UPD8882CY-A [NEC]

(10680 + 10680) PIXELS ?3 COLOR CCD LINEAR IMAGE SENSOR; ( 10680 + 10680 )像素的? 3彩色CCD线性图像传感器
UPD8882CY-A
型号: UPD8882CY-A
厂家: NEC    NEC
描述:

(10680 + 10680) PIXELS ?3 COLOR CCD LINEAR IMAGE SENSOR
( 10680 + 10680 )像素的? 3彩色CCD线性图像传感器

传感器 图像传感器 CD
文件: 总36页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
μPD8882  
(10680 + 10680) PIXELS × 3 COLOR CCD LINEAR IMAGE SENSOR  
DESCRIPTION  
The μPD8882 is a color CCD (Charge Coupled Device) linear image sensor which changes optical images to  
electrical signal and has the function of color separation.  
The μPD8882 has 3 rows of (10680 + 10680) staggered pixels, and each row has a dual-sided readout-type charge  
transfer register. And it has reset feed-through level clamp circuits and voltage amplifiers. Therefore, it is suitable for  
2400 dpi/A4 color image scanners.  
FEATURES  
Valid photocell : (10680 + 10680) staggered pixels × 3  
Photocell’s size : 2.7 μm × 5.4 μm  
Line spacing  
: 86.4 μm (16 lines) Red line - Green line, Green line - Blue line  
43.2 μm (8 lines) Odd line - Even line (for each color)  
Color filter  
Resolution  
: Primary colors (red, green and blue), pigment filter (with light resistance 107 lx•hour)  
: 96 dot/mm A4 (210 × 297 mm) size (shorter side)  
2400 dpi US letter (8.5” × 11”) size (shorter side)  
Drive clock level : CMOS output under 5 V operation  
Data rate  
: Built-in amplifiers : 10.0 MHz Max. CCD transfer : 4.5 MHz Max./each CCD  
: +12 V  
Power supply  
On-chip circuits : Reset feed-through level clamp circuits  
Voltage amplifiers  
ORDERING INFORMATION  
Part Number  
Package  
CCD linear image sensor 22-pin plastic DIP (10.16 mm (400))  
μPD8882CY-A  
Remark The μPD8882CY-A is a lead-free product.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. S17085EJ2V0DS00 (2nd edition)  
Date Published May 2005 NS CP (K)  
Printed in Japan  
The mark  
shows major revised points.  
2004  
μPD8882  
BLOCK DIAGRAM  
VOD GND GND φ RB  
φ 2 φ 1  
20  
2
11  
3
14 15  
VOD  
7
CCD analog shift register  
Transfer gate  
Photocell (Blue-odd)  
13  
12  
10  
φ
φ
φ
TG1  
TG2  
TG3  
Transfer gate  
CCD analog shift register  
VOUT  
VOUT  
VOUT  
1
2
3
21  
CCD analog shift register  
Transfer gate  
Photocell (Blue-even)  
Transfer gate  
CCD analog shift register  
CCD analog shift register  
Transfer gate  
Photocell (Green-odd)  
Transfer gate  
CCD analog shift register  
22  
CCD analog shift register  
Transfer gate  
Photocell (Green-even)  
Transfer gate  
CCD analog shift register  
CCD analog shift register  
Transfer gate  
Photocell (Red-odd)  
Transfer gate  
CCD analog shift register  
1
CCD analog shift register  
Transfer gate  
Photocell (Red-even)  
Transfer gate  
CCD analog shift register  
4
19  
9
8
φ
CLB  
φ
SEL  
φ 4 φ 3  
2
Data Sheet S17085EJ2V0DS  
μPD8882  
PIN CONFIGURATION (Top View)  
CCD linear image sensor 22-pin plastic DIP (10.16 mm (400))  
μPD8882CY-A  
Output signal 3 (Red)  
Ground  
V
OUT  
3
1
2
22  
21  
20  
19  
V
V
V
φ
OUT  
OUT  
OD  
2
1
Output signal 2 (Green)  
GND  
Output signal 1 (Blue)  
Output drain voltage  
Reset gate clock  
φ
3
RB  
Reset feed-through level clamp clock  
No connection  
φ
4
SEL Dpi selector  
CLB  
NC  
5
18 NC  
17 NC  
16 NC  
No connection  
No connection  
NC  
6
No connection  
Output drain voltage  
Shift register clock 3  
Shift register clock 4  
VOD  
7
No connection  
φ
3
4
8
15  
14  
13  
12  
φ
φ
φ
φ
1
Shift register clock 1  
