74LVCV2G66GT [NEXPERIA]

Overvoltage tolerant bilateral switchProduction;
74LVCV2G66GT
型号: 74LVCV2G66GT
厂家: Nexperia    Nexperia
描述:

Overvoltage tolerant bilateral switchProduction

光电二极管
文件: 总19页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
74LVCV2G66  
Overvoltage tolerant bilateral switch  
Rev. 9 — 1 April 2021  
Product data sheet  
1. General description  
The 74LVCV2G66 is a low-power, low-voltage, high-speed Si-gate CMOS device.  
The 74LVCV2G66 provides two single pole single throw analog or digital switches. Each switch  
includes an overvoltage tolerant input/output terminal (pin nZ), an output/input terminal (pin nY) and  
low-power active HIGH enable input (pin nE).  
The overvoltage tolerant switch terminals allow the switching of signals in excess of VCC. The  
low-power enable input eliminates the necessity of using current limiting resistors in portable  
applications when using control logic signals much lower than VCC. These inputs are also  
overvoltage tolerant.  
2. Features and benefits  
Wide supply voltage range from 2.3 V to 5.5 V  
Ultra low-power operation  
Very low ON resistance:  
8.0 Ω (typical) at VCC = 2.7 V  
7.5 Ω (typical) at VCC = 3.3 V  
7.3 Ω (typical) at VCC = 5.0 V.  
5 V tolerant input for interfacing with 5 V logic  
High noise immunity  
Switch handling capability of 32 mA  
CMOS low-power consumption  
Latch-up performance exceeds 250 mA  
Incorporates overvoltage tolerant analog switch technology  
Switch accepts voltages up to 5.5 V independent of VCC  
Specified from -40 °C to +85 °C and -40 °C to +125 °C  
3. Ordering information  
Table 1. Ordering information  
Type number  
Package  
Temperature range Name  
Description  
Version  
74LVCV2G66DC -40 °C to +125 °C  
VSSOP8 plastic very thin shrink small outline package; 8 leads;  
body width 2.3 mm  
SOT765-1  
74LVCV2G66GT -40 °C to +125 °C  
XSON8  
plastic extremely thin small outline package; no leads;  
8 terminals; body 1 × 1.95 × 0.5 mm  
SOT833-1  
 
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
4. Marking  
Table 2. Marking codes  
Type number  
Marking code[1]  
74LVCV2G66DC  
74LVCV2G66GT  
Y66  
Y66  
[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.  
5. Functional diagram  
1Y  
1E  
2Z  
1Z  
2Y  
1
1
#
#
X1  
1
1
X1  
2E  
001aag497  
001aah808  
Fig. 1. Logic symbol  
Fig. 2. IEC logic symbol  
Z
Y
E
V
CC  
001aaa532  
Fig. 3. Logic diagram (one switch)  
6. Pinning information  
6.1. Pinning  
74LVCV2G666  
1Z  
1Y  
1
2
3
4
8
7
6
5
V
CC  
1E  
2Y  
2Z  
74LVCV2G66  
2E  
1
2
3
4
8
7
6
5
1Z  
1Y  
V
CC  
1E  
2Y  
2Z  
GND  
2E  
GND  
aaa-018593  
Transparent top view  
001aai213  
Fig. 4. Pin configuration SOT765-1 (VSSOP8)  
Fig. 5. Pin configuration SOT833-1 (XSON8)  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
2 / 19  
 
 
 
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
6.2. Pin description  
Table 3. Pin description  
Symbol  
Pin  
1
Description  
1Z  
independent input or output (overvoltage tolerant)  
independent input or output  
enable input (active HIGH)  
ground (0 V)  
1Y  
2
2E  
3
GND  
2Z  
4
5
independent input or output (overvoltage tolerant)  
independent input or output  
enable input (active HIGH)  
supply voltage  
2Y  
6
1E  
7
VCC  
8
7. Functional description  
Table 4. Function table  
H = HIGH voltage level; L = LOW voltage level.  
Input nE  
Switch  
L
OFF-state  
ON-state  
H
8. Limiting values  
Table 5. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).  
Symbol  
VCC  
VI  
Parameter  
Conditions  
Min  
-0.5  
-0.5  
-50  
-
Max  
+6.5  
+6.5  
-
Unit  
V
supply voltage  
input voltage  
[1]  
V
IIK  
input clamping current  
switch clamping current  
switch voltage  
VI < -0.5 V or VI > 6.5 V  
VI < -0.5 V or VI > 6.5 V  
enable and disable mode  
VSW > -0.5 V or VSW < 6.5 V  
mA  
mA  
V
ISK  
±50  
+6.5  
±50  
100  
-
VSW  
ISW  
-0.5  
-
switch current  
mA  
mA  
mA  
°C  
ICC  
supply current  
-
IGND  
Tstg  
Ptot  
ground current  
-100  
-65  
-
storage temperature  
total power dissipation  
+150  
250  
Tamb = -40 °C to +125 °C  
[2]  
mW  
[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
[2] For SOT765-1 (VSSOP8) package: Ptot derates linearly with 4.9 mW/K above 99 °C.  
For SOT833-1 (XSON8) package: Ptot derates linearly with 3.1 mW/K above 68 °C.  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
3 / 19  
 
