UPD75104 [NEC]

4-BIT SINGLE-CHIP MICROCOMPUTER; 4位单片机
UPD75104
型号: UPD75104
厂家: NEC    NEC
描述:

4-BIT SINGLE-CHIP MICROCOMPUTER
4位单片机

计算机
文件: 总70页 (文件大小:527K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD75104, 75106, 75108  
4-BIT SINGLE-CHIP MICROCOMPUTER  
DESCRIPTION  
µPD75108 is a 4-bit single-chip microcomputer integrating timer/event counters, serial interface, and vector  
interrupt function, in addition to a CPU, ROM, RAM, and I/O ports, on a single chip. Operating at high speeds,  
the microcomputer allows data to be manipulated in units of 1, 4, or 8 bits. In addition, various bit manipulation  
instructions are provided to reinforce I/O manipulation capability. Equipped with I/Os for interfacing with  
peripheral circuits operating on a different supply voltage, outputs that can directly drive LEDs, and analog  
inputs, µPD75108 is suitable for controlling such systems as VTRs, acoustic products, button telephones, radio  
communications equipment, and printers. A pin-compatible EPROM model is also available for evaluation of  
system development and small-scale production of application systems.  
Detailed functions are described in the following user’s manual. Be sure to read it for designing.  
µPD751XX Series User’s Manual: IEM-922  
FEATURES  
Internal memory  
• Program memory (ROM)  
: 8068 × 8 bits (µPD75108)  
: 6016 × 8 bits (µPD75106)  
: 4096 × 8 bits (µPD75104)  
• Data memory (RAM)  
: 512 × 4 bits (µPD75108)  
: 320 × 4 bits (µPD75106, 75104)  
New architecture “75X series” rivaling 8-bit microcomputers  
43 systematically organized instructions  
• A wealth of bit manipulation instructions  
• 8-bit data transfer, compare, operation, increment, and decrement instructions  
• 1-byte relative branch instructions  
• GETI instruction executing 2-/3-byte instruction with one byte  
High speed. Minimum instruction execution time: 0.95 µs (at 4.19 MHz), 5 V  
Power-saving, instruction time change function: 0.95 µs/1.91 µs/15.3 µs (at 4.19 MHz)  
I/O port pins as many as 58  
Three channels of 8-bit timers  
8-bit serial interface  
Multiplexed vector interrupt function  
Model with PROM is available: µPD75P108B (One-time PROM, EPROM)  
Unless there are differences among µPD75104, 75106, and 75108 functions, µPD75108 is treated as the  
representative model throughout this manual.  
The information in this document is subject to change without notice.  
The mark shows major revised points.  
Document No. IC-2520B  
(O. D. No. IC-6906B)  
Date Published January 1994 P  
Printed in Japan  
NEC Corporation 1989  
µPD75104, 75106, 75108  
ORDERING INFORMATION  
Part Number  
Package  
Quality Grade  
µPD75104CW-xxx  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 20 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 20 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 20 mm)  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
µPD75104GF-xxx-3BE  
µPD75106CW-xxx  
µPD75106GF-xxx-3BE  
µPD75108CW-xxx  
µPD75108GF-xxx-3BE  
Remarks: xxx is ROM code number.  
Please refer to “Quality Grade on NEC Semiconductor Devices” (Document Number IEI-1209) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
2
µPD75104, 75106, 75108  
FUNCTIONAL OUTLINE  
Item  
Specifications  
Number of Basic Instructions  
43  
Minimum Instruction  
Execution Time  
Changeable in three steps: 0.95 µs, 1.91 µs, and 15.3 µs at 4.19 MHz  
ROM  
RAM  
8064 × 8 bits (µPD75108), 6016 × 8 bits (µPD75106), 4096 × 8 bits (µPD75104)  
512 × 4 bits (µPD75108), 320 × 4 bits (µPD75106, 75104)  
4 bits × 8 × 4 banks (memory mapped)  
Internal Memory  
General-Purpose Register  
Accumulator  
Three accumulators selectable according to the bit length of manipulated data:  
• 1-bit accumulator (CY), 4-bit accumulator (A), and 8-bit accumulator (XA)  
58 port pins  
• CMOS input pins: 10  
• CMOS I/O pins (can directly drive LEDs): 32  
• Medium voltage N-ch open-drain I/O pins: 12  
(can directly drive LEDs. Pull-up resistor can be connected to each bit)  
• Comparator input pins (4-bit accuracy): 4  
I/O Port  
• 8-bit timer/event counter × 2  
Timer/Counter  
Serial Interface  
• 8-bit basic interval timer (can be used as watchdog timer)  
• 8 bits  
• LSB first/MSB first mode selectable  
• Two transfer modes (transfer/reception and reception only modes)  
Vector Interrupt  
Test Input  
External: 3, Internal: 4  
External: 2  
Standby  
• STOP and HALT modes  
• Various bit manipulation instructions (set, reset, test, Boolean operation)  
• 8-bit data transfer, compare, operation, increment, and decrement  
• 1-byte relative branch instructions  
Instruction Set  
• GETI instruction constituting 2 or 3-byte instruction with 1 byte  
• Power-ON reset circuit (mask option)  
Others  
• Bit manipulation memory (bit sequential buffer: 16 bits)  
• 64-pin plastic shrink DIP (750 mil)  
Package  
• 64-pin plastic QFP (14 × 20 mm)  
3
µPD75104, 75106, 75108  
CONTENTS  
1. PIN CONFIGURATION (TOP VIEW)...............................................................................................  
6
8
2. BLOCK DIAGRAM ...........................................................................................................................  
3. PIN FUNCTIONS..............................................................................................................................  
9
9
3.1  
3.2  
3.3  
3.4  
3.5  
PORT PINS.............................................................................................................................................  
PINS OTHER THAN PORTS................................................................................................................. 10  
PIN INPUT/OUTPUT CIRCUITS ........................................................................................................... 11  
RECOMMENDED PROCESSING OF UNUSED PINS .......................................................................... 12  
NOTES ON USING THE P00/INT4, AND RESET PINS...................................................................... 13  
4. MEMORY CONFIGURATION .......................................................................................................... 14  
5. PERIPHERAL HARDWARE FUNCTIONS........................................................................................ 20  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
PORTS .................................................................................................................................................... 20  
CLOCK GENERATOR CIRCUIT ............................................................................................................ 21  
CLOCK OUTPUT CIRCUIT .................................................................................................................... 22  
BASIC INTERVAL TIMER ..................................................................................................................... 23  
TIMER/EVENT COUNTER ..................................................................................................................... 23  
SERIAL INTERFACE .............................................................................................................................. 25  
PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT) .................................................... 27  
BIT SEQUENTIAL BUFFER .... 16 BITS ............................................................................................... 28  
POWER-ON FLAG (MASK OPTION) .................................................................................................... 28  
6. INTERRUPT FUNCTIONS................................................................................................................ 28  
7. STANDBY FUNCTIONS .................................................................................................................. 30  
8. RESET FUNCTION........................................................................................................................... 31  
9. INSTRUCTION SET ......................................................................................................................... 34  
4
µPD75104, 75106, 75108  
10. APPLICATION EXAMPLES.............................................................................................................. 43  
10.1 VTR SYSTEM CONTROLLER ............................................................................................................... 43  
10.2 VTR CAMERA ........................................................................................................................................ 43  
10.3 COMPACT DISC PLAYER ..................................................................................................................... 44  
10.4 AUTOMOBILE APPLICATIONS (TRIP COMPUTER)............................................................................ 44  
10.5 PUSHBUTTON TELEPHONE ................................................................................................................ 45  
10.6 DISPLAY PAGER ................................................................................................................................... 45  
10.7 PLAIN PAPER COPIER (PPC) ............................................................................................................... 46  
10.8 PRINTER CONTROLLER ....................................................................................................................... 46  
11. MASK OPTION SELECTION ........................................................................................................... 47  
12. ELECTRICAL SPECIFICATIONS ...................................................................................................... 48  
13. CHARACTERISTIC DATA ................................................................................................................ 57  
14. PACKAGE DRAWINGS ................................................................................................................... 62  
