UPD78002BA [NEC]

8-BIT SINGLE-CHIP MICROCOMPUTER; 8位单片机
UPD78002BA
型号: UPD78002BA
厂家: NEC    NEC
描述:

8-BIT SINGLE-CHIP MICROCOMPUTER
8位单片机

计算机
文件: 总62页 (文件大小:564K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD78001B(A), 78002B(A)  
8-BIT SINGLE-CHIP MICROCOMPUTER  
DESCRIPTION  
The µPD78001B(A)/78002B(A) are products in the µPD78002 subseries within the 78K/0 series.  
The µPD78001B(A)/78002B(A) have various peripheral hardware such as timer, serial interface and interrupt  
function.  
A one-time PROM or EPROM product, the µPD78P014, capable of operating in the same power supply voltage  
range as that of the mask ROM product and other development tools is provided.  
Functions are described in detail in the following User's Manual, which should be read when carrying out design  
work.  
µPD78002, 78002Y Series User's Manual: IEU-1334  
FEATURES  
The µPD78001B, in comparison with the 78002B, is a higher reliability device, as a result of a more comprehensive  
quality assurance program (Refer to Quality Grade on NEC Semiconductor Devices (IEI-1209))  
Large on-chip ROM & RAM  
Item  
Program Memory  
(ROM)  
Data Memory  
(Internal High-Speed RAM)  
256 bytes  
Package  
Product Name  
µPD78001B(A)  
µPD78002B(A)  
8K bytes  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP ( 14 mm)  
16K byte  
384 bytes  
External memory expansion space: 64K bytes  
Instruction execution time can be varied from high-speed (0.4 µs) to ultra-low-speed (122 µs)  
I/O ports: 53 (N-ch open-drain : 4)  
Serial interface : 1 channel  
Timer: 4 channels  
Operating voltage range : 2.7 to 6.0 V  
APPLICATION  
Transmission equipment control device, gas detector circuit breaker, safety devices, etc.  
The information in this document is subject to change without notice.  
Document No. IC-3599  
(O.D. No. IC-9078)  
Date Published February 1995 P  
Printed in Japan  
1995  
©
µPD78001B(A), 78002B(A)  
ORDERING INFORMATION  
Part Number  
Package  
Quality Grade  
µPD78001BCW (A)-×××  
µPD78001BGC (A)-×××-AB8  
µPD78002BCW (A)-×××  
µPD78002BGC (A)-×××-AB8  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 mm)  
Special  
Special  
Special  
Special  
Remark ××× indicates ROM code No.  
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
Difference between the µPD78001B(A), 78002B(A) and the µPD78001B, 78002B.  
Product Name  
µPD78001B(A), 78002B(A)  
µPD78001B, 78002B  
Item  
Quality Grade  
Special  
Standard  
2
µPD78001B(A), 78002B(A)  
78K/0 SERIES PRODUCT DEVELOPMENT  
These products are a further development in the 78K/0 Series. The designations appearing inside the boxes  
are subseries names.  
Products in Volume Production  
Products under Development  
Y series products are compatible with I2C bus.  
For control  
µ
µ
µ
Timer added to the PD78054, external interface functions  
PD78078  
PD78054  
µPD78078Y  
100-pin  
80-pin  
64-pin  
64-pin  
64-pin  
42/44-pin  
µ
UART and D/A added to the PD78014, I/O enhanced  
µ
PD78054Y  
µPD78018FY  
µ
Low-voltage (1.8 V) operation version of the PD78014, with enhanced ROM and RAM variations  
µPD78018F  
µ
µ PD78002  
µ
A/D and 16-bit timer added to the µPD78002  
Basic subseries for control  
µ
PD78014  
PD78014Y  
µPD78002Y  
PD78083  
Internal UART, low-voltage (1.8 V) operation possible  
78K/0  
Series  
For FIP® driving  
µ
I/O, FIP C/D of the PD78044A enhanced, display output total: 53  
100-pin  
80-pin  
64-pin  
PD780208  
µPD78044A  
µ
6-bit U/D counter added to the PD78024, display output total: 34  
µ
Basic subseries for FIP driving, display output total: 26  
µ
PD78024  
For LCD driving  
100-pin  
80-pin  
µPD78064  
µ
PD78064Y  
Subseries for LCD driving, internal UART  
For IEBusTM  
µ
IEBus controller added to the PD78054  
µPD78098  
The major functional differences among the subseries are shown below.  
Function  
Timer  
Watch  
1ch  
V
MIN.  
DD  
Serial  
Interface  
External  
Expansion  
A/D  
D/A  
I/O  
88  
Name  
8-bit  
16-bit  
1ch  
Watchdog  
1ch  
Value  
µPD78078  
4ch  
2ch  
8-bit × 8ch 8-bit × 2ch 3ch (UART: 1ch)  
1.8 V  
C
For Control  
µPD78054  
µPD78018F  
µPD78014  
µPD78002  
µPD78083  
µPD780208  
µPD78044A  
µPD78024  
µPD78064  
69  
53  
2.0 V  
1.8 V  
2.7 V  
2ch  
1ch  
1ch (UART: 1ch)  
2ch  
8-bit × 8ch  
8-bit × 8ch  
33  
74  
68  
54  
57  
1.8 V  
2.7 V  
For FIP  
driving  
2ch  
1ch  
1ch  
1ch  
2ch  
2ch  
1ch  
1ch  
1ch  
1ch  
1ch  
1ch  
8-bit × 8ch  
2ch (UART: 1ch)  
2.0 V  
2.7 V  
For LCD  
driving  
For IEBusTM  
µPD78098  
8-bit × 8ch 8-bit × 2ch 3ch (UART: 1ch)  
69  
C
3
µPD78001B(A), 78002B(A)  
OVERVIEW OF FUNCTION  
Product Name  
Item  
µPD78001B(A)  
µPD78002B(A)  
8K bytes  
16K bytes  
384 bytes  
Internal  
ROM  
memory  
Internal high-  
speed RAM  
256 bytes  
64K bytes  
8 bits × 32 registers (8 bits × 8 registers × 4 banks)  
Memory space  
General registers  
Instruction cycle  
On-chip instruction execution time cycle modification function  
When main system  
0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (at 10.0 MHz operation)  
clock selected  
When subsystem  
clock selected  
122 µs (at 32.768 kHz operation)  
• 16-bit operation  
Instruction set  
• Bit manipulation (set, reset, test, boolean operation)  
• BCD correction, etc.  
Total  
: 53  
: 02  
: 47  
I/O ports  
• CMOS input  
• CMOS I/O  
• N-channel open-drain I/O  
(15 V withstand voltage) : 04  
• 3-wire/SBI/2-wire mode selectable  
Serial interface  
Timer  
• 8-bit timer/event counter : 2 channels  
• Watch timer  
: 1 channel  
: 1 channel  
• Watchdog timer  
Timer output  
Clock output  
2
39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock 10.0 MHz operation),  
32.768 kHz (at subsystem clock 32.768 kHz operation)  
Buzzer output  
2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock 10.0 MHz operation)  
Vectored  
interrupts interrupts  
Maskable  
Internal : 5  
External: 4  
Non-maskable  
Internal : 1  
interrupt  
Software  
interrupt  
Internal : 1  
Test input  
Internal : 1  
External : 1  
Operating voltage range  
VDD = 2.7 to 6.0 V  
Operating ambient  
temperature range  
–40 to +85°C  
• 64-pin plastic shrink DIP (750 mil)  
Package  
• 64-pin plastic QFP (14 mm)  
4
µPD78001B(A), 78002B(A)  
CONTENTS  
1. PIN CONFIGURATION (TOP VIEW).....................................................................................................  
2. BLOCK DIAGRAM...................................................................................................................................  
6
9
3. PIN FUNCTIONS ..................................................................................................................................... 10  
3.1 PORT PINS ...................................................................................................................................................... 10  
3.2 OTHER PINS ................................................................................................................................................... 12  
3.3 PIN I/O CIRCUIT AND RECOMMENDED CONNECTION OF UNUSED PINS ...................................... 13  
4. MEMORY SPACE.................................................................................................................................... 15  
5. PERIPHERAL HARDWARE FUNCTION FEATURES............................................................................ 16  
5.1 PORTS .............................................................................................................................................................. 16  
5.2 CLOCK GENERATOR...................................................................................................................................... 17  
5.3 TIMER/EVENT COUNTER.............................................................................................................................. 18  
5.4 CLOCK OUTPUT CONTROL CIRCUIT ......................................................................................................... 20  
5.5 BUZZER OUTPUT CONTROL CIRCUIT ....................................................................................................... 20  
5.6 SERIAL INTERFACES ..................................................................................................................................... 21  
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS .......................................................................... 22  
6.1 INTERRUPT FUNCTIONS............................................................................................................................... 22  
6.2 TEST FUNCTIONS.......................................................................................................................................... 25  
7. EXTERNAL DEVICE EXPANSION FUNCTIONS ................................................................................. 26  
8. STANDBY FUNCTIONS ......................................................................................................................... 26  
9. RESET FUNCTION .................................................................................................................................. 26  
10. INSTRUCTION SET ................................................................................................................................ 27  
11. ELECTRICAL SPECIFICATIONS ............................................................................................................. 30  
12. CHARACTERISTIC CURVE (REFERENCE VALUES) ........................................................................... 48  
13. PACKAGE DRAWINGS........................................................................................................................... 52  
