NJU6818CJ [NJRC]

Liquid Crystal Driver, 392-Segment, CMOS, DIE-748;
NJU6818CJ
型号: NJU6818CJ
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Liquid Crystal Driver, 392-Segment, CMOS, DIE-748

驱动器 CD
文件: 总102页 (文件大小:844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6818  
Preliminary  
80-Common X 104RGB-Segment in 4096-Color  
STN LCD DRIVER  
GENERAL DESCRIPTION  
PACKAGE OUTLINE  
The NJU6818 is a STN LCD driver with 80-common x  
104RGB-segment in 4096-color. It consists of 312-  
segment drivers (104xRGB), 80-common drivers, serial  
and parallel MPU interface circuits, internal power supply  
circuits, gradation palettes and 99,840-bit for graphic  
display data RAM.  
Each segment driver outputs 16-gradation level out of 32-  
gradation level of the gradation palette.  
NJU6818CJ  
Since the NJU6818 provides low operating voltage of 1.7V  
and low operating current, it is ideally suited for battery-  
powered handheld applications.  
FEATURES  
4096-color STN LCD driver  
LCD drivers  
80-commons, 104RGB-segments  
Display data RAM (DDRAM)  
Color display mode  
99,840-bit for graphic display  
16-gradation level out of 32-gradation level of the gradation palette  
80x312 pixels in 16-gradation level or 80x312 pixels in B&W  
Black & white display mode  
256-color driving mode  
8/16bit parallel interface directly-connective to 68/80 series MPU  
Programmable 8- or 16-bit data bus length for display data  
3-/4-line serial interface  
Programmable duty and bias ratios  
Programmable internal voltage booster (Maximum 6-times)  
Programmable contrast control using 128-step EVR  
Chip Identification (ID)  
Various instructions  
Display data read/write, Display ON/OFF, Reverse display ON/OFF, All pixels ON/OFF,  
Column address, Row address, N-line inversion, Initial display line, Initial COM line, Read-modify-write,  
Gradation mode control, Increment control, Data bus length, Discharge ON/OFF,  
Duty cycle ratio, LCD bias ratio, Boost level, EVR control, Power save ON/OFF, etc  
Low operating current  
Low logic supply voltage  
LCD driving supply voltage  
C-MOS technology  
Rectangle out look for COG  
Package  
1.7V to 3.3V  
5.0V to 18.0V  
Bumped chip / TCP  
2002/08/26  
- 1 -  
NJU6818  
PAD LOCATION  
744: DMY112  
745: DMY113  
746: DMY113  
747: DMY113  
748: DMY114  
1
Note 1) The same name PADs are shorted mutually in the LSI.  
Note 2) The DMY PADs are electrically open.  
Chip Center  
Chip Size  
: X= 0µm, Y= 0µm  
: 19.25mm x 2.50mm  
Chip Thickness : 625µm ± 25µm  
Bump Size  
Bump Pitch  
Bump high  
: 26µm x 120µm  
: 45µm(Min)  
: 17.5µm(Typ.)  
: Au  
Bump Material  
- 2 -  
NJU6818  
Y
X
Alignment mark 1  
Alignment mark  
a
a : 25µm  
b : 50µm  
coordinates  
b
a
Alignment mark coordinates  
( -9445, 1070 )  
( 9445, -1070 )  
b
Alignment mark 2  
Alignment mark  
coordinates  
a : 50µm  
c
Alignment mark coordinates  
( 9257, -1068 )  
- 3 -  
NJU6818  
Alignment mark 3  
Alignment mark  
coordinates  
d : 50µm  
e : 20µm  
e
d
Alignment mark coordinates  
( -9257, -1068 )  
- 4 -  
NJU6818  
339: DMY99  
338: DMY98  
337: DMY98  
336: DMY98  
335: DMY97  
- 5 -  
NJU6818  
PAD COORDINATES 1  
Chip Size 19250µm x 2500µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
1
No.  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
DMY0  
DMY1  
DMY2  
VDDA  
-9067.5 -1055  
-9022.5 -1055  
-8977.5 -1055  
-8932.5 -1055  
-8887.5 -1055  
-8842.5 -1055  
-8797.5 -1055  
-8752.5 -1055  
-8707.5 -1055  
-8662.5 -1055  
-8617.5 -1055  
-8572.5 -1055  
-8527.5 -1055  
-8482.5 -1055  
-8437.5 -1055  
-8392.5 -1055  
-8347.5 -1055  
-8302.5 -1055  
-8257.5 -1055  
-8212.5 -1055  
-8167.5 -1055  
-8122.5 -1055  
-8077.5 -1055  
-8032.5 -1055  
-7987.5 -1055  
-7942.5 -1055  
-7897.5 -1055  
-7852.5 -1055  
-7807.5 -1055  
-7762.5 -1055  
-7717.5 -1055  
-7672.5 -1055  
-7627.5 -1055  
-7582.5 -1055  
-7537.5 -1055  
-7492.5 -1055  
-7447.5 -1055  
-7402.5 -1055  
-7357.5 -1055  
-7312.5 -1055  
-7267.5 -1055  
-7222.5 -1055  
-7177.5 -1055  
-7132.5 -1055  
-7087.5 -1055  
-7042.5 -1055  
-6997.5 -1055  
-6952.5 -1055  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
DMY27  
RS  
-6772.5  
-6727.5  
-6682.5  
-6637.5  
-6592.5  
-6547.5  
-6502.5  
-6457.5  
-6412.5  
-6367.5  
-6322.5  
-6277.5  
-6232.5  
-6187.5  
-6142.5  
-6097.5  
-6052.5  
-6007.5  
-5962.5  
-5917.5  
-5872.5  
-5737.5  
-5692.5  
-5647.5  
-5512.5  
-5467.5  
-5422.5  
-5287.5  
-5242.5  
-5197.5  
-5062.5  
-5017.5  
-4972.5  
-4837.5  
-4792.5  
-4747.5  
-4612.5  
-4567.5  
-4522.5  
-4387.5  
-4342.5  
-4297.5  
-4162.5  
-4117.5  
-4072.5  
-3937.5  
-3892.5  
-3757.5  
-3712.5  
-3667.5  
-3532.5  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
D9  
-3487.5  
-3442.5  
-3307.5  
-3262.5  
-3217.5  
-3082.5  
-3037.5  
-2992.5  
-2857.5  
-2812.5  
-2767.5  
-2632.5  
-2587.5  
-2542.5  
-2407.5  
-2362.5  
-2317.5  
-2182.5  
-2137.5  
-2092.5  
-1957.5  
-1912.5  
-1867.5  
-1822.5  
-1777.5  
-1732.5  
-1687.5  
-1642.5  
-1597.5  
-1372.5  
-1327.5  
-1282.5  
-1147.5  
-1102.5  
-1057.5  
-922.5  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
2
DMY49  
DMY50  
D10  
3
RS  
4
DMY28  
DMY29  
DMY30  
DMY31  
WRb  
WRb  
DMY32  
DMY33  
RDb  
5
VDDA  
D10  
6
DMY3  
ID0  
D11  
7
D11  
8
ID0  
DMY51  
DMY52  
D12  
9
DMY4  
DMY5  
DMY6  
DMY7  