Shift register clock 2  
φ
9
2
Transfer gate clock 3  
(for Red)  
Transfer gate clock 1  
(for Blue)  
φ
10  
TG1  
TG2  
TG3  
Transfer gate clock 2  
(for Green)  
GND 11  
Ground  
Caution Connect the No connection pins (NC) to GND.  
3
Data Sheet S17085EJ2V0DS  
μPD8882  
PHOTOCELL STRUCTURE DIAGRAM  
0.7  
μ
m
μ
2.0 m  
μ
Channel stopper  
Aluminum  
shield  
PHOTOCELL ARRAY STRUCTURE DIAGRAM-1 (Line spacing)  
5.4 μm  
5.4 μm  
5.4 μm  
5.4 μm  
Blue odd photocell array  
Blue even photocell array  
Green odd photocell array  
Green even photocell array  
Red odd photocell array  
Red even photocell array  
8 lines  
(43.2  
μ
m)  
m)  
m)  
m)  
m)  
16 lines  
(86.4 m)  
μ
8 lines  
(43.2  
μ
8 lines  
(43.2  
μ
16 lines  
(86.4 m)  
μ
8 lines  
(43.2  
μ
5.4  
5.4  
μ
μ
m
m
8 lines  
(43.2  
μ
4
Data Sheet S17085EJ2V0DS  
μPD8882  
PHOTOCELL ARRAY STRUCTURE DIAGRAM-2 (Odd-even pixel)  
1
3
5
7
5.4  
μm  
43.2  
μm  
1.35  
μ
m
4
37.8  
μ
m
(8 lines)  
2
6
8
5.4  
μ
m
2.0  
μ
m
0.7 μm  
PHOTOCELL ARRAY STRUCTURE DIAGRAM-3 (Dummy, OB, for each color)  
Dummy  
Optical black  
(96 pixels)  
Invalid photocell  
(8 pixels)  
Valid photocell  
(21360 pixels)  
Invalid photocell  
(4 pixels)  
(56 pixels)  
1
55 57  
151 153 155 157 159 161 163  
152 154 156 158 160 162 164  
21517 21519  
2
56 58  
21518 21520  
5
Data Sheet S17085EJ2V0DS  
μPD8882  
ABSOLUTE MAXIMUM RATINGS (TA = +25°C)  
Parameter  
Output drain voltage  
Symbol  
Ratings  
0.3 to +15  
0.3 to +8  
0.3 to +8  
0.3 to +8  
0.3 to +8  
0.3 to +8  
0 to +60  
Unit  
V
VOD  
Shift register clock voltage  
Vφ 1, Vφ 2, Vφ 3, Vφ 4  
V
Reset gate clock voltage  
Vφ RB  
V
Reset feed-through level clamp clock voltage  
Dpi select signal voltage  
Vφ CLB  
V
Vφ SEL  
V
Transfer gate clock voltage  
Operating ambient temperature Note  
Storage temperature  
Vφ TG1 to Vφ TG3  
V
TA  
°C  
°C  
Tstg  
40 to +70  
Note Use at the condition without dew condensation.  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
RECOMMENDED OPERATING CONDITIONS (TA = +25°C)  
Parameter  
Output drain voltage  
Symbol  
Min.  
11.4  
4.7  
Typ.  
12.0  
5.0  
0
Max.  
12.6  
5.5  
Unit  
V
VOD  
Shift register clock high level  
Shift register clock low level  
Reset gate clock high level  
Vφ 1H, Vφ 2H, Vφ 3H, Vφ 4H  
Vφ 1L, Vφ 2L, Vφ 3L, Vφ 4L  
Vφ RBH  
V
0.3  
4.5  
+0.3  
5.5  
V
5.0  
0
V
Reset gate clock low level  
Vφ RBL  
0.3  
4.5  
+0.5  
5.5  
V
Reset feed-through level clamp clock high level  
Reset feed-through level clamp clock low level  
Dpi select signal high level  
Vφ CLBH  
5.0  
0
V
Vφ CLBL  
0.3  
4.5  
+0.5  
5.5  
V
Vφ SELH  
5.0  
0
V
Dpi select signal low level  
Vφ SELL  
0.3  
4.5  
+0.5  
5.5  
V
Transfer gate clock high level  
Transfer gate clock low level  
Data rate (amplifier)  
Vφ TG1H to Vφ TG3H  
Vφ TG1L to Vφ TG3L  
fφ RB  
5.0  
0
V
0.3  
+0.5  
10.0  
4.5  
V
2.0  
0.5  
MHz  
MHz  
Clock pulse frequency  
fφ 1, fφ 2, fφ 3, fφ 4  
6
Data Sheet S17085EJ2V0DS  
μPD8882  
ELECTRICAL CHARACTERISTICS  
TA = +25°C, VOD = 12 V, data rate (fφ RB) = 2 MHz, storage time = 11.0 ms, input signal clock = 5 Vp-p,  
light source : 3200 K halogen lamp + C-500S (infrared cut filter, t = 1 mm) + HA-50 (heat absorbing filter, t = 3 mm)  
Parameter  
Saturation voltage  
Saturation exposure  
Symbol  
Vsat  
Test Conditions  
Min.  
2.0  
Typ.  
2.5  
Max.  
Unit  
V
Red  
SER  
SEG  
SEB  
PRNU  
ADS  
DSNU  
PW  
0.877  
0.926  
1.445  
6
lx•s  
lx•s  