15. RECOMMENDED SOLDERING CONDITIONS ............................................................................... 65  
APPENDIX A. FUNCTIONAL DIFFERENCES AMONG PRODUCTS IN µPD751XX SERIES ......... 66  
APPENDIX B. DEVELOPMENT TOOLS .............................................................................................. 67  
APPENDIX C. RELATED DOCUMENTS .............................................................................................. 68  
5
µPD75104, 75106, 75108  
1. PIN CONFIGURATION (Top View)  
• 64-Pin Plastic Shrink DIP (750 mil)  
P13/INT3  
1
2
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
SS  
P12/INT2  
P11/INT1  
P10/INT0  
PTH03  
PTH02  
PTH01  
PTH00  
TI0  
P90  
P91  
P92  
P93  
P80  
P81  
P82  
P83  
P70  
P71  
P72  
P73  
P60  
P61  
P62  
P63  
X1  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
TI1  
P23  
µ
µ
µ
P22/PCL  
P21 PTO1  
P20 PTO0  
P03/SI  
P02/SO  
P01/SCK  
P00/INT4  
P123  
X2  
P122  
RESET  
P50  
P51  
P52  
P53  
P40  
P41  
P42  
P43  
P30  
P31  
P32  
P33  
P121  
P120  
P133  
P132  
P131  
P130  
P143  
P142  
P141  
P140  
NC  
V
DD  
• 64-Pin Plastic QFP (14 × 20 mm)  
64 63 62 61 60 59 58 57 56 55 54 53 52  
P41  
P40  
P53  
P52  
P51  
P50  
RESET  
X2  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
51  
P131  
P132  
P133  
P120  
P121  
P122  
P123  
P00/INT4  
P01/SCK  
P02/SO  
P03/SI  
P20/PTO0  
P21/PTO1  
P22/PCL  
P23  
TI1  
TI0  
PTH00  
PTH01  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
µ
µ
µ
X1  
P63  
P62  
P61  
P60  
P73  
P72  
P71  
P70  
P83  
P82  
20 21 22 23 24 25 26 27 28 29 30 31 32  
6
µPD75104, 75106, 75108  
Pin names  
P00-P03 : Port 0  
SCK  
: Serial Clock Input/Output  
P10-P13 : Port 1  
P20-P23 : Port 2  
P30-P33 : Port 3  
P40-P43 : Port 4  
P50-P53 : Port 5  
P60-P63 : Port 6  
P70-P73 : Port 7  
P80-P83 : Port 8  
P90-P93 : Port 9  
P120-P123 : Port 12  
P130-P133 : Port 13  
P140-P143 : Port 14  
SO  
: Serial Output  
: Serial Input  
: Timer Output  
: Clock Output  
SI  
PTO0, PTO1  
PCL  
PTH00-PTH03 : Comparator Input  
INT0, INT1, INT4 : External Vector Interrupt Input  
INT2, INT3  
TI0, TI1  
X1, X2  
RESET  
NC  
: External Test Input  
: Timer Input  
: Clock Oscillation Pin  
: Reset Input  
: No Connection  
7
BIT SEQ.  
BUFFER (16)  
BASIC  
INTERVAL  
TIMER  
PORT 0  
PORT 1  
4
4
P00 - P03  
P10 - P13  
CY  
SP (8)  
BANK  
PROGRAM  
COUNTER*  
INTBT  
ALU  
TI0  
TIMER/EVENT  
COUNTER  
#0  
PTO0/P20  
PORT 2  
PORT 3  
PORT 4  
PORT 5  
PORT 6  
PORT 7  
PORT 8  
PORT 9  
4
P20 - P23  
P30 - P33  
P40 - P43  
P50 - P53  
P60 - P63  
P70 - P73  
P80 - P83  
P90 - P93  
INTT0  
TI1  
4
4
4
4
4
4
4
TIMER/EVENT  
COUNTER  
#1  
ROM  
PROGRAM  
MEMORY  
GENERAL REG.  
PTO1/P21  
INTT1  
×
8064 8BITS  
µ
:
PD75108  
RAM  
SI/P03  
SO/P02  
SCK/P01  
×
6016 8BITS  
DECODE  
AND  
CONTROL  
DATA MEMORY  
SERIAL  
INTERFACE  
µ
:
PD75106  
×
512 4BITS  
×
4096 8BITS  
µ
:
PD75108  
µ
:
PD75104  
×
320 4BITS  
µ
:
PD75106, 75104  
INTSIO  
INT0/P10  
INT1/P11  
INT2/P12  
INT3/P13  
INT4/P00  
INTERRUPT  
CONTROL  
µ
f
XX /2N  
PORT 12  
PORT 13  
PORT 14  
P120 - P123  
P130 - P133  
P140 - P143  
4
4
4
CPU CLOCK  
CLOCK  
OUTPUT  
CONTROL  
CLOCK  
DIVIDER  
CLOCK  
GENERATOR  
STAND BY  
CONTROL  
PROGRAM-  
MABLE  
THRESHOLD  
PORT #0  
Φ
PTH00-PTH03  
4
PCL/P22  
X1  
X2  
V
DD  
VSS RESET  
*: 13 bits: µPD75106, 75108  
12 bits: µPD75104  
µPD75104, 75106, 75108  
3. PIN FUNCTIONS  
3.1  
PORT PINS  
I/O  
8-Bit  
Pin Name  
I/O  
Shared with:  
Function  
At Reset  
Input  
Circuit  
I/O  
TYPE*1  
P00  
P01  
Input  
I/O  
INT4  
SCK  
SO  
B
F
E
4-bit input port (PORT 0)  
P02  
I/O  
P03  
Input  
SI  
B
x
P10  
INT0  
INT1  
INT2  
INT3  
PTO0  
PTO1  
PCL  
P11  
Input  
4-bit input port (PORT 1)  
4-bit I/O port (PORT 2)  
Input  
B
P12  
P13  
P20*3  
P21*3  
P22*3  
P23*3  
I/O  
I/O  
Input  
Input  
E
E
x
4-bit programmable I/O port (PORT 3)  
Can be specified for input or output bitwise.  
4-bit I/O port (PORT 4)  
P30-P33*3  
P40-P43*3  
P50-P53*3  
I/O  
I/O  
Input  
Input  
E
E
o
o
o
4-bit I/O port (PORT 5)  
4-bit programmable I/O port (PORT 6)  
Can be specified for input or output bitwise.  
4-bit I/O port (PORT 7)  
P60-P63*3  
I/O  
Input  
E
P70-P73*3  
P80-P83*3  
P90-P93*3  
I/O  
I/O  
I/O  
Input  
Input  
Input  
E
E
E
4-bit I/O port (PORT 8)  
4-bit I/O port (PORT 9)  
4-bit N-ch open-drain I/O port (PORT 12)  
Built-in pull-up resistors can be specified in bit  
units by mask option.  
P120-P123*3  
P130-P133*3  
P140-P143*3  
I/O  
I/O  
I/O  
Input*2  
Input*2  
Input*2  
M
M
M
Open-drain withstanding voltage: 12 V  
4-bit N-ch open-drain I/O port (PORT 13)  
Built-in pull-up resistors can be specified in bit  
units by mask option.  
o
Open-drain withstanding voltage: 12 V  
4-bit N-ch open-drain I/O port (PORT 14)  
Built-in pull-up resistors can be specified in bit  
units by mask option.  
Open-drain withstanding voltage: 12 V  
*1: Circles indicate Schmitt trigger input pins.  
2: With drain open: high impedance  
With pull-up resistor connected: high level  
3: Can directly drive LEDs.  
9
µPD75104, 75106, 75108  
3.2  
PINS OTHER THAN PORTS  
I/O  
Pin Name  
I/O  
Shared with:  
Function  
At Reset  
Circuit  
TYPE*1  
PTH00-PTH03  
TI0  
Input  
4-bit variable threshold voltage analog input port  
External event pulse inputs for timer/event counter.  
Also serves as edge-detected vector interrupt input.  
1-bit input also possible.  
N
Input  
B
TI1  
PTO0  
PTO1  
SCK  
SO  
P20  
P21  
P01  
P02  
P03  
I/O  
Outputs for timer/event counter  
Input  
E
I/O  
I/O  
Serial clock I/O  
Input  
Input  
Input  
F
E
Serial data output  
SI  
Input  
Serial data input  
B
Edge-detected vectored interrupt input (both rising and  
falling edges detected)  
INT4  
Input  
Input  
P00  
Input  
Input  
B
B
INT0  
INT1  
INT2  
INT3  
PCL  
P10  
P11  
P12  
P13  
P22  
Edge-detected vectored interrupt inputs (valid  
edge selectable)  
Input  
I/O  
Edge-detected testable inputs (rising edge detected)  
Input  
Input  
B
Clock output  
E
Crystal/ceramic system clock oscillator connections.  
Input external clock to X1, and signal in reverse phase  
with X1 to X2.  
X1, X2  
RESET  
NC*2  
VDD  
Input  
System reset input (low level active type)  
No Connection  
B
Positive power supply  
VSS  
GND  
*1: Circles indicate Schmitt trigger input pins.  
2: Connect the NC pin directly to the VDD pin when µPD75P108B and a printed circuit board are shared.  
10  
µPD75104, 75106, 75108  
3.3  
PIN INPUT/OUTPUT CIRCUITS  
The following shows a simplified input/output circuit diagram for each pin of the µPD75108.  
TYPE A  
TYPE E  
data  
V
DD  
P–ch  
IN/OUT  
Type D  
IN  
output  
disable  
N–ch  
Type A  
Input buffer of CMOS standard  
TYPE B  
I/O circuit consisting of Type D push-pull output circuit  
and Type A input buffer  
TYPE F  
data  
IN/OUT  
IN  
Type D  
output  
disable  
Type B  
I/O circuit consisting of Type D push-pull output and Type  
B Schmitt trigger input  
Schmitt trigger input with hysteresis characteristics  
TYPE D  
V
DD  
TYPE M  
P.U.R.  
(mask option)  
IN/OUT  
VDD  
data  
P-ch  
N-ch  
data  
(+12 V  
OUT  
withstand)  
output  
disable  
output  
disable  
N-ch  
Push – pull output that can be set in a output  
high– impedance state (both Pch and N–ch are off)  
Medium-voltage input  
buffer (+12 V withstand)  
P.U.R.: Pull-Up Resistor  
11  
µPD75104, 75106, 75108  
TYPE N  
Comparator  
+
IN  
V
REF (threshold voltage)  
3.4  
RECOMMENDED PROCESSING OF UNUSED PINS  
Pin  
Recommended connections  
PTH00-PTH03  
TI0  
TI1  
Connect to VSS or VDD  
P00  
Connect to VSS  
P01-P03  
P10-P13  
Connect to VSS or VDD  
Connect to VSS  
P20-P23  
P30-P33  
P40-P43  
P50-P53  
P60-P63  
P70-P73  
P80-P83  
P90-P93  
P120-P123  
P130-P133  
P140-P143  
Input: Connect to VSS or VDD  
Output: Open  
RESET*1  
NC*2  
Connect to VDD  
Open  
*1: Connect this pin to the VDD pin only when a power-ON reset circuit  
is provided as a mask option.  
2: Connect the NC pin to the VDD pin when µPD75P108 and a printed  
circuit board are shared.  
12  
µPD75104, 75106, 75108  
3.5  
NOTES ON USING THE P00/INT4, AND RESET PINS  
In addition to the functions described in Sections 3.1 and 3.2, an exclusive function for setting the test mode,  
in which the internal fuctions of the µPD75108 are tested (solely used for IC tests), is provided to the P00/INT4  
and RESET pins.  
If a voltage exceeding VDD is applied to either of these pins, the µPD75108 is put into test mode. Therefore,  
even when the µPD75108 is in normal operation, if noise exceeding the VDD is input into any of these pins, the  
µPD75108 will enter the test mode, and this will cause problems for normal operation.  
As an example, if the wiring to the P00/INT4 pin or the RESET pin is long, stray noise may be picked up  
and the above montioned problem may occur.  
Therefore, all wiring to these pins must be made short enough to not pick up stray noise. If noise cannot  
be avoided, suppress the noise using a capacitor or diode as shown in the figure below.  
Connect a diode across P00/INT4 and  
RESET, and VDD.  
Connect a capacitor across P00/INT4 and  
, and VDD.  
RESET  
VDD  
VDD  
VDD  
VDD  
P00/INT4, RESET  
P00/INT4, RESET  
13  
µPD75104, 75106, 75108  
4. MEMORY CONFIGURATION  
Program memory (ROM) ... 8064 × 8 bits (0000H-1F7FH) : µPD75108  
... 6016 × 8 bits (0000H-177FH) : µPD75106  
... 4096 × 8 bits (0000H-0FFFH) : µPD75104  
• 0000H, 0001H : Vector table to which address from which program is started is written after reset  
• 0002H-000BH: Vector table to which address from which program is started is written after interrupt  
• 0020H-007FH : Table area referenced by GETI instruction  
Data memory (RAM)  
• Data area ....512 × 4 bits (000H–1FFH): µPD75108  
320 × 4 bits (000H-13FH) : µPD75106, 75104  
• Peripheral hardware area .... 128 × 4 bits (F80H–FFFH)  
14  
µPD75104, 75106, 75108  
(a) µPD75108  
Address  
7
6
5
0
0
0000H MBE RBE  
0002H MBE RBE  