ID1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
D12  
D13  
RDb  
D13  
ID1  
DMY34  
DMY35  
VDDA  
DMY53  
DMY54  
D14  
DMY8  
DMY9  
ID2  
VDDA  
D14  
ID2  
DMY36  
DMY37  
DMY38  
DMY39  
DMY40  
D0/SCL  
D0/SCL  
D1/SDA  
D1/SDA  
DMY41  
DMY42  
D2  
D15  
DMY10  
DMY11  
DMY12  
DMY13  
ID3  
D15  
DMY55  
VDD  
VDD  
VDD  
ID3  
VDD  
DMY14  
VSSA  
VDD  
VDD  
VSSA  
VDD  
DMY15  
SEL68  
SEL68  
DMY16  
DMY17  
VDDA  
VDD  
VDD  
D2  
DMY56  
CL  
D3/SMODE  
D3/SMODE  
DMY43  
DMY44  
D4/SPOL  
D4/SPOL  
D5  
CL  
FLM  
FLM  
DMY57  
DMY58  
FR  
VDDA  
DMY18  
DMY19  
P/S  
-877.5  
P/S  
D5  
FR  
-832.5  
DMY20  
VSSA  
DMY45  
DMY46  
D6  
CLK  
CLK  
DMY59  
DMY60  
OSC1  
OSC1  
DMY61  
DMY62  
OSC2  
OSC2  
VSS  
-697.5  
-652.5  
VSSA  
-607.5  
DMY21  
RESb  
RESb  
DMY22  
DMY23  
DMY24  
DMY25  
CSb  
D6  
-472.5  
D7  
-427.5  
D7  
-382.5  
DMY47  
VSSA  
-337.5  
-292.5  
VSSA  
-157.5  
DMY48  
D8  
-112.5  
-6907.5 -1055 100  
-6862.5 -1055 101  
-6817.5 -1055 102  
22.5  
CSb  
DMY26  
D8  
D9  
VSS  
VSS  
67.5  
112.5  
- 6 -  
NJU6818  
PAD COORDINATES 2  
Chip Size 19250µm x 2500µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
No.  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
154 VSS  
155 VSS  
156 VSS  
157 VSS  
158 VSS  
159 VSS  
160 DMY63  
161 VLCD  
162 VLCD  
163 VLCD  
164 VLCD  
165 VLCD  
166 VLCD  
167 VLCD  
168 VLCD  
169 DMY64  
170 V1  
171 V1  
172 V1  
173 V1  
174 V1  
175 V1  
176 V1  
177 V1  
178 V2  
179 V2  
180 V2  
181 V2  
182 V2  
183 V2  
184 V2  
185 V2  
186 DMY65  
187 V3  
188 V3  
189 V3  
190 V3  
191 V3  
192 V3  
193 V3  
194 V3  
195 V4  
196 V4  
197 V4  
198 V4  
199 V4  
200 V4  
201 V4  
202 V4  
203 DMY66  
204 VREG  
157.5 -1055 205 VREG  
202.5 -1055 206 VREG  
247.5 -1055 207 VREG  
292.5 -1055 208 VREG  
337.5 -1055 209 VREG  
382.5 -1055 210 VREG  
2812.5  
2857.5  
2902.5  
2947.5  
2992.5  
3037.5  
3082.5  
3127.5  
3172.5  
3217.5  
3262.5  
3307.5  
3352.5  
3397.5  
3442.5  
3487.5  
3532.5  
3577.5  
3622.5  
3667.5  
3712.5  
3757.5  
3802.5  
3847.5  
3892.5  
3937.5  
3982.5  
4027.5  
4072.5  
4117.5  
4162.5  
4207.5  
4252.5  
4297.5  
4342.5  
4567.5  
4612.5  
4657.5  
4702.5  
4747.5  
4792.5  
4837.5  
4882.5  
4927.5  
5152.5  
5197.5  
5242.5  
5287.5  
5332.5  
5377.5  
5422.5  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
VEE  
5467.5  
5512.5  
5647.5  
5692.5  
5737.5  
5782.5  
5827.5  
5872.5  
5917.5  
5962.5  
6007.5  
6052.5  
6097.5  
6142.5  
6187.5  
6232.5  
6277.5  
6322.5  
6367.5  
6412.5  
6457.5  
6502.5  
6547.5  
6592.5  
6637.5  
6682.5  
6727.5  
6772.5  
6817.5  
6862.5  
6907.5  
6952.5  
6997.5  
7042.5  
7087.5  
7132.5  
7177.5  
7222.5  
7267.5  
7312.5  
7357.5  
7402.5  
7447.5  
7492.5  
7537.5  
7582.5  
7627.5  
7672.5  
7717.5  
7762.5  
7807.5  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
-1055  
VEE  
DMY70  
DMY71  
DMY72  
DMY73  
DMY74  
C1+  
517.5 -1055 211  
VREG  
652.5 -1055 212 DMY67  
697.5 -1055 213 VREF  
742.5 -1055 214 VREF  
787.5 -1055 215 VREF  
832.5 -1055 216 VREF  
877.5 -1055 217 VREF  
922.5 -1055 218 VREF  
967.5 -1055 219 VREF  
1012.5 -1055 220 VREF  
1057.5 -1055 221 DMY68  
1102.5 -1055 222 VBA  
1147.5 -1055 223 VBA  
1192.5 -1055 224 VBA  
1237.5 -1055 225 VBA  
1282.5 -1055 226 VBA  
1327.5 -1055 227 VBA  
1372.5 -1055 228 VBA  
1507.5 -1055 229 VBA  
1552.5 -1055 230 DMY69  
1597.5 -1055 231 VSSH  
1642.5 -1055 232 VSSH  
1687.5 -1055 233 VSSH  
1732.5 -1055 234 VSSH  
1777.5 -1055 235 VSSH  
1822.5 -1055 236 VSSH  
1867.5 -1055 237 VSSH  
1912.5 -1055 238 VSSH  
1957.5 -1055 239 VSSH  
2002.5 -1055 240 VOUT  
2047.5 -1055 241 VOUT  
2092.5 -1055 242 VOUT  
2137.5 -1055 243 VOUT  
2182.5 -1055 244 VOUT  
2227.5 -1055 245 VOUT  
2362.5 -1055 246 VOUT  
2407.5 -1055 247 VOUT  
2452.5 -1055 248 VOUT  
2497.5 -1055 249 VEE  
2542.5 -1055 250 VEE  
2587.5 -1055 251 VEE  
2632.5 -1055 252 VEE  
2677.5 -1055 253 VEE  
2722.5 -1055 254 VEE  
2767.5 -1055 255 VEE  
C1+  
C1+  
C1+  
C1+  
DMY75  
DMY76  
C1-  
C1-  
C1-  
C1-  
C1-  
DMY77  
DMY78  
C2+  
C2+  
C2+  
C2+  
C2+  
DMY79  
DMY80  
C2-  
C2-  
C2-  
C2-  
C2-  
DMY81  
DMY82  
C3+  
C3+  
C3+  
C3+  
C3+  
DMY83  
DMY84  
C3-  
C3-  
C3-  
C3-  
C3-  
DMY85  
DMY86  
C4+  
C4+  
- 7 -  
NJU6818  
PAD COORDINATES 3  
Chip Size 19250µm x 2500µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
No.  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
307 C4+  
7852.5  
7897.5  
7942.5  
7987.5  
8032.5  
8077.5  
8122.5  
8167.5  
8212.5  
8257.5  
8302.5  
8347.5  
8392.5  
8437.5  
8482.5  
8527.5  
8572.5  
8617.5  
8662.5  
8707.5  
8752.5  
8797.5  
8842.5  
8887.5  
8932.5  
8977.5  
9022.5  
9067.5  
9430  
-1055 358 COM24  
-1055 359 COM23  
-1055 360 COM22  
-1055 361 COM21  
-1055 362 COM20  
-1055 363 COM19  
-1055 364 COM18  
-1055 365 COM17  
-1055 366 COM16  
-1055 367 COM15  
-1055 368 COM14  
-1055 369 COM13  
-1055 370 COM12  
-1055 371 COM11  
-1055 372 COM10  
-1055 373 COM9  
-1055 374 COM8  
-1055 375 COM7  
-1055 376 COM6  
-1055 377 COM5  
-1055 378 COM4  
-1055 379 COM3  
-1055 380 COM2  
-1055 381 COM1  
-1055 382 COM0  
-1055 383 DMY103  
-1055 384 DMY104  
-1055 385 DMY105  
-964 386 SEGA0  
-919 387 SEGB0  
-874 388 SEGC0  
-829 389 SEGA1  
-784 390 SEGB1  
1055 391 SEGC1  
1055 392 SEGA2  
1055 393 SEGB2  