14. RECOMMENDED SOLDERING CONDITIONS ..................................................................................... 56  
APPENDIX A. DEVELOPMENT TOOLS ...................................................................................................... 57  
APPENDIX B. RELATED DOCUMENTS ...................................................................................................... 59  
5
µPD78001B(A), 78002B(A)  
1. PIN CONFIGURATION (TOP VIEW)  
64-Pin Plastic Shrink DIP (750 mil)  
P20  
P21  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
IC3  
2
IC2  
P22  
3
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
IC1  
P23  
4
P24  
5
P25/SI0/SB0  
P26/SO0/SB1  
P27/SCK0  
P30  
6
7
8
9
P31/TO1  
P32/TO2  
P33/TI1  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P04/XT1  
XT2  
IC0  
µ
µ
X1  
X2  
V
SS  
V
DD  
P40/AD0  
P41/AD1  
P42/AD2  
P43/AD3  
P44/AD4  
P45/AD5  
P46/AD6  
P47/AD7  
P50/A8  
P03/INTP3  
P02/INTP2  
P01/INTP1  
P00/INTP0  
RESET  
P67/ASTB  
P66/WAIT  
P65/WR  
P64/RD  
P63  
P51/A9  
P52/A10  
P53/A11  
P54/A12  
P55/A13  
P62  
P61  
P60  
P57/A15  
P56/A14  
V
SS  
Remark  
Always connect the IC0, IC1 and IC3 (Internally Connected) pins to VSS directly.  
Always connect the IC2 pin to VDD directly.  
6
µPD78001B(A), 78002B(A)  
64-Pin Plastic QFP (14 mm)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
P30  
P31/TO1  
P32/TO2  
P33/TI1  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
1
P11  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P10  
3
IC1  
4
µ
µ
P04/XT1  
XT2  
5
6
IC0  
7
X1  
8
X2  
VSS  
9
VDD  
P40/AD0  
P41/AD1  
P42/AD2  
P43/AD3  
P44/AD4  
P45/AD5  
P46/AD6  
10  
11  
12  
13  
14  
15  
16  
P03/INTP3  
P02/INTP2  
P01/INTP1  
P00/INTP0  
RESET  
P67/ASTB  
P66/WAIT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Remark  
Always connect the IC0, IC1 and IC3 (Internally Connected) pins to VSS directly.  
Always connect the IC2 pin to VDD directly.  
7
µPD78001B(A), 78002B(A)  
P00 to P04  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P47  
P50 to P57  
P60 to P67  
: Port 0  
: Port 1  
: Port 2  
: Port 3  
: Port 4  
: Port 5  
: Port 6  
PCL  
BUZ  
AD0 to AD7  
A8 to A15  
RD  
: Programmable Clock  
: Buzzer Clock  
: Address/Data Bus  
: Address Bus  
: Read Strobe  
: Write Strobe  
WR  
WAIT  
: Wait  
INTP0 to INTP3 : Interrupt From Peripherals  
ASTB  
X1, X2  
XT1, XT2  
RESET  
VDD  
: Address Strobe  
: Crystal (Main System Clock)  
: Crystal (Subsystem Clock)  
: Reset  
: Power Supply  
: Ground  
TI1, TI2  
TO1, TO2  
SB0, SB1  
SI0  
: Timer Input  
: Timer Output  
: Serial Bus  
: Serial Input  
: Serial Output  
: Serial Clock  
SO0  
VSS  
IC0 to IC3  
SCK0  
: Internally Connected  
8
µPD78001B(A), 78002B(A)  
2. BLOCK DIAGRAM  
TO1/P31  
P00  
P01-P03  
P04  
8-bit TIMER/  
EVENT COUNTER 1  
PORT0  
PORT1  
TI1/P33  
TO2/P32  
TI2/P34  
8-bit TIMER/  
EVENT COUNTER 2  
P10-P17  
P20-P27  
P30-P37  
PORT2  
PORT3  
PORT4  
WATCHDOG TIMER  
WATCH TIMER  
78K/0  
CPU CORE  
ROM  
SI0/SB0/P25  
SO0/SB1/P26  
SCK0/P27  
SERIAL  
INTERFACE 0  
P40-P47  
P50-P57  
INTP0/P00 –  
INTP3/P03  
INTERRUPT  
CONTROL  
PORT5  
PORT6  
RAM  
BUZ/P36  
PCL/P35  
BUZZER OUTPUT  
P60-P67  
CLOCK OUTPUT  
CONTROL  
AD0/P40-  
AD7/P47  
A8/P50-  
A15/P57  
EXTERNAL  
ACCESS  
RD/P64  
WR/P65  
WAIT/P66  
ASTB/P67  
RESET  
X1  
X2  
XT1/P04  
XT2  
SYSTEM  
CONTROL  
VDD  
VSS  
IC0-  
IC3  
Remark  
Internal ROM & RAM capacity varies depending on the product.  
9
µPD78001B(A), 78002B(A)  
3. PIN FUNCTIONS  
3.1 PORT PINS (1/2)  
After  
Dual-  
Pin Name  
I/O  
Function  
Input only  
Reset  
Function Pin  
Port 0  
Input  
P00  
Input  
Input  
INTP0  
INTP1  
INTP2  
INTP3  
XT1  
5-bit I/O port  
Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can  
be used by software.  
Input/  
P01  
output  
P02  
P03  
Input only  
P04*  
P10 to P17  
Input  
Input  
Input  
Port 1  
Input/  
8-bit input/output port.  
output  
Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/  
P20  
Port 2  
output  
8-bit input/output port.  
P21  
Input/output can be specified bit-wise.  
P22  
When used as an input port, pull-up resistor can be used by software.  
P23  
P24  
P25  
SI0/SB0  
SO0/SB1  
SCK0  
P26  
P27  
Input/  
Port 3  
P30  
Input  
output  
8-bit input/output port.  
P31  
TO1  
Input/output can be specified in bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
P32  
TO2  
P33  
TI1  
P34  
TI2  
P35  
PCL  
P36  
BUZ  
P37  
Input/  
P40 to P47  
Port 4  
Input  
AD0 to AD7  
output  
8-bit input/output port.  
Input/output can be specified in 8-bit unit.  
When used as an input port, pull-up resistor can be used by software.  
Test input flag (KRIF) is set to 1 by falling edge detection.  
*
When using the P04/XT1 pins as an input port, set 1 to bit 6 (FRC) of the processor control register. (Do not use  
the on-chip feedback register of the subsystem clock oscillator.)  
10  
µPD78001B(A), 78002B(A)  
3.1 PORT PINS (2/2)  
Dual-  
After  
Pin Name  
P50 to P57  
I/O  
Function  
Function Pin  
Reset  
Port 5  
Input/  
Input  
A8 to A15  
8-bit input/output port.  
LED can be driven directly.  
output  
Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/  
Port 6  
N-ch open-drain input/output port. On-  
chip pull-up resistor can be specified by  
mask option.  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
Input  
output  
8-bit input/output port.  
Input/output can be specified  
bit-wise.  
LED can be driven directly.  
When used as an input port, pull-up  
resistor can be used by software.  
RD  
WR  
WAIT  
ASTB  
Caution  
When pull-up resistors are not used (specified by mask option), the low-level input leak current  
increases with -200 µA (MAX.) under either of the following conditions.  
1 When the external device expansion function is used and a low-level is input to the pin.  
2 During the 3-clock period when a read instruction is executed on port 6 (P6) and the port mode  
register (PM6).  
11  
µPD78001B(A), 78002B(A)  
3.2  
OTHER PINS  
After  
Dual-  
I/O  
Pin Name  
Function  
Reset  
Function Pin  
INTP0  
INTP1  
INTP2  
INTP3  
SI0  
Input  
Effective edge (rising edge, falling edge, or both rising edge and falling edge) Input  
can be specified.  
P00  
P01  
External interrupt input.  
P02  
Falling edge detection external interrupt input.  
P03  
Input  
Output  
Input  
Serial interface serial data input.  
Serial interface serial data output.  
Serial interface serial data input/output.  
Input  
Input  
Input  
P25/SB0  
P26/SB1  
P25/SI0  
P26/SO0  
P27  
SO0  
SB0  
SB1  
/output  
Input  
SCK0  
Serial interface serial clock input/output.  
Input  
Input  
Input  
/output  
Input  
TI1  
External count clock input to 8-bit timer (TM1).  
External count clock input to 8-bit timer (TM2).  
8-bit timer (TM1) output.  
P33  
P34  
TI2  
TO1  
Output  
P31  
TO2  
8-bit timer (TM2) output.  
P32  
PCL  
Output  
Output  
Input  
Clock output (for main system clock, subsystem clock trimming).  
Buzzer output.  
Input  
Input  
Input  
P35  
BUZ  
P36  
AD0 to AD7  
Low-order address/data bus at external memory expansion.  
P40 to P47  
/output  
Output  
Output  
A8 to A15  
RD  
High-order address bus at external memory expansion.  
External memory read operation strobe signal output.  
External memory write operation strobe signal output.  
Wait insertion at external memory access.  
Input  
Input  
P50 to P57  
P64  
WR  
P65  
WAIT  
ASTB  
Input  
Input  
Input  
P66  
Output  
Strobe output which latches the address information output at port 4 and  
port 5 to access external memory.  
P67  
RESET  
X1  
Input  
Input  
System reset input.  
Main system clock oscillation crystal connection.  
X2  
XT1  
Input  
Subsystem clock oscillation crystal connection.  
Input  
P04  
XT2  
VDD  
Positive power supply.  
VSS  
Ground potential.  
IC0 to IC3  
Internal connection. IC0/IC1/IC3 and IC2 should be connected directly to VSS  
VDD, respecitively.  
12  
µPD78001B(A), 78002B(A)  
3.3 PIN I/O CIRCUIT AND RECOMMENDED CONNECTION OF UNUSED PINS  
The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1.  
For the input/output circuit configuration of each type, see Fig. 3-1.  
Table 3-1 Input/Output Circuit Type of Each Pin  
Input/Output  
Pin Name  
P00/INTP0  
I/O  
Recommended Connection when Not Used  
Connected to VSS .  
Circuit Type  
Input  
2
Input/output  
P01/INTP1  
P02/INTP2  
P03/INTP3  
P04/XT1  
8-A  
Connected to VSS through resistor independently.  
Input  
16  
Connected to VDD or VSS .  
Input/output  
P10 to P17  
P20 to P24  
P25/SI0/SB0  
P26/SO0/SB1  
P27/SCK0  
P30  
5-A  
Connected to VDD or VSS through resistor independently.  
10-A  
5-A  
P31/TO1  
P32/TO2  
P33/TI1  
8-A  
5-A  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
P40/AD0 to P47/AD7  
P50/A8 to P57/A15  
P60 to P63  
P64/RD  
Connected to VDD through resistor independently.  
Connected to VDD or VSS through resistor independently.  
Connected to VDD through resistor independently.  
Connected to VDD or VSS through resistor independently.  
5-E  
5-A  
13-B  
5-A  
P65/WR  
P66/WAIT  
P67/ASTB  
RESET  
2
Input  
XT2  
16  
Leave open.  
Connected to VSS directly.  
Connected to VDD directly.  
IC0, IC1, IC3  
IC2  
13  
µPD78001B(A), 78002B(A)  
Fig. 3-1 Pin Input/Output Circuits  
Type 10-A  
VDD  
Type 2  
pullup  
enable  
P-ch  
VDD  
IN  
data  
P-ch  
IN / OUT  
open drain  
N-ch  
output disable  
Schmitt-Triggered Input with Hysteresis Characteristic  
Type 5-A  
Type 13-B  
VDD  
VDD  
Mask  
Option  
pullup  
enable  
P-ch  
IN / OUT  
data  
VDD  
P-ch  
N-ch  
VDD  
output disable  