 
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
9. Recommended operating conditions  
Table 6. Recommended operating conditions  
Symbol  
VCC  
Parameter  
Conditions  
Min  
2.3  
0
Typ  
Max  
5.5  
Unit  
V
supply voltage  
input voltage  
-
-
-
-
-
-
VI  
5.5  
V
VSW  
switch voltage  
ambient temperature  
enable and disable mode  
[1]  
0
5.5  
V
Tamb  
Δt/ΔV  
-40  
-
+125 °C  
input transition rise and fall rate VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 5.5 V  
[2]  
[2]  
20  
10  
ns/V  
ns/V  
-
[1] To avoid sinking GND current from terminal nZ when switch current flows in terminal nY, the voltage drop across the bidirectional  
switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no GND current flows from terminal nY. In this case, there is  
no limit for the voltage drop across the switch.  
[2] Applies to control signal levels.  
10. Static characteristics  
Table 7. Static characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
Symbol Parameter  
Conditions  
-40 °C to +85 °C  
-40 °C to +125 °C Unit  
Min Typ[1] Max  
Min  
Max  
VIH  
VIL  
II  
HIGH-level  
input voltage  
VCC = 2.3 V to 2.7 V  
VCC = 3.0 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
0.6VCC  
-
-
0.6VCC  
-
V
2.0  
-
-
-
2.0  
-
-
V
0.55VCC  
-
0.55VCC  
V
LOW-level input VCC = 2.3 V to 2.7 V  
voltage  
-
-
-
-
-
0.1VCC  
0.5  
-
-
-
-
0.1VCC  
0.5  
V
VCC = 3.0 V to 3.6 V  
-
-
V
VCC = 4.5 V to 5.5 V  
0.15VCC  
±1  
0.15VCC  
±1  
V
input leakage  
current  
pin nE; VI = 5.5 V or GND;  
VCC = 0 V to 5.5 V  
[2]  
±0.1  
μA  
IS(OFF) OFF-state  
leakage current  
VCC = 2.3 V to 5.5 V; see Fig. 6  
[2]  
[3]  
-
-
-
±0.1  
±0.1  
0.1  
±0.4  
±2  
4
-
-
-
±1  
±4  
4
μA  
μA  
μA  
IS(ON)  
ON-state  
leakage current  
VCC = 2.3 V to 5.5 V; see Fig. 7  
[2]  
[3]  
ICC  
supply current VI = 5.5 V or GND;  
VSW = GND or VCC  
[2]  
;
VCC = 2.3 V to 5.5 V  
ΔICC  
additional  
pin nE; VI = VCC - 0.6 V;  
[2]  
-
0.1  
5
-
5 0  
μA  
supply current VSW = GND or VCC  
;
VCC = 3.0 V to 5.5 V  
CI  
input  
capacitance  
-
-
-
2.5  
8.0  
16  
-
-
-
-
-
-
-
-
-
pF  
pF  
pF  
CS(OFF) OFF-state  
capacitance  
CS(ON) ON-state  
capacitance  
[1] All typical values are measured at Tamb = 25 °C.  
[2] These typical values are measured at VCC = 3.3 V.  
[3] For overvoltage signals (VSW > VCC), the condition VY < VZ must be observed.  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
4 / 19  
 