0004H MBE RBE  
0006H MBE RBE  
0008H MBE RBE  
000AH MBE RBE  
Internal reset start address (upper 5 bits)  
Internal reset start address (lower 8 bits)  
INTBT/INT4 start address (upper 5 bits)  
INTBT/INT4 start address (lower 8 bits)  
INT0/INT1 start address (upper 5 bits)  
INT0/INT1 start address (lower 8 bits)  
INTSIO start address (upper 5 bits)  
INTSIO start address (lower 8 bits)  
INTT0 start address (upper 5 bits)  
INTT0 start address (lower 8 bits)  
INTT1 start address (upper 5 bits)  
INTT1 start address (lower 8 bits)  
0
0
0
0
0
CALLF  
! faddr  
instruction  
entry  
CALL ! addr  
instruction  
subroutine  
address  
entry address  
BRCB  
! caddr  
instruction  
branch  
BR ! addr  
instruction  
branch address  
address  
0020H  
BR $addr  
instruction  
relational  
branch address  
(–15 to –1,  
+2 to +16)  
GETI instruction reference table  
007FH  
0080H  
Branch destination  
07FFH  
0800H  
address and  
subroutine entry  
address for  
GETI instruction  
0FFFH  
1000H  
BRCB ! caddr  
instruction  
branch address  
1F7FH  
Fig. 4-1 Program Memory Map (1/3)  
Remarks: In addition to the above addresses, program can be branched to addresses specified by the PC  
with the contents of its lower 8 bits changed by BR PCDE or BR PCXA instruction.  
15  
µPD75104, 75106, 75108  
(b) µPD75106  
Address  
7
6
5
0
0
0000H MBE RBE  
0002H MBE RBE  
0004H MBE RBE  
0006H MBE RBE  
0008H MBE RBE  
000AH MBE RBE  
Internal reset start address (upper 5 bits)  
Internal reset start address (lower 8 bits)  
INTBT/INT4 start address (upper 5 bits)  
INTBT/INT4 start address (lower 8 bits)  
INT0/INT1 start address (upper 5 bits)  
INT0/INT1 start address (lower 8 bits)  
INTSIO start address (upper 5 bits)  
INTSIO start address (lower 8 bits)  
INTT0 start address (upper 5 bits)  
INTT0 start address (lower 8 bits)  
INTT1 start address (upper 5 bits)  
INTT1 start address (lower 8 bits)  
0
0
0
0
0
CALLF  
! faddr  
instruction  
entry  
CALL ! addr  
instruction  
subroutine  
address  
entry address  
BRCB  
! caddr  
instruction  
branch  
BR ! addr  
instruction  
branch address  
address  
0020H  
BR $addr  
instruction  
GETI instruction reference table  
relational  
branch address  
(–15 to +16)  
007FH  
0080H  
Branch destination  
07FFH  
0800H  
address and  
subroutine entry  
address for  
GETI instruction  
0FFFH  
1000H  
BRCB ! caddr  
instruction  
branch address  
177FH  
Fig. 4-1 Program Memory Map (2/3)  
Remarks: In addition to the above addresses, program can be branched to addresses specified by the PC  
with the contents of its lower 8 bits changed by BR PCDE or BR PCXA instruction.  
16  
µPD75104, 75106, 75108  
(c) µPD75106  
Address  
7
6
5
0
4
0
0
000H MBE RBE  
002H MBE RBE  
004H MBE RBE  
006H MBE RBE  
008H MBE RBE  
00AH MBE RBE  
Internal reset start address (upper 4 bits)  
Internal reset start address (lower 8 bits)  
INTBT/INT4 start address (upper 4 bits)  
INTBT/INT4 start address (lower 8 bits)  
INT0/INT1 start address (upper 4 bits)  
INT0/INT1 start address (lower 8 bits)  
INTSIO start address (upper 4 bits)  
INTSIO start address (lower 8 bits)  
INTT0 start address (upper 4 bits)  
INTT0 start address (lower 8 bits)  
INTT1 start address (upper 4 bits)  
INTT1 start address (lower 8 bits)  
0
0
0
0
0
0
0
0
0
0
CALLF  
! faddr  
instruction  
entry  
BRCB ! caddr  
instruction  
branch address  
address  
Branch destination  
address and  
subroutine entry  
address for  
GETI instruction  
CALL ! addr  
instruction  
subroutine  
entry address  
BR $addr  
instruction  
relational  
branch address  
(–15 to +16)  
020H  
GETI instruction reference table  
07FH  
080H  
7FFH  
800H  
FFFH  
Fig. 4-1 Program Memory Map (3/3)  
Remarks: In addition to the above addresses, program can be branched to addresses specified by the PC  
with the contents of its lower 8 bits changed by BR PCDE or BR PCXA instruction.  
17  
µPD75104, 75106, 75108  
(a) µPD75108  
Memory bank  
Bank 0  
Data memory  
000H  
01FH  
General-purpose  
register area  
(32 × 4)  
Stack area  
256× 4  
Data memory  
Static RAM  
(512× 4)  
0FFH  
100H  
256× 4  
Bank 1  
1FFH  
F80H  
Not provided  
128× 4  
Bank 15  
Peripheral hardware area  
FFFH  
Fig. 4-2 Data Memory Map(1/2)  
18  
µPD75104, 75106, 75108  
(b) µPD75106, 75104  
Memory bank  
Data memory  
000H  
01FH  
General-purpose  
register area  
(32 × 4)  
Stack area  
Bank 0  
General-  
purpose  
256× 4  
Static RAM  
(320× 4)  
0FFH  
100H  
Bank 1  
× 4  
64  
13FH  
Not provided  
F80H  
128× 4  
Bank 15  
Peripheral hardware area  
FFFH  
Fig. 4-2 Data Memory Map(2/2)  
19  
µPD75104, 75106, 75108  
5. PERIPHERAL HARDWARE FUNCTIONS  
5.1  
I/O ports are classified into the following 3 kinds:  
CMOS input (PORT0, 1)  
PORTS  
:
8
CMOS input/output (PORT2, 3, 4, 5, 6, 7, 8, 9): 32  
N-ch open-drain input/output (PORT12, 13, 14) : 12  
Total  
: 52  
Table 5-1 Port Function  
Port  
(Symbol)  
Function  
Remarks  
Operation and Features  
PORT0  
PORT1  
Shared with SI, SO, SCK, and  
INT0 to 4 pins  
Can always be read or tested regardless of opera-  
tion mode of shared pin  
4-bit input  
PORT3  
PORT6  
Can be set in input or output mode bitwise  
PORT2  
PORT4  
PORT5  
PORT7  
PORT8  
PORT9  
PORT12  
PORT13  
PORT14  
4-bit I/O*  
Can be set in input or output mode in units of 4 bits.  
Ports 4 and 5, 6 and 7, 8 and 9 can be used in pairs  
to input or output 8-bit data  
Port 2 pins are shared with  
PTO0, PTO1, and PCL pins  
4-bit I/O*  
Can be set in input or output mode in units of 4 bits.  
Ports 12 and 13 can be used in pairs to input or  
output 8-bit data  
Each bit can be connected to  
pull-up resistor by mask option  
(N-ch open- drain.  
12V)  
*: Can directly drive LED.  
20  
µPD75104, 75106, 75108  
5.2  
CLOCK GENERATOR CIRCUIT  
The clock generator circuit generates clocks to control CPU operation modes by supplying clocks to the CPU and  
peripheral hardware. In addition, this circuit can change the instruction execution time.  
• 0.95 µs/1.91 µs/15.3 µs (operating at 4.19 MHz)  
· Basic interval timer (BT)  
· Clock output circuit  
· Timer/event counter  
· Serial interface  
X1  
X2  
1/8 to 1/4096  
System clock  
generator  
circuit  
f
f
XX or  
Frequency civider  
X
1/2 1/16  
Oscillation  
stops  
Frequency  
divider  
Φ
1/4  
· CPU  
· Clock output  
circuit  
PCC  
PCC0  
PCC1  
PCC2  
PCC3  
4
HALT F/F  
S
HALT*  
STOP*  
R
Q
Clears  
PCC2,  
PCC3  
STOP F/F  
Wait release signal from BT  
RES (internal reset) signal  
S
Q
R
Standby release signal from  
interrupt control circuit  
*: Execution of the instruction  
Remarks 1: fXX= Crystal/ceramic oscillator  
2: f = External clock frequency  
3: PCC: Processor clock control register  
X
4: One clock cycle (tCY) of Φ is one machine cycle of an instruction. For tCY, refer to AC  
characteristics in 12. ELECTRICAL SPECIFICATIONS.  
Fig. 5-1 Clock Generator Block Diagram  
21  
µPD75104, 75106, 75108  
5.3  
CLOCK OUTPUT CIRCUIT  
The clock output circuit outputs clock pulse from the P22/PCL pin. This clock output circuit is used to output  
clock pulses to the remote control output, peripheral LSIs, etc.  
Clock output (PCL) : Φ, 524, 262 kHz (operating at 4.19 MHz)  
From the  
clock  
generator  
Φ
Output  
buffer  
f
f
XX/23  
XX/24  
Selector  
PCL/P22  
PORT2.2  
Bit 2 of PMGB  
Port 2 input/  
output mode  
specification  
bit  
P22 output  
latch  
CLOM3 CLOM2 CLOM1 CLOM0 CLOM  
4
Internal bus  
Fig. 5-2 Clock Output Circuit Configuration  
22  
µPD75104, 75106, 75108  
5.4  
BASIC INTERVAL TIMER  
The basic interval timer has these functions:  
Interval timer operation which generates a reference time interrupt  
Watchdog timer application which detects a program runaway  
Selects the wait time for releasing the standby mode and counts the wait time  
Reads out the count value  
From the  
clock generator  
Clear  
Clear  
f
XX/25  
f
XX/27  
Set  
signal  
BT  
interrupt  
request flag  
Basic interval timer  
(8-bit frequency divider circuit)  
MPX  
Vector  
interrupt  
request  
signal  
f
XX/29  
BT  
IRQBT  
f
XX/212  
3
Wait release signal  
for standby release  
BTM3  
BTM2 BTM1  
4
BTM0  
BTM  
SET1*  
8
Internal bus  
Remarks : *: Instruction execution  
Fig. 5-3 Basic Interval Timer Configuration  
5.5  
µPD75108 contains two channels of timer/event counters.  
These two channels are almost identical in terms of configuration and function except the count pulse (CP) that  
TIMER/EVENT COUNTER  
can be selected and the function to supply clocks to the serial interface.  
The functions of the timer/event counter include:  
Programmable interval timer operation  
Output of square wave at an arbitrary frequency to PTOn pin  
Event counter operation  
Input of TIn pin signal as external interrupt input signal  
Dividing TIn pin input by N to output to PTOn pin (frequency divider operation)  
Supply of serial shift clock to serial interface circuit (channel 0 only)  
Reading counting status  
23  
Internal bus  
SET1*  
8
8
8
TMn  
TMODn  
TOEn TOn  
PORT2.n  
Bit 2 of PGMB  
To  
enable  
flag  
P2n  
output  
latch  
Port 2  
TMn7 TMn6 TMn5 TMn4 TMn3 TMn2 TMn1 TMn0  
Modulo register (8)  
I/O  
mode  
To serial  
TOFn  
TIn  
interface  
8
(channel 0 only)  
Coincidence  
TOUT  
F/F  
Comparator (8)  
8
P2n/PTOn  
To  
selector  
Output  
buffer  
Input buffer  
TIn  
Tn  
Edge  
detector  
circuit  
Count register (8)  
Clear  
IRQTn set  
signal  
CP  
From  
MPX  
clock  
generator  
circuit  
TMn1  
TMn0  
Timer operation start  
µ
RES  
IRQTn clear  
signal  
Remarks: * indicates the instruction execution.  
Fig. 5-4 Timer/Event Counter Block Diagram (n = 0, 1)  
µPD75104, 75106, 75108  
5.6  
SERIAL INTERFACE  
The µPD75108 is equipped with clock 8-bit serial interface that operates in the following two modes:  
Operation stop mode  
Three-line serial I/O mode  
25  
Internal bus  
8
SET1*  
8
8
SIO0  
SIO7  
SIOM  
SIO  
P03/SI  
Shift register (8)  
SIOM7 SIOM6 SIOM5 SIOM4 SIOM3 SIOM2 SIOM1 SIOM0  
P02/SO  
Overflow  
IRQSIO  