lx•s  
%
Green  
Blue  
Photo response non-uniformity  
Average dark signal  
VOUT = 1.0 V  
20  
Light shielding  
Light shielding  
0.1  
4.0  
8.0  
450  
1.0  
3.70  
3.51  
2.25  
7.0  
mV  
mV  
mW  
kΩ  
Dark signal non-uniformity  
Power consumption  
2.0  
280  
0.4  
Output impedance  
ZO  
Response  
Red  
RR  
2.00  
1.89  
1.21  
5.0  
2.85  
2.70  
1.73  
6.0  
V/lx•s  
V/lx•s  
V/lx•s  
V
Green  
Blue  
RG  
RB  
Offset level Note 1  
Output fall delay time Note 2  
VOS  
td  
VOUT = 1.0 V  
25  
ns  
Total transfer efficiency  
TTE  
VOUT = 1.0 V  
92  
98  
%
Clock pulse frequency = 4.5 MHz  
Image lag  
IL  
VOUT = 1.0 V  
VOUT = 1.0 V  
0.5  
1.0  
3.0  
4.0  
%
Photo diode response imbalance  
PDRI  
%
Response peak  
Red  
630  
540  
460  
0.8  
1.2  
nm  
nm  
nm  
mV  
mV  
Green  
Blue  
Reset feed-through noise Note 1  
RFTN  
74HC04, RS = 47 Ω Note 3  
2.0  
+1.0  
Random noise (CDS)  
σCDS  
Light shielding  
Notes1. Refer to TIMING CHART 2-1 to 2-4.  
2. When the fall time φ 1-600, φ 1-2400 (t1) is the Typ. value (refer to TIMING CHART 2-1 to 2-4).  
3. Using application circuit example.  
7
Data Sheet S17085EJ2V0DS  
μPD8882  
INPUT PIN CAPACITANCE (TA = +25°C, VOD = 12 V)  
Parameter  
Shift register clock pin capacitance 1  
Shift register clock pin capacitance 2  
Shift register clock pin capacitance 3  
Shift register clock pin capacitance 4  
Reset gate clock pin capacitance  
Symbol  
Pin name Pin No.  
Min.  
Typ.  
600  
600  
600  
600  
20  
Max.  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
Cφ 1  
φ 1  
15  
14  
8
Cφ 2  
Cφ 3  
Cφ 4  
Cφ RB  
φ 2  
φ 3  
φ 4  
9
φ RB  
φ CLB  
φ SEL  
φ TG1  
φ TG2  
φ TG3  
3
Reset feed-through level clamp clock pin capacitance Cφ CLB  
4
20  
Select signal and gain pin capacitance  
Transfer gate clock pin capacitance  
Cφ SEL  
19  
13  
12  
10  
20  
Cφ TG  
20  
20  
20  
Remark Cφ 1 to Cφ 4 show the equivalent capacity of the real drive including the capacity of between each clock pin  
(φ 1 and φ 4).  
8
Data Sheet S17085EJ2V0DS  
TIMING CHART 1-1 (2400 dpi, bit clamp mode, for each color)  
φ
TG1 to  
φ
TG3  
φ
φ
φ
φ
1
2
3
4
φ
RB  
Note  
Note  
φ
φ
CLB  
SEL  
“H”  
VOUT1 to VOUT3  
Optical black  
(96 pixels)  
Valid photocell  
(21360 pixels)  
Invalid photocell  
(8 pixels)  
Invalid photocell  
(4 pixels)  
μ
Note Set the φ RB and the φ CLB to high during this period.  
TIMING CHART 1-2 (2400 dpi, line clamp mode, for each color)  
φ
TG1 to  
φ
TG3  
φ
φ
φ
φ
1
2
3
4
φ
RB  
Note  
Note  
φ
φ
CLB  
SEL  
“H”  
VOUT1 to VOUT3  
Optical black  
(96 pixels)  
Valid photocell  
(21360 pixels)  
Invalid photocell  
(8 pixels)  
Invalid photocell  
(4 pixels)  
μ
Note Set the φ RB to high level and the φ CLB to low level during this period.  
Remark Inverse pulse of the φ TG1 to φ TG3 can be used as φ CLB.  
TIMING CHART 1-3 (1200 dpi, bit clamp mode, for each color)  
φ
TG1 to  
φ
TG3  
φ
φ
φ
φ
1
2
3
4
φ
RB  
Note  
Note  
φ
φ
CLB  
SEL  
“L”  
VOUT1 to VOUT3  
Optical black  
(48 pixels)  
Valid photocell  
(10680 pixels)  
Invalid photocell  
(4 pixels)  
Invalid photocell  
(2 pixels)  
μ
Note Set the φ RB and the φ CLB to high level during this period.  
TIMING CHART 1-4 (1200 dpi, line clamp mode, for each color)  
φ
TG1 to  
φ
TG3  
φ
φ
φ
φ
1
2
3
4
φ
RB  
Note  
Note  
φ
φ
CLB  
SEL  
“L”  
VOUT1 to VOUT3  
Optical black  
(48 pixels)  
Valid photocell  
(10680 pixels)  
Invalid photocell  
(4 pixels)  
Invalid photocell  