 
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
10.1. Test circuits  
V
V
CC  
CC  
nE  
nZ  
nE  
nZ  
V
V
IH  
IL  
nY  
nY  
I
I
S
S
GND  
GND  
V
I
V
O
V
I
V
O
001aag488  
001aag489  
VI = GND and VO = GND or 5.5 V.  
VI = 5.5 V or GND and VO = open circuit.  
Fig. 6. Test circuit for measuring OFF-state leakage  
current  
Fig. 7. Test circuit for measuring ON-state leakage  
current  
10.2. ON resistance  
Table 8. Resistance RON  
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Fig. 9 and Fig. 10.  
Symbol  
Parameter  
Conditions  
-40 °C to +85 °C -40 °C to +125 °C Unit  
Min Typ[1] Max  
Min  
Max  
RON(peak)  
ON resistance VSW = GND to VCC; VI = VIH; see Fig. 8  
(peak)  
ISW = 8 mA; VCC = 2.3 V to 2.7 V  
-
-
-
-
13  
10  
30  
25  
20  
15  
-
-
-
-
30  
25  
20  
15  
Ω
Ω
Ω
Ω
ISW = 12 mA; VCC = 2.7 V  
ISW = 24 mA; VCC = 3.0 V to 3.6 V  
8.3  
7.4  
ISW = 32 mA; VCC = 4.5 V to 5.5 V  
RON(rail)  
ON resistance VSW = GND; VI = VIH; see Fig. 8  
(rail)  
ISW = 8 mA; VCC = 2.3 V to 2.7 V  
-
-
-
-
8.5  
8.0  
7.5  
7.3  
20  
18  
15  
10  
-
-
-
-
20  
18  
15  
10  
Ω
Ω
Ω
Ω
ISW = 12 mA; VCC = 2.7 V  
ISW = 24 mA; VCC = 3.0 V to 3.6 V  
ISW = 32 mA; VCC = 4.5 V to 5.5 V  
VSW = VCC; VI = VIH  
ISW = 8 mA; VCC = 2.3 V to 2.7 V  
ISW = 12 mA; VCC = 2.7 V  
-
-
-
-
8.5  
7.2  
6.5  
5.7  
20  
18  
15  
10  
-
-
-
-
20  
18  
15  
10  
Ω
Ω
Ω
Ω
ISW = 24 mA; VCC = 3.0 V to 3.6 V  
ISW = 32 mA; VCC = 4.5 V to 5.5 V  
ON resistance VSW = GND to VCC; VI = VIH [2]  
RON(flat)  
(flatness)  
ISW = 8 mA; VCC = 2.5 V  
-
-
-
-
17  
10  
5
-
-
-
-
-
-
-
-
-
-
-
-
Ω
Ω
Ω
Ω
ISW = 12 mA; VCC = 2.7 V  
ISW = 24 mA; VCC = 3.3 V  
ISW = 32 mA; VCC = 5.0 V  
3
[1] All typical values are measured at Tamb = 25 °C and nominal VCC  
.
[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical VCC and  
temperature.  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
5 / 19  
 
 
 
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
10.3. ON resistance test circuit and graphs  
001aaa536  
16  
R
ON  
(Ω)  
V
= 2.5 V  
2.7 V  
CC  
12  
3.3 V  
5.0 V  
V
SW  
8
4
0
V
CC  
nE  
nY  
V
IH  
nZ  
GND  
V
I
I
SW  
0
2
4
6
V (V)  
I
001aag490  
VI = GND to 5.5 V; Tamb = 25 °C.  
VI = GND to 5.5 V; RON = VSW / ISW  
.
Fig. 9. Typical ON resistance as a function of input  
voltage  
Fig. 8. Test circuit for measuring ON resistance  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
6 / 19  
 
