UPD72012GB-XXX-3B4 [NEC]

HUB CONTROLLER FOR UNIVERSAL SERIAL BUS; 集线器控制器通用串行总线
UPD72012GB-XXX-3B4
型号: UPD72012GB-XXX-3B4
厂家: NEC    NEC
描述:

HUB CONTROLLER FOR UNIVERSAL SERIAL BUS
集线器控制器通用串行总线

总线控制器 微控制器和处理器 外围集成电路 数据传输 时钟
文件: 总36页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD72012  
HUB CONTROLLER FOR UNIVERSAL SERIAL BUS  
The µPD72012 is a dedicated LSI for a HUB connected to a universal serial bus (USB) system.  
It is an upgrade of NEC’s µPD72011. It complies with USB specification revision 1.1.  
By putting descriptors into ROM, information such as a user’s vendor ID can be implemented in the chip.  
FEATURES  
{ Compliant with Chapter 11 (HUB Specifications) of USB Specification 1.1.  
{ Descriptors into ROM  
The user can customize the vendor ID and product ID by using Mask ROM option.  
{ Supports 5 kinds of string descriptors (for Mask ROM code product only)  
{ On-chip sequencer  
There is an on-chip descriptor and request response sequencer. External initial setup and control is not needed  
and HUB functions can be realized using only the µPD72012.  
{ Downstream ports  
Four or five ports can be selected using a pin function.  
{ Power modes  
Bus power or self-power can be selected using a pin function (an external power control circuit is required).  
{ Corresponds to standard descriptor products  
Two kinds of standard ROM code products are provided. Standard and HUB class descriptors are on-chip in  
the µPD72012.  
ROM code: 003 (individual overcurrent monitoring type Generic HUB)  
ROM code: 004 (collective overcurrent monitoring type Generic HUB)  
{ Supports two kinds of clock input  
48 MHz oscillator input or a 4 MHz crystal resonator can be supported  
{ Power control  
Port power control and overcurrent detection functions are on-chip. Individual port control or collective control  
can be selected for these.  
ORDERING INFORMATION  
Part No.  
Package  
µPD72012CU-XXX  
µPD72012GB-XXX-3B4  
42-pin plastic SDIP (15.24 mm (600))  
44-pin plastic QFP (10 × 10)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S13918EJ3V0DS00 (3rd edition)  
Date Published April 2001 NS CP(K)  
Printed in Japan  
The mark shows major revised points.  
1999  
µPD72012  
2
Data Sheet S13918EJ3V0DS  
µPD72012  
PIN CONFIGURATION (Top View)  
42-pin plastic SDIP (15.24 mm (600))  
RST  
UD0  
1
2
DGND  
PVSEL  
PSSEL  
DGND  
DVDD  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
UD1  
3
D10  
4
D11  
5
DGND  
D20  
6
PP5  
7
PP4  
D21  
8
PP3  
9
D30  
PP2  
D31  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
PP1  
DGND  
D40  
DVDD (Buffer)  
CLKSEL  
CS5  
D41  
D50  
CS4  
D51  
CS3  
DGND  
OSL  
CS2  
CS1  
AVDD1  
CLK/X2  
X1  
DGND (Buffer)  
DVDD  
AVDD2  
AGND2  
AGND1  
Data Sheet S13918EJ3V0DS  
3
µPD72012  
44-pin plastic QFP (10×10)  
44 43 42 41 40 39 38 37 36 35 34  
DVDD  
DGND  
PSSEL  
PVSEL  
DGND  
RST  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
CS2  
2
CS1  
3
DGND (Buffer)  
DVDD  
4
5
AVDD2  
6
AGND2  
AGND1  
X1  
UD0  
7
UD1  
8
D10  
9
CLK/X2  
AVDD1  
D11  
10  
11  
DGND  
OSL  
12 13 14 15 16 17 18 19 20 21 22  
4
Data Sheet S13918EJ3V0DS  
µPD72012  
PIN NAME  
AGND1  
AGND2  
AVDD1  
: Analog GND1 (Xtal)  
D41  
: Downstream Port #4 D–  
: Analog GND2 (DPLL)  
: Analog VDD1 (Xtal)  
D50  
: Downstream Port #5 D+  
: Downstream Port #5 D–  
: Digital GND  
D51  
AVDD2  
: Analog VDD2 (DPLL)  
DGND  
DGND (Buffer)  
DVDD  
DVDD (Buffer)  
OSL  
CLKSEL  
CLK/X2  
: Clock Frequency Control  
: 48 MHz OSC, 4 MHz Xtal  
Clock Input  
: Digital GND (Buffer)  
: Digital VDD  
: Digital VDD (Buffer)  
: OSC Suspend Output  
: Port Power Control #1  
: Port Power Control #2  
: Port Power Control #3  
: Port Power Control #4  
: Port Power Control #5  
: Powered Mode Control  
: Down Port Value Control  
: Reset  
CS1  
CS2  
CS3  
CS4  
CS5  
D10  
D11  
D20  
D21  
D30  
D31  
D40  
: Over Current Detect #1  
: Over Current Detect #2  
: Over Current Detect #3  
: Over Current Detect #4  
: Over Current Detect #5  
: Downstream Port #1 D+  
: Downstream Port #1 D–  
: Downstream Port #2 D+  
: Downstream Port #2 D–  
: Downstream Port #3 D+  
: Downstream Port #3 D–  
: Downstream Port #4 D+  
PP1  
PP2  
PP3  
PP4  
PP5  
PSSEL  
PVSEL  
RST  
UD0  
: Root Port #0 D+  
UD1  
: Root Port #0 D–  
X1  
: 4 MHz Xtal Clock Input  
Data Sheet S13918EJ3V0DS  
5
µPD72012  
CONTENTS  
1. PIN FUNCTIONS......................................................................................................................................................7  
1.1 List of Pin Functions .........................................................................................................................................7  
1.2 Tables by Pin Function...................................................................................................................................10  
1.3 Equivalent Circuits of Pins..............................................................................................................................11  
2. DESCRIPTORS......................................................................................................................................................12  
2.1 Standard Device Descriptor............................................................................................................................12  
2.2 Standard Configuration Descriptor .................................................................................................................14  
2.3 Standard Interface Descriptor.........................................................................................................................16  
2.4 Standard Endpoint Descriptor 1 .....................................................................................................................17  
2.5 HUB Class Descriptor.....................................................................................................................................17  
2.6 Standard String Descriptor 0 ..........................................................................................................................21  
2.7 Standard String Descriptors 1 Through 5 .......................................................................................................21  
3. ELECTRICAL SPECIFICATIONS ..........................................................................................................................22  
4. PACKAGE DRAWINGS.........................................................................................................................................32  
5. RECOMMENDED SOLDERING CONDITIONS .....................................................................................................34  
6
Data Sheet S13918EJ3V0DS  
µPD72012  
1. PIN FUNCTIONS  
1.1 List of Pin Functions  