(2 pixels)  
μ
Note Set the φ RB to high level and the φ CLB to low level during this period.  
Remark Inverse pulse of the φ TG1 to φ TG3 can be used as φ CLB.  
TIMING CHART 1-5 (600 dpi, bit clamp mode, for each color)  
φ
TG1 to  
φ
TG3  
φ
φ
φ
φ
1
2
3
4
φ
RB  
Note  
Note  
φ
φ
CLB  
SEL  
“L”  
VOUT1 to VOUT3  
Optical black  
(24 pixels)  
Valid photocell  
(5340 pixels)  
Invalid photocell  
(2 pixels)  
Invalid photocell  
(1 pixels)  
μ
Note Set the φ RB and the φ CLB to high level during this period.  
TIMING CHART 1-6 (600 dpi, line clamp mode, for each color)  
φ
TG1 to  
φ
TG3  
φ
φ
φ
φ
1
2
3
4
φ
RB  
Note  
Note  
φ
φ
CLB  
SEL  
“L”  
VOUT1 to VOUT3  
Optical black  
(24 pixels)  
Valid photocell  
(5340 pixels)  
Invalid photocell  
(2 pixels)  
Invalid photocell  
(1 pixels)  
μ
Note Set the φ RB to high level and the φ CLB to low level during this period.  
Remark Inverse pulse of the φ TG1 to φ TG3 can be used as φ CLB.  
TIMING CHART 1-7 (300 dpi, bit clamp mode, for each color)  
φ
TG1 to  
φ
TG3  
φ
φ
φ
φ
1
2
3
4
φ
RB  
Note  
Note  
φ
φ
CLB  
SEL  
“L”  
V
OUT1 to VOUT3  
Optical black  
(12 pixels)  
Valid photocell  
(2670 pixels)  
Invalid photocell  
(1 pixels)  
Invalid photocell  
(1 pixels)  
μ
Note Set the φ RB and the φ CLB to high level during this period.  
TIMING CHART 1-8 (300 dpi, line clamp mode, for each color)  
φ
TG1 to  
φ
TG3  
φ
φ
φ
φ
1
2
3
4
φ
RB  
Note  
Note  
φ
φ
CLB  
SEL  
“L”  
V
OUT1 to VOUT3  
Optical black  
(12 pixels)  
Valid photocell  
(2670 pixels)  
Invalid photocell  
(1 pixels)  
Invalid photocell  
(1 pixels)  
μ
Note Set the φ RB to high level and φ CLB to low level during this period.  
Remark Inverse pulse of the φ TG1 to φ TG3 can be used as φ CLB.  
μPD8882  
TIMING CHART 2-1 (2400 dpi, for each color)  
t1  
t2  
90%  
φ
φ
1
2
10%  
90%  
10%  
t1  
t2  
90%  
10%  
φ
φ
3
4
90%  
10%  
t19  
t19  
t5 t6  
t3  
t4  
t4  
t4  
t4  
90%  
10%  
φ
RB  
t7 t11  
t7 t11  
t7 t11  
t7 t11  
90%  
10%  
φ
CLB  
(Bit clamp mode)  
t9 t8 t10  
“H”  
φ
CLB  
(Line clamp mode)  
“H”  
SEL  
φ
t
d
RFTN  
V
OS  
V
OUT  
10%  
Symbol  
Min.  
0
Typ.  
30  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1, t2  
t3  
20  
40  
0
160  
150  
10  
t4  
t5, t6  
t7  
5  
20  
0
+25  
100  
10  
t8  
t9, t10  
t11  
t19  
td  
10  
110  
25  
500  
25  
17  
Data Sheet S17085EJ2V0DS  
μPD8882  
TIMING CHART 2-2 (1200 dpi, for each color)  
t1  
t2  
90%  
φ
φ
1
2
10%  
90%  
10%  
t19  
t19  
90%  
10%  
φ
φ
3
4
t5  
t6  
t5  
t6  
t3  
t3  
t4  
t4  
90%  
10%  
φ
RB  
t9 t10  
t8 t11  
t9 t10  
t7 t8 t11  
t7  
90%  
10%  
φ
CLB  
(Bit clamp mode)  
“H”  
φ
CLB  
(Line clamp mode)  
“L”  
SEL  
φ
td  
td  
RFTN  
VOS  
VOUT  
10%  
10%  
Symbol  
t1, t2  
Min.  
0
Typ.  
30  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t3  
20  
40  
0
160  
150  
10  
t4  
t5, t6  
t7  
5  
20  
0
+25  
100  
10  
t8  
t9, t10  
t11  
t19  
td  
10  
110  
25  
500  
25  
18  
Data Sheet S17085EJ2V0DS  
μPD8882  
TIMING CHART 2-3 (600 dpi, for each color)  
t2  
t1  
90%  
10%  
φ
1
90%  
10%  
φ
2
t19  
t19  
t2  
t1  
90%  
φ
φ
3
4
10%  
90%  
10%  
t5 t6  
t4  
t3  
90%  
10%  
φ
RB  
t9 t10  
t8  
t7  
t11  
90%  
10%  
φ
CLB  
(Bit clamp mode)  
“H”  
φ
CLB  
(Line clamp mode)  
“L”  
SEL  
φ
td  
RFTN  
VOUT  
10%  
Symbol  
Min.  
Typ.  
30  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1, t2  
0
20  
40  
0
t3  
160  
150  
10  
t4  
t5, t6  
t7  
5  
20  
0