set signal  
Serial clock  
counter (3)  
IRQSIO  
clear signal  
Clear  
Serial start  
P01/SCK  
R
S
µ
Φ
Q
f
f
XX /24  
MPX  
XX /210  
TOF0 (from timer channel 0)  
*: "SET1" indicates execution of the instruction.  
Fig. 5-5 Serial Interface Block Diagram  
µPD75104, 75106, 75108  
5.7  
PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT)  
µPD75108isequippedwitha4-bitanaloginputport(consistingofPTH00toPTH03pins)whosethresholdvoltage  
is programmable.  
This programmable threshold port is configured as shown in Figure 5-6.  
The threshold voltage (VREF) can be changed in 16 steps (VDD × 0.5/16 – VDD × 15.5/16), and analog signals can be  
directly input.  
When VREF is set to VDD × 7.5/16, the programmable threshold port can also be used as a digital signal input port.  
Input buffer  
+
PTH00  
PTH01  
PTH02  
PTH03  
+
+
+
Operates  
/stops  
PTH0  
V
DD  
PTHM7  
1
R
R
R
PTHM6  
PTHM5  
PTHM4  
PTHM3  
PTHM2  
PTHM1  
PTHM0  
2
MPX  
V
REF  
8
1
2
R
4
PTHM  
Fig. 5-6 Programmable Threshold Port Configuration  
27  
µPD75104, 75106, 75108  
5.8  
BIT SEQUENTIAL BUFFER .... 16 BITS  
The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer,  
addresses and bit specifications can be sequentially up-dated in bit manipulation operation. Therefore, this  
buffer is very useful for processing long data in bit units.  
Address bit  
Symbol  
FC3H  
FC2H  
FC1H  
FC0H  
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
BSB3  
BSB2  
BSB1  
BSB0  
L register L = F  
L = C L = B  
L = 8 L = 7  
L = 4 L = 3  
L = 0  
DECS L  
INCS L  
Remarks: For the pmem.@L addressing, the specification bit is shifted according to the L register.  
Fig. 5-7 Bit Sequential Buffer Format  
5.9  
POWER-ON FLAG (MASK OPTION)  
The power-ON flag (PONF) is set to only when the power-ON reset circuit operates and power-ON reset signal  
has been generated (see Fig. 8-1).  
The PONF flag is mapped at bit 0 of memory space address FD1H, and can be manipulated by a bit manipulation  
instruction. However, it cannot be set by the SET1 instruction.  
6. INTERRUPT FUNCTIONS  
The µPD75108 has 7 different interrupt sources and can perform multiplexed interrupt processing with  
priority assigned.  
In addition to that, the µPD75108 is also provided with two types of edge detection testable inputs.  
The interrupt control circuit of the µPD75108 has these functions:  
Hardware controlled vector interrupt function which can control whether or not to accept an interrupt by  
using the interrupt enable flag (IExxx) and interrupt master enable flag (IME).  
The interrupt start address can be arbitrarily set.  
Multiplexed interrupt function that can specify priority by the interrupt priority selector register (IPS).  
Interrupt request flag (IRQxxx) test function (an interrupt generation can be confirmed by means of  
software).  
Standby mode release (Interrupts to be released can be selected by the interrupt enable flag).  
28  
Internal bus  
2
2
4
2
9
IM1  
IM0  
IME  
IPS  
IST  
Interrupt enable flag (IE×××)  
INT  
Decoder  
IRQBT  
IRQ4  
BT  
Both edge  
detection  
circuit  
INT4  
/P00  
Edge  
detection  
circuit  
INT0  
/P10  
IRQ0  
Edge  
detection  
circuit  
INT1  
/P11  
IRQ1  
Vector table  
address  
generator  
Priority control  
circuit  
IRQSIO  
IRQT0  
IRQT1  
INTSIO  
INTT0  
INTT1  
µ
Rising edge  
INT2  
/P12  
detection  
circuit  
IRQ2  
IRQ3  
Falling edge  
detection  
circuit  
INT3  
/P13  
Standby  
release signal  
Interrupt  
request flag  
Fig. 6-1 Interrupt Control Block Diagram  
µPD75104, 75106, 75108  
7. STANDBY FUNCTIONS  
The µPD75108 has two different standby modes (STOP mode and HALT mode) to reduce the power  
consumption of the microcomputer chip while waiting for program execution.  
Table 7-1 Each Status in Standby Mode  
STOP Mode  
STOP instruction  
HALT Mode  
HALT instruction  
Setting Instruction  
Clock Generator  
Clock oscillation stops  
Stops  
Only CPU clock Φ is stopped  
circuit  
Basic Interval  
Timer  
Operates (sets IRQBT at reference  
time intervals)  
Operates only when input of external  
SCK or output of TO0 is selected as  
serial clock (where external TI0 is input  
to timer/event counter 0)  
Operates when serial clock other  
than Φ is specified  
Serial Interface  
Operation  
Status  
Timer/Event  
Counter  
Operates only when TIn pin input  
signal is specified as count clock  
Operates  
Operates when clock other than CPU  
Clock output circuit  
CPU  
Stops  
Stops  
clock Φ is used  
Stops  
Release Signal  
Interrupt request signal enabled by interrupt enable flag, or RESET input  
30  
µPD75104, 75106, 75108  
8. RESET FUNCTION  
The reset (RES) signal generator circuit is configured as shown in Figure 8-1.  
RESET  
Internal reset signal  
(RES)  
SWB  
Power-ON  
reset  
generator  
circuit  
SWA  
Execution of bit  
manipulation  
instruction*  
Power-ON  
flag (PONF)  
*: PONF cannot be set to 1 by SET1 instruction.  
Fig. 8-1 Reset Signal Generator Circuit  
ThePower-ONresetgeneratorcircuitgeneratesaninternalresetsignalwhenthesupplyvoltagerises. Thispulse  
can be used in three ways by specifying a mask option through SWA and SWB shown in Fig. 8-1. (Refer to 11. MASK  
OPTION SELECTION.)  
The reset operations performed by the Power-On reset circuit and the RESET input signal are illustrated in Figs.  
8-2 and 8-3, respectively.  
Wait*  
Supply voltage  
0 V  
(approx. 31.3 ms: 4.19 MHz)  
Internal reset signal  
(RES)  
HALT mode  
Operation mode  
Internal reset operation  
*: The wait time does not include the time required after the RES signal has been generated until the  
oscillation starts.  
Fig. 8-2 Reset by Power-ON Reset Circuit  
31  
µPD75104, 75106, 75108  
Wait*  
(31.3 ms: 4.19 MHz)  
RESET input  
Operation mode  
or standby mode  
HALT mode  
Operation mode  
Internal reset operation  
*: The wait time does not include the time required after the RES signal has been generated until the  
oscillation starts.  
Fig. 8-3 Reset by RESET Signal  
The status of each internal hardware device after the reset operation has been performed is shown in Table 8-  
1.  
32  
µPD75104, 75106, 75108  
Table 8-1 Hardware Device Status After Reset  
RESET input during  
standby mode  
Power-ON Reset or RESET  
Input during Operation  
Hardware  
Lower 4 bits of program  
Lower 4 bits of program  
memory address 000H are memory address 000H are  
Program Counter (PC)  
set to PC12-8,*1 and  
contents of address 001H  
are set to PC7-0.  
set to PC12-8,*1 and  
contents of address 001H  
are set to PC7-0.  
Carry Flag (CY)  
Retained  
Undefined  
Skip Flags (SK0-SK2)  
0
0
0
0
PSW  
Interrupt Status Flags (IST0, 1)  
Bit 6 of program memory  
address 000H is set in  
RBE, and bit 7 is set in  
MBE.  
Bit 6 of program memory  
address 000H is set in  
RBE, and bit 7 is set in  
MBE.  
Bank Enable Flags (MBE, RBE)  
Stack Pointer (SP)  
Undefined  
Undefined  
Data Memory (RAM)  
Retained*2  
Undefined  
General-Purpose Registers (X,A,H,L,D,E,B,C)  
Bank Selector Registers (MBS, RBS)  
Retained  
Undefined  
0, 0  
0, 0  
Counter (BT)  
Undefined  
Undefined  
Basic interval timer  
Mode Register (BTM)  
Counter (Tn)  
0
0
0
0
Modulo Register (TMODn)  
Mode Register (TMn)  
TOEn, TOFn  
FFH  
FFH  
Timer/Event Counter  
(n = 0, 1)  
0
0
0, 0  
0, 0  
Shift Register (SIO)  
Mode Register (SIOM)  
Retained  
Undefined  
Serial Interface  
0
0
0
0
Processor Clock Control Register  
(PCC)  
Clock Generator Circuit,  
Clock Output Circuit  
Clock Output Mode Register  
(CLOM)  
0
0
Interrupt Request Rlags  
(IRQxxx)  
Reset (0)  
Reset (0)  
Interrupt Enable Flags (IExxx)  
Priority Selector Register (IPS)  
0
0
0
0
Interrupt  
INT0, 1 Mode Registers  
(IM0, IM1)  
0, 0  
0, 0  
Output Buffer  
Output Latch  
OFF  
Cleared (0)  
0
OFF  
Cleared (0)  
0
Digital Port  
I/O Mode Registers  
(PMGA, PMGB, PMGC)  
PTH00-PTH03 Input Latches  
Mode Register (PTHM)  
Undefined  
Undefined  
Analog Port  
0
Retained  
0
0
Power-ON Flag (PONF)  
1 or undefined*2  
Bit Sequential Buffer (BSB0-BSB3)  
0
*1: PC11-8 for µPD75104  
2: Power-ON reset: 1  
RESET input during operation: undefined  
Note: Data at data memory addresses 0F8H to 0FDH become undefined when the RESET signal has been input.  
33  
µPD75104, 75106, 75108  
9. INSTRUCTION SET  
(1) Operand representation and description  
Describe one or more operands in the operand field of each instruction according to the operand  
representation and description methods of the instruction (for details, refer to RA75X Assembler Package  
User's Manual - Language (EEU-730)). With some instructions, only one operand should be selected from  
several operands. The uppercase characters, +, and – are keywords and must be described as is.  
Describe an appropriate numeric value or label as immediate data.  
The symbols in the register and flag symbols can be described as labels in the places of mem, fmem,  
pmem, and bit (for details, refer toµPD751XX Series User‘s Manual (IEM-922)). However, fmem and pmem  
restricts the label that can be described.  
Representation  
Description  
X, A, B, C, D, E, H, L  
reg  
reg1  
X, B, C, D, E, H, L  
rp  
XA, BC, DE, HL  
rp1  
rp2  
rp'  
BC, DE, HL  
BC, DE  
XA, BC, DE, HL, XA', BC', DE', HL'  
BC, DE, HL, XA', BC', DE', HL'  
rp'1  
rpa  
rpa1  
HL, HL+, HL–, DE, DL  
DE, DL  
n4  
n8  
4-bit immediate data or label  
8-bit immediate data or label  
mem  
bit  
8-bit immediate data or label*  
2-bit immediate data or label  
fmem  
pmem  
FB0H to FBFH,FF0H to FFFH immediate data or label  
FC0H to FFFH immediate data or label  
µPD75104  
µPD75106  
µPD75108  
0000H to 0FFFH immediate data or label  
0000H to 177FH immediate data or label  
0000H to 1F7FH immediate data or label  
addr  
caddr  
faddr  
taddr  
12-bit immediate data or label  
11-bit immediate data or label  
20H to 7FH immediate data (where bit0 = 0) or label  
PORTn  
IExxx  
RBn  
PORT0 - PORT9, PORT12 - PORT14  
IEBT, IESIO, IET0, IET1, IE0 - IE4  
RB0 - RB3  
MBn  
MB0, MB1, MB15  
*: Only even address can be described as mem for 8-bit data processing.  