(1/3)  
Pin No.Note Pin Name  
I/O  
I
Signal Name  
RESET  
Function  
1(6)  
2(7)  
RST  
UD0  
Inputs reset signals.  
I/O  
Data0  
Connects to upstream port #0 D+ signal line.  
Pull up to 3.3 V line using 1.5 k.  
3(8)  
4(9)  
UD1  
D10  
I/O  
I/O  
Data1  
Data0  
Connects to upstream port #0 D– signal line.  
Connects to downstream port #1 D+ signal line.  
Pull down to GND using 15 k.  
5(10)  
D11  
I/O  
Data1  
Connects to downstream port #1 D– signal line.  
Pull down to GND using 15 k.  
6(11)  
7(12)  
DGND  
D20  
-
DGND  
Data0  
Connect to GND.  
I/O  
Connects to downstream port #2 D+ signal line.  
Pull down to GND using 15 k.  
8(13)  
9(14)  
10(15)  
D21  
I/O  
I/O  
I/O  
-
Data1  
Data0  
Data1  
DGND  
Data0  
Data1  
Data0  
Data1  
Connects to downstream port #2 D– signal line.  
Pull down to GND using 15 k.  
D30  
Connects to downstream port #3 D+ signal line.  
Pull down to GND using 15 k.  
D31  
Connects to downstream port #3 D– signal line.  
Pull down to GND using 15 k.  
11(16,  
17)  
DGND  
D40  
Connect to GND.  
This pin is used as both pins 16 and 17 internally in the QFP product.  
12(18)  
13(19)  
14(20)  
15(21)  
16(22)  
I/O  
I/O  
I/O  
I/O  
-
Connects to downstream port #4 D+ signal line.  
Pull down to GND using 15 k.  
D41  
Connects to downstream port #4 D– signal line.  
Pull down to GND using 15 k.  
D50  
Connects to downstream port #5 D+ signal line.  
Pull down to GND using 15 k.  
D51  
Connects to downstream port #5 D– signal line.  
Pull down to GND using 15 k.  
Test pin of µPD72012 (corresponds to TS3 pin in µPD72011). Connect  
DGND  
DGND  
to GND.  
(TS3)  
17(23)  
OSL  
O
OSC CTL  
Pin that outputs high level on suspend. Can be used by LED switch or to  
turn oscillator ON/OFF on suspend.  
CAUTION  
For self-power, always input an oscillator output signal. If the clock  
is cut-off, subsequent operation my not be possible.  
Note QFP pin numbers are shown in ( ).  
Data Sheet S13918EJ3V0DS  
7
µPD72012  
(2/3)  
Pin No.Note 1 Pin Name  
I/O  
-
Signal Name  
AVDD1  
Function  
18(24)  
AVDD1  
Power supply pin of on-chip clock drive circuit.  
To stabilize the power supply, connect directly to a stable power  
supply using the shortest wire possible or connect to GND via a  
capacitor along the wire (3.3 V input).  
19(25)  
CLK / X2  
I
CLOCK / XTAL  
When you input a clock signal from an oscillator, input at the 48 MHz  
CMOS level (5 V can be input).  
When using a 4 MHz crystal oscillator, connect the oscillator to this  
pin.  
20(26)  
21(27)  
22(28)  
23(29)  
X1  
I
-
-
-
XTAL  
When using a 4 MHz crystal oscillator, connect the oscillator to this  
pin.  
AGND1  
AGND2  
AVDD2  
AGND1  
AGND2  
AVDD2  
GND pin of on-chip clock drive circuit.  
Connect to GND.  
GND pin of on-chip frequency multiplier (PLL).  
Connect to GND.  
Power supply pin of on-chip frequency multiplier (PLL).  
To stabilize the power supply, connect directly to a stable power  
supply using the shortest wire possible or connect to GND via a  
capacitor along the wire (3.3 V input).  
Test pin of µPD72012 (corresponds to TS1 pin in µPD72011).  
24(30)  
25(31)  
26(32)  
DVDD  
-
-
I
DVDD  
(TS1)  
Connect to 3.3 V power supply.  
DGND  
DGND  
Connect to GND.  
(Buffer)  
(Buffer)  
CS1  
CS2  
CS3  
CS4  
CS5  
PORTCURRENT1  
PORTCURRENT2  
PORTCURRENT3  
PORTCURRENT4  
PORTCURRENT5  
Low active input pin that inputs overcurrent states detected by  
external circuit of downstream port #1.  
When not using this pin, connect it directly to VDD. Note 2  
27(33)  
28(34)  
29(35)  
30(36)  
I
I
I
I
Low active input pin that inputs overcurrent states detected by  
external circuit of downstream port #2.  
When not using this pin, connect it directly to VDD. Note 2  
Low active input pin that inputs overcurrent states detected by  
external circuit of downstream port #3.  
When not using this pin, connect it directly to VDD. Note 2  
Low active input pin that inputs overcurrent states detected by  
external circuit of downstream port #4.  
When not using this pin, connect it directly to VDD. Note 2  
Low active input pin that inputs overcurrent states detected by  
external circuit of downstream port #5.  
When not using this pin, connect it directly to VDD. Note 2  
Notes 1. Pin numbers for QFP are shown in ( ).  
2. For details, refer to Table 1-3 in 1.2 Tables by Pin Function.  
8
Data Sheet S13918EJ3V0DS  
µPD72012  
(3/3)  
Pin No.Note 1 Pin Name  
I/O  
I
Signal Name  
CLK SELECT  
Function  
31(37)  
32(38)  
(39)  
CLKSEL  
Pin for selecting whether to use 48 MHz oscillator or 4 MHz crystal  
oscillator (refer to Table 1-1).  
DVDD  
-
-
DVDD  
Connect to 3.3 V power supply.  
(Buffer)  
(Buffer)  
DVDD  
DVDD  
Connect to 3.3 V power supply. This pin is used together with pin No.  
32 internally in the shrink DIP product.  
33(40)  
PP1  
O
PORTPOWER#1  
Low active open drain output pin that controls downstream port #1  
power supply.  
Input the output of this pin to the power control element of an external  
circuit.  
If not using this pin, leave it unconnected. Note 2  
34(41)  
35(42)  
36(43)  
37(44)  
38(1)  
PP2  
PP3  
PP4  
PP5  
DVDD  
O
O
O
O
-
PORTPOWER#2  
PORTPOWER#3  
PORTPOWER#4  
PORTPOWER#5  
Low active open drain output pin that controls downstream port #2  
power supply.  
Input the output of this pin to the power control element of an external  
circuit.  
If not using this pin, leave it unconnected. Note 2  
Low active open drain output pin that controls downstream port #3  
power supply.  
Input the output of this pin to the power control element of an external  
circuit.  
If not using this pin, leave it unconnected. Note 2  
Low active open drain output pin that controls downstream port #4  
power supply.  
Input the output of this pin to the power control element of an external  
circuit.  
If not using this pin, leave it unconnected. Note 2  
Low active open drain output pin that controls downstream port #5  
power supply.  
Input the output of this pin to the power control element of an external  
circuit.  
If not using this pin, leave it unconnected. Note 2  
Test pin of µPD72012 (corresponds to TS0 pin in µPD72011).  
DVDD  
(TS0)  
Connect to 3.3 V power supply.  
39(2)  
40(3)  
DGND  
-
I
DGND  
Connect to GND.  
PSSEL  
Power SW  
Pin that selects switching between bus power and self-power (refer to  
Table 1-2).  
To make high level, pull up to 3.3 V.  
41(4)  
42(5)  
PVSEL  
DGND  
I
Port Value  
Pin that selects switching between number (4 or 5) of downstream  
ports (refer to Table 1-2).  
To make high level, pull up to 3.3 V.  
Test pin of µPD72012 (corresponds to TS2 pin in µPD72011).  
-
DGND  
(TS2)  
Connect to GND.  
Notes 1. QFP pin numbers are shown in ( ).  
2. For details, refer to Table 1-4 of 1.2 Tables by Pin Function.  
Data Sheet S13918EJ3V0DS  
9