+25  
100  
10  
t8  
t9, t10  
t11  
t19  
td  
10  
110  
25  
500  
25  
19  
Data Sheet S17085EJ2V0DS  
μPD8882  
TIMING CHART 2-4 (300 dpi, for each color)  
t2  
t1  
90%  
10%  
φ
1
90%  
10%  
φ
2
t19  
t19  
t2  
t1  
90%  
φ
φ
3
4
10%  
90%  
10%  
t5 t6  
t4  
t3  
90%  
10%  
φ
RB  
t9 t10  
t8  
t7  
t11  
90%  
10%  
φ
CLB  
(Bit clamp mode)  
“H”  
φ
CLB  
(Line clamp mode)  
“L”  
SEL  
φ
td  
RFTN  
VOUT  
10%  
Symbol  
Min.  
Typ.  
30  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1, t2  
0
20  
40  
0
t3  
160  
150  
10  
t4  
t5, t6  
t7  
5  
20  
0
+25  
100  
10  
t8  
t9, t10  
t11  
t19  
td  
10  
110  
25  
500  
25  
20  
Data Sheet S17085EJ2V0DS  
μPD8882  
TIMING CHART 3  
t13  
t14  
t12  
90%  
10%  
90%  
10%  
φ
TG1 to φTG3  
t15  
t16  
90%  
φ
φ
1
3
90%  
t17  
t18  
90%  
90%  
φ
RB  
90%  
90%  
φ
CLB  
(Line clamp mode)  
Remark Inverse pulse of the φTG1 to φTG3 can be used as φCLB (when line clamp mode).  
Symbol  
Min.  
5000  
0
Typ.  
10000  
50  
Max.  
Unit  
ns  
t12  
50000  
t13, t14  
t15, t16  
t17, t18  
ns  
900  
200  
1000  
400  
ns  
ns  
φ1, φ2, φ3, φ4 cross points  
φ
φ
φ
φ
2,  
1,  
4
3
2.0 V or more  
2.0 V or more  
Remark Adjust cross points of (φ1, φ2) and (φ3, φ4) with input resistance of each pin.  
21  
Data Sheet S17085EJ2V0DS  
μPD8882  
SELECTION OF RESOLUTION MODE  
The μPD8882 has function of two readout modes, High Resolution Mode and Low Resolution Mode. These two  
modes can be selected by φ SEL switch.  
Read Mode  
High Resolution Mode  
Low Resolution Mode  
Description  
φ SEL  
2400 dpi (Max.)  
1200 dpi (Max.) (odd line readout mode)  
High level  
Low level  
(1) High Resolution Mode  
In this mode, both signals in even lines and odd lines can be read out. This mode enables 2400 dpi (Max.)  
resolution with A4 size (210 × 297 mm, shorter side).  
Please refer to TIMING CHART 1-1, 1-2 and 2-1.  
(2) Low Resolution Mode  
In this mode, only signal in odd photocell arrays can be read out.  
This mode enables 1200 dpi (Max.) resolution with A4 size.  
To use intermittent reset drive enable signal charges of adjacent pixels in odd line to add at the charge to voltage  
conversion area. Then it can achieve low resolution with A4 size such as 600, 300 or 150 dpi.  
Please refer to TIMING CHART 1-3 to 1-8, 2-2 to 2-4.  
φ SEL TIMING CHART  
After changing the dpi selector signal (φSEL), subsequent data of one line cannot be guaranteed (refer the follow  
figure).  
φ
TG1 to  
φ
φ
TG3  
SEL  
VOUT1 to VOUT3  
Invalid date 1 line  
Valid date  
22  
Data Sheet S17085EJ2V0DS  
μPD8882  
DEFINITIONS OF CHARACTERISTIC ITEMS  
1. Saturation voltage : Vsat  
Output signal voltage at which the response linearity is lost.  
2. Saturation exposure : SE  
Product of intensity of illumination (lx) and storage time (s) when saturation of output voltage occurs.  
3. Photo response non-uniformity : PRNU  
The output signal non-uniformity of all the valid pixels when the photosensitive surface is applied with the light  
of uniform illumination. This is calculated by the following formula.  
x
Δ
PRNU (%) =  
× 100  
x
Δ
x : maximum of x  
j
x ⎪  
21360  
x
j
Σ
j = 1  
21360  
: Output voltage of valid pixel number j  
x =  
xj  
V
OUT  
x
Register Dark  
DC level  
Δ
x
4. Average dark signal : ADS  
Average output signal voltage of all the valid pixels at light shielding. This is calculated by the following  
formula.  
21360  
d
j
Σ
j = 1  
21360  
ADS (mV) =  