data  
IN / OUT  
output  
disable  
N-ch  
P-ch  
RD  
input  
enable  
Middle-High Voltage Input Buffer  
Type 5-E  
Type 16  
VDD  
feedback  
cut-off  
pullup  
enable  
P-ch  
P-ch  
VDD  
P-ch  
data  
IN / OUT  
output  
disable  
N-ch  
XT1  
XT2  
Type 8-A  
VDD  
pullup  
enable  
P-ch  
VDD  
P-ch  
data  
IN / OUT  
output  
disable  
N-ch  
14  
µPD78001B(A), 78002B(A)  
4. MEMORY SPACE  
The memory map of µPD78001B(A)/78002B(A) is shown in Fig. 4-1.  
Fig. 4-1 Memory Map  
FFFFH  
Special Function Registers  
(SFR) 256 × 8 Bits  
FF00H  
FEFFH  
General Registers  
32 × 8 Bits  
FEE0H  
FEDFH  
Internal High-Speed RAM*  
mmmmH  
nnnnH  
mmmmH–1  
Program Area  
CALLF Entry Area  
Program Area  
Data  
1000H  
0FFFH  
Memory  
Space  
Use Prohibited  
0800H  
07FFH  
FA80H  
FA7FH  
Program  
Memory  
Space  
0080H  
007FH  
External Memory  
nnnnH+1  
nnnnH  
CALLT Table Area  
Vector Table Area  
0040H  
003FH  
Internal ROM*  
0000H  
0000H  
Remark  
Shaded area indicates internal memory.  
*
Intermal ROM and internal high-speed RAM capacities vary depending on the product (see the table below).  
Internal ROM  
End Address  
nnnnH  
Internal High-Speed  
RAM Start Address  
mmmmH  
Product Name  
µPD78001B(A)  
µPD78002B(A)  
1FFFH  
3FFFH  
FE00H  
FD80H  
15  
µPD78001B(A), 78002B(A)  
5
PERIPHERAL HARDWARE FUNCTION FEATURES  
5.1 PORTS  
The I/O port has the following three types.  
• CMOS input (P00, P04)  
:
2
• CMOS input/output (P01 to P03,  
port 1 to port 5, P64 to P67)  
: 47  
• N-ch open-drain input/output  
(15V withstand voltage) (P60 to P63)  
:
4
Total  
: 53  
Table 5-1 Functions of Ports  
Port Name  
Port 0  
Pin Name  
Function  
P00, P04  
Dedicated Input port  
P01 to P03  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/output ports. Input/output can be specified in 8-bit units.  
When used as an input port, pull-up resistor can be used by software.  
Test input flag (KRIF) is set to 1 by falling edge detection.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
LED can be driven directly.  
Port 1  
Port 2  
Port 3  
Port 4  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P47  
Port 5  
Port 6  
P50 to P57  
P60 to P63  
P64 to P67  
N-ch open-drain input/output port. Input/output can be specified bit-wise.  
On-chip pull-up resistor can be specified by mask option.  
LED can be driven directly.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Caution  
When pull-up resistors are not used (specified by mask option), low-level input leak current increases  
with –200 µA (MAX.) under either of the following conditions.  
1 When the external device expansion function is used and a low-level is input to the pin.  
2 During the 3-clock period when a read instruction is executed on port 6 (P6) and the port mode  
register (PM6).  
16  
µPD78001B(A), 78002B(A)  
5.2 CLOCK GENERATOR  
There are two types of clock generator: main system clock and subsystem clock.  
The instruction exection time can be changed.  
• 0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (mainsystem clock: at 10.0 MHz operation)  
• 122 µs (subsystem clock: at 32.768 KHz operation)  
Fig. 5-1 Clock Generator Block Diagram  
XT1/P04  
Watch Timer  
Clock Output  
Function  
Subsystem  
Clock  
Osicillator  
f
XT  
XT2  
Prescaler  
Main  
System  
Clock  
X1  
X2  
f
X
Clock to  
Peripheral  
Hardware  
Prescaler  
Osicillator  
f
2
X
f
X
f
X
f
X
24  
22 23  
STOP  
Standby  
Control  
Circuit  
Wait  
Control  
Circuit  
CPU Clock  
Selector  
(fCPU  
)
INTP0  
Sampling Clock  
17  
µPD78001B(A), 78002B(A)  
5.3 TIMER/EVENT COUNTER  
The following four channels are incorporated in the timer/event counter.  
• 8-bit timer/event counter  
• Watch timer  
• Watchdog timer  
: 2 channels  
: 1 channel  
: 1 channel  
Table 5-2 Types and Features of Timer/Event Counter  
8-bit Timer/Event Counter  
Watch Timer  
Watchdog Timer  
Type  
Interval timer  
2 channels  
2 channels  
2 outputs  
2 outputs  
2
1 channel  
1 channel  
External event counter  
2
1
Functions Timer output  
Sqare wave output  
Interrupt request  
Fig. 5-2 8-Bit Timer/Enent Counter Block Diagram  
Internal Bus  
INTTM1  
8-Bit Compare  
Register (CR10)  
8-Bit Compare  
Register (CR20)  
Output  
Control  
Circuit  
TO2/P32  
INTTM2  
Selector  
Match  
Match  
fX/2 – fX/210  
8-Bit Timer  
fX/212  
Selector  
Selector  
Register 1 (TM1)  
8-Bit Timer  
Register 2 (TM2)  
Selector  
TI1/P33  
Clear  
Clear  
fX/2 – fX/210  
Selector  
fX/212  
TI1/P34  
Output  
Control  
Circuit  
TO1/P31  
Internal Bus  
18  
µPD78001B(A), 78002B(A)  
Fig. 5-3 Watch Timer Block Diagram  
fW  
214  
Selector  
5-Bit Counter  
fX/28  
fXT  
fW  
INTWT  
Selector  
Prescaler  
Selector  
fW  
213  
fW  
fW  
fW  
fW  
fW  
fW  
24 25 26 27 28  
29  
INTTM3  
Selector  
Fig. 5-4 Watchdog Timer Block Diagram  
fW  
Prescaler  
24  
fW  
fW  
fW  
fW  
fW  
fW  
fW  
INTWDT  
Maskable  
Interrupt Request  
25 26 27 28 29  
212  
210  
Control  
Circuit  
Selector  
RESET  
8-Bit Counter  
INTWDT  
Non-Maskable  
Interrupt Request  
19  
µPD78001B(A), 78002B(A)  
5.4 CLOCK OUTPUT CONTROL CIRCUIT  
The clock with the following frequencies can be output for clock output.  
• 39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz (Main system clock: at 10.0 MHz operation)  
• 32.768 kHz (Subsystem clock: at 32.768 kHz operation)  
Fig. 5-5 Clock Output Control Block Diagram  
fX/23  
fX/24  
fX/25  
Synchronization  
Circuit  
Output Control  
Circuit  
fX/26  
fX/27  
fX/28  
fXT  
Selector  
PCL/P35  
5.5 BUZZER OUTPUT CONTROL CIRCUIT  
The clock with the following frequencies can be output for buzzer output.  
• 2.4 kHz/4.9 kHz/9.8 kHz (Main system clock: at 10.0 MHz operation)  
Fig. 5-6 Buzzer Output Control Block Diagram  
fX/210  
fX/211  
fX/212  
Output Control  
Circuit  
BUZ/P36  
Selector  
20  
µPD78001B(A), 78002B(A)  
5.6 SERIAL INTERFACES  
There is one on-chip clocked serial interface.  
Serial Interface channel 0 has the following three modes.  
• 3-wire serial I/O mode  
• SBI (Serial Bus Interface) mode  
• 2-wire serial I/O mode  
: MSB/LSB-first switchable  
: MSB-first  
: MSB-first  
Fig. 5-7 Serial Interface Channel 0 Block Diagram  
Internal Bus  
SI0/SB0/P25  
SO0/SB1/P26  
Output  
Latch  
Serial I/O Shift  
Selector  
Selector  
Register 0 (SIO0)  
Busy/Acknowledge  
Output Circuit  
Bus Release/Command/  
Acknowledge Detection  
Circuit  
Interrupt  
Request  
Signal  
INTCSI0  
SCK0/P27  
Serial Counter  
Generator  
f
X
/22 – f  
TO2  
X
/29  
Serial Clock  
Control Circuit  
Selector  
21  
µPD78001B(A), 78002B(A)  
6. INTERRUPT FUNCTIONS AND DEST FUNCTIONS  
6.1 INTERRUPT FUNCTIONS  
There are 11 interrupt functions of 3 different kinds as shown below.  
• Non-maskable interrupt  
• Maskable interrupt  
• Software interrupt  
:
:
:
1
9
1
Table 6-1 Interrrupt Source List  
Basic  
Interrupt Source  
Trigger  
Interrupt  
Type  
Default  
Internal/  
Vector Table  
Adress  
Configuration  
Priority *1  
External  
Name  
Type *2  
Non-  
INTWDT  
Watchdog timer overflow (with non-  
maskable interrupt selected)  
Internal  
0004H  
A
B
maskable  
Maskable  
Watchdog timer overflow (with interval  
timer selected)  
0
INTWDT  
Pin input edge detection  
1
2
3
4
5
6
INTP0  
INTP1  
External  
Internal  
0006H  
0008H  
000AH  
000CH  
000EH  
0012H  
C
D
INTP2  
INTP3  
Serial interface channel 0 transfer end  
INTCSI0  
INTTM3  
B
Reference time interval signal from  
watch timer  
8-bit timer/event counter 1 match signal  
generation  
7
8
INTTM1  
INTTM2  
BRK  
0016H  
0018H  
003EH  
8-bit timer/event counter 2 match signal  
generation  
Software  
BRK instruction execution  
Internal  
E
*
1. The default priority is the priority applicable when more priority than one maskable interrupt is generated.  
0 is the highest and 11, the lowest.  
2. Basic configuration types A to E correspond to (A) to (E) on the next page.  
22  
µPD78001B(A), 78002B(A)  
Fig. 6-1 Interrupt Function Basic Configuration (1/2)  
(A) Internal Non-Maskable Interrupt  
Internal Bus  
Vector Table  
Interrupt  
Request  
Priority Control  
Circuit  
Address  
Generator  
Standby Release  
Signal  
(B) Internal Maskable Interrupt  
Internal Bus  
PR  
ISP  
MK  
IE  
Vector Table  
Priority Control  
Circuit  
Address  
Interrupt  
Request  
IF  
Generator  
Standby Release  
Signal  
(C) External Maskable Interrupt (INTP0)  
Internal Bus  
MK  
Sampling Clock  
Select Register  
(SCS)  
External Interrupt  
Mode Register  
(INTM0)  
PR  
ISP  
IE  
Vector Table  
Address  
Generator  
Priority Control  
Circuit  
Interrupt  
Request  
Edge  
Detector  
Sampling  
Clock  
IF  
Standby Release  
Signal  
23  
µPD78001B(A), 78002B(A)  
Fig. 6-1 Interrupt Function Basic Configuration (2/2)  
(D) External Maskable Interrupt (Except INTP0)  
Internal Bus  
MK  
External Interrupt  
Mode Register  
(INTM0)  
PR  
ISP  
IE  
Vector Table  
Address  
Generator  
Priority Control  
Circuit  
Interrupt  
Request  
Edge  
Detector  
IF  
Standby Release  
Signal  
(E) Software Interrupt  
Internal Bus  
Vector Table  
Address  
Generator  
Priority Control  
Circuit  
Interrupt  
Request  
Remarks 1. IF : Interrupt request flag  
2. IE : Interrupt enable flag  
3. ISP : In-service priority flag  
4. MK : Interrupt mask flag  
5. PR : Priority spcification flag  
24  
µPD78001B(A), 78002B(A)  
6.2 TEST FUNCTIONS  
There are two test functions as shown in Table 6-2.  
Table 6-2 Test Source List  
Test Source  
Trigger  
Internal/External  
Name  
INTWT  
NTPT4  
Watch timer overflow  
Port 4 falling edge detection  
Internal  
External  
Fig. 6-2 Test Function Basic Configuration  
Internal Bus  
MK  
Standby Release  
Signal  