34  
µPD75104, 75106, 75108  
(2) Legend of operation field  
A
: A register; 4-bit accumulator  
B
: B register; 4-bit accumulator  
: C register; 4-bit accumulator  
: D register; 4-bit accumulator  
: E register; 4-bit accumulator  
: H register; 4-bit accumulator  
: L register; 4-bit accumulator  
: X register; 4-bit accumulator  
: Register pair (XA); 8-bit accumulator  
: Register pair (BC); 8-bit accumulator  
: Register pair (DE); 8-bit accumulator  
: Register pair (HL); 8-bit accumulator  
: Expansion register pair (XA')  
: Expansion register pair (BC')  
: Expansion register pair (DE')  
: Expansion register pair (HL')  
: Program counter  
C
D
E
H
L
X
XA  
BC  
DE  
HL  
XA'  
BC'  
DE'  
HL'  
PC  
SP  
CY  
: Stack pointer  
: Carry flag; or bit accumulator  
PSW : Program status word  
MBE  
RBE  
: Memory bank enable flag  
: Register bank enable flag  
PORTn : Port n (n = 0 - 9, 12 - 14)  
IME  
IPS  
: Interrupt mask enable flag  
: Interrupt priority selection register  
IExxx : Interrupt enable flag  
RBS  
: Register bank selection register  
MBS : Memory bank selection register  
PCC  
.
: Processor clock control register  
: Delimiter of address and bit  
: Contents addressed by xx  
: Hexadecimal data  
(xx)  
xxH  
35  
µPD75104, 75106, 75108  
(3) Symbols in addressing area field  
.
*1  
MB = MBE MBS  
(MBS = 0, 1, 15)  
*2  
*3  
MB = 0  
MBE = 0 : MB = 0 (00H-7FH)  
MB = 15 (80H-FFH)  
Data memory  
addressing  
MBE = 1 : MB = MBS (MBS = 0, 1, 15)  
*4  
MB = 15, fmem = FB0H-FBFH,  
FF0H-FFFH  
*5  
*6  
MB = 15, pmem = FC0H-FFFH  
µPD75104  
µPD75106  
µPD75108  
addr = 0000H-0FFFH  
addr = 0000H-177FH  
addr = 0000H-1F7FH  
*7  
*8  
addr = (Current PC) – 15 to (Current PC) – 1  
(Current PC) + 2 to (Current PC) + 16  
Program memory  
addressing  
µPD75104  
µPD75106  
µPD75108  
caddr = 0000H-0FFFH (PC11 = 0)  
caddr = 0000H-0FFFH (PC12 = 0) or 1000H-177FH (PC12 = 1)  
caddr = 0000H-0FFFH (PC12 = 0) or 1000H-1F7FH (PC12 = 1)  
*9  
faddr = 000H-7FFH  
taddr = 020H-07FH  
*10  
Remarks • MB indicates memory bank that can be accessed.  
• In *2, MB = 0 regardless of MBE and MBS.  
• In *4 and *5, MB = 15 regardless of MBE and MBS.  
• *6 to *10 indicate areas that can be addressed.  
(4) Machine cycle field  
In this field, S indicates the number of machine cycles required when an instruction having a skip  
function skips. The value of S varies as follows:  
When no instruction is skipped ........................................................................ S = 0  
When 1-byte or 2-byte instruction is skipped................................................. S = 1  
When 3-byte instruction (BR ! adder or CALL ! adder) is skipped .............. S = 2  
Note : The GETI instruction is skipped in one machine cycle.  
One machine cycle equals to one cycle of the CPU clock Φ, (= tCY), and can be changed in three steps  
depending on the setting of the processor clock control register (PCC).  
36  
µPD75104, 75106, 75108  
Ma-  
chine  
Cyc-  
Instruc- Mne-  
Addressing  
Area  
Skip  
Conditions  
Operand  
Bytes  
Operation  
tions  
monics  
les  
Transfer MOV  
A, #n4  
1
2
2
2
2
1
1
1
1
2
1
2
2
2
2
2
2
2
2
2
1
1
1
1
2
2
2
1
2
1
1
A n4  
String effect A  
reg1, #n4  
XA, #n8  
HL, #n8  
2
reg1 n4  
XA n8  
HL n8  
rp2 n8  
A (HL)  
2
String effect A  
String effect B  
2
rp2, #n8  
A, @HL  
2
1
*1  
*1  
*1  
*2  
*1  
*1  
*1  
*3  
*3  
*3  
*3  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
@HL, A  
2+S  
2+S  
1
A (HL), then L L+1  
A (HL), then L L–1  
A (rpa1)  
L = 0  
L = FH  
2
XA (HL)  
1
(HL) A  
@HL, XA  
A,mem  
2
(HL) XA  
2
A (mem)  
XA, mem  
mem, A  
mem, XA  
A, reg  
2
XA (mem)  
(mem) A  
2
2
(mem) XA  
A reg  
2
XA, rp'  
2
XA rp'  
reg1, A  
2
reg1 A  
rp'1, XA  
A, @HL  
2
rp'1 XA  
XCH  
1
A (HL)  
*1  
*1  
*1  
*2  
*1  
*3  
*3  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
A, mem  
XA, mem  
A, reg1  
2+S  
2+S  
1
A (HL), then L L+1  
A (HL), then L L–1  
A (rpa1)  
L = 0  
L = FH  
2
XA (HL)  
2
A (mem)  
2
XA (mem)  
A reg1  
1
XA, rp'  
2
XA rp'  
MOVT  
XA, @PCDE  
3
µPD75104  
Table  
Refer-  
ence  
XA (PC11-8+DE)ROM  
µPD75106, 75108  
XA (PC12-8+DE)ROM  
XA, @PCXA  
1
3
µPD75104  
XA (PC11-8+XA)ROM  
µPD75106, 75108  
XA (PC12-8+XA)ROM  
37  
µPD75104, 75106, 75108  
Ma-  
chine  
Cyc-  
Instruc- Mne-  
Addressing  
Area  
Skip  
Conditions  
Operand  
Bytes  
Operation  
tions  
monics  
les  
Bit  
MOV1  
CY,fmem.bit  
CY,pmem.@L  
2
2
2
2
CY (fmem.bit)  
*4  
*5  
*1  
transfer  
2
CY (pmem7-2+L3-2.bit(L1-0))  
CY (H+mem3-0.bit)  
CY,@H+mem.  
bit  
2
fmem.bit,CY  
pmem.@L,CY  
2
2
2
2
2
2
(fmem.bit) CY  
*4  
*5  
*1  
(pmem7-2+L3-2.bit(L1-0)) CY  
(H+mem3-0.bit) CY  
@H+mem.bit,  
CY  
Arith-  
metic  
opera-  
tion  
ADDS  
A, #n4  
XA, #n8  
A, @HL  
XA, rp’  
rp’1, XA  
A, @HL  
XA, rp’  
rp’1, XA  
A, @HL  
XA, rp’  
rp’1, XA  
A, @HL  
XA, rp’  
rp’1, XA  
A, #n4  
A, @HL  
XA, rp’  
rp’1, XA  
A, #n4  
A, @HL  
XA, rp’  
rp’1, XA  
A, #n4  
A, @HL  
XA, rp’  
rp’1, XA  
A
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
1
2
2
2
1
2
2
2
1
2
2
1
2
1
1
2
2
1
2
1+S  
2+S  
1+S  
2+S  
2+S  
1
A A+n4  
carry  
XA XA+n8  
carry  
carry  
carry  
carry  
A A+(HL)  
*1  
*1  
*1  
*1  
XA XA+rp’  
rp’1 rp’1+XA  
A, CY A+(HL)+CY  
XA, CY XA+rp’+CY  
rp’1,CY rp’1+XA+CY  
A A-(HL).  
ADDC  
SUBS  
SUBC  
AND  
2
2
1+S  
2+S  
2+S  
1
borrow  
borrow  
borrow  
XA XA-rp’  
rp’1 rp’1-XA  
A, CY A-(HL)-CY  
XA, CY XA-rp’-CY  
rp’1,CY rp’1-XA-CY  
2
2
2
A A  
n4  
1
A A  
(HL)  
*1  
*1  
*1  
2
XA XA  
rp’  
XA  
2
rp’1 rp’1  
OR  
2
A A  
n4  
(HL)  
1
A A  
2
XA XA  
rp’1 rp’1  
rp’  
XA  
2
XOR  
2
A A  
n4  
(HL)  
1
A A  
2
XA XA  
rp’1 rp’1  
rp’  
XA  
2
RORC  
NOT  
1
CY A0, A3 CY, An-1 An  
A A  
Accumulator  
Manipulation  
A
2
Incre-  
ment/  
decre-  
ment  
INCS  
reg  
1+S  
1+S  
2+S  
2+S  
1+S  
2+S  
reg reg+1  
reg = 0  
rp1  
rp1 rp1+1  
rp1 = 00H  
(HL) = 0  
@HL  
(HL) (HL)+1  
(mem) (mem)+1  
reg reg-1  
*1  
*3  
mem  
(mem) = 0  
reg = FH  
rp’ = FFH  
DECS  
reg  
rp’  
rp’ rp’-1  
38  
µPD75104, 75106, 75108  
Ma-  
chine  
Cyc-  
Instruc- Mne-  
Addressing  
Area  
Skip  
Conditions  
Operand  
Bytes  
Operation  
tions  
monics  
les  
2+S  
2+S  
1+S  
2+S  
2+S  
2+S  
1
Com-  
pare  
SKE  
reg, #n4  
2
2
1
2
2
2
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Skip if reg = n4  
reg = n4  
@HL, #n4  
A, @HL  
Skip if (HL) = n4  
*1  
*1  
*1  
(HL) = n4  
A = (HL)  
XA = (HL)  
A = reg  
Skip if A = (HL)  
XA, @HL  
A, reg  
Skip if XA = (HL)  
Skip if A = reg  
XA, rp’  
Skip if XA = rp’  
XA = rp’  
Carry  
flag  
SET1  
CLR1  
CY  
CY 1  
CY  
1
CY 0  
Manipu- SKT  
CY  
1+S  
1
Skip if CY = 1  
CY = 1  
lation  
NOT1  
CY  
CY CY  
Memory/ SET1  
Bit  
mem.bit  
fmem.bit  
pmem.@L  
@H+mem.bit  
mem.bit  
fmem.bit  
pmem.@L  
@H+mem.bit  
mem.bit  
fmem.bit  
pmem.@L  
@H+mem.bit  
mem.bit  
fmem.bit  
pmem.@L  
@H+mem.bit  
2
(mem.bit) 1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*4  
*5  
2
(fmem.bit) 1  
Manipu-  
lation  
2
(pmem7-2 + L3-2.bit(L1-0)) 1  
(H + mem3-0.bit) 1  
(mem.bit) 0  
2
CLR1  
2
2
(fmem.bit) 0  
2
(pmem7-2 + L3-2.bit(L1-0)) 0  
(H+mem3-0.bit) 0  
Skip if (mem.bit) = 1  
Skip if (fmem.bit) = 1  
Skip if (pmem7-2+L3-2.bit (L1-0)) = 1  
Skip if (H + mem3-0.bit) = 1  
Skip if (mem.bit) = 0  
Skip if (fmem.bit) = 0  
Skip if (pmem7-2 +L3-2.bit (L1-0)) = 0  
Skip if (H + mem3-0.bit) = 0  
Skip if (fmem.bit) = 1 and clear  
2
SKT  
SKF  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
(mem.bit) = 1  
(fmem.bit) = 1  
(pmem.@L) = 1  
(@H+mem.bit) = 1  
(mem.bit) = 0  
(fmem.bit) = 0  
(pmem.@L) = 0  
(@H+mem.bit) = 0  
(fmem.bit) = 1  
(pmem.@L) = 1  
SKTCLR fmem.bit  
pmem.@L  
Skip if (pmem7-2+L3-2.bit  
(L1-0)) = 1 and clear  
@H+mem.bit  
CY,fmem.bit  
CY,pmem.@L  
CY,@H+mem.bit  
CY,fmem.bit  
CY,pmem.@L  
CY,@H+mem.bit  
CY,fmem.bit  
CY,pmem.@L  
CY,@H+mem.bit  
2
2
2
2
2
2
2
2
2
2
2+S  
2
Skip if (H+mem3-0.bit) = 1 and clear  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
(@H+mem.bit) = 1  
AND1  
OR1  
CY CY  
CY CY  
(fmem.bit)  
2
(pmem7-2+L3-2.bit(L1-0))  
(H+mem3-0.bit)  
(fmem.bit)  
2
CY  
CY  
CY  
CY  
2
2
CY CY (pmem7-2+L3-2.bit (L1-0))  
2
CY  
CY  
CY  
CY  
(H+mem3-0.bit)  
(fmem.bit)  
XOR1  
2
2
CY CY (pmem7-2+L3-2.bit (L1-0))  
2
CY  
CY  
(H+mem3-0.bit)  
39  
µPD75104, 75106, 75108  
Ma-  
chine  
Cyc-  
Instruc- Mne-  
Addressing  
Area  
Skip  
Conditions  
Operand  
Bytes  
Operation  
tions  
monics  
les  
Branch  
BR  
addr  
µPD75104  
*6  
PC11-0 addr  
The most suitable instruction  
is selectable from among  
BRCB ! caddr, and BR $ addr  
depending on the assembler.  
µPD75106, 75108  
PC12-0 addr  
The most suitable instruction  
is selectable from among BR  
! addr, BRCB ! caddr, and BR  
$ addr depending on the  
assembler.  
! addr  
$ addr  
3
1
3
2
µPD75106, 75108  
PC12-0 addr  
*6  
*7  
µPD75104  
PC11-0 addr  
µPD75106, 75108  
PC12-0 addr  
BRCB  
! caddr  
PCDE  
2
2
2
3
2
3
3
3
µPD75104  
*8  
PC11-0 caddr11-0  
µPD75106, 75108  
PC12-0 PC12 + caddr11-0  
BR  
µPD75104  
PC11-0 PC11-8 + DE  
µPD75106, 75108  
PC12-0 PC12-8 + DE  
PCXA  
! addr  
µPD75104  
PC11-0 PC11-8 + XA  
µPD75106, 75108  
PC12-0 PC12-8 + XA  
Subrou- CALL  
tine/  
µPD75104  
*6  
(SP-4)(SP-1)(SP-2) PC11-0  
(SP-3) MBE, RBE, 0, 0  
PC11-0 addr, SP SP-4  
Stack  
Control  
µPD75106, 75108  
(SP-4)(SP-1)(SP-2) PC11-0  
(SP-3) MBE, RBE, 0, PC12  
PC12-0 addr, SP SP-4  
40  
µPD75104, 75106, 75108  
Ma-  
chine  
Cyc-  
Instruc- Mne-  
Addressing  
Area  
Skip  
Conditions  
Operand  
Bytes  
2
Operation  
tions  
monics  
les  
Subrou-  
tine/  
CALLF ! faddr  
2
µPD75104  
*9  
(SP-4)(SP-1)(SP-2) PC11-0  
(SP-3) MBE, RBE, 0, 0  
PC11-0 ←0, faddr, SP SP-4  
Stack  
Control  
(Cont‘d)  
µPD75106, 75108  
(SP-4)(SP-1)(SP-2) PC11-0  
(SP-3) MBE, RBE, 0, PC12  
PC12-0 00, faddr, SP SP-4  
RET  
1
1
1
3
3+S  
3
µPD75104  
MBE, RBE, x, x (SP+1)  
PC11-0 (SP)(SP+3)(SP+2)  
SP SP+4  
µPD75106, 75108  
MBE, RBE, x, PC12 (SP+1)  