µPD72012  
1.2 Tables by Pin Function  
Table 1-1. Oscillator Circuit Switching Control (CLKSEL)  
Type of oscillator circuit  
CLKSEL  
L
Input clocks from 48 MHz oscillator  
Clock input using 4 MHz crystal resonator (drive circuit is incorporated)  
H
Remark Directly connect to VDD when using CLKSEL=“H”. Even 5 V is no trouble.  
Table 1-2. Power Mode/Downstream Port Number Control (PSSEL, PVSEL)  
PSSEL  
PVSEL  
Power mode  
Self-power Note 1  
Self-power Note 1  
Bus power Note 2  
Prohibited Note 3  
Port #1  
Port #2  
Port #3  
Port #4  
Port #5  
×
L
L
L
H
L
{
{
{
{
{
{
{
{
{
{
{
{
{
×
H
H
H
Notes 1. Do not cut-off clock input when using self-power. If it is cut-off, internal functions stop and operation  
may not be possible even if clocks are input again.  
2. When using bus power, up to four ports can be used.  
3. The combination PSSEL=“H”, PVSEL=“H” is prohibited. Operation in this case is not guaranteed.  
Remark Also set according to this table when setting the number of ports in a Mask ROM code product to up to  
5 ports. Directly connect data lines of unused ports to GND.  
Table 1-3. Handling of Pins CS1 to CS5 According to Setting of wHubCharacteristics Field of HUB Class  
Descriptor  
wHubCharacteristics  
Bits 4, 3  
CS1  
CS2  
CS3  
CS4  
CS5  
0b00  
0b01  
Common in all ports  
Port #3  
Port #1  
Port #2  
Port #4  
Port #5  
0b10 or 0b11  
Not available  
Not available  
Not available  
Not available  
Not available  
Remark Connect pins CS1 to CS5 to the Over Current Detect output pin of the power switch IC.  
Clamp an unused or unavailable CS1 to CS5 pin to 3.3 V.  
Table 1-4. Handling of Pins PP1 to PP5 According to Setting of wHubCharacteristics Field of HUB Class  
Descriptor  
wHubCharacteristics  
Bits 1, 0  
PP1  
PP2  
PP3  
PP4  
PP5  
0b00  
0b01  
Common in all ports  
Port #3  
Port #1  
Port #2  
Port #4  
Port #5  
Remark Connect pins PP1 to PP5 to the Port Power Control input pin of the power switch IC.  
Leave an unused or unavailable PP1 to PP5 pin open.  
10  
Data Sheet S13918EJ3V0DS  
µPD72012  
1.3 Equivalent Circuits of Pins  
Type  
Equivalent Circuit  
Pins  
Function  
3.3 V Schmitt input pin with 5 V tolerant.  
5 V tolerant  
input pin  
RST, CS1 to CS5  
(Schmitt)  
5 V Schmitt on-chip  
5 V tolerant  
input pin  
CLKSEL, PSSEL,  
PVSEL  
3.3 V input pin with 5 V tolerant.  
5 V  
5 V tolerant  
clock input  
pin  
X1, CLK/X2  
3.3 V dedicated clock input pin with 5 V  
tolerant.  
5 V  
5 V tolerant  
3.3 V output  
pin  
OSL  
3.3 V output pin with 5 V tolerant.  
Pull-up to 5 V line is possible.  
3.3 V, IOL=6 mA  
Open-drain  
output pin  
PP1 to PP5  
Open-drain structure pin.  
USB buffer  
UD0, UD1, D10 to  
D50, D11 to D51  
USB buffer. The two kinds of receiver are  
DATA receiver and SE0 (single end 0) receiver  
on the receiving side.  
IN/OUT(D+)  
(D)  
RxDATA  
On the sending side, rise and fall times are  
managed in the last stage of the buffer in  
order to create a difference between low-speed  
and full-speed.  
RxSE0  
TxDATA  
Data Sheet S13918EJ3V0DS  
11  
µPD72012  
2. DESCRIPTORS  
Caution For a Mask ROM code product, we release the software to make a data for Mask ROM option.  
Please contact to Local NEC to get the software if you would like to make Mask ROM code  
product.  
2.1 Standard Device Descriptor  
(1/2)  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
004  
0
bLength  
1
Shows the size in bytes of the standard device  
descriptor.  
0x12  
0x12  
0x12  
1
2
bDescriptorType  
bcdUSB  
1
2
Shows that this is a standard device descriptor.  
0x01  
0x01  
0x01  
Shows that the µPD72012 compliant with USB  
0x0110  
0x0110  
0x0110  
Specifications Revision 1.1.  
4
5
6
7
8
bDeviceClass  
bDeviceSubClass  
bDeviceProtocol  
bMaxPacketSize0  
idVendor  
1
1
1
1
2
HUB class code defined by USB  
(HUB_CLASSCODE=“0x09”).  
0x09  
0x00  
0x09  
0x00  
0x09  
0x00  
HUB subclass code defined by USB. Not defined in  
HUB class.  
Protocol code defined by USB. Not defined in HUB  
class.  
0x00  
0x00  
0x00  
Shows the maximum packet size in bytes of  
0x08  
0x08  
0x08  
endpoint 0 of the µPD72012.  
Shows the vendor ID code registered in USB  
standards.  
0x0409  
0x0409  
0xXXXX  
For a standard ROM code product (003, 004), this is  
“0x0409” (NEC vendor ID).  
When using in a Mask ROM code product, set a  
vendor ID for each manufacturer registered in USB  
standards.  
10 IdProduct  
2
2
Shows the product ID code registered in USB  
standards.  
0x55AB  
0x0200  
0x55AB  
0x0200  
0xXXXX  
0xXXXX  
For a standard ROM code product (003, 004), this is  
“0x55AB” (Generic_HUB).  
In a Mask ROM code product, this value can be set  
as you wish.  
Shows the version number of the µPD72012 using  
decimal notation in XX.XX format.  
12 bcdDevice  
For a standard ROM code product (003, 004), this is  
“0x0200” (Ver. 2.0).  
When using in a Mask ROM code product, manage  
by varying the number for each ROM code.  
12  
Data Sheet S13918EJ3V0DS  
µPD72012  
(2/2)  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
004  
14 iManufacture  
1
1
1
1
Shows the index of the string descriptor for a  
comment about a manufacturer using the HUB.  
Since not used for a standard ROM code product  
(003, 004), its value is “0x00”.  
0x00  
0x00  
0x00  
or  
0x01  
When using this for a Mask ROM code product, set it  
to “0x01”.  
15 iProduct  
Shows the index of the string descriptor for a  
comment about a product using the HUB.  
Since not used for a standard ROM code product  
(003, 004), its value is “0x00”.  
0x00  
0x00  
0x01  
0x00  
0x00  
0x01  
0x00  
or  
0x02  
When using this for a Mask ROM code product, set it  
to “0x02”.  
16 iSerialNumber  
Shows the index of the string descriptor for the serial  
number of a product using the HUB.  
Since not used for a standard ROM code product  
(003, 004), its value is “0x00”.  
0x00  
or  
0x03  
When using this for a Mask ROM code product, set it  
to “0x03”.  
17 bNumConfiguration  
Shows the number of configurations that can be set  
for this HUB.  
0x01  
Its value is fixed at “0x01” for the µPD72012  
Data Sheet S13918EJ3V0DS  
13  
µPD72012  
2.2 Standard Configuration Descriptor  
(1/2)  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
004  
0
1
2
bLength  
1
1
2
Shows the size in bytes of the standard  
configuration descriptor.  
0x09  
0x09  
0x09  
0x02  
bDescriptorType  
wTotalLength  
Shows that this is a standard configuration  
descriptor.  
0x02  
0x02  
Shows the total length of descriptors returned on a  
host Get_Descriptor (Configuration) request  
(standard configuration, standard interface, each  
standard endpoint, and HUB class descriptors).  
0x0019  
0x0019  
0x0019  
4
5
6
bNumInteface  
1
1
1
Shows the number of interfaces that can be set in  
this configuration.  
0x01  
0x01  
0x00  
0x01  
0x01  