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
001aaa537  
001aaa538  
16  
16  
°
= +85 C  
T
amb  
R
R
ON  
(Ω)  
ON  
(Ω)  
°
+25 C  
°
= +85 C  
T
amb  
°
- 40 C  
°
+25 C  
12  
12  
°
+125 C  
°
- 40 C  
°
+125 C  
8
4
0
8
4
0
0
2
4
6
0
2
4
6
V (V)  
I
V (V)  
I
a. VCC = 2.5 V  
b. VCC = 2.7 V  
001aaa540  
001aaa539  
16  
16  
R
ON  
(Ω)  
R
ON  
(Ω)  
°
C
°
C
°
C
°
C
T
= +85  
+25  
amb  
12  
12  
°
= +85 C  
T
amb  
- 40  
°
+25 C  
+125  
°
- 40 C  
8
4
0
°
8
4
0
+125 C  
0
2
4
6
0
2
4
6
V (V)  
I
V (V)  
I
c. VCC = 3.3 V  
d. VCC = 5.0 V  
Fig. 10. ON resistance as a function of input voltage at various supply voltages  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
7 / 19  
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
11. Dynamic characteristics  
Table 9. Dynamic characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit, see Fig. 13.  
Symbol Parameter  
Conditions  
-40 °C to +85 °C  
-40 °C to +125 °C Unit  
Min  
Typ[1]  
Max  
Min  
Max  
tpd  
propagation delay  
nY to nZ or nZ to nY;  
see Fig. 11  
[2] [3]  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V  
-
-
-
-
0.4  
0.4  
0.3  
0.2  
1.2  
1.0  
0.8  
0.6  
-
-
-
-
2.0  
1.5  
1.5  
1.0  
ns  
ns  
ns  
ns  
VCC = 3.0 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
nE to nY or nZ; see Fig. 12  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V  
ten  
enable time  
disable time  
[4]  
[5]  
[6]  
1.0  
1.0  
1.0  
1.0  
4.7  
4.4  
3.8  
2.7  
12  
8.5  
7.5  
5.0  
1.0  
1.0  
1.0  
1.0  
15  
11  
ns  
ns  
ns  
ns  
VCC = 3.0 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
nE to nY or nZ; see Fig. 12  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V  
9.5  
6.5  
tdis  
1.0  
1.0  
1.0  
1.0  
6.0  
7.9  
6.5  
4.4  
16  
15  
1.0  
1.0  
1.0  
1.0  
20  
19  
ns  
ns  
ns  
ns  
VCC = 3.0 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
13.5  
9.0  
17  
11.5  
CPD  
power dissipation  
capacitance  
CL = 50 pF; fi = 10 MHz;  
VI = GND to 5.5 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5.0 V  
-
-
-
9.7  
-
-
-
-
-
-
-
-
-
pF  
pF  
pF  
10.3  
11.3  
[1] Typical values are measured at Tamb = 25 °C and nominal VCC  
.
[2] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when  
driven by an ideal voltage source (zero output impedance).  
[3] tpd is the same as tPLH and tPHL  
[4] ten is the same as tPZH and tPZL  
[5] tdis is the same as tPLZ and tPHZ  
.
.
.
[6] CPD is used to determine the dynamic power dissipation (PD in μW).  
PD = CPD x VCC 2 × fi x N + Σ{(CL + CS(ON)) x VCC 2 x fo} where:  
fi = input frequency in MHz;  
fo = output frequency in MHz;  
CL = output load capacitance in pF;  
CS(ON) = maximum ON-state switch capacitance in pF;  
VCC = supply voltage in V;  
N = number of inputs switching;  
Σ{(CL + CS(ON)) x VCC 2 x fo} = sum of the outputs.  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
8 / 19  
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
11.1. Waveforms and test circuit  
V
I
nY or nZ  
input  
V
V
M
M
GND  
t
t
PLH  
PHL  
V
OH  
nZ or nY  
output  
V
V
M
M
V
OL  
001aaa541  
Measurement points are given in Table 10.  
Logic levels: VOL and VOH are typical output voltage levels that occur with the output load.  
Fig. 11. Input (nY or nZ) to output (nZ or nY) propagation delays  
V
I
nE input  
V
M
GND  
t
t
PZL  
PLZ  
V
CC  
output  
nY or nZ  
nY or nZ  
LOW-to-OFF  
OFF-to-LOW  
V
M
V
X
V
OL  
t
t
PZH  
PHZ  
V
OH  
V
Y
output  
HIGH-to-OFF  
OFF-to-HIGH  
V
M
GND  
switch  
enabled  
switch  
enabled  
switch  
disabled  
001aaa542  
Measurement points are given in Table 10.  
Logic levels: VOL and VOH are typical output voltage levels that occur with the output load.  
Fig. 12. Enable and disable times  
Table 10. Measurement points  
Supply voltage  
VCC  
Input  
VM  
Output  
VM  
VX  
VY  
2.3 V to 2.7 V  
2.7 V  
0.5VCC  
1.5 V  
1.5 V  
0.5VCC  
0.5VCC  
1.5 V  
VOL + 0.1VCC  
VOL + 0.3 V  
VOL + 0.3 V  
VOL + 0.3 V  
VOH - 0.1VCC  
VOH - 0.3 V  
VOH - 0.3 V  
VOH - 0.3 V  
3.0 V to 3.6 V  
4.5 V to 5.5 V  
1.5 V  
0.5VCC  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
9 / 19  
 