1055 394 SEGC2  
1055 395 SEGA3  
1055 396 SEGB3  
1055 397 SEGC3  
1055 398 SEGA4  
1055 399 SEGB4  
1055 400 SEGC4  
1055 401 SEGA5  
1055 402 SEGB5  
1055 403 SEGC5  
1055 404 SEGA6  
1055 405 SEGB6  
1055 406 SEGC6  
1055 407 SEGA7  
1055 408 SEGB7  
8257.5  
8212.5  
8167.5  
8122.5  
8077.5  
8032.5  
7987.5  
7942.5  
7897.5  
7852.5  
7807.5  
7762.5  
7717.5  
7672.5  
7627.5  
7582.5  
7537.5  
7492.5  
7447.5  
7402.5  
7357.5  
7312.5  
7267.5  
7222.5  
7177.5  
7132.5  
7087.5  
7042.5  
6997.5  
6952.5  
6907.5  
6862.5  
6817.5  
6772.5  
6727.5  
6682.5  
6637.5  
6592.5  
6547.5  
6502.5  
6457.5  
6412.5  
6367.5  
6322.5  
6277.5  
6232.5  
6187.5  
6142.5  
6097.5  
6052.5  
6007.5  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
SEGC7  
SEGA8  
5962.5  
5917.5  
5872.5  
5827.5  
5782.5  
5737.5  
5692.5  
5647.5  
5602.5  
5557.5  
5512.5  
5467.5  
5422.5  
5377.5  
5332.5  
5287.5  
5242.5  
5197.5  
5152.5  
5107.5  
5062.5  
5017.5  
4972.5  
4927.5  
4882.5  
4837.5  
4792.5  
4747.5  
4702.5  
4657.5  
4612.5  
4567.5  
4522.5  
4477.5  
4432.5  
4387.5  
4342.5  
4297.5  
4252.5  
4207.5  
4162.5  
4117.5  
4072.5  
4027.5  
3982.5  
3937.5  
3892.5  
3847.5  
3802.5  
3757.5  
3712.5  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
308 C4+  
309 C4+  
SEGB8  
310 DMY87  
311 DMY88  
312 C4-  
SEGC8  
SEGA9  
SEGB9  
313 C4-  
SEGC9  
SEGA10  
SEGB10  
SEGC10  
SEGA11  
SEGB11  
SEGC11  
SEGA12  
SEGB12  
SEGC12  
SEGA13  
SEGB13  
SEGC13  
SEGA14  
SEGB14  
SEGC14  
SEGA15  
SEGB15  
SEGC15  
SEGA16  
SEGB16  
SEGC16  
SEGA17  
SEGB17  
SEGC17  
SEGA18  
SEGB18  
SEGC18  
SEGA19  
SEGB19  
SEGC19  
SEGA20  
SEGB20  
SEGC20  
SEGA21  
SEGB21  
SEGC21  
SEGA22  
SEGB22  
SEGC22  
SEGA23  
SEGB23  
SEGC23  
SEGA24  
SEGB24  
314 C4-  
315 C4-  
316 C4-  
317 DMY89  
318 DMY90  
319 C5+  
320 C5+  
321 C5+  
322 C5+  
323 C5+  
324 DMY91  
325 DMY92  
326 C5-  
327 C5-  
328 C5-  
329 C5-  
330 C5-  
331 DMY93  
332 DMY94  
333 DMY95  
334 DMY96  
335 DMY97  
336 DMY98  
337 DMY98  
338 DMY98  
339 DMY99  
340 DMY100  
341 DMY101  
342 DMY102  
343 COM39  
344 COM38  
345 COM37  
346 COM36  
347 COM35  
348 COM34  
349 COM33  
350 COM32  
351 COM31  
352 COM30  
353 COM29  
354 COM28  
355 COM27  
356 COM26  
357 COM25  
9430  
9430  
9430  
9430  
9067.5  
9022.5  
8977.5  
8932.5  
8887.5  
8842.5  
8797.5  
8752.5  
8707.5  
8662.5  
8617.5  
8572.5  
8527.5  
8482.5  
8437.5  
8392.5  
8347.5  
8302.5  
- 8 -  
NJU6818  
PAD COORDINATES 4  
Chip Size 19250µm x 2500µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
No.  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
460 SEGC24  
461 SEGA25  
462 SEGB25  
463 SEGC25  
464 SEGA26  
465 SEGB26  
466 SEGC26  
467 SEGA27  
468 SEGB27  
469 SEGC27  
470 SEGA28  
471 SEGB28  
472 SEGC28  
473 SEGA29  
474 SEGB29  
475 SEGC29  
476 SEGA30  
477 SEGB30  
478 SEGC30  
479 SEGA31  
480 SEGB31  
481 SEGC31  
482 SEGA32  
483 SEGB32  
484 SEGC32  
485 SEGA33  
486 SEGB33  
487 SEGC33  
488 SEGA34  
489 SEGB34  
490 SEGC34  
491 SEGA35  
492 SEGB35  
493 SEGC35  
494 SEGA36  
495 SEGB36  
496 SEGC36  
497 SEGA37  
498 SEGB37  
499 SEGC37  
500 SEGA38  
501 SEGB38  
502 SEGC38  
503 SEGA39  
504 SEGB39  
505 SEGC39  
506 SEGA40  
507 SEGB40  
508 SEGC40  
509 SEGA41  
510 SEGB41  
3667.5  
3622.5  
3577.5  
3532.5  
3487.5  
3442.5  
3397.5  
3352.5  
3307.5  
3262.5  
3217.5  
3172.5  
3127.5  
3082.5  
3037.5  
2992.5  
2947.5  
2902.5  
2857.5  
2812.5  
2767.5  
2722.5  
2677.5  
2632.5  
2587.5  
2542.5  
2497.5  
2452.5  
2407.5  
2362.5  
2317.5  
2272.5  
2227.5  
2182.5  
2137.5  
2092.5  
2047.5  
2002.5  
1957.5  
1912.5  
1867.5  
1822.5  
1777.5  
1732.5  
1687.5  
1642.5  
1597.5  
1552.5  
1507.5  
1462.5  
1417.5  
1055 511 SEGC41  
1055 512 SEGA42  
1055 513 SEGB42  
1055 514 SEGC42  
1055 515 SEGA43  
1055 516 SEGB43  
1055 517 SEGC43  
1055 518 SEGA44  
1055 519 SEGB44  
1055 520 SEGC44  
1055 521 SEGA45  
1055 522 SEGB45  
1055 523 SEGC45  
1055 524 SEGA46  
1055 525 SEGB46  
1055 526 SEGC46  
1055 527 SEGA47  
1055 528 SEGB47  
1055 529 SEGC47  
1055 530 SEGA48  
1055 531 SEGB48  
1055 532 SEGC48  
1055 533 SEGA49  
1055 534 SEGB49  
1055 535 SEGC49  
1055 536 SEGA50  
1055 537 SEGB50  
1055 538 SEGC50  
1055 539 SEGA51  
1055 540 SEGB51  
1055 541 SEGC51  
1055 542 SEGA52  
1055 543 SEGB52  
1055 544 SEGC52  
1055 545 SEGA53  
1055 546 SEGB53  
1055 547 SEGC53  
1055 548 SEGA54  
1055 549 SEGB54  
1055 550 SEGC54  
1055 551 SEGA55  
1055 552 SEGB55  
1055 553 SEGC55  
1055 554 SEGA56  
1055 555 SEGB56  
1055 556 SEGC56  
1055 557 SEGA57  
1055 558 SEGB57  
1055 559 SEGC57  
1055 560 SEGA58  
1055 561 SEGB58  
1372.5  
1327.5  
1282.5  
1237.5  
1192.5  
1147.5  
1102.5  
1057.5  
1012.5  
967.5  
922.5  
877.5  
832.5  
787.5  
742.5  
697.5  
652.5  
607.5  
562.5  
517.5  
472.5  
427.5  
382.5  
337.5  
292.5  
247.5  
202.5  
157.5  
112.5  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
SEGC58  
SEGA59  
SEGB59  
SEGC59  
SEGA60  
SEGB60  
SEGC60  
SEGA61  
SEGB61  
SEGC61  
SEGA62  
SEGB62  
SEGC62  
SEGA63  
SEGB63  
SEGC63  
SEGA64  
SEGB64  
SEGC64  
SEGA65  
SEGB65  
SEGC65  
SEGA66  
SEGB66  
SEGC66  
SEGA67  
SEGB67  
SEGC67  
SEGA68  
SEGB68  
SEGC68  
SEGA69  
SEGB69  
SEGC69  
SEGA70  
SEGB70  
SEGC70  
SEGA71  
SEGB71  
SEGC71  
SEGA72  
SEGB72  