0x00  
0x01  
0x01  
Its value is fixed at “0x01” for the µPD72012.  
bConfigurationValue  
iConfiguration  
Specifying this value in a Set_Configuration request  
from the host sets this configuration in the  
µPD72012.  
Shows the index of the string descriptor for a  
comment about the configuration of a product using  
the HUB.  
0x00  
or  
0x04  
Since not used for a standard ROM code product  
(003, 004), its value is “0x00”.  
When using this for a Mask ROM code product, set it  
to “0x04”.  
7
bmAttributes  
1
Uses a bitmap to show the power supply attributes  
0xE0  
0xE0  
0xE0  
or  
of this configuration of the µPD72012.  
0xA0  
Caution Since the information “Self-power” in  
the status returned on a Get_Status  
request from the host reflects the level  
input to the PSSEL pin, be sure that  
there are no inconsistencies.  
“0xE0”: Corresponds to both “bus power” and “self-  
power” modes and shows that “Remote Wakeup” is  
supported. A standard ROM code product has this  
setting.  
Use this setting when using in “self-power” mode  
only or when switching between “bus power” and  
“self-power” by performing a PSSEL pin function.  
“0xA0”: Corresponds to “bus power” mode only and  
shows that “Remote Wakeup” is supported.  
Make this setting when using in “bus power” mode  
only.  
14  
Data Sheet S13918EJ3V0DS  
µPD72012  
(2/2)  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask ROM  
code  
product  
003  
004  
8
MaxPower  
1
Shows the maximum current the HUB consumes in  
normal operation in hexadecimal notation using  
units of 2 mA.  
0x32  
0x32  
0x32  
(PSSEL=“L”) (PSSEL=“L”) (PSSEL=“L”)  
or  
or  
or  
Since it provides 1 UnitLoad (= 100 mA) to each  
0x32  
0x32  
0x32  
port downstream, this is not included in MaxPower. (PSSEL=“H”) (PSSEL=“H”) (PSSEL=“H”)  
However, if a non-removable device is connected  
downstream, this is included (for details inquire in  
the USB-IF).  
(recommen-  
ded value)  
Switching the input level of the PSSEL pin changes  
the value that is returned. In short, two-way setting  
of the µPD72012 is possible for “self-power” and  
“bus power”.  
Mask ROM code product  
For a “bus power” setting (PSSEL=“H”), normally set  
this to 0x32 (100 mA). However, when making a  
subordinate port a non-removable port, add the  
current consumed by the device connected to that  
port when you set the MaxPower value. On the  
other hand, For a “self-power” setting (PSSEL=“L”),  
0x32 (100 mA) is fixed.  
Data Sheet S13918EJ3V0DS  
15  
µPD72012  
2.3 Standard Interface Descriptor  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
004  
0
bLength  
1
Shows the size in bytes of the standard interface  
descriptor.  
0x09  
0x09  
0x09  
1
2
bDescriptorType  
bInterfaceNumber  
1
1
Shows that this is a standard interface descriptor.  
0x04  
0x00  
0x04  
0x00  
0x04  
0x00  
If there are multiple interfaces, the host specifying  
this value in a Set_Interface request selects this  
interface.  
This is “0x00” for the µPD72012.  
3
4
5
bAlternateSetting  
bNumEndpoints  
bIntefaceClass  
1
1
1
This value is used if there is an alternate setting of  
0x00  
0x01  
0x09  
0x00  
0x01  
0x09  
0x00  
0x01  
0x09  
the interface. It is “0x00” for the µPD72012.  
Shows the number of endpoints defined in this  
interface.  
HUB class code defined by USB  
(HUB_CLASSCODE=“0x09”).  
6
7
bInterfaceSubClass  
bInterfaceProtocol  
1
1
HUB subclass code defined by USB.  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Protocol code defined by USB. Not defined in HUB  
class.  
8
iInteface  
1
Shows the index of the string descriptor for a  
comment about the interface of a product using the  
HUB.  
0x00  
0x00  
0x00  
or  
0x05  
Since not used for a standard ROM code product  
(003, 004), its value is “0x00”.  
When using this for a Mask ROM code product, set it  
to “0x05”.  
16  
Data Sheet S13918EJ3V0DS  
µPD72012  
2.4 Standard Endpoint Descriptor 1  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
004  
0
bLength  
1
Shows the size in bytes of standard endpoint  
descriptor 1.  
0x07  
0x07  
0x07  
1
2
3
bDescriptorType  
bEndpointAddress  
bmAttributes  
1
1
1
Shows that this is a standard endpoint descriptor.  
Shows the EndpointAddress of endpoint 1.  
0x05  
0x81  
0x03  
0x05  
0x81  
0x03  
0x05  
0x81  
0x03  
Shows the attributes of endpoint 1  
(Interrupt=“0x03”).  
4
6
wMaxPacketSize  
bInterval  
2
1
Shows the maximum packet size of endpoint 1.  
0x0001  
0xFF  
0x0001  
0xFF  
0x0001  
0xFF  
For an Interrupt attribute endpoint, shows the polling  
time in milliseconds using hexadecimal notation. For  
a HUB, the maximum value that can be set (“0xFF”)  
is entered.  
2.5 HUB Class Descriptor  
(1/4)  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
0x09  
0x29  
0x04  
004  
0x09  
0x29  
0x04  
0
1
2
bDescLength  
bDescriptorType  
bNbrPort  
1
1
1
Shows the size in bytes of the HUB class descriptor.  
Shows that this is a HUB class descriptor.  
0x09  
0x29  
0xXX  
Shows the number of downstream ports the HUB  
supports in a set.  
(PVSEL=“L”) (PVSEL=“L”) (PVSEL=“L”)  
For a standard ROM code product (003, 004), the  
value varies according to the PVSEL pin setting.  
It is “0x05” for a 5-port HUB (PVSEL=“H”), and  
“0x04” for a 4-port HUB (PVSEL=“L”).  
or  
or  
or  
0x05  
0x05  
0xYY  
(PVSEL=“H”) (PVSEL=“H”) (PVSEL=“H”)  
For a Mask ROM code product, the value in this field  
can be set arbitrarily. Since two-way setting by  
switching the PVSEL input level is possible for these  
values, perform two-way specification. Note that the  
values that are set for PVSEL=“H” are from “0x01” to  
“0x05”, and the values that are set for PVSEL=“L”  
are from “0x01” to “0x04”. The µPD72012 enables  
ports in turn starting from the smallest port number.  
Data Sheet S13918EJ3V0DS  
17  
µPD72012  
(2/4)  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
0x0009  
004  
Uses a bitmap to show attributes of the µPD72012.  
3
wHubCharacteristics  
2
0x0000  
0x00XX  
The meaning of each bit is as follows.  
Bits 1,0: Show the power switch switching attribute.  
“0b00”: Enable all power switches at once.  
This is the value for a standard ROM code  
product (004).  
If this value is set for a Mask ROM code  
product, all of pins PP1 to PP5 operate at  
once.  
“0b01”: Enable power switches individually for  
each port.  
This is the value for a standard ROM code  
product (003).  
If this value is set for a Mask ROM code  
product, pins PP1 to PP5 operate  
individually.  
“0b1X”: Reserved. Used only on 1.0 compliant  
hubs that implement no power switching.  
You can not use this setting for µPD72012.  
Bit 2:  
Identifier of a compound device. Set this  
to “0b0” when using the µPD72012 as a  
unit HUB and to “0b1” when using it as  
compound devices.  
“0b0”: Shows that the µPD72012 is standalone  