IF  
Test Input  
Remarks 1. IF : Test input flag  
2. MK : Test mask flag  
25  
µPD78001B(A), 78002B(A)  
7. EXTERNAL DEVICE EXPANSION FUNCTIONS  
The external device expansion function is used to connect external devices to areas other than the internal ROM,  
RAM and SFR.  
Ports 4 to 6 are used for connection with external devices.  
8. STANDBY FUNCTIONS  
There are the following two standby functions to reduce the current dissipation.  
• HALT mode : The CPU operating clock is stopped. The average consumption current can be reduced by  
intermittent operation in combination with the normal operating mode.  
• STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock is  
stopped, so that the system operates with ultra-low power consumption using only the sub-  
system clock.  
Fig. 8-1 Standby Functions  
CSS=1  
Main System  
Clock Operation  
Subsystem Clock  
Operation*  
CSS=0  
HALT  
Instruction  
STOP  
Instruction  
HALT  
Instruction  
Interrupt  
Request  
Interrupt  
Request  
Interrupt  
Request  
STOP Mode  
(Main system clock  
oscillation stopped)  
HALT Mode  
(Clock supply to CPU is  
stopped, oscillation)  
HALT Mode*  
(Clock supply to CPU is  
stopped, oscillation)  
*
The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the  
subsystem clock, set the MCC to stop the main system clock. The STOP instruction cannot be used.  
Caution  
When the main system clock is stopped and the system is operated by the subsystem clock, the  
subsystem clock should be switched again to the main system clock after the oscillation stabilization  
time is secured by the program by the program.  
9. RESET FUNCTION  
There are the following two reset methods.  
• External reset input by RESET pin.  
• Internal reset by watchdog timer runaway time detection.  
26  
µPD78001B(A), 78002B(A)  
10. INSTRUCTION SET  
(1) 8-Bit Instruction  
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH,  
POP, DBNZ  
2nd  
[HL+byte]  
Operand  
#byte  
A
r*  
sfr  
saddr  
!addr16  
PSW  
[DE]  
[HL]  
[HL+B] $addr16  
1
None  
1st  
Operand  
[HL+C]  
A
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
MOV  
XCH  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
ROR  
ROL  
RORC  
ROLC  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
r
MOV  
MOV  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
INC  
DEC  
XOR  
CMP  
r1  
DBNZ  
DBNZ  
sfr  
MOV  
MOV  
MOV  
saddr  
MOV  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
INC  
DEC  
XOR  
CMP  
!addr16  
PSW  
MOV  
MOV  
MOV  
PUSH  
POP  
[DE]  
[HL]  
MOV  
MOV  
ROR4  
ROL4  
[HL+byte]  
[HL+B]  
MOV  
[HL+C]  
*
Except r = A  
27  
µPD78001B(A), 78002B(A)  
(2) 16-Bit Instruction  
MOVW, XCHW ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW  
2nd Operand  
#word  
AX  
rp*  
sfrp  
saddrp  
!addr16  
SP  
None  
1st Operand  
AX  
ADDW  
MOVW  
XCHW  
MOVW  
MOVW  
MOVW  
MOVW  
SUBW  
CMPW  
rp  
MOVW  
MOVW*  
INCW, DECW  
PUSH, POP  
sfrp  
MOVW  
MOVW  
MOVW  
MOVW  
MOVW  
MOVW  
saddrp  
!addr16  
SP  
MOVW  
*
Only when rp = BC, DE, HL.  
(3) Bit Operation Instruction  
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR  
2nd Operand  
A.bit  
sfr.bit  
saddr.bit  
PWS.bit  
[HL].bit  
CY  
$addr16  
None  
1st Operand  
A.bit  
MOV1  
BT  
BF  
SET1  
CLR1  
BTCLR  
sfr.bit  
MOV1  
MOV1  
MOV1  
MOV1  
BT  
SET1  
CLR1  
BF  
BTCLR  
saddr.bit  
PSW.bit  
[HL].bit  
CY  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
MOV1  
MOV1  
MOV1  
MOV1  
AND1  
OR1  
MOV1  
SET1  
CLR1  
NOT1  
AND1  
OR1  
AND1  
OR1  
AND1  
OR1  
AND1  
OR1  
XOR1  
XOR1  
XOR1  
XOR1  
XOR1  
28  
µPD78001B(A), 78002B(A)  
(4) Call Instruction/Branch Instruction  
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF,BTCLR, DBNZ  
2nd Operand  
AX  
BR  
!addr16  
!addr11  
CALLF  
[addr5]  
CALLT  
$addr16  
1st Operand  
Basic instruction  
CALL, BR  
BR, BC, BNC, BZ, BNZ  
BT, BF, BTCLR, DBNZ  
Compound instruction  
(5) Other Instruction  
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP  
29  
µPD78001B(A), 78002B(A)  
11. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25 °C)  
Parameter  
Symbol  
VDD  
Test Conditions  
Rating  
Unit  
V
Supply voltage  
Input voltage  
–0.3 to + 7.0  
P00 to P04, P10 to P17, P20 to P27, P30 toP37  
P40 to P47, P50 to P57, P64 to P67, X1, X2, XT2  
–0.3 to VDD + 0.3  
V
VI1  
VI2  
VO  
P60 to P67  
Open-drain  
–0.3 to +16  
V
Output voltage  
–0.3 to VDD + 0.3  
V
Output  
1 pin  
–10  
–15  
–15  
30  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
current high  
IOH  
P10 to P17, P20 to P27, P30 to P37 total  
P01 to P03, P40 to P47, P50 to P57, P60 to P67 total  
Output  
Peak value  
1 pin  
current low  
Effective value  
Peak value  
15  
100  
70  
P40 to P47, P50 to P55 total  
Effective value  
Peak value  
P01 to P03, P56, P57,  
P60 to P67 total  
P01 to P03,  
100  
70  
IOL*  
Effective value  
Peak value  
50  
P64 to P67 total  
P10 to P17, P20 to P27, P30 to P37  
total  
Effective value  
Peak value  
20  
50  
Effective value  
20  
Operating ambient  
temperature  
TA  
–40 to +85  
°C  
°C  
Storage  
Tstg  
–65 to +150  
temperature  
*
Effective value should be calculated as follows:  
[Effective value] = [Peak value] × √duty  
Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even  
momentarily. That is, the absolute maximuam ratings are rated values at which the product is on the verge of suffering  
physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum  
ratings are not exceeded.  
30  
µPD78001B(A), 78002B(A)  
Capacitance (TA = 25 °C, VDD = VSS = 0 V)  
Parameter  
Symbol  
CIN  
Test Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
Input capacitance  
I/O capacitance  
f=1 MHz Unmeasured pins returned to 0 V  
P01 to P03, P10 to P17,  
P20 to P27, P30 to P37,  
P40 toP47, P50 to P57,  
P64 to P67  
15  
pF  
pF  
f=1 MHz Unmeasured  
pins returned to 0 V  
CIO  
P60 to P63  
20  
Remark  
The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.  
Main System Clock Oscillation Circuit Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Recommended  
Resonator  
Parameter  
Test Conditions  
MIN.  
1
TYP.  
MAX.  
10  
Unit  
MHz  
Circuit  
Ceramic  
Oscillator  
VDD = Oscillator  
voltage range  
X1  
X2  
V
SS  
resonator  
frequency (fX) *1  
R1  
C2  
Oscillation  
After VDD reaches oscil-  
lator voltage range MIN.  
C1  
4
ms  
stabilization time *2  
Crystal  
Oscillator  
10  
MHz  
ms  
8.38  
1
X1  
X2  
V
SS  
resonator  
frequency (fX) *1  
10  
30  
Oscillation  
VDD = 4.5 to 6.0 V  
C1  
C2  
stabilization time *2  
External  
clock  
X1 input  
MHz  
ns  
10.0  
500  
1.0  
frequency (fX) *1  
X2  
X1  
X1 input  
µPD74HCU04  
high/low level width  
(tXH , tXL)  
42.5  
*
1. Indicates only oscillation circuit characteristics. Refer to “AC Characteristics” for instruction execution time.  
2. Time required to stabilize oscillation after reset or STOP mode release.  
Cautions  
1. When using the main system clock oscillator, wiring the area enclosed with the broken line should be carried  
out as follows to avoid an adverse effect from wiring capacitance.  
Wiring should be as short as possible.  
Wiring should not cross other signal lines.  
Wiring should not be placed close to a varying high current.  
The potential of the oscillator capacitor ground should be the same as VSS.  
Do not ground wiring to a ground pattern in which a high current flows.  
Do not fetch a signal from the oscillator.  
2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem  
clock should be switched again to the main system clock after the oscillation stabilization time is secured by  
the program.  
31  
µPD78001B(A), 78002B(A)  
Subsystem Clock Oscillation Circuit Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Recommended  
Circuit  
Resonator  
Parameter  
Test Conditions  
MIN.  
32  
TYP.  
MAX.  
35  
Unit  
kHz  
Crystal  
Oscillator  
XT1 XT2  
VSS  
32.768  
1.2  
resonator  
frequency (fXT) *1  
R2  
VDD = 4.5 to 6.0 V  
2
C3  
C4  
Oscillation  
s
stabilization time *2  
10  
External  
clock  
XT1 input  
kHz  
100  
15  
32  
5
frequency (fXT) *1  
XT2  
XT1  
XT1 input  
high/low level width  
(tXTH , tXTL)  
µs  
*
1. Indicates only oscillation circuit characteristics. Refer to “AC Characteristics” for instruction execution time.  
2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.  
Cautions  
1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line should be carried  
out as follows to avoid an adverse effect from wiring capacitance.  
Wiring should be as short as possible.  
Wiring should not cross other signal lines.  
Wiring should not be placed close to a varying high current.  
The potential of the oscillator capacitor ground should be the same as VSS.  
Do not ground wiring to a ground pattern in which a high current flows.  
Do not fetch a signal from the oscillator.  
2. The subsystem clock oscillation circuit is a circuit with a low amplification level, more prone to misoperation  
due to noise than the main system clock. When using the subsystem clock, special care is needed regarding  
the wiring method.  
32  
µPD78001B(A), 78002B(A)  
RECOMMENDED OSCILLATION CIRCUIT CONSTANT  
Main System Clock Ceramic Resonator (TA = –40 to +85 °C)  
Recommended Oscillation Constant  
Oscillation Voltage Range  
Manufacturer  
Murata m.f.g.  
Products  
CSB1000J  
Frequency (MHz)  
C1 (pF)  
100  
C2 (pF)  
100  
R1 (k)  
MIN. (V)  
2.9  
MAX. (V)  
6.0  
1.00  
6.8  
1.01-1.25  
1.26-1.79  
CSB ×××× J  
100  
100  
4.7  
0
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.9  
2.9  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
100  
CSA×. ××× MK  
CSA×. ××MG  
CST×. ××MG  
CSA×. ××MG  