SEGC72  
SEGA73  
SEGB73  
SEGC73  
SEGA74  
SEGB74  
SEGC74  
SEGA75  
SEGB75  
-922.5  
-967.5  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
-1012.5  
-1057.5  
-1102.5  
-1147.5  
-1192.5  
-1237.5  
-1282.5  
-1327.5  
-1372.5  
-1417.5  
-1462.5  
-1507.5  
-1552.5  
-1597.5  
-1642.5  
-1687.5  
-1732.5  
-1777.5  
-1822.5  
-1867.5  
-1912.5  
-1957.5  
-2002.5  
-2047.5  
-2092.5  
-2137.5  
-2182.5  
-2227.5  
-2272.5  
-2317.5  
-2362.5  
-2407.5  
-2452.5  
-2497.5  
-2542.5  
-2587.5  
-2632.5  
-2677.5  
-2722.5  
-2767.5  
-2812.5  
-2857.5  
-2902.5  
-2947.5  
-2992.5  
-3037.5  
-3082.5  
-3127.5  
-3172.5  
67.5  
22.5  
-22.5  
-67.5  
-112.5  
-157.5  
-202.5  
-247.5  
-292.5  
-337.5  
-382.5  
-427.5  
-472.5  
-517.5  
-562.5  
-607.5  
-652.5  
-697.5  
-742.5  
-787.5  
-832.5  
-877.5  
- 9 -  
NJU6818  
PAD COORDINATES 5  
Chip Size 19250µm x 2500µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
No.  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
613 SEGC75  
614 SEGA76  
615 SEGB76  
616 SEGC76  
617 SEGA77  
618 SEGB77  
619 SEGC77  
620 SEGA78  
621 SEGB78  
622 SEGC78  
623 SEGA79  
624 SEGB79  
625 SEGC79  
626 SEGA80  
627 SEGB80  
628 SEGC80  
629 SEGA81  
630 SEGB81  
631 SEGC81  
632 SEGA82  
633 SEGB82  
634 SEGC82  
635 SEGA83  
636 SEGB83  
637 SEGC83  
638 SEGA84  
639 SEGB84  
640 SEGC84  
641 SEGA85  
642 SEGB85  
643 SEGC85  
644 SEGA86  
645 SEGB86  
646 SEGC86  
647 SEGA87  
648 SEGB87  
649 SEGC87  
650 SEGA88  
651 SEGB88  
652 SEGC88  
653 SEGA89  
654 SEGB89  
655 SEGC89  
656 SEGA90  
657 SEGB90  
658 SEGC90  
659 SEGA91  
660 SEGB91  
661 SEGC91  
662 SEGA92  
663 SEGB92  
-3217.5  
-3262.5  
-3307.5  
-3352.5  
-3397.5  
-3442.5  
-3487.5  
-3532.5  
-3577.5  
-3622.5  
-3667.5  
-3712.5  
-3757.5  
-3802.5  
-3847.5  
-3892.5  
-3937.5  
-3982.5  
-4027.5  
-4072.5  
-4117.5  
-4162.5  
-4207.5  
-4252.5  
-4297.5  
-4342.5  
-4387.5  
-4432.5  
-4477.5  
-4522.5  
-4567.5  
-4612.5  
-4657.5  
-4702.5  
-4747.5  
-4792.5  
-4837.5  
-4882.5  
-4927.5  
-4972.5  
-5017.5  
-5062.5  
-5107.5  
-5152.5  
-5197.5  
-5242.5  
-5287.5  
-5332.5  
-5377.5  
-5422.5  
-5467.5  
1055 664 SEGC92  
1055 665 SEGA93  
1055 666 SEGB93  
1055 667 SEGC93  
1055 668 SEGA94  
1055 669 SEGB94  
1055 670 SEGC94  
1055 671 SEGA95  
1055 672 SEGB95  
1055 673 SEGC95  
1055 674 SEGA96  
1055 675 SEGB96  
1055 676 SEGC96  
1055 677 SEGA97  
1055 678 SEGB97  
1055 679 SEGC97  
1055 680 SEGA98  
1055 681 SEGB98  
1055 682 SEGC98  
1055 683 SEGA99  
1055 684 SEGB99  
1055 685 SEGC99  
1055 686 SEGA100  
1055 687 SEGB100  
1055 688 SEGC100  
1055 689 SEGA101  
1055 690 SEGB101  
1055 691 SEGC101  
1055 692 SEGA102  
1055 693 SEGB102  
1055 694 SEGC102  
1055 695 SEGA103  
1055 696 SEGB103  
1055 697 SEGC103  
1055 698 DMY106  
1055 699 DMY107  
1055 700 DMY108  
1055 701 COM40  
1055 702 COM41  
1055 703 COM42  
1055 704 COM43  
1055 705 COM44  
1055 706 COM45  
1055 707 COM46  
1055 708 COM47  
1055 709 COM48  
1055 710 COM49  
1055 711 COM50  
1055 712 COM51  
1055 713 COM52  
1055 714 COM53  
-5512.5  
-5557.5  
-5602.5  
-5647.5  
-5692.5  
-5737.5  
-5782.5  
-5827.5  
-5872.5  
-5917.5  
-5962.5  
-6007.5  
-6052.5  
-6097.5  
-6142.5  
-6187.5  
-6232.5  
-6277.5  
-6322.5  
-6367.5  
-6412.5  
-6457.5  
-6502.5  
-6547.5  
-6592.5  
-6637.5  
-6682.5  
-6727.5  
-6772.5  
-6817.5  
-6862.5  
-6907.5  
-6952.5  
-6997.5  
-7042.5  
-7087.5  
-7132.5  
-7177.5  
-7222.5  
-7267.5  
-7312.5  
-7357.5  
-7402.5  
-7447.5  
-7492.5  
-7537.5  
-7582.5  
-7627.5  
-7672.5  
-7717.5  
-7762.5  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
DMY109  
DMY110  
DMY111  
DMY112  
DMY113  
DMY113  
DMY113  
DMY114  
-7807.5  
-7852.5  
-7897.5  
-7942.5  
-7987.5  
-8032.5  
-8077.5  
-8122.5  
-8167.5  
-8212.5  
-8257.5  
-8302.5  
-8347.5  
-8392.5  
-8437.5  
-8482.5  
-8527.5  
-8572.5  
-8617.5  
-8662.5  
-8707.5  
-8752.5  
-8797.5  
-8842.5  
-8887.5  
-8932.5  
-8977.5  
-9022.5  
-9067.5  
-9430  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
1055  
-784  
-829  
-874  
-919  
-964  
-9430  
-9430  
-9430  
-9430  
- 10 -  
NJU6818  
BLOCK DIAGRAM  
VSSH  
VSS  
VSSA  
VDDA  
VDD  
Segment Driver  
Common Driver  
5
VLCD, V1 -V4  
Gradation Circuit  
Data Latch Circuit  
Shift Register  
C1+  
C1-  
C2+  
Voltage  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
booster  
VOUT  
Voltage  
regulator  
VEE  
Display Data RAM  
(DD RAM)  
VREF  
VBA  
80x104x(4+4+4)bit  
VREG  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
X Address Decoder  
X Address Counter  
X Address Register  
FR  
RAM  
Display  
Timing  
Interface  
FLM  
CL  
Generator  
CLK  
OSC2  
OSC1  
D8  
Oscillator  
D7  
D6  
D5  
D4/SPOL  
D3/SMODE  
D2  
Instruction  
Decoder  
Register Read  
Control  
Bus Holder  
Internal Bus  
Pole Control  
D1/SDA  
D0/SCL  
MPU Interface  
Chip  
Identification  
CSb RS  
RDb WRb P/S  
SEL68 RESb  
- 11 -  
NJU6818  
POWER SUPPLY CIRCUITS BLOCK DIAGRAM  
Reference Voltage  
+
-
Generator  
VBA  
+
-
VLCD  
+
-
Voltage regulator  
V1  
VREG  
VREF  
+
-
+
-
V2  
Gain  
+
-
V3  
Control  
(1x-6x)  
E.V.R  
1/2VREG  
+
-
V4  
EVR register  
Boost level register  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
Voltage  
Booster  
VOUT  
VEE  
- 12 -  
NJU6818  
TERMINAL DESCRIPTION 1  
No.  