d
j
: Dark signal of valid pixel number j  
23  
Data Sheet S17085EJ2V0DS  
μPD8882  
5. Dark signal non-uniformity : DSNU  
Absolute maximum of the difference between ADS and voltage of the highest or lowest output pixel of all the  
valid pixels at light shielding. This is calculated by the following formula.  
DSNU (mV) : maximum of d  
j
ADS j = 1 to 21360  
d
j
: Dark signal of valid pixel number j  
VOUT  
ADS  
Register Dark  
DC level  
DSNU  
6. Output impedance : ZO  
Impedance of the output pins viewed from outside.  
7. Response : R  
Output voltage divided by exposure (lx•s).  
Note that the response varies with a light source (spectral characteristic).  
8. Image lag : IL  
The rate between the last output voltage and the next one after read out the data of a line.  
φ
TG  
Light  
ON  
OFF  
VOUT  
V1  
VOUT  
V
1
IL (%) =  
× 100  
OUT  
V
24  
Data Sheet S17085EJ2V0DS  
μPD8882  
9. Photo diode response imbalance: PDRI  
The rate of the difference between the averages of the output voltage of Odd and Even pixels, against the  
average output voltage of all the valid pixels.  
n
2
2
n
(V2j –1 – V2j  
)
j = 1  
PDRI (%) =  
× 100  
n
1
n
V
j
j = 1  
n : Number of valid pixels  
Vj : Output voltage of each pixel  
10. Offset level : VOS  
DC level of output signal is defined as follows.  
11. Reset feed-through noise : RFTN  
Reset feed-through noise (RFTN) are defined as follows.  
+
RFTN  
V
OUT  
VOS  
25  
Data Sheet S17085EJ2V0DS  
μPD8882  
12. Random noise (CDS) : σCDS  
Random noise σCDS is defined as the standard deviation of a valid pixel output signal with 100 times (=100  
lines) data sampling at dark (light shielding). σCDS is calculated by the following procedure.  
1. One valid photocell in one reading is fixed as measurement point.  
2. The output level is measured during the reset feed-through period which is averaged over 100 ns to get  
“VDi”.  
3. The output level is measured during the video output time averaged over 100 ns to get “VOi”.  
4. The correlated double sampling output is defined by the following formula.  
VCDSi = VDi – VOi  
5. Repeat the above procedure (1 to 4) for 100 times (= 100 lines).  
6. Calculate the standard deviation σ CDS using the following formula equation.  
100  
100  
(VCDS  
100  
i
– V)2  
1
Σ
σ
CDS (mV) =  
, V =  
VCDS  
i
100 Σ  
i = 1  
i = 1  
Reset feed-through  
Video output  
26  
Data Sheet S17085EJ2V0DS  
μPD8882  
STANDARD CHARACTERISTIC CURVES (Reference Value)  
DARK OUTPUT TEMPERATURE  
CHARACTERISTIC  
STORAGE TIME OUTPUT VOLTAGE  
CHARACTERISTIC (T = +25°C)  
A
8
2
4
1
2
1
0.5  
0.2  
0.25  
0.1  
0.1  
0
10  
20  
30  
40  
50  
1
5
10  
Operating Ambient Temperature T  
A
(°C)  
Storage Time (ms)  
TOTAL SPECTRAL RESPONSE CHARACTERISTICS  
(without infrared cut filter and heat absorbing filter) (T = +25°C)  
A
100  
80  
R
B
G
60  
40  
20  
G
B
0
400  
500  
600  
700  
800  
Wavelength (nm)  
27  
Data Sheet S17085EJ2V0DS  
μPD8882  
APPLICATION CIRCUIT EXAMPLE  
+5 V  
+12 V  
+
+
μ
PD8882  
1
2
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
10 μF/16 V 0.1 μF  
B3  
V
OUT  
3
V
OUT  
2
1
B2  
B1  
0.1  
0.1  
μ
μ
F 47  
μ
μ
F/25 V  
+5 V  
GND  
V
OUT  
R
S
3
+
φ
RB  
φ
φ
RB  
CLB  
VOD  
47  
Ω
4
φ
CLB  
φ
SEL  
NC  
NC  
NC  
F 10  
F/16 V  
47 Ω  
47 Ω  
5
NC  
NC  
φ
SEL  
6
7
V
φ
φ
φ
OD  
8
φ
φ
3
4
3
φ
φ
1
2
φ
φ
φ
1
4.7 Ω  
4.7 Ω  
10 Ω  
4.7 Ω  
9
4
2
4.7 Ω  
10 Ω  
10 Ω  
10  
11  
TG3  
φ
φ
TG1  
TG2  
TG  
GND  