CST×. ××MGW  
CSA×. ××MG  
CST×. ××MGW  
CSA×. ××MT  
CST×. ××MTW  
KBR-4.19MWS  
KBR-4.19MKS  
KBR-4.19MSA  
PBRC4.19A  
100  
100  
0
100  
1.80-2.44  
2.45-4.18  
4.19-6.00  
6.01-10.0  
4.19  
On-chip  
30  
0
On-chip  
30  
0
On-chip  
30  
0
On-chip  
30  
0
On-chip  
30  
0
On-chip  
30  
0
On-chip  
0
On-chip  
Kyocera  
2.7  
6.0  
4.19  
10.0  
1.00  
33  
33  
2.7  
2.8  
2.7  
6.0  
6.0  
6.0  
33  
33  
KBR-10.0M  
KBR-1000F  
100  
2.2  
100  
KBR-1000Y  
Remark ××××, ×. ×××, ×. ×× indicates frequency.  
Subsystem Clock: Crystal Resonator (TA = –40 to +60 °C)  
Recommended Circuit Constant  
Oscillation Voltage Range  
Manufacturer  
Products  
Frequency (MHz)  
32.768  
C3 (pF)  
C4 (pF)  
R2 (k)  
MIN. (V)  
MAX. (V)  
DT-38 (1TA632E00,  
Load capacitance 6.3pF)  
Daishinku corp.  
8
8
100  
6.0  
2.7  
Caution  
Regarding the oscillator circuit constant, operation is guaranteed, but reliability is not guaranteed. Customers who  
require high reliability should directly consult the resonator manufacturer.  
33  
µPD78001B(A), 78002B(A)  
DC Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Parameter  
Symbol  
Test Conditions  
MIN.  
TYP.  
MAX.  
VDD  
Unit  
V
Input voltage  
high  
P10 to P17, P21, P23, P30 to P32, P35 to P37,  
P40 to P47, P50 to P57, P64 to P67  
VIH1  
0.7 VDD  
VIH2  
P00 to P03, P20, P22, P24 to P27, P33, P34, RESET  
0.8 VDD  
VDD  
V
VIH3  
VIH4  
P60 to P63  
X1, X2  
Open-drain  
0.7 VDD  
VDD-0.5  
VDD-0.5  
VDD-0.3  
15  
V
V
V
V
VDD  
VDD  
VDD  
VDD = 4.5 to 6.0 V  
VIH5  
XT1/P04, XT2  
Input voltage  
low  
P10 to P17, P21, P23, P30 to P32, P35 to P37  
P40 to P47, P50 to P57, P64 to P67  
VIL1  
0
0.3 VDD  
V
VIL2  
VIL3  
P00 to P03, P20, P22, P24 to P27, P33, P34, RESET  
0
0.2 VDD  
0.3 VDD  
0.2 VDD  
0.4  
V
V
V
V
V
V
V
V
VDD = 4.5 to 6.0 V  
0
P60 to P63  
0
VIL4  
VIL5  
X1, X2  
0
0
VDD = 4.5 to 6.0 V  
0.4  
XT1/P04, XT2  
0
0.3  
Output voltage  
high  
VDD = 4.5 to 6.0 V,IOH = –1 mA  
VDD-1.0  
VDD-0.5  
VOH1  
VOL1  
IOH = –100 µA  
Output voltage  
low  
VDD = 4.5 to 6.0 V,  
IOL = 15 mA  
P50 to P57, P60 to P63  
0.4  
2.0  
0.4  
V
V
P01 to P03, P10 to P17, P20 to P27, VDD = 4.5 to 6.0 V,  
P30 to P37, P40 to P47, P64 to P67  
IOL = 1.6 mA  
VDD = 4.5 to 6.0 V,  
open-drain  
VOL2  
SB0, SB1, SCK0  
0.2 VDD  
0.5  
V
V
pulled-up (R = 1 K)  
VOL3  
IOL = 400 µA  
Input leakage  
current high  
P00 to P03, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P60 to P67, RESET  
X1, X2, XT1/P04, XT2  
P60 to P63  
ILIH1  
3
µA  
VIN = VDD  
VIN = 15 V  
ILIH2  
ILIH3  
20  
80  
µA  
µA  
Input leakage  
current high  
P00 to P03, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P64 to P67, RESET  
ILIL1  
–3  
µA  
VIN = 0 V  
ILIL2  
ILIL3  
X1, X2, XT1/P04, XT2  
–20  
–200  
–3*2  
µA  
µA  
µA  
*1  
P60 to  
P63  
Other than above  
*
1. When memory expansion mode is used by the memory expansion mode register (MM) with no on-chip pull-up resistor  
by mask option.  
2. When pull-up resistors are not used (specified by mask option), the low-level input leakage current increases with –200  
µA (MAX.) under either of the following conditions.  
q
w
When the external device expansion function is used and a low level is input to the pin.  
During the 3-clock period when a read instruction is executed on port 6 (P6) and the port mode registor (PM6).  
Remark  
The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.  
34  
µPD78001B(A), 78002B(A)  
DC Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Parameter  
Symbol  
ILOH1  
Test Conditions  
MIN.  
TYP.  
MAX.  
3
Unit  
Output leakage  
current high  
VOUT = VDD  
µA  
Output leakage  
current low  
ILOL  
VOUT = 0 V  
–3  
90  
µA  
kΩ  
Mask option pull-  
up resister  
R1  
VIN = 0 V, P60 to P63  
20  
40  
40  
Software pull-  
up resister  
VIN = 0 V, P01 to P03,  
P10 to P17, P20 to P27,  
P30 to P37, P40 to P47,  
P50 to P57, P64 to P67  
4.5 V VDD < 6.0 V  
15  
20  
90  
kΩ  
kΩ  
R2  
2.7 V VDD < 4.5 V  
500  
Power supply  
current *3  
VDD = 5.0 V ± 10 % *1  
VDD = 3.0 V ± 10 % *2  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
7.5  
0.8  
1.4  
550  
60  
22.5  
2.4  
4.2  
1650  
120  
70  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
8.38 MHz  
Crystal oscillation  
operating mode  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
8.38 MHz  
Crystal oscillation  
HALT mode  
32.768 kHz  
Crystal oscillation  
operating mode  
35  
25  
50  
32.768 kHz  
Crystal oscillation  
HALT mode  
5
10  
1
20  
XT1 = 0 V STOP mode  
When feedback resister  
is used  
0.5  
0.1  
0.05  
10  
XT1 = 0 V STOP mode  
When feedback  
resister is unused  
20  
10  
*
1. Operating in high-speed mode (when set the processor clock control register to 00H).  
2. Operating in low-speed mode (when set the processor clock control register to 04H).  
3. Port current are excluded.  
Remark  
The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.  
35  
µPD78001B(A), 78002B(A)  
AC Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
(1) Basic Operation  
Parameter  
Cycle time  
Symbol  
TCY  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
TYP.  
122  
MAX.  
Unit  
Operating on main  
system clock  
0.4  
0.96  
40  
64  
64  
µs  
µs  
(Min. instruction  
execution time)  
TI input  
Operationg on subsystem clock  
VDD = 4.5 to 6.0 V  
125  
4
µs  
0
MHz  
kHz  
ns  
fTI  
frequency  
0
275  
TI input high/  
low-level width  
Interrupt input  
high/low-level  
width  
tTIH  
tTIL  
VDD = 4.5 to 6.0 V  
100  
1.8  
8/fsam*  
10  
µs  
INTP0  
µs  
tINTH  
tINTL  
INTP1 to INTP3  
KR0 to KR7  
µs  
10  
µs  
RESET low  
level width  
tRSL  
10  
µs  
*
In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register, selection of fsam is possible between fX/2N+1  
fX/64 and fx/128 (when N = 0 to 4).  
,
µPD78P014 (Reference)  
µPD78001B(A), 78002B(A)  
TCY vs VDD (At main system clock operation)  
TCY vs VDD (At main system clock operation)  
60  
60  
10  
10  
Operation Guaranteed  
Range  
Operation Guaranteed  
Range  
µ
µ
2.0  
1.0  
2.0  
1.0  
0.5  
0.4  
0.5  
0.4  
0
0
1
2
3
4
5
6
1
2
3
4
5
6
Supply Voltage VDD [V]  
Supply Voltage VDD [V]  
Remark  
indicates TA=–40 to +40 °C  
indicates TA=–40 to +85 °C  
Caution  
The operation guaranteed range of the µPD78001B(A), and 78002B(A) differs from that of the  
µPD78P014.  
36  
µPD78001B(A), 78002B(A)  
(2) Read/Write Operation (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
Parameter  
ASTB high-level width  
Address setup time  
Symbol  
tASTH  
tADS  
Test Conditions  
MIN.  
0.5tCY  
0.5tCY–30  
10  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address hold time  
tADH  
Load resistor 5 kΩ  
Data input time from address  
tADD1  
tADD2  
tRDD1  
tRDD2  
tRDH  
(2+2n)tCY–50  
(3+2n)tCY–100  
(1+2n)tCY–25  
5
Data input time from RD↓  
(2.5+2n)tCY–100  
Read data hold time  
RD low-level width  
0
tRDL1  
(1.5+2n)tCY–20  
(2.5+2n)tCY–20  
tRDL2  
WAITinput time from RD↓  
tRDWT1  
tRDWT2  
tWRWT  
tWTL  
0.5tCY  
1.5tCY  
WAITinput time from WR↓  
WAIT low-level width  
Write data setup time  
Write data hold time  
0.5tCY  
(0.5+2n)tCY +10  
100  
(2+2n)tCY  
tWDS  
tWDH  
5
WR low-level width  
tWRL1  
tASTRD  
tASTWR  
(2.5+2n)tCY –20  
0.5tCY–30  
1.5tCY –30  
RDdelay time from ASTB↓  
WRdelay time from ASTB↓  
ASTBdelay time from  
RDin external fetch  
tRDAST  
tCY-10  
tCY  
tCY+40  
tCY+50  
ns  
ns  
Address hold time from  
tRDADH  
tRDWD  
tWDWR  
RDin external fetch  
Write data output time from RD↑  
WRdelay time from write data  
10  
0.5tCY–120  
0.5tCY–170  
tCY  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VDD = 4.5 to 6.0 V  
VDD =4.5 to 6.0 V  
0.5tCY  
0.5tCY  
Address hold time from WR↑  
tCY+60  
tWRADH  
tCY  
tCY+100  
2.5tCY+80  
2.5tCY+80  
RDdelay time from WAIT↑  
WRdelay time from WAIT↑  
tWTRD  
tWTWR  
0.5tCY  
0.5tCY  
Remarks  
1. tCY = TCY/4  
2. n indicates number of waits.  
3. CL = 100 pF (CL indicates load capacitance of P40/AD0 to P47/AD7, P50/A8 to P57/A15, P64/RD, P65/WR,  
P66/WAIT,P67/ASTB pins).  
37  
µPD78001B(A), 78002B(A)  
(3) Serial Interface (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
(a) 3-wire serial I/O mode (SCK... Internal clock output)  
Parameter  
SCK cycle time  
Symbol  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY1  
3200  
SCK high/low-level width  
tKH1  
tKL1  
VDD = 4.5 to 6.0 V  
tKCY1/2-50  
tKCY1/2-150  
100  
SI setup time (to SCK)  
SI hold time (from SCK)  
SO output delay time from  
SCK↓  
tSIK1  
tKSI1  
400  
VDD = 4.5 to 6.0 V  
300  
tKSO1  
C = 100 pF*  
1000  
*
C is the load capacitance of SO output line.  
(b) 3-wire serial I/O mode (SCK... External clock input)  
Parameter  
SCK cycle time  
Symbol  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
TYP.  
MAX.  
Unit  
800  
3200  
400  
ns  
ns  
ns  
ns  
tKCY2  
SCK high/low-level width  
tKH2  
tKL2  
VDD = 4.5 to 6.0 V  
1600  
SI setup time (to SCK)  
SI hold time (from SCK)  
SO output delay time from  
tSIK2  
tKSI2  
100  
400  
ns  
ns  
ns  
VDD = 4.5 to 6.0 V  
300  
tKSO2  
tR2  
C = 100 pF*  
SCK↓  
1000  
160  
SCK rise, fall time  
When external device expansion  
function is used  
ns  
ns  
When external device expansion  
function is not used  
1000  
tF2  
*
C is the load capacitance of SO output line.  
38  
µPD78001B(A), 78002B(A)  
(c) SBI mode (SCK... Internal clock output)  
Parameter  
SCK cycle time  
Symbol  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
tKCY3  
3200  
ns  
SCK high/low-level width  
tKH3  
tKL3  
VDD = 4.5 to 6.0 V  
VDD = 4.5 to 6.0 V  
tKCY3/2-50  
tKCY3/2-150  
100  
ns  
ns  
SB0, SB1 setup time  
ns  
tSIK3  
(to SCK)  
300  
ns  
SB0, SB1 hold time  