Symbol  
VDD  
I/O  
Function  
123~131  
151~159  
231~239  
4,5  
Power  
Power  
Power  
Power  
Power supply for logic circuits  
VSS  
GND for logic circuits  
VSSH  
VDDA  
GND for high voltage circuits  
This terminal is internally connected to the VDD level.  
This terminal is used to fix the selection terminals to the VDD  
level.  
33,34  
67,68  
Note) Do not use this terminal for a main power supply.  
This terminal is internally connected to the VSS level.  
This terminal is used to fix the selection terminals to the VSS  
level.  
26,27  
40,41  
97,98  
VSSA  
Power  
Note) Do not use this terminal for a main GND.  
161~168  
VLCD  
Power/O LCD driving voltages  
When the internal voltage booster is not used, the external  
170~177  
178~185  
187~194  
195~202  
V1  
V2  
V3  
V4  
LCD driving voltages (V1 to V4 and VLCD) must be supplied on  
these terminals. And the external voltages must be maintained  
with the following relation.  
VSS<V4<V3<V2<V1<VLCD  
When the internal voltage booster is used, the LCD driving  
voltages (V1 to V4 and VLCD) are enabled by the “Power control”  
instruction. The capacitors between the Vss and these terminals  
are necessary.  
263~267  
270~274  
277~281  
284~288  
291~295  
298~302  
305~309  
312~216  
319~323  
326~330  
222~229  
213~220  
249~257  
C1+  
C1-  
O
O
O
O
O
Capacitor connection terminals for the voltage booster  
C2+  
C2-  
Capacitor connection terminals for the voltage booster  
Capacitor connection terminals for the voltage booster  
Capacitor connection terminals for the voltage booster  
Capacitor connection terminals for the voltage booster  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
VBA  
VREF  
VEE  
O
I
Power  
Output of the reference-voltage generator  
Input of the voltage regulator  
Input of the voltage booster  
This terminal is normally connected to the VDD level.  
240~248  
VOUT  
Power/O Output of the voltage booster  
Input for high voltage circuits in using external power supply  
Output of the voltage regulator  
204~211  
43,44  
VREG  
RESb  
O
I
Reset  
Active “0”  
29,30  
SEL68  
I
MPU interface type select  
SEL86  
Status  
H
L
68 series  
80 series  
ID0  
ID1  
ID2  
ID3  
I
Chip Identification  
7,8  
This terminal must be fixed to “1” or “0”  
13,14  
17,18  
23,24  
The NJU6818 can read ID data, which is determined by fixing  
ID3, ID2, ID1 and ID0 pins to “1” or “0”.  
- 13 -  
NJU6818  
TERMINAL DESCRIPTION 2  
No.  
Symbol  
D0/SCL  
I/O  
I/O  
Function  
74,75  
Parallel interface:  
D7 to D0 : 8-bit bi-directional bus  
In the parallel interface mode (P/S=“1”), these terminals connect  
to 8-bit bi-directional MPU bus.  
76,77  
82,83  
D1/SDA  
I/O  
I/O  
Serial interface:  
SDA : Serial data  
D3/SMODE  
SCL : Serial clock  
SMODE : 3-/4-line serial interface mode selection  
SPOL : RS polarity selection (in the 3-line serial interface mode)  
86,87  
D4/SPOL  
I/O  
I/O  
In the 3-/4-line serial interface mode (P/S=“0”), the D0 terminal  
is assigned to the SCL, and the D1 terminal to the SDA.  
In the 3-line serial interface mode, the D4 terminal is assigned to  
the SPOL.  
80.81  
88,89  
92,93  
94,95  
D2  
D5  
D6  
D7  
Serial data on the SDA is fetched at the rising edge of the SCL  
signal in the order of the D7, D6…D0, and the fetched data is  
converted into 8-bit parallel data at the falling edge of the 8th SCL  
signal.  
The SCL signal must be set to “0” after data transmissions or  
during non-access.  
100,101  
102,103  
106,107  
108,109  
112,113  
114,115  
118,119  
120,121  
49,50  
D8  
D9  
I/O  
8-bit bi-directional bus  
In the 16-bit data bus mode, these terminals are assigned to the  
upper 8-bit data bus.  
D10  
D11  
D12  
D13  
D14  
D15  
CSb  
In the serial interface mode or the 8-bit data bus mode of the  
parallel interface, these terminals must be fixed to “1” or “0”.  
I
I
Chip select  
Active “0”  
53,54  
RS  
Resister select  
This signal distinguishes transferred data as an instruction or  
display data as follows.  
RS  
Distinct.  
H
L
Instruction  
Display data  
63,64  
59,60  
RDb (E)  
I
I
80 series MPU interface (P/S=“1”, SEL68=“0”)  
RDb signal. Active “0”.  
68 series MPU interface (P/S=“1”, SEL68=“1”)  
Enable signal. Active “1”.  
80 series MPU interface (P/S=“1”, SEL68=“0”)  
WRb signal. Active “0”.  
WRb (R/W)  
68 series MPU interface (P/S=“1”, SEL68=“1”)  
R/W signal.  
R/W  
Status  
H
Read  
L
Write  
- 14 -  
NJU6818  
TERMINAL DESCRIPTION 3  
No.  