 
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
V
EXT  
V
CC  
R
L
V
V
O
I
G
DUT  
R
T
C
L
R
L
mna616  
Test data is given in Table 11.  
Definitions test circuit:  
RT = Termination resistance should be equal to output impedance Zo of the pulse generator.  
CL = Load capacitance including jig and probe capacitance.  
RL = Load resistance.  
VEXT = External voltage for measuring switching times.  
Fig. 13. Test circuit for measuring switching times  
Table 11. Test data  
Supply voltage  
VCC  
Input  
VI  
Load  
CL  
VEXT  
tr, tf  
RL  
tPLH, tPHL  
open  
tPZH, tPHZ  
GND  
tPZL, tPLZ  
2VCC  
2.3 V to 2.7 V  
2.7 V  
VCC  
2.7 V  
2.7 V  
VCC  
≤ 2.0 ns  
≤ 2.5 ns  
≤ 2.5 ns  
≤ 2.5 ns  
30 pF  
50 pF  
50 pF  
50 pF  
500 Ω  
500 Ω  
500 Ω  
500 Ω  
open  
GND  
6.0 V  
3.0 V to 3.6 V  
4.5 V to 5.5 V  
open  
GND  
6.0 V  
open  
GND  
2VCC  
11.2. Additional dynamic characteristics  
Table 12. Additional dynamic characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); Tamb = 25 °C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
THD  
total harmonic distortion fi = 1 kHz; RL = 10 kΩ; CL = 50 pF; see Fig. 14  
VCC = 2.3 V  
-
-
-
0.42  
0.36  
0.47  
-
-
-
%
%
%
VCC = 3.0 V  
VCC = 4.5 V  
fi = 10 kHz; RL = 10 kΩ; CL = 50 pF; see Fig. 14  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
-
-
-
0.11  
0.07  
0.01  
-
-
-
%
%
%
f(-3dB)  
-3 dB frequency  
response  
RL = 600 Ω; CL = 50 pF; see Fig. 15  
VCC = 2.3 V  
-
-
-
160  
200  
210  
-
-
-
MHz  
MHz  
MHz  
VCC = 3.0 V  
VCC = 4.5 V  
RL = 50 Ω; CL = 5 pF; see Fig. 15  
VCC = 2.3 V  
-
-
-
180  
180  
180  
-
-
-
MHz  
MHz  
MHz  
VCC = 3.0 V  
VCC = 4.5 V  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
10 / 19  
 
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
αiso  
isolation (OFF-state)  
RL = 600 Ω; CL = 50 pF; fi = 1 MHz; see Fig. 16  
VCC = 2.3 V  
-
-
-
-65  
-65  
-62  
-
-
-
dB  
dB  
dB  
VCC = 3.0 V  
VCC = 4.5 V  
RL = 50 Ω; CL = 5 pF; fi = 1 MHz; see Fig. 16  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
-
-
-
-37  
-36  
-36  
-
-
-
dB  
dB  
dB  
Vct  
crosstalk voltage  
between digital inputs and switch; RL = 600 Ω;  
CL = 50 pF; fi = 1 MHz; tr = tf = 2 ns; see Fig. 17  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
-
-
-
91  
-
-
-
mV  
mV  
mV  
119  
205  
Xtalk  
crosstalk  
between switches; RL = 600 Ω; CL = 50 pF;  
fi = 1 MHz; see Fig. 18  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
-
-
-
-56  
-55  
-55  
-
-
-
dB  
dB  
dB  
between switches; RL = 50 Ω; CL = 5 pF;  
fi = 1 MHz; see Fig. 18  
VCC = 2.3 V  
VCC = 3.0 V  
VCC = 4.5 V  
-
-
-
-29  
-28  
-28  
-
-
-
dB  
dB  
dB  
Qinj  
charge injection  
CL = 0.1 nF; Vgen = 0 V; Rgen = 0 Ω; fi = 1 MHz;  
RL = 1 MΩ; see Fig. 19  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 5.5 V  
-
-
-
-
< 0.003  
0.003  
-
-
-
-
pC  
pC  
pC  
pC  
0.0035  
0.0035  
11.3. Test circuits  
V
0.5V  
CC  
CC  
nE  
V
R
L
IH  
10 µF  
nY/nZ  
600 Ω  
nZ/nY  
V
O
f
i
C
L
D
001aag492  
Test conditions:  
VCC = 2.3 V: Vi = 2 V (p-p).  
VCC = 3 V: Vi = 2.5 V (p-p).  
VCC = 4.5 V: Vi = 4 V (p-p).  
Fig. 14. Test circuit for measuring total harmonic distortion  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
11 / 19  
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
V
0.5V  
CC  
CC  
nE  
V
R
L
IH  
0.1 µF  
50 Ω  
nY/nZ  
nZ/nY  
V
O
f
i
C
L
dB  
001aag491  
To obtain 0 dBm level at the output, adjust fi voltage. Increase fi frequency until dB meter reads -3 dB.  
Fig. 15. Test circuit for measuring the frequency response when switch is in ON-state  
0.5V  
V
0.5V  
CC  
CC  
CC  
nE  
R
L
V
R
L
IL  
0.1 µF  
nY/nZ  
nZ/nY  
V
O
f
i
50 Ω  
C
L
dB  
001aag493  
To obtain 0 dBm level at the input, adjust fi voltage.  
Fig. 16. Test circuit for measuring isolation (OFF-state)  
V
CC  
nE  
nY/nZ  
nZ/nY  
V
O
logic  
input  
G
R
L
C
L
50 Ω  
600 Ω  
0.5V  
0.5V  
001aag494  
CC  
CC  
Fig. 17. Test circuit for measuring crosstalk voltage (between digital inputs and switch)  
0.5V  
CC  
1E  
V
R
L
IH  
0.1 µF  
50 Ω  
R
i
1Y or 1Z  
1Z or 1Y  
600 Ω  
CHANNEL  
ON  
C
L
f
V
O1  
i
50 pF  
0.5V  
CC  
2E  
V
R
L
IL  
2Y or 2Z  
2Z or 2Y  
CHANNEL  
OFF  
C
L
R
600 Ω  
V
i
O2  
50 pF  
001aag496  
20 log10 (VO2 / VO1) or 20 log10 (VO1 / VO2).  
Fig. 18. Test circuit for measuring crosstalk between switches  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
12 / 19  
 