Caution Connect the No connection pins (NC) to GND.  
Remarks 1. φRB, φCLB, φTG1 to φTG3 and φSEL driving inverters shown in the above application circuit  
example are the 74HC04.  
φ1 to φ4 driving inverters shown in the above application circuit example are the 74HC04 (2.0  
MHz) or the 74AC04 (> 2.0 MHz).  
2. Inverters B1 to B3 in the above application circuit example are shown in the figure below.  
B1 to B3 EQUIVALENT CIRCUIT  
12 V  
+
μ
47 F/25 V  
100 Ω  
CCD  
2SC1842  
2 kΩ  
VOUT  
100 Ω  
28  
Data Sheet S17085EJ2V0DS  
μPD8882  
PACKAGE DRAWING  
μ
PD8882CY  
CCD LINEAR IMAGE SENSOR 22-PIN PLASTIC DIP (10.16 mm (400))  
(Unit : mm)  
44.0 0.3  
1st valid pixel  
1
9.25 0.3  
1.52 0.3  
22  
12  
11  
1
4
4
2.0  
37.5  
2
10.16 0.2  
(1.72)  
1.02 0.15  
4.39 0.4  
3
2.62 0.2  
(5.42)  
4.21 0.5  
0.25 0.05  
0.46 0.1  
2.54 0.25  
+0.7  
10.16  
0.2  
Name  
Dimensions  
42.7×8.35×0.8(0.7  
Refractive index  
5
Plastic cap  
)
1.5  
1 1st valid pixel  
The center of the pin1  
2 The surface of the CCD chip  
3 The bottom of the package  
4 Mirror finished surface  
The top of the cap  
The surface of the CCD chip  
5 Thickness of mirror finished surface  
22C-1CCD-PKG18  
29  
Data Sheet S17085EJ2V0DS  
μPD8882  
RECOMMENDED SOLDERING CONDITIONS  
When soldering this product, it is highly recommended to observe the conditions as shown below.  
If other soldering processes are used, or if the soldering is performed under different conditions, please make sure  
to consult with our sales offices.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Type of Through-hole Device  
μPD8882CY-A : CCD linear image sensor 22-pin plastic DIP (10.16 mm (400))  
Process  
Conditions  
Partial heating method  
Pin temperature : 300 °C or below, Heat time : 3 seconds or less (per pin)  
Cautions 1.  
2.  
During assembly care should be taken to prevent solder or flux from contacting the plastic  
cap. The optical characteristics could be degraded by such contact.  
Soldering by the solder flow method may have deleterious effects on prevention of plastic  
cap soiling and heat resistance. So the method cannot be guaranteed.  
30  
Data Sheet S17085EJ2V0DS  
μPD8882  
NOTES ON HANDLING THE PACKAGES  
1
DUST AND DIRT PROTECTING  
The optical characteristics of the CCD will be degraded if the cap is scratched during cleaning. Don’t either  
touch plastic cap surface by hand or have any object come in contact with plastic cap surface. Should dirt  
stick to a plastic cap surface, blow it off with an air blower. For dirt stuck through electricity ionized air is  
recommended. And if the plastic cap surface is grease stained, clean with our recommended solvents.  
CLEANING THE PLASTIC CAP  
Care should be taken when cleaning the surface to prevent scratches.  
We recommend cleaning the cap with a soft cloth moistened with one of the recommended solvents below.  
Excessive pressure should not be applied to the cap during cleaning. If the cap requires multiple cleanings it is  
recommended that a clean surface or cloth be used.  
RECOMMENDED SOLVENTS  
The following are the recommended solvents for cleaning the CCD plastic cap.  
Use of solvents other than these could result in optical or physical degradation in the plastic cap.  
Please consult your sales office when considering an alternative solvent.  
Solvents  
Ethyl Alcohol  
Symbol  
EtOH  
MeOH  
IPA  
Methyl Alcohol  
Isopropyl Alcohol  
N-methyl Pyrrolidone  
NMP  
2