tKSI3  
tKCY3/2  
ns  
from SCK↓  
SB0, SB1 output delay time  
(from SCK)  
R = 1 k,  
VDD = 4.5 to 6.0 V  
0
250  
ns  
ns  
ns  
ns  
ns  
ns  
tKSO3  
C = 100 pF*  
0
1000  
SB0, SB1from SCK↑  
SCKfrom SB0, SB1↓  
SB0, SB1 high-level width  
SB0, SB1 low-level width  
tKSB  
tSBK  
tSBH  
tSBL  
tKCY3  
tKCY3  
tKCY3  
tKCY3  
*
R and C are the load resistors and load capacitance of the SB0 and SB1 output line.  
(d) SBI mode (SCK... External clock input)  
Parameter  
SCK cycle time  
Symbol  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
tKCY4  
3200  
400  
ns  
SCK high/low-level width  
tKH4  
tKL4  
VDD = 4.5 to 6.0 V  
VDD = 4.5 to 6.0 V  
ns  
1600  
100  
ns  
SB0, SB1 setup time  
(to SCK)  
ns  
tSIK4  
300  
ns  
SB0, SB1 hold time  
(from SCK)  
tKSI4  
tKCY4/2  
ns  
SB0, SB1 output delay time  
from SCK↑  
R = 1 k,  
VDD = 4.5 to 6.0 V  
0
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKSO4  
C = 100 pF*  
0
1000  
SB0, SB1from SCK↑  
SCKfrom SB0, SB1↓  
SB0, SB1 high-level width  
SB0, SB1 low-level width  
SCK rise, fall time  
tKSB  
tSBK  
tSBH  
tSBL  
tKCY4  
tKCY4  
tKCY4  
tKCY4  
When external device expansion  
function is used  
160  
tR4  
tF4  
When external device expansion  
function is not used  
1000  
ns  
*
R and C are the load resistors and load capacitance of the SB0 and SB1 output line.  
39  
µPD78001B(A), 78002B(A)  
(e) 2-wire serial I/O mode (SCK... Internal clock output)  
Parameter  
SCK cycle time  
Symbol  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
TYP.  
MAX.  
Unit  
1600  
3800  
ns  
ns  
ns  
ns  
tKCY5  
SCK high-level width  
SCK low-level width  
SB0, SB1 setup time  
(to SCK)  
tKH5  
tKL5  
R = 1 k, C = 100 pF*  
tKCY5/2-50  
tKCY5/2-50  
tSIK5  
tKSI5  
tKSO5  
300  
600  
ns  
ns  
SB0, SB1 hold time  
(from SCK)  
SB0, SB1 output delay time  
R = 1 k,  
VDD = 4.5 to 6.0 V  
0
0
250  
ns  
ns  
from SCK↓  
C = 100 pF*  
1000  
*
R and C are the load resistors and load capacitance of the SCK0, SB0 and SB1 output line.  
(f) 2-wire serial I/O mode (SCK... External clock input)  
Parameter  
SCK cycle time  
Symbol  
Test Conditions  
VDD = 4.5 to 6.0 V  
MIN.  
TYP.  
MAX.  
Unit  
1600  
3800  
650  
ns  
ns  
ns  
ns  
tKCY6  
SCK high-level width  
SCK low-level width  
SB0, SB1 setup time  
(to SCK)  
tKH6  
tKL6  
800  
tSIK6  
tKSI6  
tKSO6  
100  
ns  
ns  
SB0, SB1 hold time  
tKCY6/2  
(from SCK)  
SB0, SB1 output delay time  
from SCK↓  
R = 1 k,  
VDD = 4.5 to 6.0 V  
0
0
300  
1000  
160  
ns  
ns  
ns  
C = 100 pF*  
SCK rise, fall time  
When external device expansion  
function is used  
tR6  
tF6  
When external device expansion  
function is not used  
1000  
ns  
*
R and C are the load resistors and load capacitance of the SCK0, SB0 and SB1 output line.  
40  
µPD78001B(A), 78002B(A)  
AC Timing Test Point (Excluding X1, XT1 Input)  
0.8 VDD  
0.2 VDD  
0.8 VDD  
0.2 VDD  
Test Points  
Clock Timing  
1/fX  
tXL  
tXH  
VDD - 0.5 V  
0.4V  
X1 Input  
1/fXT  
tXTL  
tXTH  
VDD - 0.5 V  
0.4V  
XT1 Input  
TI Timing  
1/fTI  
tTIL  
tTIH  
TI1, TI2  
41  
µPD78001B(A), 78002B(A)  
Read/Write Operation  
External fetch (no wait):  
A8-A15  
Upper 8-Bit Address  
Lower 8-Bit  
Address  
tADD1  
Hi-z  
Operation  
Code  
AD0-AD7  
t
RDADH  
t
ADS  
t
RDD1  
t
ADH  
t
ASTH  
t
RDAST  
ASTB  
RD  
t
ASTRD  
t
RDL1  
tRDH  
External fetch (wait insertion):  
A8-A15  
Upper 8-Bit Address  
Lower 8-Bit  
Address  
tADD1  
Hi-z  
Operation  
Code  
AD0-AD7  
tRDD1  
tRDADH  
tRDAST  
tADS  
tADH  
tASTH  
ASTB  
RD  
tASTRD  
tRDL1  
tRDH  
WAIT  
tWTRD  
tWTL  
tRDWT1  
42  
µPD78001B(A), 78002B(A)  
External data access (No wait):  
A8-A15  
Upper 8-Bit Address  
Lower  
8-Bit  
Address  
tADD2  
Hi-z  
Hi-z  
AD0-AD7  
Read Data  
Write Data  
tADS  
tRDD2  
tADH  
tRDH  
tASTH  
ASTB  
RD  
tRDWD  
tWDS  
tWDH  
tASTRD  
tRDL2  
tWDWR  
tWRADH  
WR  
tASTWR  
tWRL1  
External data access (Wait insertion):  
A8-A15  
Lower  
Upper 8-Bit Address  
8-Bit  
tADD2  
Address  
Hi-z  
Hi-z  
AD0-AD7  
Read Data  
Write Data  
tRDD2  
tADS  
tADH  
tRDH  
tASTH  
ASTB  
tASTRD  
RD  
tWDH  
tRDL2  
tWDS  
tWDWR  
tRDWD  
WR  
tASTWR  
tWRL1  
tWRADH  
WAIT  
tRDWT2  
tWTRD  
tWTL  
tWRWT  
tWTL  
tWTWR  
43  
µPD78001B(A), 78002B(A)  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCY 1,2  
t
KL1,2  
tKH1,2  
t
R2  
t
F2  
SCK  
t
SIK1,2  
t
KSI1,2  
SI  
Input Data  
t
KSO1,2  
SO  
Output Data  
SBI mode (Bus release signal transfer):  
t
KCY3,4  
tKL3,4  
tKH3,4  
tR4  
t
F4  
SCK  
t
KSB  
tSBL  
t
SBK  
tSIK3,4  
t
KSI3,4  
t
SBH  
SB0, SB1  
tKSO3,4  
SBI mode (Command signal transfer):  
tKCY3,4  
tKL3,4  
tKH3,4  
tR4  
tF4  
SCK  
tSBK  
tSIK3,4  
tKSI3,4  
t
KSB  
SB0, SB1  
tKSO3,4  
44  
µPD78001B(A), 78002B(A)  
2-wire serial I/O mode:  
tKCY5,6  
tKL5,6  
tR6  
tKH5,6  
tF6  
SCK  
tSIK5,6  
tKSI5,6  
tKSO5,6  
SB0, SB1  
45  
µPD78001B(A), 78002B(A)  
Data Memory Stop Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85 °C)  
Parameter  
Data retention  
Symbol  
VDDDR  
Test Conditions  
MIN.  
2.0  
TYP.  
MAX.  
6.0  
Unit  
V
supply voltage  
Data retention  
supply  
current  
VDDDR = 2.0 V  
IDDDR  
tSREL  
tWAIT  
Subsystem clock stop and  
feed-back resister disconnected  
0.1  
10  
µA  
µs  
Release signal set time  
0
Oscillation stabilization  
wait time  
Release by RESET  
218/fx  
µs  
µs  
Release by interrupt  
*
*
In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of 213/fx and 215/fx  
to 218/fx is possible.  
Data Retention Timing (STOP Mode Release by RESET)  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retension Mode  
V
DD  
V
DDDR  
t
SREL  
STOP Instruction Execution  
Standby Release Signal  
(Interrupt Request)  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
Internal Reset Operation  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retension Mode  
VDD  
VDDDR  
tSREL  
STOP Instruction Execution  
RESET  
tWAIT  
46  
µPD78001B(A), 78002B(A)  
Interrupt Input Timing  
tINTL  
tINTH  
INTP0-INTP2  
tINTL  
INTP3  
RESET Input Timing  
tRSL  
RESET  
47  
µPD78001B(A), 78002B(A)  
12. CHARACTERISTIC CURVE (REFERENCE VALUES)  
IDD vs VDD (Main System Clock : 8.38 MHz)  
(TA=25°C)  
10.0  
5.0  
PCC=00H  
PCC=01H  
PCC=02H  
PCC=03H  
PCC=04H  
PCC=30H  
HALT (X1 Oscillation,  
XT1 Oscillation)  
1.0  
0.5  
0.1  
PCC=B0H  
0.05  
(X1 Stop,  
XT1 Oscillation)  
(X1 Stop,  
HALT  
STOP  
XT1 Oscillation)  
0.01  
f
f
X
=8.38MHz  
0.005  
XT=32.768kHz  
0.001  
0
2
3
4
5
6
7
8
Supply Voltage VDD [V]  
48  
µPD78001B(A), 78002B(A)  
IDD vs VDD (Main System Clock : 4.19 MHz)  
(TA=25°C)  
10.0  
5.0  
PCC=00H  
PCC=01H  
PCC=02H  
PCC=03H  
PCC=04H  
PCC=30H  
HALT  
(X1 Oscillation,  
XT1 Oscillation)  
1.0  
0.5  
0.1  
PCC=B0H  
0.05  
HALT  
STOP  
(X1 Stop,  
XT1 Oscillation)  
(X1 Stop,  
XT1 Oscillation)  
0.01  
f
f
X
=4.19MHz  
0.005  
XT=32.768kHz  
0.001  
0
2
3
4
5
6
7
8
Supply Voltage VDD [V]  
49  
µPD78001B(A), 78002B(A)  
IDD vs fX  
(VDD = 3 V, T = 25 °C)  
A
5
4
PCC=00H  
PCC=01H  
3
2
1
0
PCC=02H  
PCC=03H  
PCC=04H  
HALT  
(X1 Oscilla-  
tion)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
Clock Oscillator Frequency f  
X
[MHz]  
IDD vs fX  
(VDD = 5 V, T  
A
= 25 °C)  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PCC=00H  
PCC=01H  
PCC=02H  
PCC=03H  
PCC=04H  
HALT  
(X1 Oscilla-  
tion)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
Clock Oscillator Frequency f  
X
[MHz]  
50  
µPD78001B(A), 78002B(A)  
VOL vs IOL (Port 0, 2 to 5, P64 to P67)  
(T =25 °C)  
VOL vs IOL (P60 to P63)  
(T  
A
=25 °C)  
A
VDD=5 V  
V
DD= 6 V VDD=4 V  
VDD=3 V  
30  
20  
10  
0
V
DD=6 V  
V
DD=5 V  
V
DD=4 V  
30  
20  
10  
0
V
DD=3 V  
0
0.5  
1.0  
Output Voltage Low VOL [V]  
0
0.5  
1.0  
Output Voltage Low VOL [V]  
VOL vs IOL (Port 1)  
VOH vs IOH (Port 0 to 5, P64 to P67)  
(T  
A
=25 °C)  
(TA=25 °C)  
V
DD=6 V VDD=5 V  
30  
V
DD=5 V  
V
DD=4 V  
V
V
DD=4 V  
-10  
V
DD=3 V  
V
DD=6 V  
DD=3 V  
20  
10  
0
-5  
0
0
0.5  
1.0  
0
0.5  
1.0  
Output Voltage High VDD – VOH [V]  
Output Voltage Low VOL [V]  
51  
µPD78001B(A), 78002B(A)  
13. PACKAGE DRAWINGS  
DRAWINGS OF MASS-PRODUCTION PRODUCT PACKAGES (1/2)  
64-PIN PLASTIC SHRINK DIP (750 mil)  
64  
33  
1
32  
A
K
L
F
D
M
R
B
C
M
N
NOTE  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
58.68 MAX.  
1.78 MAX.  
1.778 (T.P.)  
2.311 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) Item "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.750 (T.P.)  
0.669  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
19.05 (T.P.)  
17.0  
J
K
L
+0.004  
0.010  
+0.10  
0.25  
M
–0.003  
–0.05  
N
R
0.17  
0.007  
0~15°  
0~15°  
P64C-70-750A,C-1  
Caution  
Dimensions and materials of ES products are different from those of mass-production products. Refer  
to DRAWINGS OF ES PRODUCT PACKAGES (1/2).  
52  
µPD78001B(A), 78002B(A)  
DRAWINGS OF MASS-PRODUCTION PRODUCT PACKAGES (2/2)  
64-PIN PLASTIC QFP (14)  
A
B
48  
49  
33  
32  
detail of lead end  
64  
17  
16  
1
G
H
M
I
J
K
N
L
P64GC-80-AB8-3  
NOTE  
ITEM  
A
MILLIMETERS  
17.6 0.4  
14.0 0.2  
14.0 0.2  
17.6 0.4  
1.0  
INCHES  
Each lead centerline is located within 0.15  
mm (0.006 inch) of its true position (T.P.) at  
maximum material condition.  
0.693 0.016  
+0.009  
B
0.551  
–0.008  
+0.009  
C
0.551  
–0.008  
D
F
0.693 0.016  
0.039  
G
H
I
1.0  
0.039  
+0.004  
0.35 0.10  
0.15  
0.014  
–0.005  
0.006  
J
0.8 (T.P.)  
1.8 0.2  
0.031 (T.P.)  
K
0.071 0.008  
+0.009  
0.031  
L
0.8 0.2  
–0.008  
+0.10  
+0.004  
0.15  
M
N
P
0.006  
–0.05  
–0.003  
0.10  
0.004  
2.55  
0.100  
Q
S
0.1 0.1  
2.85 MAX.  
0.004 0.004  
0.112 MAX.  
Caution  