 
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
V
CC  
nE  
R
gen  
nY/nZ  
nZ/nY  
V
O
R
C
L
0.1 nF  
G
logic  
input  
L
V
gen  
1 MΩ  
001aag495  
a. Test circuit  
logic  
input (nE)  
off  
on  
off  
V
O
ΔV  
O
mna675  
b. Input and output pulse definitions  
Qinj = ΔVO x CL.  
ΔVO = output voltage variation.  
Rgen = generator resistance.  
Vgen = generator voltage.  
Fig. 19. Test circuit for measuring charge injection  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
13 / 19  
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
12. Application information  
The 74LVCV2G66 is used to reduce component count and footprint in low-power portable  
applications.  
Typical ‘66’ devices do not have low-power enable inputs causing a high ΔICC. To reduce power  
consumption in portable (battery) applications, a current limiting resistor is used. (see Fig. 20a).  
The low-power enable inputs of the 74LVCV2G66 have much lower ΔICC, eliminating the necessity  
of the current limiting resistor (see Fig. 20b).  
5 V  
1 MΩ  
5 V  
V
V
CC  
CC  
nE  
nY  
nE  
nY  
3 V  
3 V  
nZ  
nZ  
'66' device  
(a)  
74LVCV2G66  
(b)  
001aaa550  
Fig. 20. Application example  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
14 / 19  
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
13. Package outline  
VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm  
SOT765-1  
D
E
A
X
c
y
H
E
v
A
Z
5
8
Q
A
2
A
A
(A )  
3
1
pin 1 index  
θ
L
p
detail X  
1
4
L
e
w
b
p
0
5 mm  
scale  
Dimensions (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
Unit  
A
A
A
b
c
D
E
e
H
E
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
max.  
max  
mm nom  
min  
0.15 0.85  
0.00 0.60  
0.27 0.23 2.1 2.4  
0.17 0.08 1.9 2.2  
3.2  
3.0  
0.40 0.21  
0.15 0.19  
0.4  
8°  
0°  
1
0.12  
0.5  
0.4  
0.2 0.08 0.1  
0.1  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
sot765-1_po  
Issue date  
References  
Outline  
version  
European  
projection  
IEC  
JEDEC  
JEITA  
07-06-02  
16-05-31  
SOT765-1  
MO-187  
Fig. 21. Package outline SOT765-1 (VSSOP8)  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
15 / 19  
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
XSON8: plastic extremely thin small outline package; no leads; 8 terminals; body 1 x 1.95 x 0.5 mm  
SOT833-1  
b
1
2
3
4
4×  
(2)  
L
L
1
e
8
7
6
5
e
e
e
1
1
1
8×  
(2)  
A
A
1
D
E
terminal 1  
index area  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
A
1
UNIT  
b
D
E
e
e
1
L
L
1
max max  
0.25  
0.17  
2.0  
1.9  
1.05  
0.95  
0.35 0.40  
0.27 0.32  
mm  
0.5 0.04  
0.6  
0.5  
Notes  
1. Including plating thickness.  
2. Can be visible in some manufacturing processes.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
07-11-14  
07-12-07  
SOT833-1  
- - -  
- - -  
MO-252  
Fig. 22. Package outline SOT833-1 (XSON8)  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
16 / 19  
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
14. Abbreviations  
Table 13. Abbreviations  
Acronym  
Description  
CMOS  
DUT  
Complementary Metal-Oxide Semiconductor  
Device Under Test  
15. Revision history  
Table 14. Revision history  
Document ID  
Release date Data sheet status  
Change notice Supersedes  
74LVCV2G66 v.9  
Modifications:  
20210401  
Product data sheet  
-
74LVCV2G66 v.8  
Section 8: Derating values for Ptot total power dissipation updated.  
Type number 74LVCV2G66GM (SOT902-2 / XQFN8) removed.  
74LVCV2G66 v.8  
Modifications:  
20181105  
Product data sheet  
-
74LVCV2G66 v.7  
The format of this data sheet has been redesigned to comply with the identity  
guidelines of Nexperia.  
Legal texts have been adapted to the new company name where appropriate.  
Type numbers 74LVCV2G66GD (SOT996-2/XSON8) removed.  
74LVCV2G66 v.7  
Modifications:  
20161215  
Product data sheet  
-
74LVCV2G66 v.6  
Table 7: The maximum limits for leakage current and supply current have changed.  
•Type number 74LVCV2G66DP (SOT505-2) removed.  
74LVCV2G66 v.6  
Modifications:  
20150722  
Added type numbers 74LVCV2G66GT and.74LVCV2G66GM  
20130329 Product data sheet 74LVCV2G66 v.4  
For type number 74LVCV2G66GD XSON8U has changed to XSON8.  
Product data sheet  
-
74LVCV2G66 v.5  
74LVCV2G66 v.5  
Modifications:  
-
74LVCV2G66 v.4  
Modifications:  
20111122  
Product data sheet  
-
74LVCV2G66 v.3  
Legal pages updated.  
74LVCV2G66 v.3  
74LVCV2G66 v.2  
74LVCV2G66 v.1  
20100616  
20080703  
20040402  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
74LVCV2G66 v.2  
74LVCV2G66 v.1  
-
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
17 / 19  
 