37,38  
Symbol  
P/S  
I/O  
I
Function  
Parallel / serial interface mode selection  
Chip  
Data/  
Read/  
Write  
RDb,  
WRb  
Write  
only  
P/S  
H
Data  
Serial clock  
-
Select  
Instruction  
CSb  
CSb  
RS  
RS  
D0 ~ D7  
SDA (D1)  
L
SCL (D0)  
Since the D15 to D5 and D2 terminals are in high impedance in the  
serial interface mode (P/S=“0”), they must be fixed to “1” or “0”. The  
RDb and WRb terminals also must be “1” or “0”.  
133,134  
135,136  
139,140  
141,142  
CL  
FLM  
FR  
O
O
O
O
This terminal must be opened.  
This terminal must be opened.  
This terminal must be opened.  
This terminal must be opened.  
CLK  
145,146  
OSC1  
I
OSC  
149,150  
OSC2  
O
When the internal oscillator clock is used, the OSC1 terminal must be  
fixed to “1” or “0”, and the OSC2 terminal must be opened. When the  
oscillation frequency from the internal oscillator is adjusted by an  
external resistor between OSC1 terminal and OSC2.  
When an external oscillator is used, external clock is input to the  
OSC1 terminal, or an external resistor is connected between the OSC1  
and OSC2 terminals.  
386~697 SEGA0  
~SEGA103  
SEGB0 ~  
SEGB103  
SEGC0 ~  
O
Segment output  
,
,
REV Mode  
Normal  
Reverse  
Turn-off  
Turn-on  
0
1
1
0
SEGC103  
These terminals output LCD driving waveforms in accordance with the  
combination of the FR signal and display data.  
In the B/W mode  
FR signal  
Display data  
Normal display mode  
V2  
VLCD  
V2  
V 3  
VSS  
V3  
Reverse display mode  
VLCD  
VSS  
343~382 COM0 ~  
701~740  
O
Common output  
COM79  
These terminals output LCD driving waveforms in accordance with the  
combination of the FR signal and scanning data.  
Data  
H
L
H
L
FR  
H
H
L
Output level  
VSS  
V1  
VLCD  
V4  
L
(Terminal No. 1~3,6, 9~12, 15, 16, 19~22, 25, 28, 31, 32, 35, 36, 39, 42, 45~48, 51, 52, 55~58, 61, 62, 65, 66, 69~73, 78, 79, 84, 85, 90,  
91, 96, 99, 104, 105, 110, 111, 116, 117, 122, 132, 137, 138, 143, 144, 147, 148, 160, 169, 186, 203, 212, 221, 230, 258~262, 268, 269,  
275, 276, 282, 283, 289, 290, 296, 297, 303, 304, 310, 311, 317, 318, 324, 325, 331~342, 383~385, 698~700, 741~748 are dummy.)  
- 15 -  
NJU6818  
Functional Description  
(1) MPU Interface  
(1-1) Selection of parallel / serial interface mode  
The P/S terminal is used to select the parallel or serial interface mode, as shown in the following table. In the serial  
interface mode, it is not possible to read out display data from the DDRAM or status data from the internal  
registers.  
Table 1  
P/S  
H
L
P/S mode  
Parallel I/F  
Serial I/F  
CSb  
CSb  
CSb  
RS  
RS  
RS  
RDb  
RDb  
-
WRb  
WRb  
-
SEL68  
SEL68  
-
SDA  
SDA  
SCL  
SCL  
Data  
D7-D0 (D15-D0)  
-
Note 1) “ -” : Fix to “1” or “0”.  
(1-2) Selection of MPU interface type  
In the parallel interface mode, the SEL68 terminal is used to select 68- or 80-series MPU interface type, as shown  
in the following table.  
Table 2  
SEL68  
MPU type  
68 series MPU  
80 series MPU  
CSb  
CSb  
CSb  
RS  
RS  
RS  
RDb  
E
RDb  
WRb  
R/W  
WRb  
Data  
D7-D0 (D15-D0)  
D7-D0 (D15-D0)  
H
L
(1-3) Data distinction  
In the parallel interface mode, the combination of the RS, RDb and WRb (R/W) signals distinguishes transferred  
data between the LSI and MPU as instruction or display data, as shown in the following table.  
Table 3  
68 series  
80 series  
RS  
Function  
R/W  
H
RDb  
WRb  
H
H
L
L
H
L
H
L
Read out instruction data  
Write instruction data  
Read out display data  
Write display data  
L
H
H
L
L
L
H
(1-4) Selection of serial interface mode  
In the serial interface mode, the SMODE terminal is used to select the 3- or 4-line serial interface mode, as shown  
in the following table.  
Table 4  
SMODE  
Serial interface mode  
H
L
3-line  
4-line  
- 16 -  
NJU6818  
(1-5) 4-line serial interface mode  
In the 4-line serial interface mode, when the chip select is active (CSb=“0”), the SDA and the SCL are enabled.  
When the chip select is not active (CSb=“1”), the SDA and the SCL are disabled, and the internal shift register and  
the counter are being initialized. 8-bit serial data on the SDA is fetched at the rising edge of the SCL signal (serial  
clock) in order of the D7, D6…D0, and the fetched data is converted into 8-bit parallel data at the rising edge of the  
8th SCL signal.  
In the 4-line serial interface mode, transferred data on the SDA is distinguished as display data or instruction data  
in accordance with the condition of the RS signal.  
Table 5  
RS  
H
L
Data distinction  
Instruction data  
Display data  
Since the serial interface operation is sensitive to external noises, the SCL should be set to “0” after data  
transmissions or during non-access. To release a mal-function caused by the external noises, the chip-selected  
status should be released (CSb=“1”) after each of 8-bit data transmissions. The following figure illustrates the  
interface timing of the 4-line serial interface operation.  
CSb  
RS  
VALID  
D0  
SDA  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
D1  
SCL  
6
7
8
Fig 1  
4-line serial interface timing  
(1-6) 3-line serial interface mode  
In the 3-line serial interface mode, when the chip select is active (CSb=“0”), the SDA and the SCL are enabled.  
When the chip select is not active (CSb=“1”), the SDA and the SCL are disabled, and the internal shift register and  
counter are being initialized. 9-bit serial data on the SDA is fetched at the rising edge of the SCL signal in order of  
the RS, D7, D6…D0, and the fetched data is converted into 9-bit parallel data at the rising edge of the 9th SCL  
signal.  
In the 3-line serial interface mode, data on the SDA is distinguished as display data or instruction data in  
accordance with the condition of the RS bit of the SDA data and the status of the SPOL, as follows.  
Table 6  
SPOL=L  
SPOL=H  
RS  
L
H
Data distinction  
RS  
L
H
Data distinction  
Display data  
Instruction data  
Instruction data  
Display data  
- 17 -  
NJU6818  
Since the serial interface operation is sensitive to external noises, the SCL must be set to “0” after data  
transmissions or during non-access. To release a mal-function caused by the external noises, the chip-selected  
status should be released (CSb=“1”) after each of 9-bit data transmissions. The following figure illustrates the  
interface timing of the 3-line serial interface operation.  
CSb  
SDA  
SCL  
RS  
1
D7  
2
D6  
D5  
4
D4  
5
D3  
D2  
D1  
D0  
3
6
7
8
9
Fig 2 3-line serial interface timing  
- 18 -  
NJU6818  
(2) Access to the DDRAM  
When the CSb signal is ”0”, transferred data from MPU is written into the DDRAM or the instruction register in  
accordance with the condition of the RS signal.  
When the RS signal is “1”, the transferred data is distinguished as display data. After the “column address” and  
“row address” instructions are executed, display data can be written into the DDRAM by the “Display data write”  
instruction. The display data is written at the rising edge of the WRb signal in the 80 series MPU mode, or at the  
falling edge of the E signal in the 68 series MPU mode.  