Dimensions and materials are different from those of mass-production products. Refer to DRAWINGS  
OF ES PRODUCT PACKAGES (2/2).  
53  
µPD78001B(A), 78002B(A)  
DRAWINGS OF ES PRODUCT PACKAGES (1/2)  
64PIN CERAMIC SHRINK DIP (SEAM WELD) (750 mil)  
64  
33  
32  
1
K
L
A
F
D
B
M
N
M
0~15°  
C
P64D-70-750A1  
NOTES  
ITEM  
MILLIMETERS  
58.16 MAX.  
1.521 MAX.  
1.778 (T.P.)  
0.46 0.05  
0.8 MIN.  
3.5 0.3  
INCHES  
1) Each lead centerline is located within 0.25  
mm (0.01 inch) of its true position (T.P.) at  
maximum material condition.  
A
B
C
D
F
2.290 MAX.  
0.060 MAX.  
0.070 (T.P.)  
0.018 0.002  
0.031 MIN.  
0.138 0.012  
0.040 MIN.  
0.124  
2) Item "K" to center of leads when formed  
parallel.  
G
H
I
1.02 MIN.  
3.14  
J
5.08 MAX.  
19.05 (T.P.)  
18.8  
0.200 MAX.  
0.750 (T.P.)  
0.740  
K
L
0.010+–0..00032  
M
N
0.25 0.05  
0.25  
0.01  
54  
µPD78001B(A), 78002B(A)  
DRAWINGS OF ES PRODUCT PACKAGES (2/2)  
64 PIN CERAMIC QFP (14 × 14) (FOR ES)  
A
B
48  
49  
33  
32  
64  
17  
16  
1
G
H
J
K
X64B-80A-1  
(Bottom View)  
ITEM  
A
MILLIMETERS  
22.0 0.4  
14.0  
INCHES  
0.866 0.016  
0.551  
B
C
14.0  
0.551  
D
22.0 0.4  
1.0  
0.866 0.016  
0.039  
F
G
1.0  
0.039  
H
0.32  
0.013  
U
V
J
0.8 (T.P.)  
4.0 0.15  
0.25  
0.031 (T.P.)  
+0.007  
K
0.157  
–0.006  
M
Q
T
0.01  
3.0 MAX.  
0.55  
0.119 MAX.  
0.022  
U
1.0  
0.039  
V
1.2  
0.047  
55  
µPD78001B(A), 78002B(A)  
14. RECOMMENDED SOLDERING CONDITIONS  
The µPD78001B(A)/78002B(A) should be soldered and mounted under the conditions recommended in the table  
below.  
For detail of recommended soldering conditions, refer to the information document “Semiconductor Device  
Mounting Technology Manual” (IEI-1207).  
For soldering methods and conditions other than those recommended below, contact our sales personnel.  
Table 14-1 Surface Mounting Type Soldering Conditions  
µPD78001BGC(A)-×××-AB8 :  
µPD78002BGC(A)-×××-AB8 :  
64-Pin Plastic QFP (14 mm)  
64-Pin Plastic QFP (14 mm)  
Soldering  
Method  
Recommended  
Soldering Conditions  
Condition Symbol  
Infrared reflow Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above),  
Number of times: Twice max.  
IR35-00-2  
VP15-00-2  
< Points to note >  
(1) Start the second reflow after the device temprature by the first reflow returns to normal.  
(2) Flux washing by the water after the first reflow should be avoided.  
VPS  
Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above)  
Number of times: Twice max.  
< Points to note >  
(1) Start the second reflow after the device temprature by the first reflow returns to normal.  
(2) Flux washing by the water after the first reflow should be avoided.  
Pin temperature: 300°C max., Duration: 3 sec. max. (per device side)  
Pin part heating  
Caution  
Use of more than one soldering method should be avoided (except in the case of pin part heating).  
Table 14-2 Insertion Type Soldering Conditions  
µPD78001BCW(A)-××× :  
µPD78002BCW(A)-××× :  
64-Pin Plastic Shrink DIP (750 mil)  
64-Pin Plastic Shrink DIP (750 mil)  
Soldering Method  
Soldering Conditions  
Wave soldering  
(Pin only)  
Solder bath temperature: 260°C max., Duration: 10 sec. max.  
Pin temperature: 300°C max., Duration: 3 sec. max. (per pin)  
Pin part heating  
Caution  
Wave soldering is only for the pins in order that jet solder can not contact with the chip  
directly.  
56  
µPD78001B(A), 78002B(A)  
APPENDIX A. DEVEROPMENT TOOLS  
The following development tools are available for system development using the µPD78001B(A), 78002B(A).  
Language Processing Software  
RA78K/0*1, 2, 3  
CC78K/0*1, 2, 3  
DF78002*1, 2, 3  
CC78K/0-L*1, 2, 3  
78K/0 series common assembler package  
78K/0 series common C compiler package  
µPD78002 subseries device file  
78K/0 series common C compiler library source file  
PROM Programming Tools  
PG-1500  
PROM programmer  
PA-78P014CW  
PA-78P014GC  
Programmer adapter connected to PG-1500  
PG-1500 controller*1, 2  
PG-1500 control program  
Debugging Tools  
IE-78000-R  
78K/0 series common in-circuit emulator  
78K/0 series common break board  
IE-78000-R-BK  
IE-78014-R-EM  
µPD78002/78014 subseries evaluation emulation board  
EP-78240CW-R  
EP-78240GC-R  
Emulation probe common to µPD78244 subseries  
EV-9200GC-64  
SD78K/0*1, 2  
Socket to be mounted on user system board created for the 64-pin plastic QFP  
IE-78000-R screen debugger  
SM78K/0*4, 5, 6  
DF78002*1, 2, 4, 5  
78K/0 series common system simulator  
µPD78002 subseries device file  
Enbedded OS  
MX78K/0*1, 2, 3, 6  
78K/0 series common enbedded OS  
Fuzzy Inference Development Support System  
FE9000*1/FE9200*5  
FT9080*1/FT9085*2  
FI78K0*1, 2  
Fuzzy knowledge data creation tool  
Translator  
Fuzzy inference module  
Fuzzy inference debugger  
FD78K0*1, 2  
*
1. PC-9800 series (MS-DOSTM) based.  
2. IBM PC/ATTM (PC DOSTM) based.  
3. HP9000 series 300TM, HP9000 series 700TM (HP-UXTM) based, SPARCstationTM, (Sun OSTM) based, EWS-4800  
series (EWS-UX/V) based.  
4. PC-9800 series (MS-DOS + WindowsTM) based.  
57  
µPD78001B(A), 78002B(A)  
5. IBM PC/AT (PC DOS + Windows) based.  
6. Under development.  
Remarks 1. For development tools manufactured by a third party, see the "78K/0 Series Selection Guide" (IF-  
1185).  
2. RA78K/0, CC78K/0, SD78K/0, and SM78K/0 are used in combination with DF78002.  
58  
µPD78001B(A), 78002B(A)  
APPENDIX B. RELATED DOCUMENTS  
Device Related Documents  
Document Name  
Document No. (Japanese)  
Document No. (Engligh)  
User's Manual  
IEU-788  
IEU-849  
IEA-715  
IEA-740  
IEU-1334  
IEU-1372  
IEA-1288  
IEA-1299  
78K/0 Series User's Manual - Instruction  
Application Note  
Basic I  
Basic II  
Development Tools Documents (User's Manual)  
Document Name  
Document No. (Japanese)  
Document No. (Engligh)  
RA78K Series Assembler Package  
Operation  
EEU-809  
EEU-815  
EEU-817  
EEU-656  
EEU-655  
EEU-651  
EEU-704  
EEU-810  
EEU-867  
EEU-805  
EEU-986  
EEU-852  
EEU-816  
EEU-1399  
EEU-1404  
EEU-1402  
EEU-1280  
EEU-1284  
EEU-1335  
EEU-1291  
EEU-1398  
EEU-1427  
EEU-1400  
In preparation  
EEU-1414  
EEU-1413  
Language  
RA78K Series Structured Assembler Preprocessor  
CC78K Series C Compiler  
Operation  
Language  
PG-1500 PROM Programmer  
PG-1500 Controller  
IE-78000-R  
IE-78000-R-BK  
IE-78014-R-EM  
EP-78240  
SD78K/0 Screen Debugger  
Beginner's guide  
Reference  
Embedded Software Documents (User's Manual)  
Document Name  
Document No. (Japanese)  
EEU-892  
Document No. (Engligh)  
EEU-1438  
Fuzzy Knowledge Data Creation Tool  
78K/0, 78K/II, 87AD Series  
EEU-862  
EEU-1444  
Fuzzy Inference Development Support System - Translator  
Caution These documents above are subject to change without notice. Besure to use the latest document for  
designing your system.  
59  
µPD78001B(A), 78002B(A)  
Other Documents  
Document Name  
Document No. (Japanese)  
Document No. (Engligh)  
IEI-1213  
Package Manual  
IEI-635  
IEI-616  
IEI-620  
MEI-603  
Semiconductor Device Mounting Technology Manual  
Quality Grade on NEC Semiconductor Devices  
Semiconductor Device Quality Guarantee Guide  
IEI-1207  
IEI-1209  
MEI-1202  
Caution These documents above are subject to change without notice. Besure to use the latest document for  
designing your system.  
60  
µPD78001B(A), 78002B(A)  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction of  
the gate oxide and ultimately degrade the device operation. Steps must be  
taken to stop generation of static electricity as much as possible, and quickly  
dissipate it once, when it has occurred. Environmental control must be  
adequate. When it is dry, humidifier should be used. It is recommended to  
avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded  
using wrist strap. Semiconductor devices must not be touched with bare  
hands. Similar precautions need to be taken for PW boards with semiconductor  
devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of CMOS  
devices must be fixed high or low by using a pull-up or pull-down circuitry. Each  
unused pin should be connected to VDD or GND with a resistor, if it is considered  
to have a possibility of being an output pin. All handling related to the unused  
pins must be judged device by device and related specifications governing the  
devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Production  
process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed immedi-  
ately after power-on for devices having reset function.  
61  
µPD78001B(A), 78002B(A)  
[MEMO]  
The export of this product from Japan is regulated by the Japanese government. To export this product may be  
prohibited without governmental license, the need for which must be judged by the customer. The export or re-  
export of this product from a country other than Japan may also be prohibited without a license from that country.  
Please call an NEC sales representative.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents,  
copyrights or other intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on  
a customer designated “quality assurance program“ for a specific application. The recommended applications  
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each  
device before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact NEC Sales Representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 94.11  
FIP is a registered trademark of NEC Corporation.  
IEBus is a trademark of NEC Corporation.  
MS-DOS and Windows are trademarks of Microsoft Corporation.  
PC/AT and PC DOS are trademarks of IBM Corporation.  
HP9000 Series 300, HP9000 Series 700, and HP-UX are trademarks of Hewlett-Packard Company.  
SPARCstation is a trademark of SPARC International, Inc.  
SunOS is a trademark of Sun Microsystems, Inc.  