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
injury, death or severe property or environmental damage. Nexperia and its  
suppliers accept no liability for inclusion and/or use of Nexperia products in  
such equipment or applications and therefore such inclusion and/or use is at  
the customer’s own risk.  
16. Legal information  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Data sheet status  
Document status Product  
Definition  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. Nexperia makes no representation  
or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
[1][2]  
status [3]  
Objective [short]  
data sheet  
Development  
This document contains data from  
the objective specification for  
product development.  
Customers are responsible for the design and operation of their applications  
and products using Nexperia products, and Nexperia accepts no liability for  
any assistance with applications or customer product design. It is customer’s  
sole responsibility to determine whether the Nexperia product is suitable  
and fit for the customer’s applications and products planned, as well as  
for the planned application and use of customer’s third party customer(s).  
Customers should provide appropriate design and operating safeguards to  
minimize the risks associated with their applications and products.  
Preliminary [short]  
data sheet  
Qualification  
Production  
This document contains data from  
the preliminary specification.  
Product [short]  
data sheet  
This document contains the product  
specification.  
[1] Please consult the most recently issued document before initiating or  
completing a design.  
Nexperia does not accept any liability related to any default, damage, costs  
or problem which is based on any weakness or default in the customer’s  
applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the  
customer’s applications and products using Nexperia products in order to  
avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). Nexperia does not accept any  
liability in this respect.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have  
changed since this document was published and may differ in case of  
multiple devices. The latest product status information is available on  
the internet at https://www.nexperia.com.  
Definitions  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. Nexperia does not give any representations or  
warranties as to the accuracy or completeness of information included herein  
and shall have no liability for the consequences of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the relevant  
full data sheet, which is available on request via the local Nexperia sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of commercial sale — Nexperia products are  
sold subject to the general terms and conditions of commercial sale, as  
published at http://www.nexperia.com/profile/terms, unless otherwise agreed  
in a valid written individual agreement. In case an individual agreement is  
concluded only the terms and conditions of the respective agreement shall  
apply. Nexperia hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of Nexperia products by  
customer.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
Nexperia and its customer, unless Nexperia and customer have explicitly  
agreed otherwise in writing. In no event however, shall an agreement be  
valid in which the Nexperia product is deemed to offer functions and qualities  
beyond those described in the Product data sheet.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, Nexperia does not give any  
representations or warranties, expressed or implied, as to the accuracy  
or completeness of such information and shall have no liability for the  
consequences of use of such information. Nexperia takes no responsibility  
for the content in this document if provided by an information source outside  
of Nexperia.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific Nexperia product is automotive qualified, the  
product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. Nexperia  
accepts no liability for inclusion and/or use of non-automotive qualified  
products in automotive equipment or applications.  
In no event shall Nexperia be liable for any indirect, incidental, punitive,  
special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal  
or replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards,  
customer (a) shall use the product without Nexperia’s warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
Nexperia’s specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies Nexperia for any liability, damages or failed  
product claims resulting from customer design and use of the product for  
automotive applications beyond Nexperia’s standard warranty and Nexperia’s  
product specifications.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, Nexperia’s aggregate and cumulative liability towards customer  
for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of Nexperia.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Right to make changes — Nexperia reserves the right to make changes  
to information published in this document, including without limitation  
specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the  
publication hereof.  
Trademarks  
Suitability for use — Nexperia products are not designed, authorized or  
warranted to be suitable for use in life support, life-critical or safety-critical  
systems or equipment, nor in applications where failure or malfunction  
of an Nexperia product can reasonably be expected to result in personal  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
18 / 19  
 