PC11-0 (SP)(SP+3)(SP+2)  
SP SP+4  
RETS  
µPD75104  
Unconditioned  
MBE, RBE, x, x (SP+1)  
PC11-0 (SP)(SP+3)(SP+2)  
SP SP+4, then skip unconditionally  
µPD75106, 75108  
MBE, RBE, x, PC12 (SP+1)  
PC11-0 (SP)(SP+3)(SP+2)  
SP SP+4, then skip unconditionally  
RETI  
µPD75104  
MBE, RBE, x, x (SP+1)  
PC11-0 (SP)(SP+3)(SP+2)  
PSW (SP+4)(SP+5), SP SP+6  
µPD75106, 75108  
MBE, RBE, x, PC12 (SP+1)  
PC11-0 (SP)(SP+3)(SP+2)  
PSW (SP+4)(SP+5), SP SP+6  
PUSH  
POP  
rp  
1
2
1
2
(SP-1)(SP-2) rp, SP SP-2  
BS  
(SP-1) MBS, (SP-2) RBS,  
SP SP-2  
rp  
1
2
1
2
rp (SP+1)(SP), SP SP+2  
BS  
MBS (SP+1), RBS (SP),  
SP SP+2  
41  
µPD75104, 75106, 75108  
Ma-  
chine  
Cyc-  
Instruc- Mne-  
Addressing  
Area  
Skip  
Conditions  
Operand  
Bytes  
Operation  
tions  
monics  
les  
2
2
2
2
2
2
2
2
2
2
1
2
2
3
Inter-  
rupt  
EI  
2
2
2
2
2
2
2
2
2
2
1
2
2
1
IME (IPS.3) 1  
IExxx  
IExxx 1  
Control DI  
IME (IPS.3) 0  
IExxx 0  
IExxx  
I/O  
IN*  
A, PORTn  
XA, PORTn  
PORTn, A  
PORTn, XA  
A PORTn  
(n = 0-9, 12-14)  
XA  
PORTn+1,PORTn (n = 4, 6, 8, 12)  
OUT*  
HALT  
PORTn A  
(n = 2-9, 12-14)  
PORTn+1, PORTn XA(n = 4, 6, 8, 12)  
Set HALT Mode (PCC.2 1)  
Set STOP Mode (PCC.3 1)  
No Operation  
CPU  
Control STOP  
NOP  
Special SEL  
RBn  
RBS n (n = 0-3)  
MBn  
taddr  
MBS n (n = 0, 1, 15)  
GETI  
µPD75104  
*10  
• Where TBR instruction,  
PC11-0 (taddr)3-0+(taddr+1)  
.........................................................  
• Where TCALL instruction,  
(SP-4)(SP-1)(SP-2) PC11-0  
(SP-3) MBE, RBE, 0, 0  
PC11-0 (taddr)3-0+(taddr+1)  
SP SP-4  
.........................................................  
.............................  
Depends on  
• Except for TBR and TCALL  
instructions,  
referenced  
instruction  
Instruction execution of  
(taddr)(taddr+1)  
µPD75106, 75108  
• Where TBR instruction,  
PC12-0 (taddr)4-0+(taddr+1)  
.........................................................  
• Where TCALL instruction,  
(SP-4)(SP-1)(SP-2) PC11-0  
(SP-3) MBE, RBE, 0, PC12  
PC12-0 (taddr)4-0+(taddr+1)  
SP SP-4  
.........................................................  
.............................  
Depends on  
• Except for TBR and TCALL  
instructions,  
referenced  
instruction  
Instruction execution of  
(taddr)(taddr+1)  
*: When executing the IN/OUT instruction, MBE = 0, or MBE = 1, and MBS = 15.  
Remarks: TBR and TCALL instructions are assembler instructions for GETI instruction table definition.  
42  
µPD75104, 75106, 75108  
10. APPLICATION EXAMPLES  
10.1 VTR SYSTEM CONTROLLER  
Remote  
µPD75108  
controller  
signal  
receiver  
Key  
matrix  
High-  
current  
output  
System  
controller/  
Operation  
mode LED  
indicator  
tape counter/  
remote controller/  
remaining tape  
computation  
Take-up reel pulse  
Supply reel pulse  
INT  
INT  
Servo  
Sensor circuit  
Exposure sensor  
Tape start/end  
sensor  
system  
control  
circuit  
Comparator  
input  
On-screen  
display  
controller  
Motor  
driver  
circuit,  
etc.  
MNOS  
INT  
µPD752 ××  
timer/tuner/OSD  
µ
µ
µ
PD6252  
PD6253  
PD6254  
SIO  
12 V  
PWM output  
Audio video system  
control circuit  
FIP  
Tuner  
10.2 VTR CAMERA  
µPD75108  
High-  
current  
output  
Key matrix  
(including  
message  
input)  
Operation  
mode LED  
indicator  
System control/  
editing  
function  
Reel pulse  
INT  
Battery sensor  
Servo  
system  
control  
circuit  
Comparator  
input  
Sensor circuit  
Exposure sensor  
Tape start/end  
sensor  
Motor  
plunger  
driver  
circuit,  
etc.  
Power-  
down  
detector  
INT  
On-screen  
display  
controller  
12 V  
Audio video system  
control circuit  
43  
µPD75104, 75106, 75108  
10.3 COMPACT DISC PLAYER  
µPD75108  
Key  
matrix  
Servo  
control  
IC  
SIO  
High-  
current  
output  
Loading  
control  
circuit  
LED  
indication  
Remote  
controller  
signal  
INT  
receiver  
10.4 AUTOMOBILE APPLICATIONS (TRIP COMPUTER)  
µPD75108  
Vehicle speed  
detection  
Number of  
revolutions  
detection  
Fuel  
INT0  
INT1  
TI  
Clock  
Display  
driver  
SIO  
Alarm  
comsumption  
Average  
µPD6300  
µPD6323  
speed  
Arrival  
µ
PD6332  
time, etc.  
Key position  
Gear position  
Key input  
Mode select  
Numerical  
input  
TO  
Buzzer  
44  
µPD75104, 75106, 75108  
10.5 PUSHBUTTON TELEPHONE  
Transmitter/  
receiver  
Transmitter/  
receiver/  
speaker  
Hook switch  
Communication  
circuit  
selector  
Speaker  
Speaker  
amplifier  
High-  
current  
output  
MPX  
Microphone  
amplifier  
Microphone  
LED  
indicator  
Call sound  
TO  
Filter  
To main  
equipment  
µPD75108  
µPD7228G  
SIO  
LCD  
controller/  
driver  
LCD indicator  
Key  
matrix  
Data  
receiver  
circuit  
Data  
transmitter  
circuit  
10.6 DISPLAY PAGER  
µPD75108  
Filter  
INT  
RAM  
µ
PD4464  
Code ROM  
Switch  
High-  
current  
output  
TO  
Piezoelectric  
buzzer  
LED indicator  
Comparator  
input  
Battery  
check  
SIO  
LCD controller/  
driver  
LCD indicator  
µ
PD7228/7229  
45  
µPD75104, 75106, 75108  
10.7 PLAIN PAPER COPIER (PPC)  
µPD75108  
High-  
current  
output  
12 V  
Motor/relay  
driver  
circuit  
LED indicator  
Key matrix  
Switch  
TO  
Piezoelectric  
buzzer  
Sensor circuit,  
heater  
temperature, toner  
drum pressure, etc.  
Comparator  
input  
10.8 PRINTER CONTROLLER  
µPD75108  
Host machine  
12 V  
PD0 to PD7  
Motor  
driver  
control  
circuit  
STRB  
BUSY  
INT  
SI  
TxD  
Dot  
matrix  
head  
driver  
circuit  
High  
current  
LED  
Key matrix  
TO  
Piezoelectric  
buzzer  
46  
µPD75104, 75106, 75108  
11. MASK OPTION SELECTION  
µPD75108 has the following mask options. Options to be built in can be selected.  
(1) Pin  
Pin  
Mask Option  
P120 - P123  
P130 - P133  
P140 - P143  
Pull-down resistor can be built in bitwise.  
(2) Power-ON reset generation circuit, power-ON flag (PONF)  
One from the following three ways can be selected.  
Switching Selection  
Power-On Reset  
Power-On Flag  
Internal Reset Signal  
(RES)  
(Refer to Fig. 8-1.)  
Generation Circuit  
(PONF)  
SWA  
ON  
SWB  
ON  
Provided  
Provided  
Provided  
Provided  
Generates automatically  
Not generates autoamtically  
ON  
OFF  
OFF  
OFF  
Not provided  
Not provided  
47  
µPD75104, 75106, 75108  
12. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)  
Parameter  
Symbol  
VDD  
Conditions  
Ratings  
Unit  
V
Supply Voltage  
-0.3 to +7.0  
VI1  
VI2*1  
Other than ports 12, 13, 14  
-0.3 to VDD+0.3  
-0.3 to VDD+0.3  
V
Input Voltage  
Ports 12 to 14  
w/pull-up  
resistor  
V
Open drain  
-0.3 to +13  
V
Output Voltage  
VO  
IOH  
-0.3 to VDD+0.3  
V
High-Level Output  
Current  
1 pin  
-15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
All pins  
1 pin  
-30  
Low-Level Output  
Current  
IOL*2  
Peak  
rms  
30  
15  
Total of ports 0, 2 to 4, 12 to 14 Peak  
rms  
100  
60  
Total of ports 5 to 9  
Peak  
rms  
100  
60  
Operating Temperature  
Storage Temperature  
Topt  
Tstg  
-40 to +85  
-65 to +150  
°C  
*1: The power supply impedance (pull-up resistance) must be 50 kor higher when a voltage higher than  
10 V is applied to ports 12, 13, and 14.  
2: rms = Peak value x Duty  
48  
µPD75104, 75106, 75108  
OSCILLATOR CIRCUIT CHARACTERISTICS  
(Ta = -40 to +85°C, VDD = 2.7 to 6.0 V)  
Recommended  
Oscillator  
Ceramic  
Item  
Conditions  
MIN.  
2.0  
TYP. MAX. Unit  
Constants  
Oscillation  
VDD = Oscillation  
voltage range  
3
*
5.0  
MHz  
frequency(fXX)*1  
Oscillation stabiliza- After VDD come to  
X1  
X2  
X2  
X2  
tion time*2  
MIN. of oscillation  
voltage range  
4
ms  
C1  
C2  
3
Crystal  
Oscillation  
*
*
2.0  
4.19  
5.0  
10  
MHz  
ms  
frequency (fXX)*1  
X1  
Oscillation stabiliza- VDD = 4.5 to 6.0 V  
tion time*2  
C1  
C2  
30  
ms  
External Clock  
X1 input frequency  
(fX)*1  
3
2.0  
5.0  
MHz  
X1  
X1 input high-,  
low-level widths  
(tXH, tXL)  
100  
250  
ns  
µ
PD74HCU04  
*1: The oscillation frequency and X1 input frequency are indicated only to express the characteristics  
of the oscillator circuit. For instruction execution time, refer to AC Characteristics.  
2: Time required for oscillation to stabilize after VDD has come to MIN. of oscillation volrage range  
or the STOP mode has been released.  
3: When the oscillation frequency is 4.19 MHz < fx 5.0 MHz, do not select PCC = 0011 as the  
instruction execution time: otherwise, one machine cycle is set to less than 0.95 µs, falling short  
of the rated minimum value of 0.95 µs.  
Note: When using the oscillation circuit of the system clock, wire the portion enclosed in dotted line  
in the figures as follows to avoid adverse influences on the wiring capacity:  
• Keep the wiring length as short as possible.  
• Do not cross the wiring over the other signal lines. Also, do not route the wiring in the vicinity  
of lines through which a high alternating current flows.  
• Always keep the ground point of the capacitor of the osccillator circuit at the same potential  
as VSS. Do not connect the ground pattern through which a high current flows.  
• Do not extract signals from the oscillation circuit.  
49  
µPD75104, 75106, 75108  
RECOMMENDED OSCILLATOR CIRCUITS CONSTANTS  
RECOMMENDED CERAMIC OSCILLATORS  
External  
Capacitance (pF)  
Oscillation  
Voltage Range (V)  
Manufacturer  
Product Name  
C1  
C2  
30  
MIN.  
2.7  
MAX.  
6.0  
CSA 2.00MG  
CSA 4.19MG  
CSA 4.19MGU  
CST 4.19T  
30  
30  
Murata Mfg.  
Co., Ltd.  
30  
30  
3.0  
2.7  
3.0  
3.0  
3.0  
3.0  
3.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
30  
Provided  
100  
33  
Provided  
100  
KBR-2.0MS  
KBR-4.0MS  
KBR-4.19MS  
KBR-4.9152M  
Kyoto Ceramic  
Co., Ltd.  
33  
33  
33  
33  
33  
RECOMMENDED CRYSTAL OSCILLATOR  
External  
Capacitance (pF)  
Oscillation  
Voltage Range (V)  
Manufacturer  
Kinseki  
Product Name  
HC-49/U  
C1  
22  
C2  
22  
MIN.  
2.7  
MAX.  
6.0  
50  
µPD75104, 75106, 75108  
DC CHARACTERISTICS (Ta = -40 to +85°C, VDD = 2.7 to 6.0 V)  
Item  
Symbol  
Conditions  
Other than below  
Ports 0, 1, TI0, 1, RESET  
MIN.  
TYP.  