HUB unit.  
“0b1”: Shows that µPD72012 is a part of  
compound devices.  
Bits 4,3: Show the overcurrent protection switching  
attribute.  
“0b00”: Monitor overcurrent for all ports in a batch.  
Since this is the value for a standard ROM  
code product (004), a circuit that can  
control all overcurrent protection functions  
at once externally is needed.  
If this value is set for a Mask ROM code  
product, when one of the pins CS1 to CS5  
detect overcurrent, Hub reports  
overcurrent on per- hub basis.  
18  
Data Sheet S13918EJ3V0DS  
µPD72012  
(3/4)  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
004  
3
wHubCharacteristics  
2
“0b01”: Monitor overcurrent for each port  
individually.  
0x0009  
0x0000  
0x00XX  
Since this is the setting for a standard  
ROM code product (003), a circuit that can  
individually control overcurrent protection  
functions externally is needed.  
If this value is set for a Mask ROM code  
when one of the pins CS1 to CS5 detect  
overcurrent, Hub reports overcurrent on  
per- port basis.  
“0b1X”: Shows that there is no overcurrent  
protection function. This setting is allowed  
only for bus-powered hubs that do not  
implement over-current protection.  
If this value is set for a Mask ROM code  
product, clamp all of the pins CS1 to CS5  
to 3.3 V.  
Bits 15-5: These bits are reserved in the USB  
standard for future extended functions.  
For a Mask ROM code product, be sure to  
set these bits to “0”.  
Caution Be sure to set the values in bits 3 and 0  
the same in Mask ROM code product  
settings.  
5
6
bPowerOn2PwrGood  
bHubContrCurrent  
1
1
Shows the time from detecting a device at a port and  
starting the power-on sequence until the power  
supply stabilizes.  
0x32  
0x50  
0x32  
0x50  
0x32  
0xXX  
Two milliseconds are taken as one unit. This is 100  
ms for the µPD72012.  
Shows the maximum current consumption of the  
HUB in mA. Note that this value does not show the  
rated current consumption value for the µPD72012  
itself.  
For a standard ROM code product, “0x50” is applied  
for compatibility with the µPD72011. This value can  
be defined for a Mask ROM code product. However,  
this value should not be less than the current  
consumption value of the µPD72012 that is  
described in 3. ELECTRICAL SPECIFICATIONS.  
Data Sheet S13918EJ3V0DS  
19  
µPD72012  
(4/4)  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
004  
7
bDeviceRemovable  
1
Uses a bitmap to show whether or not removable  
devices are connected to HUB ports.  
0x00  
0x00  
0xXX  
“1” shows that the connected device is non-  
removable, and “0” shows that it is removable. Set  
“1” if a port that is used cannot be connected nor  
disconnected using an external circuit.  
Note that, if a non-removable device is connected to  
a downstream port of the HUB, bit 2 of  
wHubCharacteristics field should be set to “1”.  
When the number of ports that can be port enabled  
is limited by the PVSEL pin setting or Mask ROM  
code product settings, set “0” for all ports that are  
not port enabled. The meaning of the bitmap is as  
follows.  
Bit 0:  
Bit 1:  
Always set to “0”.  
If “1”, the device connected to port 1 is  
non-removable.  
Bit 2:  
Bit 3:  
Bit 4:  
Bit 5:  
If “1”, the device connected to port 2 is  
non-removable.  
If “1”, the device connected to port 3 is  
non-removable.  
If “1”, the device connected to port 4 is  
non-removable.  
If “1”, the device connected to port 5 is  
non-removable.  
Bits 7,6: Always set to “0”.  
For a standard ROM code product (003, 004), all  
ports are removable.  
8
bPortPwrCtrlMask  
1
This field exists for reasons of compatibility with  
software written for 1.0 compliant devices. All bits in  
this field should be set to 1B.  
0xFF  
0xFF  
0xFF  
20  
Data Sheet S13918EJ3V0DS  
µPD72012  
2.6 Standard String Descriptor 0  
Standard string descriptor 0 cannot be used in a standard ROM code product.  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
0x00  
0x00  
004  
0x00  
0
1
2
bLength  
1
1
2
Shows the size of standard string descriptor 0.  
Shows that this is a standard string descriptor.  
0x04  
0x03  
bDescriptorType  
wLANGID[0]  
0x00  
Shows the LanguageID of standard string descriptor  
0. The LanguageID used is “0x0409” (Generic).  
The µPD72012 uses this LanguageID in common for  
all string descriptors.  
0x0000  
0x0000  
0x0409  
2.7 Standard String Descriptors 1 Through 5  
Standard string descriptors 1 through 5 cannot be used in a standard ROM code product.  
This format is the common format for standard string descriptors #1 through #5 of the µPD72012.  
No.  
Field  
Size  
Contents  
Value  
(Bytes)  
Standard ROM code  
product  
Mask  
ROM code  
product  
003  
004  
0
bLength  
1
Shows the size of standard string descriptors 1  
through 5. Its value is fixed at 66 bytes (0x42). The  
string itself is this size –2 (64 bytes).  
0x00  
0x00  
0x42  
1
2
bDescriptorType  
bString  
1
Shows that this is a standard string descriptor.  
0x00  
All 0  
0x00  
All 0  
0x03  
64  
Stores the standard string descriptor in UNICODE.  
A string requires 2 bytes for each character. Strings  
of up to 32 characters can be specified. If there are  
white space characters, pad using NULL characters  
(0x0000).  
Remark Five kinds of standard string descriptors can be defined and these describe the following contents  
using 32 UNICODE characters.  
Index  
Contents  
1
2
3
4
5
Comment about manufacturer (Manufacture) that uses HUB  
Comment about product (Product) that uses HUB  
Serial number (SerialNumber) of product that uses HUB  
Comment about configuration (Configuration) of product that uses HUB  
Comment about interface (Interface) of product that uses HUB  
Refer to “The Unicode Standard, Worldwide Character Encoding, Version 1.0, Volume 1 and 2”, The Unicode  
Consortium, Addison-Wesley Publishing Company, Reading, Massachusetts regarding UNICODE.  
Data Sheet S13918EJ3V0DS  
21  
µPD72012  
3. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
Parameter  
Power supply voltage  
Input voltage  
Symbol  
VDD  
Conditions  
Rating  
Unit  
V
–0.5 to +4.6  
–0.5 to +4.6  
VI  
USB buffer  
V
UD0, UD1, D10 to D50, D11 to D51  
Clock input buffer  
X1, CLK/X2  
–0.5 to +6.6  
–0.5 to +6.6  
–0.5 to +4.6  
–0.5 to +4.6  
–0.5 to +6.6  
–0.5 to +6.6  
V
V
V
V
V
V
5 V Schmitt input buffer  
RST, CS1 to CS5  
5 V input buffer  
CLKSEL, PSSEL, PVSEL  
Output voltage  
VO  
USB buffer  
UD0, UD1, D10 to D50, D11 to D51  
Open drain output buffer  
PP1 to PP5  
5 V output buffer  
OSL  
Output current  
Operating ambient temperature TA  
Storage temperature  
IO  
100  
mA  
°C  
0 to +70  
°C  
Tstg  
–65 to +150  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for  
any parameter. That is, the absolute maximum ratings are rated values at which the product is  