Nexperia  
74LVCV2G66  
Overvoltage tolerant bilateral switch  
Contents  
1. General description......................................................1  
2. Features and benefits.................................................. 1  
3. Ordering information....................................................1  
4. Marking..........................................................................2  
5. Functional diagram.......................................................2  
6. Pinning information......................................................2  
6.1. Pinning.........................................................................2  
6.2. Pin description.............................................................3  
7. Functional description................................................. 3  
8. Limiting values............................................................. 3  
9. Recommended operating conditions..........................4  
10. Static characteristics..................................................4  
10.1. Test circuits................................................................5  
10.2. ON resistance............................................................5  
10.3. ON resistance test circuit and graphs........................6  
11. Dynamic characteristics.............................................8  
11.1. Waveforms and test circuit........................................ 9  
11.2. Additional dynamic characteristics...........................10  
11.3. Test circuits..............................................................11  
12. Application information........................................... 14  
13. Package outline........................................................ 15  
14. Abbreviations............................................................17  
15. Revision history........................................................17  
16. Legal information......................................................18  
© Nexperia B.V. 2021. All rights reserved  
For more information, please visit: http://www.nexperia.com  
For sales office addresses, please send an email to: salesaddresses@nexperia.com  
Date of release: 1 April 2021  
©
74LVCV2G66  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2021. All rights reserved  
Product data sheet  
Rev. 9 — 1 April 2021  
19 / 19  

相关型号:

74LVCZ161284A

LOW VOLTAGE HIGH SPEED IEEE 1284 TRANSCEIVER WITH ERROR-FREE POWER-UP
STMICROELECTR

74LVCZ161284AGRG4

19-BIT IEEE STD 1284 TRANSLATION TRANSCEIVER WITH ERROR-FREE POWER UP
TI

74LVCZ161284ATTR

LOW VOLTAGE HIGH SPEED IEEE 1284 TRANSCEIVER WITH ERROR-FREE POWER-UP
STMICROELECTR

74LVCZ16240ADGGRE4

LVC/LCX/Z SERIES, QUAD 4-BIT DRIVER, INVERTED OUTPUT, PDSO48, GREEN, PLASTIC, TSSOP-48
TI

74LVCZ16244ADGGRE4

16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

74LVCZ16244ADGGRG4

16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

74LVCZ16244ADGVRE4

16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

74LVCZ16244ADGVRG4

16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

74LVCZ16244ADLRG4

16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

74LVCZ16245ADGGRE4

16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS
TI

74LVCZ16245ADGVRE4

16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS
TI

74LVC_LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state
ICSI