MAX.  
Unit  
V
VIH1  
0.7VDD  
VDD  
High-Level  
VIH2  
VIH3  
0.8 VDD  
0.7 VDD  
0.7 VDD  
VDD-0.5  
0
VDD  
VDD  
V
V
Input Voltage  
Pull-up resistor  
Open drain  
Ports 12 to 14  
12  
V
VIH4  
VIL1  
VIL2  
VIL3  
X1, X2  
VDD  
V
Other than below  
0.3 VDD  
0.2 VDD  
0.4  
V
Low-Level Input Voltage  
High-Level Output Voltage  
Ports 0, 1, TI0, 1, RESET  
X1, X2  
0
V
0
V
VDD = 4.5 to 6.0 V,IOH = -1 mA  
IOH = -100 µA  
VDD-1.0  
VDD-0.5  
V
VOH  
V
VDD =  
Ports 0, 2 to 9, IOL = 15 mA  
Ports 12 to 14, IOL = 10 mA  
0.35  
0.35  
2.0  
2.0  
0.4  
0.5  
3
V
4.5 to 6.0 V  
V
Low-Level Output Voltage VOL  
VDD = 4.5 to 6.0 V, IOL = 1.6 mA  
V
IOL = 400 µA  
V
ILIH1  
Other than below  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
VIN = VDD  
High-Level Input Leakage  
ILIH2  
X1,X2  
20  
20  
–3  
–20  
3
Current  
ILIH3  
VIN = 12 V  
VIN = 0 V  
Ports 12 to 14 (open drain)  
Low-Level  
ILIL1  
ILIL2  
ILOH1  
ILOH2  
ILOL  
Other than X1, X2  
X1, X2  
Input Leakage Current  
High-Level  
VOUT = VDD  
VOUT = 12 V  
VOUT = 0 V  
Other than below  
Ports 12 to 14 (open drain)  
Output Leakage Current  
20  
–3  
Low-Level Output  
Leakage Current  
VDD = 5 V±10%  
15  
10  
40  
70  
80  
kΩ  
kΩ  
mA  
mA  
µA  
Internal Pull-Up Resistor*1 RL  
Ports 12 to 14  
4.19MHz  
crystal  
VDD = 5 V±10%*2  
VDD = 3 V±10%*3  
3
9
IDD1  
0.55  
600  
200  
0.1  
1.5  
1800  
600  
10  
Supply Current*1  
oscillator  
HALT  
VDD = 5 V±10%  
VDD = 3±10%  
IDD2  
IDD3  
C1 = C2 = 22pF mode  
µA  
STOP mode, VDD = 3 V±10%  
µA  
*1: The current flowing into the internal pull-up resistor, power-ON reset circuit (mask option), and comparator  
circuit is not included.  
2: When the high-speed mode is set by setting the processor clock control register (PCC) to 0011.  
3: When the low-speed mode is set by setting the PCC to 0000.  
51  
µPD75104, 75106, 75108  
CAPACITANCE (Ta = 25°C, VDD = 0 V)  
Parameter  
Input Capacitance  
Output Capacitance  
Symbol  
Conditions  
MIN.  
TYP. MAX. Unit  
CIN  
f = 1 MHz  
Pins other than thosemeasured are at 0 V  
15  
15  
15  
pF  
pF  
pF  
COUT  
CIO  
Input/Output  
Capacitance  
COMPARATOR CHARACTERISTICS (Ta = -40 to +85°C, VDD = 4.5 to 6.0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP. MAX. Unit  
Comparison Accuracy  
VACOMP  
±100  
mV  
Threshold Voltage  
PTH Input voltage  
VTH  
0
0
VDD  
VDD  
V
V
VIPTH  
Comparator circuit  
current dissipation  
PTHM7 is set to “1”  
1
mA  
POWER-ON RESET CIRCUIT CHARACTERISTICS (MASK OPTION) (Ta = -40 to +85°C)  
Parameter  
Symbol  
Conditions  
MIN.  
4.5  
TYP. MAX. Unit  
Power-On Reset  
High-Level  
VDDH  
6.0  
0.2  
V
Operating Voltage  
Power-On Reset  
Low-Level  
VDDL  
0
10  
1
V
µs  
s
Operating Voltage  
Supply Voltage  
Rise Time  
1
tr  
*
Supply Voltage  
Off Time  
toff  
Power-On Reset Circuit  
Current Dissipation*2  
IDDPR  
VDD = 5 V±10%  
10  
2
100  
20  
µA  
µA  
VDD = 2.5 V  
*1: 217/fXX (31.3 ms at fXX = 4.19 MHz)  
2: Current flowing when power-ON reset circuit or power-ON Flag is incorporeated.  
V
DDH  
V
DD  
V
DDL  
t
off  
t
r
Note: Apply power gradually and smoothly.  
52  
µPD75104, 75106, 75108  
AC CHARACTERISTICS (Ta = -40 to +85°C, VDD = 2.7 to 6.0 V)  
Parameter  
Symbol  
tCY  
Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
0.95  
TYP. MAX. Unit  
32  
µs  
CPU Clock Cycle Time*  
(Minimum Instruction  
Execution Time = 1  
Machine Cycle)  
3.8  
32  
µs  
VDD = 4.5 to 6.0 V  
VDD = 4.5 to 6.0 V  
VDD = 4.5 to 6.0 V  
0
0
1
MHz  
kHz  
µs  
TI0, TI1 Input Frequency  
fTI  
275  
tTIH,  
tTIL  
0.48  
TI0, TI1 Input High-/  
Low-Level Width  
1.8  
0.8  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
Input  
Output  
Input  
0.95  
3.2  
SCK Cycle Time  
tKCY  
Output  
Input  
3.8  
VDD = 4.5 to 6.0 V  
0.4  
tKH,  
tKL  
Output  
Input  
tKCY/2-50  
1.6  
SCK High-/Low-Level  
Width  
Output  
tKCY/2-150  
100  
SI Setup Time  
tSIK  
(vs. SCK)  
SI Hold Time  
tKSI  
400  
ns  
(vs. SCK)  
VDD = 4.5 to 6.0 V  
300  
ns  
ns  
SCK SO Output  
delay Time  
tKSO  
1000  
INT0 to 4  
tINTH,  
5
5
µs  
µs  
High-/Low-Level Width  
RESET Low-Level Width  
tINTL  
tRSL  
*: The cycle time of the CPU clock (Φ) is  
determined by the input frequency of  
the ceramic or crystal oscillator circuit  
and the set value of the processor clock  
control register. The tCY vs. VDD charac-  
teristics are as shown on the right.  
t
CY vs. VDD  
40  
32  
7
6
5
Operation  
guaranteed  
range  
4
3
2
µ
1
0.5  
0
1
2
3
4
5
6
V
DD [V]  
53  
µPD75104, 75106, 75108  
AC TIMING MEASURING POINTS (excluding Ports 0, 1, TI0, TI1, X1, X2, and RESET)  
0.7 VDD  
0.3 VDD  
0.7 VDD  
0.3 VDD  
Measuring  
points  
CLOCK TIMING  
1/fX  
tXL  
tXH  
X1 input  
V
DD –0.5  
0.4  
TI TIMING  
1/fTI  
tTIL  
tTIH  
VDD  
0.8  
TI0, TI1  
0.2 VDD  
54  
µPD75104, 75106, 75108  
SERIAL TRANSFER TIMING  
tKCY  
tKL  
tKH  
0.8 VDD  
0.2 VDD  
SCK  
tSIK  
tKSI  
0.8 VDD  
0.2 VDD  
SI  
Input data  
t
KSO  
Output data  
SO  
INTERRUPT INPUT TIMING  
tINTL  
tINTH  
0.8 VDD  
0.2 VDD  
INT0 to 4  
RESET INPUT TIMING  
tRSL  
RESET  
0.2 VDD  
55  
µPD75104, 75106, 75108  
LOW-VOLTAGE DATA RETENTION CHARACTERISTICS OF DATA MEMORY IN STOP MODE  
(Ta = –40 to +85°C)  
Parameter  
Symbol  
VDDDR  
Conditions  
MIN.  
2.0  
TYP. MAX. Unit  
Data Retention Supply  
Voltage  
6.0  
10  
V
Data Retention Supply  
Current*1  
IDDDR  
VDDDR = 2.0 V  
0.1  
µA  
Release Signal Set Time tSREL  
0
µs  
ms  
ms  
Oscillation Stabilization  
Wait Time*2  
tWAIT  
Released by RESET  
217/fX  
3
Released by interrupt request  
*
*1: The current flowing through internal pull-up resistor, power-ON reset circuit (mask option), and  
comparator circuit is not included  
2: The oscillation stabilization wait time is the time during which the CPU is stopped to prevent  
unstable operation when oscillation is started.  
3: Depends on the setting of the basic interval timer mode register (BTM) as follows:  
BTM3 BTM2 BTM1 BTM0 Wait time ( ): fXX = 4.19 MHz  
0
0
1
1
0
1
0
1
0
1
1
1
220/fXX (approx. 250 ms)  
217/fXX (approx. 31.3 ms)  
215/fXX (approx. 7.82 ms)  
213/fXX (approx. 1.95 ms)  
DATA RETENTION TIMING (releasing STOP mode by RESET)  
Internal reset operation  
HALT mode  
STOP mode  
Operation  
mode  
Data retention mode  
VDD  
VDDDR  
tSREL  
STOP instruction  
execution  
RESET  
tWAIT  
DATA RETENTION TIMING (standby release signal: releasing STOP mode by interrupt)  
HALT mode  
STOP mode  
Operation  
mode  
Data retention mode  
V
DD  
VDDDR  
tSREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
tWAIT  
56  
µPD75104, 75106, 75108  
13. CHARACTERISTIC DATA  
I
DD vs. VDD Characteristics (crystal oscillation)  
a
(T = 25˚C)  
5000  
High-speed mode [0011]  
Medium-speed mode [0010]  
Low-speed mode [0000]  
1000  
500  
HALT mode [0100]  
µ
100  
50  
STOP mode [1000]  
When power-ON  
reset circuit and  
power-ON flag are  
incorporated.  
10  
5
Figure in [ ] indicate  
set values of PCC.  
X1  
X2  
Crystal  
1
oscillation  
4.194304 MHz  
22 pF  
0.5  
22 pF  
0
1
2
3
4
5
6
Supply voltage VDD [V]  
I
DD vs. fXX Characteristics (crystal oscillation)  
(VDD = 5.0 V, T = 25˚C)  
a
3.0  
2.5  
2.0  
Figure in [ ] indicate  
set values of PCC.  
High-speed mode [0011]  
X1  
X2  
C
1
C
2
Medium-speed mode [0010]  
Low-speed mode [0000]  
1.5  
1.0  
0.5  
0
HALT mode [0100]  
0
1
2
3
4
5
f
XX [MHz]  
57  
µPD75104, 75106, 75108  
I
DD vs. VDD Characteristics (ceramic oscillation)  
a
(T = 25˚C)  
5000  
High-speed mode [0011]  
Medium-speed mode [0010]  
Low-speed mode [0000]  
HALT mode [0100]  
1000  
500  
µ
100  
50  
STOP mode [1000]  
When power-ON  
reset circuit and  
power-ON flag are  
incorporated.  
10  
5
Figure in [ ] indicate  
set values of PCC.  
X1  
X2  
Ceramic  
1
oscillation  
4.19 MHz  
30 pF  
0.5  
30 pF  
0
1
2
3
4
5
6
Supply voltage VDD [V]  
I
DD vs. fXX Characteristics (ceramic oscillation)  
(VDD = 5.0 V, T = 25˚C)  
a
3.0  
2.5  
2.0  
1.5  
Figure in [ ] indicate  
set values of PCC.  
High-speed mode [0011]  
X1  
X2  
C
1
C
2
Medium-speed mode [0010]  
Low-speed mode [0000]  
1.0  
0.5  
0
HALT mode [0100]  
0
1
2
3
4
5
f
XX [MHz]  
58  
µPD75104, 75106, 75108  
I
DD vs. f  
X
Characteristics (external clock)  
(VDD = 5.0 V, T  
a
= 25˚C)  
3.0  
2.5  
2.0  
Figures in [ ] indicate  
set values of PCC.  
X1  
X2  
µPD74HCU04  
High-speed mode [0011]  
µ
Medium-speed mode [0010]  
Low-speed mode [0000]  
1.5  
1.0  
0.5  
0
HALT mode [0100]  
0
1
2
3
4
5
fX [MHz]  
f
TI vs. VDD Characteristics  
1000  
500  
Operation guaranteed  
range  
100  
50  
0
1
2
3
4
5
6
7
VDD [V]  
59  
µPD75104, 75106, 75108  
V
OL vs. IOL (Ports 0 and 2 to 9) Characteristics  
V
DD = 5 V  
DD = 4 V  
V
DD = 6 V  
30  
20  
10  
V
V
DD = 3 V  
0
0
1
2
3
4
V
OL [V]  
V
OL vs. IOL (Ports 12 to 14) Characteristics  
V
DD = 6 V  
VDD = 5 V  
30  
V
DD = 4 V  
20  
V
DD = 3 V  
10  
0
0
1
2
3
4
V
OL [V]  
60  
µPD75104, 75106, 75108  
V
OH vs. IOH (Ports 0 and 2 to 9) Characteristics  
V
DD = 6 V  
V DD = 5 V  
–15  
–10  
V
DD = 4 V  
V
DD = 3 V  
–5  
0
0
1
2
3
4
V
DD - V OH [V]  
Remarks: Unless otherwise specified, all the characteristic data shown are reference values.  
61  
µPD75104, 75106, 75108  
14. PACKAGE DRAWINGS  
64 PIN PLASTIC SHRINK DIP (750 mil)  
64  
33  
1
32  
A
K
L
F
D
M
R
B
C
M
N
NOTE  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
58.68 MAX.  
1.78 MAX.  
1.778 (T.P.)  
2.311 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) Item "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.750 (T.P.)  
0.669  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
19.05 (T.P.)  
17.0  
J
K
L
+0.004  
0.010  
+0.10  
0.25  
M
–0.003  
–0.05  
N
R
0.17  
0.007  
0~15°  
0~15°  
P64C-70-750A,C-1  
62  
µPD75104, 75106, 75108  
64 PIN PLASTIC QFP (14×20)  
A
B
detail of lead end  
51  
52  
33  
32  
S
C
D
R
Q
64  
1
20  
19  
F
H
I
M
J
G
K
L
M
P
N
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.20 mm (0.008 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
23.6±0.4  
20.0±0.2  
