW  
TH  
TH  
TH  
TRCW  
TH  
TI  
TSRW  
TSRW  
CLKOUT (Output)  
REFRQ (Output)  
RASn (Output)  
<111>  
<112>  
<115>  
<114>  
UCAS (Output)  
LCAS (Output)  
Output signals  
other than above  
Remarks 1. This is the timing for the following case.  
Number of waits due to the RRW0 and RRW1 bits of the RWC register (TRRW): 1  
Number of waits due to the RCW0 to RCW2 bits of the RWC register (TRCW): 1  
Number of waits due to the SRW0 to SRW2 bits of the RWC register (TSRW): 2  
2. The broken lines indicate high impedance.  
3. n = 0 to 7  
111  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(7) DMAC timing  
Parameter  
Symbol  
Condition  
Unit  
ns  
MIN.  
MAX.  
DMARQn setup time (to CLKOUT )  
DMARQn hold time (from CLKOUT )  
<116>  
tSDRK  
tHKDR1  
tHKDR2  
tDKDA  
15  
<117>  
<118>  
<119>  
2
ns  
Until DMAAKn ↓  
ns  
DMAAKn output delay time  
2
10  
10  
10  
10  
ns  
(from CLKOUT )  
DMAAKn output hold time  
<120>  
<121>  
<122>  
tHKDA  
tDKTC  
tHKTC  
2
2
2
ns  
ns  
ns  
(from CLKOUT )  
TCn output delay time  
(from CLKOUT )  
TCn output hold time  
(from CLKOUT )  
Remark n = 0 to 3  
CLKOUT (Output)  
<117>  
<116>  
<118>  
DMARQn (Input)  
DMAAKn (Output)  
<116>  
<119>  
<120>  
<122>  
<121>  
TCn (Output)  
Remark n = 0 to 3  
112  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
[MEMO]  
113  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(8) Bus hold timing (1/2)  
Parameter  
Symbol  
Condition  
MIN.  
15  
MAX.  
10  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HLDRQ setup time (to CLKOUT )  
HLDRQ hold time (from CLKOUT )  
HLDAK delay time from CLKOUT ↓  
HLDRQ high-level width  
<123>  
tSHRK  
tHKHR  
<124>  
<125>  
<126>  
<127>  
<128>  
<129>  
<130>  
<131>  
2
tDKHA  
2
tWHQH  
tWHAL  
tDKCF  
T + 17  
T – 8  
HLDAK low-level width  
Bus float delay time from CLKOUT ↓  
Bus output delay time from HLDAK ↓  
HLDAK delay time from HLDRQ ↓  
HLDAK delay time from HLDRQ ↑  
10  
tDHAC  
0
tDHQHA1  
tDHQHA2  
2.5T  
0.5T  
1.5T  
Remark T = tCYK  
114  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(8) Bus hold timing (2/2)  
T1  
T2  
T3  
TI  
TH  
TH  
TH  
TI  
T1  
CLKOUT (Output)  
<123>  
<124>  
<123>  
<123>  
<124>  
<123>  
<126>  
HLDRQ (Intput)  
HLDAK (Output)  
A0 to A23 (Output)  
D0 to D15 (I/O)  
CSn/RASn (Output)  
BCYST (Output)  
RD (Output)  
<125>  
<128>  
<125>  
<131>  
<130>  
<127>  
<129>  
Address  
Undefined  
Data  
WE (Output)  
UCAS (Output)  
LCAS (Output)  
WAIT (Input)  
Remarks 1. The broken lines indicate high impedance.  
2. n = 0 to 7  
115  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(9) Interrupt timing  
Parameter  
NMI high-level width  
NMI low-level width  
Symbol  
<132>  
Condition  
MIN.  
500  
MAX.  
Unit  
ns  
tWNIH  
tWNIL  
tWITH  
tWITL  
<133>  
<134>  
<135>  
500  
ns  
INTPn high-level width  
INTPn low-level width  
4T + 10  
4T + 10  
ns  
ns  
Remarks 1. n = 100 to 103, 110 to 113, 120 to 123, 130 to 133, 140 to 143, or 150 to 153  
2. T = tCYK  
<132>  
<134>  
<133>  
NMI (Input)  
<135>  
INTPn (Input)  
Remark n = 100 to 103, 110 to 113, 120 to 123, 130 to 133, 140 to 143, or 150 to 153  
(10) RPU timing  
Parameter  
TI1n high-level width  
Symbol  
<136>  
Condition  
MIN.  
MAX.  
Unit  
ns  
tWTIH  
tWTIL  
tWTCH  
tWTCL  
3T + 18  
3T + 18  
3T + 18  
3T + 18  
TI1n low-level width  
<137>  
<138>  
<139>  
ns  
TCLR1n high-level width  
TCLR1n low-level width  
ns  
ns  
Remarks 1. n = 0 to 5  
2. T = tCYK  
<136>  
<137>  
TI1n (Input)  
<138>  
<139>  
TCLR1n (Input)  
Remark n = 0 to 5  
116  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(11) UART0, UART1 timing (clock-synchronized or master mode only)  
Parameter  
Symbol  
<140>  
Condition  
Output  
MIN.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKn cycle  
tCYSK0  
tWSK0H  
tWSK0L  
tSRXSK  
tHSKRX  
tDSKTX  
tHSKTX  
250  
SCKn high-level width  
<141>  
<142>  
<143>  
<144>  
<145>  
<146>  
Output  
0.5tCYSK0 – 20  
SCKn low-level width  
Output  
0.5tCYSK0 – 20  
RXDn setup time (to SCKn )  
RXDn hold time (from SCKn )  
TXDn output delay time (from SCKn )  