Table 6  
RS  
L
H
Data distinction  
Display RAM Data  
Internal Command Register  
In the sequence of the “Display data read” operation, transferred data from MPU is temporarily held in the internal  
bus-holder, then transferred to the internal data-bus. When the “Display data read” operation is executed just after  
the “column address” and “row address” instructions or “Display data write” instruction, unexpected data on the  
bus-holder is read out at the 1st execution, then the data of designated DDRAM address is read out from the 2nd  
execution. For this reason, a dummy read cycle must be executed to avoid the unexpected 1st data read.  
Display data write operation  
n
n+1  
n+2  
n+3  
n+4  
D0 to D15  
WRb  
n
n+1  
n+2  
n+3  
n+4  
Bus Holder  
WRb  
Display data read operation  
WRb  
D0 to D7 (D0 to D15)  
n
n
n+1  
Data Read  
n+1 Address n+2 Address  
n+2  
Data Read  
Address Set  
n
Dummy  
Read  
Data Read  
n Address  
RDb  
Fig 3  
Note) In the 16-bit data bus mode, instruction data must be 16-bit as well as the display data.  
- 19 -  
NJU6818  
(3) Access to the instruction register  
Each instruction resisters is assigned to each address between 0H and FH, and the content of the instruction  
register can be read out by the combination of the “Instruction resister address” and ”Instruction resister read”.  
WRb  
M
m
N
n
D0 to D7  
Instruction resister  
Instruction resister Instruction resister Instruction resister  
address set  
contents read  
address set  
contents read  
RDb  
Fig 4  
(4) 8-/16-bit data bus length for display data (In the parallel interface mode)  
The 8- or 16-bit data bus length for display data is determined by the “WLS” of the “Data bus length” instruction.  
In the 16-bit data bus mode, instruction data must be 16-bit (D15 to D0) as well as display data. However, for the  
access to the instruction register, the only lower 8-bit data (D7 to D0) of 16-bit data is valid. For the access to the  
DDRAM, all of the 16-bit data (D15 to D0) is valid.  
Table 8  
WLS  
L
H
Data bus length mode  
8-bit  
16-bit  
(5) Initial display line register  
The initial display line resister specifies the line address, corresponding to the initial COM line, by the “Initial display  
line” instruction. The initial COM line signifies the common driver, starting scanning the display data in the DDRAM,  
and specified by the “Initial COM line” instruction.  
The line address, established in the initial display line resister, is preset into the line counter whenever the FLM  
signal becomes “1”. At the rising edge of the CL signal, the line counter is counted-up and addressed 312-bit  
display data, corresponding to the counted-up line address, is latched into the data latch circuit. At the falling edge  
of the CL signal, the latched data outputs to the segment drivers.  
- 20 -  
NJU6818  
(6) DDRAM Mapping  
The DDRAM is capable of 1,248-bit (12-bit x 104-segment) for the column address and 80-bit for the row address.  
In the gradation mode, each pixel for RGB corresponds to successive 3-segment drivers, and each segment driver  
has 16-gradation. Therefore, the LSI can drive up to 104x80 pixels in 4096-color display (16-gradation x 16-  
gradation x 16-gradation).  
In the B&W mode, only MSB data from each 4-bit display data group in the DDRAM is used. Therefore, 312x80  
pixels in the B&W and 104x80 pixels in the 8-gradiation are available.  
The range of the column address varies depending on data bus length. The range between 00H and CFH is used in  
the 8-bit data bus length, and the range between 00H and 67H is in the 16-bit data bus length.  
In the 8-bit data bus length mode  
column-address  
column-address  
column-address  
column-address  
0H  
7bit  
1H  
CEH  
7bit  
CFH  
5bit  
0 H  
5bit  
row-address  
4FH  
0 H  
7bit  
5bit  
7bit  
5bit  
0H  
4bit  
1H  
8bit  
CEH  
4bit  
CFH  
8bit  
ABS=’1’  
row-address  
4FH  
0 H  
4bit  
8bit  
4bit  
8bit  
0H  
8bit  
1H  
8bit  
9AH  
8bit  
9BH  
8bit  
HSW=’1’  
row-address  
4FH  
0 H  
8bit  
8bit  
8bit  
8bit  
0H  
8bit  
1H  
8bit  
66H  
8bit  
67H  
8bit  
C256=’1’  
row-address  
4FH  
8bit  
8bit  
8bit  
8bit  
Fig 5  
- 21 -  
NJU6818  
In the 16-bit data bus length mode  
column-address  
0H  
67H  
12bit  
0 H  
12bit  
row-address  
4FH  
12bit  
12bit  
Fig 6  
The increments for the column address and row address are set to the auto-increment mode by programming the  
“AXI” and “AYI” registers of the “Increment control” instruction. In this mode, the contents of the column address  
and row address counters automatically increment whenever the DDRAM is accessed.  
The column address and row address counters, independent of the line counter. They are used to designate the  
column and row addresses for the display data transferred from MPU. On the other hand, the line counter is used  
to generate the line address, and output display data to the segment drivers, being synchronized with the display  
control timing of the FLM and CL signals.  
- 22 -  
NJU6818  
(7) Window addressing mode  
In addition to the above usual DDRAM addressing, it is possible to access some part of DDRAM in using the  
window addressing mode, in which the start and end points are designated. The start point is determined by the  
“column address” and “row address” instructions, and the end point is determined by the “Window end column  
address “and ”Window end row address” instructions. The setting example of the window addressing is listed, as  
follows.  
1. Set WIN=1, AXI=1, and AYI=1 by the “Increment control” instruction  
2. Set the start point by the “column address” and “row address” instructions  
3. Set the end point by the “Window end column address” and “Window end row address” instructions  
4. Enable to access to the DDRAM in the window addressing mode  
In the window addressing mode (WIN=1, AXI=1, AYI=1), the read-modify-write operation is available by setting “0”  
to the “AIM” register of the “Increment control” instruction.  
And in the window addressing mode, the following relation for the start and end points must be maintained to avoid  
a malfunction.  
AX (column address of start point) < EX (column address of the end point) < Maximum of column  
address  
AY (row address of start point) < EY (row address of the end point) < Maximum of row address  
column address  
(X, Y)  
Start point  
End point  
Window display area  
(X, Y)  
Whole DDRAM area  
Fig 7  
(8) Reverse display ON/OFF  
The “Reverse display ON/OFF” function is used to reverse the display data without changing the contents of the  
DDRAM.  
Table 9  
REV  
Display  
Normal  
DDRAM data Display data  
0
1
0
1
0
1
1
0
0
1
Reverse  
(9) Segment direction  
The “Segment direction” function is used to reverse the assignments for the segment drivers and the column  
addresses, and it is possible to reduce restrictions for the placement of the LSI on LCD modules.  