14.0±0.2  
0.929±0.016  
+0.008  
0.795  
–0.009  
+0.009  
0.551  
–0.008  
D
F
17.6±0.4  
1.0  
0.693±0.016  
0.039  
G
1.0  
0.039  
+0.004  
0.016  
H
0.40±0.10  
–0.005  
I
0.20  
0.008  
J
1.0 (T.P.)  
0.039 (T.P)  
+0.008  
0.071  
K
L
1.8±0.2  
0.8±0.2  
–0.009  
+0.009  
0.031  
–0.008  
+0.10  
0.15  
+0.004  
0.006  
M
–0.05  
–0.003  
N
P
Q
R
S
0.10  
0.004  
2.7  
0.106  
0.1±0.1  
5°±5°  
3.0 MAX.  
0.004±0.004  
5°±5°  
0.119 MAX.  
P64GF-100-3B8,3BE,3BR-2  
63  
µPD75104, 75106, 75108  
15. RECOMMENDED SOLDERING CONDITIONS  
It is recommended that µPD75104, 75106, and 75108 be soldered under the following conditions.  
For details on the recommended soldering conditions, refer to Information Document "Semiconductor  
Devices Mounting Manual" (IEI-616).  
For other soldering methods and conditions, please consult NEC.  
Table 15-1 Soldering Conditions of Surface Mount Type  
µPD75108GF - xxx - 3BE: 64-pin plastic QFP (14 x 20 mm)  
Symbol for Recommended  
Soldering Method  
Infrared Reflow  
Soldering Conditions  
Condition  
IR30-00-1  
Package peak temperature: 230°C, time: 30 seconds max.  
(210°C min.), number of times: 1  
VPS  
Package peak temperature: 215°C, time: 40 seconds max.  
(200°C min.), number of times: 1  
VP15-00-1  
WS60-00-1  
Wave Soldering  
Soldering bath temperature: 260°C max., time: 10 seconds  
max., number of times: 1,  
pre-heating temperature: 120°C max. (package surface  
temperature)  
Pin Partial Heating  
Pin temperature: 300°C max.,  
time: 3 seconds max. (per side)  
Caution: Do not use two or more soldering methods in combination (except the pin partial heating  
method).  
Table 15-2 Soldering Conditions of Through-Hole Type  
µPD75108CW - xxx : 64-pin plastic shrink DIP (750 mil)  
Soldering Method  
Soldering Conditions  
Wave Soldering  
Soldering bath temperature: 260°C max., Time: 10 seconds max.  
(Only for lead part)  
Pin Partial Heating  
Pin temperature: 260°C max., Time: 10 seconds max.  
Caution: The wave soldering must be performed at the lead part only. Note that the solder must not be  
directly contacted to the package body.  
65  
µ
APPENDIX A. FUNCTIONAL DIFFERENCES AMONG PRODUCTS IN PD751XX SERIES  
µ
µ
µ
µ
µ
µ
µ
µ
µ
µ
µ
µ
PD75P116  
Item  
PD75104  
PD75106  
PD75108  
PD75112  
PD75116  
Mask ROM  
000H-FFFH 0000H-177FH 0000H-1F7FH 0000H-2F7FH 0000H-3F7FH 000H-FFFH 0000H-1F7FH 0000H-1F7FH 0000H-2F7FH 0000H-3F7FH 0000H-1F7FH 0000H-3F7FH  
PD75104A  
PD75108A  
PD75108F  
PD75112F  
PD75116F  
PD75P108B  
ROM Configuration  
PROM  
ROM (Bits)  
RAM (Bits)  
4096 × 8  
6016 × 8  
8064 × 8  
12160 × 8  
16256 × 8  
4096 × 8  
8064 × 8  
8064 × 8  
12160 × 8  
16256 × 8  
8064 × 8  
16256 × 8  
320 × 4  
(Bank 0:  
256 × 4)  
(Bank 1:  
64 × 4)  
512 × 4  
(Bank 0:  
256 × 4)  
(Bank 1:  
256 × 4)  
320 × 4  
512 × 4  
512 × 4  
(Bank 0: 256 × 4)  
(Bank 1: 64 × 4)  
(Bank 0: 256 × 4)  
(Bank 1: 256 × 4)  
(Bank 0: 256 × 4)  
(Bank 1: 256 × 4)  
Instruction Set  
Total  
High-end (Only PD75104 and 75104A are not provided with BR!addr instruction.)  
µ
High end  
58  
• CMOS I/O: 32  
(pull-up resistor as mask  
option: 24)  
• +12 V open-drain output: 12  
(pull-up resistor as mask  
option)  
• CMOS I/O: 32  
• +12 V open-drain output:  
12  
• CMOS I/O: 32  
• CMOS I/O: 32  
• +12 V open-drain output: 12  
(pull-up resistor as mask option)  
LED direct drive: 44  
• +10 V open-drain output: 12  
(pull-up resistor as mask option)  
LED direct drive: 44  
I/O  
I/O  
LED direct drive: 44  
Lines  
LED direct drive: 44  
• CMOS input: 10  
(pull-up resistor as mask  
option: 4)  
• CMOS input: 10  
• CMOS input: 10  
Input  
• Comparator input: 4  
• Comparator input: 4  
• Comparator input: 44  
Power-ON  
Reset Circuit  
Provided (mask option)  
None  
Power-ON Flag  
Operating  
Voltage Range  
2.7 to 5.0 V (T  
2.8 to 5.0 V (T  
a
a
= -40 to +50°C)  
= -40 to +60°C)  
2.7 to 6.0 V  
5 V ± 10%  
2.7 to 6.0 V  
µ
s
Minimum  
Instruction  
Execution  
Time  
0.95  
(at 5 V)  
µ
0.95 s (at 4.5 V to 5.0 V)  
µ
0.95  
µ
s (at 5 V)  
µ
0.95  
s
µ
3
s
(at 5 V)  
3
µ s (at 3 V)  
µ
1.91 s (at 3 V)  
(at 3 V)  
Depends on package. Only PD75P108, and 75P116 are provided with  
PP pin.  
• 64-pin plastic QFP (14 × 20 mm)  
µ
Pin Connections  
Depends on package  
V
• 64-pin plastic shrink DIP (750 mil)  
• 64-pin plastic shrink DIP  
(750 mil)  
• 64-pin  
plastic QFP  
(14 × 14  
mm)  
• 64-pin  
plastic QFP  
(14 × 14  
mm)  
• 64-pin  
plastic  
shrink DIP  
(750 mil)  
• 64-pin  
• 64-pin  
plastic  
• 64-pin plastic QFP (14 × 20 mm)  
shrink DIP  
(750 mil)  
• 64-pin plastic QFP (14 × 20  
mm)  
• 64-pin  
plastic QFP  
(14 × 14  
mm)  
ceramic  
shrink DIP  
(w/window)  
• 64-pin  
• 64-pin  
plastic QFP  
(14 × 20  
mm)  
Package  
plastic QFP  
(14 × 20  
mm)  
µPD75104, 75106, 75108  
APPENDIX B. DEVELOPMENT TOOLS  
The following development support tools are readily available to support development of systems using  
µPD75108:  
Hardware IE-75000-R*1  
In-circuit emulator for 75X series  
IE-75001-R  
IE-75000-R-EM*2  
EP-75108CW-R  
EP-75108GF-R  
Emulation board for IE-75000-R and IE-75001-R  
Emulation prove for µPD75108CW  
Emulation prove for µPD75108GF. It is provided with a 64-pin conversion  
socket, EV-9200G-64  
EV-9200G-64  
PG-1500  
PROM programmer  
PA-75P108CW  
PROM programmer adapter for µPD75P108BCW and 75P108BDW.  
It is connected to PG-1500.  
PA-75P116GF  
Programmer adapter for µPD75P108BGF.  
It is connected to PG-1500.  
Software  
IE Control Program  
PG-1500 Controller  
Host machine  
PC-9800 series (MS-DOSTM Ver.3.30 to Ver.5.00A*3)  
IBM PC/ATTM (PC DOSTM Ver.3.1)  
RA75X Relocatable  
Assembler  
*1: Maintenance product  
2: Not provided with IE-75001-R.  
3: Ver.5.00/5.00A has a task swap function, but this function cannot be used with this function.  
Remarks: For development tools from other companies, refer to 75X Series Selection Guide (IF-151).  
67  
PD75104, 75106, 75108  
APPENDIX C. RELATED DOCUMENTS  
68  
µPD75104, 75106, 75108  
GENERAL NOTES ON CMOS DEVICES  
1
STATIC ELECTRICITY (ALL MOS DEVICES)  
Exercise care so that MOS devices are not adversely influenced by static electricity while being  
handled.  
The insulation of the gates of the MOS device may be destroyed by a strong static charge.  
Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case,  
or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use  
grounding when assembling the MOS device system. Do not leave the MOS device on a plastic  
plate and do not touch the pins of the device.  
Handle boards on which MOS devices are mounted similarly .  
2
PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)  
Fix the input level of CMOS devices.  
Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its  
input pin, intermediate level input may be generated due to noise, and an inrush current may flow  
through the device, causing the device to malfunction. Therefore, fix the input level of the device  
by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an  
output pin (whose timing is not specified), each pin should be connected to VDD or GND through  
a resistor.  
Refer to “Processing of Unused Pins” in the documents of each devices.  
3
STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)  
The initial status of MOS devices is undefined upon power application.  
Since the characteristics of an MOS device are determined by the quantity of injection at the  
molecular level, the initial status of the device is not controlled during the production process. The  
output status of pins, I/O setting, and register contents upon power application are not guaranteed.  
However, the items defined for reset operation and mode setting are subject to guarantee after  
the respective operations have been executed.  
When using a device with a reset function, be sure to reset the device after power application.  
69  
µPD75104, 75106, 75108  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which  
may appear in this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other  
intellectual property rights of third parties b y or arising from use of a device described herein or any  
other liability arising from use of such device. No license, either express, implied or otherwise, is granted  
under any patents, copyrights or other intellectual property rights of NEC Corporation or others.  
The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables,  
nuclear reactor control systems and life support systems. If customers intend to use NEC devices for  
above applications or they intend to use "Standard" quality grade NEC devices for the applications not  
intended by NEC, please contact our sales people in advance.  
Application examples recommended by NEC Corporation  
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,  
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.  
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,  
Anticrime system, etc.  
M4 92.6  
MS-DOS is a trademark of Microsoft Corporation.  
PC DOS and PC/AT are trademarks of IBM Corporation.  

相关型号:

UPD75104A

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75104AGC

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75104AGC-XXX-AB8

Microcontroller, 4-Bit, MROM, 4.19MHz, CMOS, PQFP64, 2.55 MM HEIGHT, 0.80 MM PITCH, PLASTIC, QFP-64
NEC

UPD75104CW

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75104CW-XXX

Microcontroller, 4-Bit, MROM, 4.19MHz, CMOS, PDIP64, 0.750 INCH, PLASTIC, SDIP-64
NEC

UPD75104G-XXX-1B

Microcontroller, 4-Bit, MROM, 4.19MHz, CMOS, PQFP64, 2.05 MM HEIGHT, 1 MM PITCH, PLASTIC, QFP-64
NEC

UPD75104GF

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75104GF-XXX-3BE

Microcontroller, 4-Bit, MROM, 4.19MHz, CMOS, PQFP64, 2.70 MM HEIGHT, 1 MM PITCH, PLASTIC, QFP-64
NEC

UPD75106

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75106CW

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75106CW-XXX

Microcontroller, 4-Bit, MROM, 4.19MHz, CMOS, PDIP64, 0.750 INCH, PLASTIC, SDIP-64
NEC

UPD75106G-1B

4-Bit Microcontroller
ETC