on the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Conditions (TA = 0 to +70°C)  
Parameter  
Power supply voltage  
High level input voltage  
Low level input voltage  
High level input voltage  
Low level input voltage  
Input rise time for RST  
High level input voltage  
Low level input voltage  
High level input voltage  
Low level input voltage  
Clock input frequency  
Symbol  
VDD  
Conditions  
MIN.  
3.0  
2.0  
0
TYP.  
3.3  
MAX.  
3.6  
VDD  
0.8  
5.5  
0.8  
10  
Unit  
V
VIH  
VIL  
VIH  
VIL  
tr  
USB pin  
V
UD0, UD1, D10 to D50, D11 to D51  
V
5 V Schmitt input pin  
RST, CS1 to CS5  
2.3  
0
V
V
0.3 V to 2.7 V  
ms  
V
VIH  
VIL  
VIH  
VIL  
fCK  
5 V input pin  
2.0  
0
5.5  
0.8  
5.5  
0.8  
CLKSEL, PSSEL, PVSEL  
V
Clock input pin (at 48 MHz input)  
X1, CLK/X2  
2.3  
0
V
V
Oscillator input (+100 ppm)  
Oscillator input (+50 ppm)  
48.00  
4.0  
MHz  
MHz  
22  
Data Sheet S13918EJ3V0DS  
µPD72012  
Recommended Oscillator Circuit Constants  
Crystal oscillator (TA = 0 to +70°C)  
Manufacturer  
Product name  
Frequency (MHz)  
Oscillator circuit constant (pF)  
C1  
10  
9
C2  
10  
9
DAISHINKU CORP.  
AT-49  
HC-49/U  
4.000  
4.000  
X1  
X2  
C1  
C2  
Cautions 1. The oscillator circuit constants, which show the conditions for stabilizing and oscillating,  
do not guarantee oscillation frequency accuracy. If the mounting circuit requires oscillation  
frequency accuracy, it must be possible to adjust the oscillation frequency of the oscillator  
in the mounting circuit. Therefore, ask the manufacturer of the oscillator you use about this  
directly.  
2. When using an oscillator circuit, wire portions shown using broken lines in the figure as  
follows to avoid affecting wire capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wring near a signal line through which a high fluctuating current flows.  
Always keep the ground point of the oscillator capacitor to the same potential as VSS.  
Do not ground the capacitor to a ground pattern in which a high current flows.  
Do not fetch signals from the oscillator.  
Data Sheet S13918EJ3V0DS  
23  
µPD72012  
DC Characteristics (VDD = 3.3 V +0.3 V, TA = 0 to +70°C)  
(1) Current consumption  
Parameter  
Symbol  
IDD  
Conditions  
fCK = 48 MHz, 4 MHz  
MIN.  
TYP.  
MAX.  
40  
Unit  
Current consumption  
mA  
µA  
Current consumption (during  
suspend)  
IDD(SUS)  
120  
(2) USB input/output buffer  
Parameter  
Symbol  
VOH  
Conditions  
14.2 kRH for GND  
MIN.  
2.8  
0
TYP.  
MAX.  
3.6  
Unit  
V
High level output voltage  
Low level output voltage  
Differential common mode range  
1.42 kRL for 3.6 V  
VOL  
0.3  
V
VCM  
Includes VDI range  
Absolute value of (D+) – (D–)  
0.2 Vmin  
0.8  
2.5  
V
10  
µA  
Data line leakage current in input  
pin high impedance state  
ILO  
0 V < VIN < 3.3 V  
Crossover output voltage  
VCRS  
1.3  
2.0  
V
(3) 5 V output buffer  
Parameter  
High level output voltage  
Low level output voltage  
Symbol  
VOH  
Conditions  
IOH = –6 mA  
MIN.  
TYP.  
MAX.  
2.4  
Unit  
V
VOL  
IOH = 6 mA  
0.4  
V
(4) Open drain output buffer  
Parameter  
Symbol  
Conditions  
IOL = 6 mA  
MIN.  
TYP.  
MAX.  
0.4  
Unit  
V
Low level output voltage  
VOL  
24  
Data Sheet S13918EJ3V0DS  
µPD72012  
AC Characteristics (VDD = 3.3 V +0.3 V, TA = 0 to +70°C)  
(1) Full-speed output driver characteristics  
Parameter  
Symbol  
tFR, tFF  
Conditions  
MIN.  
4
TYP.  
MAX.  
20  
Unit  
ns  
Output rise time (FS)  
Output fall time (FS)  
UD0, UD1  
CL = 50 pF, TA = 25°C,  
10% to 90%  
1.3  
28  
2.0  
44  
V
Crossover output voltage  
Driver output resistance  
Full-speed data rate  
VCRS  
ZDRV  
tFDRATE  
tDJ1  
12Mbps 0.25%  
Continuous transition  
Pair transition  
11.97  
12.03  
3.5  
Mbps  
ns  
Differential driver jitter (FS)  
4.0  
ns  
tDJ2  
–2  
+5  
ns  
Source jitter on SE0 transition from tFDEOP  
differential transition (FS)  
18.5  
9
ns  
ns  
ns  
ns  
ns  
ns  
Receiver jitter (FS)  
tJR1  
Continuous transition  
Pair transition  
tJR2  
26  
One-way propagation delay  
EOP source SE0 interval  
EOP receiver SE0 interval  
tFPROP  
tFEOPT  
tFEOPR  
tFST  
160  
82  
175  
Accept as effective EOP.  
14  
SE0 time interval on differential  
transition  
(2) HUB repeater characteristics (Full-speed)  
Parameter  
Symbol  
tr, tf  
Conditions  
MIN.  
4
TYP.  
MAX.  
20  
Unit  
ns  
Output rise time (LS)  
Output fall time (LS)  
D10 to D50, D11 to D51  
CL = 50 pF, TA = 25°C,  
10% to 90%  
Differential data delay (LS)  
Differential driver jitter (LS)  
tHDD1  
tHDD2  
tHDJ1  
tHDJ2  
With cable  
70  
44  
3
ns  
ns  
ns  
ns  
ns  
Without cable  
Continuous transition  
Pair transition  
1
Data bit length distortion after SOP tFSOP  
(LS)  
+5  
HUB EOP delay for tHDD1  
tFEOPD  
tFHESK  
0
15  
15  
ns  
ns  
EOP output width skew (LS)  
Data Sheet S13918EJ3V0DS  
25  
µPD72012  
(3) HUB event timing  
Parameter  
Symbol  
tDCNN  
Conditions  
MIN.  
2.5  
TYP.  
MAX.  
2000  
Unit  
µs  
Time to detect downstream port  
connection event (wake-up HUB)  
µs  
µs  
µs  
Time to detect downstream port  
connection event (suspend HUB)  
2.5  
2
12000  
2.5  
Time to detect disconnect event at  
downstream port (wake-up HUB)  
tDDIS  
Time to detect disconnect event at  
downstream port (suspend HUB)  
2
10000.0  
Period to drive resume at downstream  
port (from control HUB only)  
tDRSMDN  
20  
ms  
µs  
µs  
µs  
Time from detecting downstream  
resume to re-broadcasting  
tURSM  
100  
5.5  
Time to detect long K state from  
upstream  
tURLK  
2.5  
2.5  
Time to detect long SE0 from upstream tURLSE0  
10000  
23  
Period to repeat SE0 upstream  
tURPSE0  
FS Bit  
time  
Period to transmit SE0 upstream after  
EOF1  
tUDEOP  
Optional  
2
FS Bit  
time  
26  
Data Sheet S13918EJ3V0DS  
µPD72012  
(4) Device event timing  
Parameter  
Symbol  
tSIGATT  
Conditions  
MIN.  
TYP.  
MAX.  
100  
Unit  
ms  
Time from internal power becoming  
effective until device pulls D+/D–  
above VIHZ (MIN.) (signal attach)  
Time for USB system software to  
perform debounce after attach  
tATTDB  
100  
10  
ms  
ms  
Time for which bus is continuously in  
idling state, maximum time device  
draws more power than suspend  
power  
t2SUSP  
Maximum value of average suspend  
time  
tSUSAVGI  
1
s
Period to drive upstream on resume  
Resume restore period  
tDRSMUP  
tRSMRCY  
1
15  
ms  
ms  
Supplied by USB system  
software  
10  
µs  
Time to detect reset from upstream  
Reset restore time  
tDETRST  
tRSTRCY  
tIPD  
Same as tURLSE0  
2.5  
2
10000  
10  
ms  
Inter-packet delay  
Bit time  
Bit time  
Inter-packet delay of device  
tPDRSP1  
6.5  
7.5  
responses using detachable cable  
Inter-packet delay of device  
responses using captive cable  
tPDRSP2  
Bit time  
SetAddress() completion time  
tDSETADDR  
50  
50  
ms  
ms  