相关型号:

UPD78002BCW

8-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD78002BCW(A)-XXX

Microcontroller, 8-Bit, MROM, 10MHz, MOS, PDIP64, 0.750 INCH, SHRINK, PLASTIC, DIP-64
NEC

UPD78002BCW-XXX

Microcontroller, 8-Bit, MROM, MOS, PDIP64, 0.750 INCH, SHRINK, PLASTIC, DIP-64
NEC

UPD78002BCWA

8-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD78002BGC

8-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD78002BGC-XXX-AB8

Microcontroller, 8-Bit, MROM, MOS, PQFP64, 14 X 14 MM, PLASTIC, QFP-64
NEC

UPD78002BGCA

8-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD78002BYCW-XXX

Microcontroller, 8-Bit, MROM, MOS, PDIP64, 0.750 INCH, SHRINK, PLASTIC, DIP-64
NEC

UPD78002BYGC-XXX-AB8

Microcontroller, 8-Bit, MROM, MOS, PQFP64, 14 X 14 MM, PLASTIC, QFP-64
NEC

UPD78002Y

8-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD780031A

8-BIT SINGLE-CHIP MICROCONTROLLERS
NEC

UPD780031ACW(A)-XXX

Microcontroller, 8-Bit, MROM, 8.38MHz, MOS, PDIP64, 0.750 INCH, PLASTIC, SDIP-64
NEC