TXDn output hold time (from SCKn )  
30  
0
20  
0.5tCYSK0 – 5  
Remark n = 0, 1  
<140>  
<142>  
<141>  
SCKn (I/O)  
<143>  
<144>  
RXDn (Input)  
Input data  
<145>  
<146>  
TXDn (Output)  
Output data  
Remarks 1. The broken lines indicate high impedance.  
2. n = 0, 1  
117  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
(12) CSI0 to CSI3 timing  
(a) Master mode  
Parameter  
SCKn cycle  
Symbol  
<147>  
Condition  
Output  
MIN.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCYSK1  
tWSK1H  
tWSK1L  
tSSISK  
100  
SCKn high-level width  
<148>  
<149>  
<150>  
<151>  
<152>  
<153>  
Output  
0.5tCYSK1 – 20  
SCKn low-level width  
Output  
0.5tCYSK1 – 20  
SIn setup time (to SCKn )  
SIn hold time (from SCKn )  
SOn output delay time (from SCKn )  
SOn output hold time (from SCKn )  
30  
0
tHSKSI  
tDSKSO  
tHSKSO  
20  
0.5tCYSK1 – 5  
Remark n = 0 to 3  
(b) Slave mode  
Parameter  
SCKn cycle  
Symbol  
Condition  
Input  
MIN.  
100  
30  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
<147>  
<148>  
<149>  
<150>  
<151>  
<152>  
<153>  
tCYSK1  
tWSK1H  
tWSK1L  
tSSISK  
SCKn high-level width  
Input  
SCKn low-level width  
Input  
30  
SIn setup time (to SCKn )  
SIn hold time (from SCKn )  
SOn output delay time (from SCKn )  
SOn output hold time (from SCKn )  
10  
tHSKSI  
tDSKSO  
tHSKSO  
10  
30  
tWSK1H  
Remark n = 0 to 3  
<147>  
<149>  
<148>  
SCKn (I/O)  
<150>  
<151>  
Sln (Input)  
Input data  
<152>  
<153>  
SOn (Output)  
Output data  
Remarks 1. The broken lines indicate high impedance.  
2. n = 0 to 3  
118  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
A/D Converter Characteristics (TA = –40 to +70°C ... µPD703100-40, TA = –40 to +85°C ... µPD703100-33,  
µPD703101-33, µPD703102-33, VDD = CVDD = 3.0 to 3.6 V, HVDD = 5.0 V ±10%,  
VSS = 0 V, HVDD – 0.5 V < AVDD < HVDD, output pin load capacitance: CL = 50  
pF)  
Parameter  
Symbol  
Condition  
MIN.  
10  
TYP.  
MAX.  
Unit  
bit  
Resolution  
Total error  
± 4  
LSB  
LSB  
µs  
Quantization error  
Conversion time  
Sampling time  
± 1/2  
tCONV  
tSAMP  
5
833  
ns  
Zero scale error  
Full scale error  
± 2  
± 2  
LSB  
LSB  
LSB  
V
Nonlinearity error  
Analog input voltage  
Analog input resistance  
AVREF input voltage  
AVREF input current  
AVDD current  
± 1  
VIAN  
RAN  
AVREF  
AIREF  
AIDD  
0.3  
AVREF + 0.3  
2
MΩ  
V
AVREF = AVDD  
4.5  
5.5  
1.6  
6
mA  
mA  
119  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
17. PACKAGE DRAWING  
144 PIN PLASTIC LQFP (FINE PITCH) (20 20)  
A
B
108  
109  
73  
72  
detail of lead end  
C
D
S
R
Q
144  
1
37  
36  
F
M
G
J
H
I
K
P
M
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.10 mm (0.004 inch) of  
its true position (T.P.) at maximum material condition.  
A
22.0±0.2  
0.866±0.008  
+0.009  
0.787  
B
20.0±0.2  
–0.008  
+0.009  
0.787  
C
20.0±0.2  
–0.008  
D
F
22.0±0.2  
1.25  
0.866±0.008  
0.049  
G
1.25  
0.049  
+0.05  
0.22  
H
0.009±0.002  
–0.04  
I
0.10  
0.004  
J
0.5 (T.P.)  
0.020 (T.P.)  
+0.009  
0.039  
K
L
1.0±0.2  
0.5±0.2  
–0.008  
+0.008  
0.020  
–0.009  
+0.055  
M
0.145  
0.10  
0.006±0.002  
–0.045  
N
P
Q
0.004  
1.4±0.1  
0.055±0.004  
0.005±0.003  
0.125±0.075  
+7°  
3°  
+7°  
3°  
R
S
–3°  
–3°  
1.7 MAX.  
0.067 MAX.  
S144GJ-50-8EU-2  
120  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
18. RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered and mounted under the following recommended conditions.  
For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting  
Technology Manual (C10535E).  
For soldering methods and conditions other than those recommended below, contact your NEC sales  
representative.  
Table 18-1. Surface Mounting Type Soldering Conditions  
µPD703100GJ-40-8EU  
µPD703100GJ-33-8EU  
: 144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
: 144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
µPD703101GJ-33-xxx-8EU : 144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
µPD703102GJ-33-xxx-8EU : 144-pin plastic LQFP (fine pitch) (20 × 20 mm)  
Recommended  
Condition  
Soldering Method  
Infrared reflow  
Partial heating  
Soldering Conditions  
Symbol  
Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher), Count:  
two times or less, Exposure limit: 3 daysNote (after that, prebake at 125°C for 10 hours)  
IR35-103-2  
Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)  
Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.  
121  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
[MEMO]  
122  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
Related Documents µPD70F3102-33 Data Sheet (U13844E)  
µPD703100-A33, µPD703100-A40, µPD703101-A33, µPD703102-A33 Data Sheet (To be  
prepared)  
µPD70F3102-A33 Data Sheet (U13845E)  
V850 Family Application Note Flash Memory Self-Programming Library (U13261E)  
Reference Materials: Electrical Characteristics for Microcomputer (IEI-601Note  
)
Note This document number is that of Japanese version.  
The related documents indicated in this publication may include preliminary versions. However, preliminary  
versions are not marked as such.  
V850E/MS1 Family and V850 are trademarks of NEC Corporation.  
123  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
[MEMO]  
124  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33, 703102-33  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, pIease contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
Device availability  
Ordering information  
Product release schedule  
Availability of related technical literature  
Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
800-366-9782  
NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.  
Benelux Office  
Hong Kong  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Tel: 2886-9318  
Fax: 2886-9022/9044  
Fax: 408-588-6130  
800-729-9288  
Fax: 040-2444580  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
Tel: 02-528-0303  
Fax: 02-528-4411  
NEC Electronics (France) S.A.  
Velizy-Villacoublay, France  
Tel: 01-30-67 58 00  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
Fax: 01-30-67 58 99  
Fax: 0211-65 03 490  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 65-253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
Fax: 65-250-3583  
Tel: 91-504-2787  
Fax: 01908-670-290  
Fax: 91-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-2719-2377  
NEC Electronics Italiana s.r.l.  
Milano, Italy  
Tel: 02-66 75 41  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Taeby, Sweden  
Fax: 02-2719-5951  
Fax: 02-66 75 42 99  
Tel: 08-63 80 820  
NEC do Brasil S.A.  
Fax: 08-63 80 388  
Electron Devices Division  
Rodovia Presidente Dutra, Km 214  
07210-902-Guarulhos-SP Brasil  
Tel: 55-11-6465-6810  
Fax: 55-11-6465-6829  
J99.1  
125  
Preliminary Data Sheet U13995EJ1V0DS00  
µPD703100-33, 703100-40, 703101-33,  
The export of these products from Japan is regulated by the Japanese government. The export of some or all of these  
products may be prohibited without governmental license. To export or re-export some or all of these products from a  
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
Lisence not needed  
: µPD703100-33, 703100-40  
The customer must judge the need for lisence : µPD703101-33, 703102-33  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents,  
copyrights or other intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on  
a customer designated "quality assurance program" for a specific application. The recommended applications  
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each  
device before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96. 5  

相关型号:

UPD703102GJ-33-XXX-UEN-A

IC,MICROCONTROLLER,32-BIT,V850 CPU,CMOS,QFP,144PIN,PLASTIC
RENESAS

UPD703103A

32-Bit Single-Chip Microcontrollers
NEC

UPD703103AGJ-UEN

32-Bit Single-Chip Microcontrollers
NEC

UPD703103AGJ-UEN-A

Microcontroller, 32-Bit, 50MHz, MOS, PQFP144, 20 X 20 MM, FINE PITCH, PLASTIC, LQFP-144
NEC

UPD703103GJ-UEN

Microcontroller
ETC

UPD703105A

32-Bit Single-Chip Microcontrollers
NEC

UPD703105AGJ-XXX-UEN

32-Bit Single-Chip Microcontrollers
NEC

UPD703105GJ-XXX-UEN

Microcontroller
ETC

UPD703106A

32-Bit Single-Chip Microcontrollers
NEC

UPD703106AA

32-Bit Single-Chip Microcontrollers
NEC

UPD703106AF1-XXX-EN4

32-Bit Single-Chip Microcontrollers
NEC