Time to complete standard request  
without data stage  
tDRQCMPLTND  
Time to deliver first and subsequent  
data (excluding last) for standard  
request  
tDRETDATA1  
500  
50  
ms  
ms  
Time to deliver last data for standard  
request  
tDRETDATAN  
Data Sheet S13918EJ3V0DS  
27  
µPD72012  
Measurement Conditions  
(1) Differential data jitter  
tPERIOD  
Crossover  
points  
Differential data lines  
Continuous  
transition  
N × tPERIOD + txJR1  
Pair transition  
N × tPERIOD + txDJ2  
(2) EOP transition skew and EOP length differential  
tPERIOD  
Extension  
crossover points  
Crossover point  
Differential data lines  
From differential  
data until SE0 skew  
N × tPERIOD + tDEOP  
Source EOP width: tFEOPT, tLEOPT  
Receiver EOP width: tFEOPR, tLEOPR  
(3) Permissible range of receiver jitter  
tPERIOD  
Differential data lines  
tJR  
tJR1  
tJR2  
Continuous transition  
N × tPERIOD + tJR1  
Pair transition  
N × tPERIOD + tJR2  
Remark tPERIOD is the data rate of a receiver that has the range that is defined in paragraph 7.1.11 of USB  
Specification Revision 1.1.  
28  
Data Sheet S13918EJ3V0DS  
µPD72012  
(4) HUB differential delay, differential jitter, and SOP distortion  
(a) Downstream HUB delay including cable (b) Downstream HUB delay excluding cable  
Upstream  
Upstream  
Crossover point  
port of HUB  
end of cable  
50% point of  
initial swing  
VSS  
VSS  
50% point of  
initial swing  
HUB delay  
downstream  
tHDD2  
Downstream  
end of HUB  
Downstream  
port of HUB  
HUB delay  
downstream  
tHDD1  
VSS  
VSS  
(c) Upstream HUB delay with and without cable  
Crossover point  
Downstream  
port of HUB  
VSS  
Crossover point  
Upstream port or  
end of cable  
HUB delay  
upstream  
tHDD1, tHDD2  
VSS  
HUB operation jitter:  
tHDJ1 = tHDDx(J) tHDDx(K) or tHDDx(K) tHDDx(J) Continuous transition  
tHDJ2 = tHDDx(J) tHDDx(J) or tHDDx(K) tHDDx(K) Pair transition  
Bit after SOP width distortion (same as data jitter of next transition of SOP):  
tFSOP = tHDDx(next J) tHDDx(SOP)  
The low-speed timing below is determined by the same method.  
tLHDD, tLDHJ1, tLDJH2, tLUHJ1, tLUJH2, and tLSOP  
Data Sheet S13918EJ3V0DS  
29  
µPD72012  
(5) HUB EOP delay and EOP skew  
(a) Downstream EOP delay including cable  
(b) Downstream EOP delay excluding cable  
50% point of  
initial swing  
Expansion  
Upstream port  
of HUB  
Upstream  
crossover points  
end of cable  
VSS  
VSS  
tEOP-  
tEOP-  
tEOP+  
tEOP+  
Downstream  
port of HUB  
Downstream  
end of HUB  
VSS  
VSS  
(c) Downstream EOP delay with and without cable  
Expansion  
crossover points  
Downstream  
port  
VSS  
tEOP+  
tEOP-  
Expansion  
crossover points  
Upstream port or  
end of cable  
VSS  
EOP delay:  
tEOPD = tEOPy tEHDDx  
(tEOPy means apply this expression to tEOP– and tEOP+.)  
EOP skew:  
tHESK = tEOP+ tEOP–  
The low speed timing below is determined by the same method.  
tLEOPD, tLHESK  
30  
Data Sheet S13918EJ3V0DS  
µPD72012  
CS Timing Chart  
500 µsec  
500 µsec  
500 µsec  
500 µsec  
HUB power supply  
Up port D+ line  
BUS reset  
PP pin output  
CS pin input  
Output cut-off  
DEVICE  
connection  
inrush current  
Overcurrent  
generation  
Port power  
supply ON  
CS pin operation  
region  
Power supply ON  
Bus power: Up port connection  
Self-power: Power supply ON  
CS detection  
delay time  
CS active period  
Remark The active period of the CS pin is in effect only when the PP pin is ON.  
There is a delay time of approximately 500 µsec duration at the CS pin.  
Data Sheet S13918EJ3V0DS  
31  
µPD72012  
4. PACKAGE DRAWINGS  
42-PIN PLASTIC SDIP (15.24mm(600))  
42  
22  
1
21  
A
K
L
J
I
F
M
R
B
C
D
M
N
H
G
NOTES  
1. Each lead centerline is located within 0.17 mm of  
ITEM MILLIMETERS  
A
B
C
D
F
G
H
I
39.13 MAX.  
1.78 MAX.  
1.778 (T.P.)  
0.50 0.10  
0.9 MIN.  
its true position (T.P.) at maximum material condition.  
2. Item "K" to center of leads when formed parallel.  
3.2 0.3  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
15.24 (T.P.)  
13.2  
J
K
L
+0.10  
0.25  
M
0.05  
N
R
0.17  
015°  
P42C-70-600A-2  
32  
Data Sheet S13918EJ3V0DS  
µPD72012  
44-PIN PLASTIC QFP (10x10)  
A
B
23  
22  
33  
34  
detail of lead end  
S
C
D
R
Q
12  
11  
44  
1
F
G
J
M
H
I
P
K
M
S
N
S
L
NOTE  
Each lead centerline is located within 0.15 mm of  
its true position (T.P.) at maximum material condition.  
ITEM MILLIMETERS  
A
B
C
D
F
13.6 0.4  
10.0 0.2  
10.0 0.2  
13.6 0.4  
1.0  
G
1.0  
+0.08  
H
0.35  
0.07  
0.15  
I
J
K
L
0.8 (T.P.)  
1.8 0.2  
0.8 0.2  
+0.08  
M
0.17  
0.07  
0.10  
N
P
Q
R
S
2.7 0.1  
0.1 0.1  
5° 5°  
3.0 MAX.  
P44GB-80-3B4-5  
Data Sheet S13918EJ3V0DS  
33  
µPD72012  
5. RECOMMENDED SOLDERING CONDITIONS  
The µPD72012 should be soldered and mounted under the following recommended conditions. For the details of  
the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology  
Manual (C10535E).  
For soldering methods and conditions other than those recommended below, contact your NEC sales  
representative.  
Surface mount type soldering conditions  
µPD72012GB-XXX-3B4: 44-pin plastic QFP (10 × 10)  
Soldering Method  
Infrared reflow  
VPS  
Soldering Conditions  
Recommended  
Condition Code  
Peak package temperature: 235°C, Time: 30 sec. max. (210°C min.), Count: three  
IR35-00-3  
VP15-00-3  
WS60-00-1  
times or less  
Peak package temperature: 215°C, Time: 40 sec. max. (200°C min.), Count: three  
times or less  
Solder bath temperature: 260°C max., Time: 10 sec. max., Count: once,  
Preheating temperature: 120°C max. (package surface temperature)  
Pin temperature: 300°C max., Time: 3 sec. max. (per device side)  
Wave soldering  
Pin partial heating  
Caution Avoid using different soldering methods together. (However, the pin partial heating method is  
excluded.)  
Through-hole type soldering conditions  
µPD72012CU-XXX: 42-pin plastic SDIP (15.24 mm (600))  
Soldering Method  
Soldering Conditions  
Solder bath temperature: 260°C max., Time: 10 sec. max.  
Wave soldering (pins  
only)  
Pin temperature: 300°C max., Time: 3 sec. max. (per pin)  
Pin partial heating  
Caution Apply wave soldering only to the pins, and exercise care that solder does not directly contact  
the package.  
34  
Data Sheet S13918EJ3V0DS  
µPD72012  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
Data Sheet S13918EJ3V0DS  
35  
µPD72012  
The export of this product from Japan is prohibited without governmental license. To export or re-export this product from  
a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
The information in this document is current as of April, 2001. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data  
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products  
and/or types are available in every country. Please check with an NEC sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD720130