MOUNTING OF THE PACKAGE  
The application of an excessive load to the package may cause the package to warp or break, or cause chips  
to come off internally. Particular care should be taken when mounting the package on the circuit board. Don't  
have any object come in contact with plastic cap. You should not reform the lead frame. We recommended to  
use a IC-inserter when you assemble to PCB.  
Also, be care that the any of the following can cause the package to crack or dust to be generated.  
1. Applying heat to the external leads for an extended period of time with soldering iron.  
2. Applying repetitive bending stress to the external leads.  
3. Rapid cooling or heating  
3
4
OPERATE AND STORAGE ENVIRONMENTS  
Operate in clean environments. CCD image sensors are precise optical equipment that should not be subject  
to mechanical shocks. Exposure to high temperatures or humidity will affect the characteristics. So avoid  
storage or usage in such conditions.  
Keep in a case to protect from dust and dirt. Dew condensation may occur on CCD image sensors when the  
devices are transported from a low-temperature environment to a high-temperature environment. Avoid such  
rapid temperature changes.  
For more details, refer to our document "Review of Quality and Reliability Handbook" (C12769E)  
ELECTROSTATIC BREAKDOWN  
CCD image sensor is protected against static electricity, but destruction due to static electricity is sometimes  
detected. Before handling be sure to take the following protective measures.  
1. Ground the tools such as soldering iron, radio cutting pliers of or pincer.  
2. Install a conductive mat or on the floor or working table to prevent the generation of static electricity.  
3. Either handle bare handed or use non-chargeable gloves, clothes or material.  
4. Ionized air is recommended for discharge when handling CCD image sensor.  
5. For the shipment of mounted substrates, use box treated for prevention of static charges.  
6. Anyone who is handling CCD image sensors, mounting them on PCBs or testing or inspecting PCBs on  
which CCD image sensors have been mounted must wear anti-static bands such as wrist straps and ankle  
straps which are grounded via a series resistance connection of about 1 MΩ.  
31  
Data Sheet S17085EJ2V0DS  
μPD8882  
[MEMO]  
32  
Data Sheet S17085EJ2V0DS  
μPD8882  
[MEMO]  
33  
Data Sheet S17085EJ2V0DS  
μPD8882  
[MEMO]  
34  
Data Sheet S17085EJ2V0DS  
μPD8882  
NOTES FOR CMOS DEVICES  
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
1
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
35  
Data Sheet S17085EJ2V0DS  
μPD8882  
The information in this document is current as of May, 2005. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD8884A

(10680 PIXELS x 4 LINES) x 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8884ACY-A

(10680 PIXELS x 4 LINES) x 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8891

(5340 x 5340) PIXELS x 3 + 2670 PIXELS x 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8891CY

(5340 x 5340) PIXELS x 3 + 2670 PIXELS x 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8891CY-A

暂无描述
NEC

UPD8894CY-A

CCD Sensor, 5340 Horiz pixels, 5340 Vert pixels, 2.50-2.80V, Rectangular, Through Hole Mount, PLASTIC, DIP-32
NEC

UPD91000

Microcontroller
ETC

UPD92000

Microcontroller
ETC

UPD93000

Microcontroller
ETC

UPD9305R

BUS CONTROLLER
ETC

UPD9306AC

Disk/Tape Support Circuit
ETC

UPD9306C

Disk/Tape Support Circuit
ETC