USB2.0 to IDE Bridge
NEC

UPD720130GC-9EU

USB2.0 to IDE Bridge
NEC

UPD720130GC-9EU

UNIVERSAL SERIAL BUS CONTROLLER, PQFP100, 14 X 14 MM, PLASTIC, TQFP-100
RENESAS

UPD720130GC-9EU-A

USB Bus Controller, MOS, PQFP100, 14 X 14 MM, LEAD FREE, PLASTIC, TQFP-100
NEC

UPD720130GC-9EU-A

UNIVERSAL SERIAL BUS CONTROLLER
RENESAS

UPD720130GC-9EU-SIN

USB2.0 to IDE Bridge
NEC

UPD720130GC-9EU-SIN

UNIVERSAL SERIAL BUS CONTROLLER
RENESAS

UPD720130GC-9EU-SIN-A

USB Bus Controller, MOS, PQFP100, 14 X 14 MM, PLASTIC, TQFP-100
NEC

UPD720133

MOS Integrated Circuit
NEC

UPD720133GB-YEU

USB Bus Controller, MOS, PQFP64, 10 X 10 MM, PLASTIC, TQFP-64
NEC

UPD720133GB-YEU-A

IC,BUS CONTROLLER,CMOS,TQFP,64PIN
RENESAS

UPD720133GB-YEU-A

USB Bus Controller, MOS, PQFP64, 10 X 10 MM, LEAD FREE, PLASTIC, TQFP-64
NEC