- 23 -  
NJU6818  
REF  
SWAP  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
WLS  
ABS  
HSW  
REF  
256  
WLS  
ABS  
HSW  
REF  
256  
A3  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
- 24 -  
NJU6818  
(10) The relation among the DDRAM column address, display data, and segment drivers  
In the color mode and 16-bit data bus mode  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
0
0
0
1
0
1
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
0
0
0
1
1
0
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
1
1
0
1
0
1
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
1
1
0
1
1
0
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 25 -  
NJU6818  
In the color mode and 8-bit data bus mode  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
0
0
0
1
0
1
X=00H  
X=CEH  
X=01H  
X=CFH  
ꢂꢃ  
ꢂꢃ  
X=CEH  
X=00H  
X=CFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
0
0
0
1
1
0
X=00H  
X=CEH  
X=01H  
X=CFH  
ꢂꢃ  
ꢂꢃ  
X=CEH  
X=00H  
X=CFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
1
1
0
1
0
1
X=00H  
X=01H  
X=CFH  
ꢂꢃ  
ꢂꢃ  
X=CEH  
X=00H  
X=CFH  
X=CEH  
X=01H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
1
1
0
1
1
0
X=00H  
X=CEH  
X=01H  
X=CFH  
ꢂꢃ  
ꢂꢃ  
X=CEH  
X=00H  
X=CFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 26 -  
NJU6818  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEGA  
0
SEGC  
0
SEGC  
0
SEGA  
0
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
SEGB  
0
SEGB  
0
SEGB  
0
SEGB  
0
SEGC  
0
SEGA  
0
SEGA  
0
SEGC  
0
SEGA  
1
SEGC  
1
SEGC  
1
SEGA  
1
SEGB  
1
SEGB  
1
SEGB  
1
SEGB  
1
SEGC  
1
SEGA  
1
SEGA  
1
SEGC  
1
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEGA  
102  
SEGC  
102  
SEGC  
102  
SEGA  
102  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
SEGB  
102  
SEGB  
102  
SEGB  
102  
SEGB  
102  
SEGC  
102  
SEGA  
102  
SEGA  
102  
SEGC  
102  
SEGA  
103  
SEGC  
103  
SEGC  
103  
SEGA  
103  
SEGB  
103  
SEGB  
103  
SEGB  
103  
SEGB  
103  
SEGC  
103  
SEGA  
103  
SEGA  
103  
SEGC  
103  
- 27 -  
NJU6818  
In the color mode, 8-bit data bus mode, and C256 mode (C256=1)  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
*
*
0
1
0
1
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
*
*
0
1
1
0
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 28 -  
NJU6818  
In the B&W mode and 16-bit data bus mode  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
0
0
0
1
0
1
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
0
0
0
1
1
0
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
1
1
0
1
0
1
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
1
1
0
1
1
0
X=00H  
X=67H  
ꢂꢃ  
ꢂꢃ  
X=67H  
X=00H  
ꢂꢃ  
ꢂꢃ  
- 29 -  
NJU6818  
In the B&W mode and 8-bit data bus mode  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
0
0
0
1
0
1
X=00H  
X=CEH  
X=01H  
X=CFH  
ꢂꢃ  
ꢂꢃ  
X=CEH  
X=00H  
X=CFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
0
0
1
1
0
X=00H  
X=CEH  
X=01H  
X=CFH  
ꢂꢃ  
ꢂꢃ  
X=CEH  
X=00H  
X=CFH  
X=01H  
0
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
1
1
0
1
0
1
X=00H  
X=01H  
X=CFH  
ꢂꢃ  
ꢂꢃ  
X=CEH  
X=00H  
X=CFH  
X=CEH  
X=01H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
1
1
0
1
1
0
X=00H  
X=CEH  
X=01H  
X=CFH  
ꢂꢃ  
ꢂꢃ  
X=CEH  
X=00H  
X=CFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
- 30 -  
NJU6818  
SEGA 0  
SEGB 0  
SEGC 0  
SEGA 1  
SEGB 1  
SEGC 1  
SEGC 0  
SEGB 0  
SEGA 0  
SEGC 1  
SEGB 1  
SEGA 1  
SEGC 0  
SEGB 0  
SEGA 0  
SEGC 1  
SEGB 1  
SEGA 1  
SEGA 0  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEGB 0  
SEGC 0  
SEGA 1  
SEGB 1  
SEGC 1  
SEGA 102  
SEGB 102  
SEGC 102  
SEGA 103  
SEGB 103  
SEGC 103  
SEGC 102  
SEGB 102  
SEGA 102  
SEGC 103  
SEGB 103  
SEGA 103  
SEGC 102  
SEGB 102  
SEGA 102  
SEGC 103  
SEGB 103  
SEGA 103  
SEGA 102  
SEGB 102  
SEGC 102  
SEGA 103  
SEGB 103  
SEGC 103  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
- 31 -  
NJU6818  
Bit assignments between write and read data (In the 16-bit data bus mode)  
ABS=0  
Write data  
Read data  
D15  
D15  
D14  
D14  
D13  
D13  
D12  
D12  
D11  
*
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
*
D5  
*
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
*
ABS=1  
Write data  
D15  
*
D14  
*
D13  
*
D12  
*
D11  
D11  
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Read data  
Examples of write and read data (In the 8 bit bus mode)  
ABS=0, HSW=0, C256=0 (Address; 00, 02……CC,CEH)  
Write data  
Read data  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
*
D2  
D2  
D1  
D1  
D0  
D0  
ABS=0, HSW=0, C256=0 (Address; 01,03H……CD,CFH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
Read data  
D7  
*
*
D4  
D3  
D2  
D1  
ABS=1, HSW=0, C256=0 (Address; 00, 02……CC,CEH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
Read data  
*
*
*
*
D3  
D2  
D1  
ABS=1, HSW=0, C256=0 (Address; 01,03H…… CD,CFH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
Read data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ABS=0, HSW=1, C256=0 (Address; 00, 01……9A,9BH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
Read data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ABS=0, HSW=0, C256=1 (Address; 00, 01…… 66 ,67H)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
Read data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
*: Invalid Data  
- 32 -  
NJU6818  
(11) Gradation palette  
In the gradation mode, either variable or fixed gradation mode is selected by programming the “PWM” register of  
the “Gradation control” instruction.  
PWM=0:  
PWM=1:  
Variable gradation mode  
(Select 16-gradation level out of 32-gradation level of the gradation palette)  
Fixed gradation mode  
(Fixed 8-gradation level)  
In these modes, each of the gradation palettes of the Aj, Bj and Cj can select 16-gradation level out of 32-  
gradation level by setting 5-bit data to the “PA” registers in the “Gradation palette j” instructions (j=0 to Fh).  
For instance, the gradation palettes Aj correspond to the SEGAi, the Bj to the SEGBj, and the Cj to the SEGCi (j=0  
to 15, i=0 to 103).  
- 33 -  
NJU6818  
Correspondence between display data and gradation palettes  
Table 10 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15))  
(MSB) Display data (LSB)  
Gradation palette  
Palette 0  
Palette 1  
Palette 2  
Palette 3  
Palette 4  
Palette 5  
Palette 6  
Palette 7  
Palette 8  
Palette 9  
Palette10  
Palette11  
Palette12  
Palette13  
Palette14  
Palette15  
Default palette value  
0 0 0 0 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 1  
0 1 0 0 1  
0 1 0 1 1  
0 1 1 0 1  
0 1 1 1 1  
1 0 0 0 1  
1 0 0 1 1  
1 0 1 0 1  
1 0 1 1 1  
1 1 0 0 1  
1 1 0 1 1  
1 1 1 0 1  
1 1 1 1 1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Gradation palette table (Variable gradation mode, PWM=”0”, MON=”0”)  
Table 11 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15))  
Palette  
Gradation  
Palette  
Gradation  
level  
Gradation palette  
Palette 0(default)  
Gradation palette  
value  
level  
value  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
0
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Palette 8(default)  
Palette 9(default)  
Palette 10(default)  
Palette 11(default)  
Palette 12(default)  
Palette 13(default)  
Palette 14(default)  
Palette 15(default)  
Palette 1(default)  
Palette 2(default)  
Palette 3(default)  
Palette 4(default)  
Palette 5(default)  
Palette 6(default)  
Palette 7(default)  
- 34 -  
NJU6818  
Gradation palette table (Fixed gradation mode, PWM=”1”, MON=”0”)  
Table 12 8-gradation segment drivers  
Gradation  
(MSB) Display data (LSB)  
Gradation  
(MSB) Display data (LSB)  
level  
level  
0/7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
*
*
*
*
*
*
*
*
0/7  
1/7  
2/7  
3/7  
4/7  
5/7  
6/7  
7/7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3/7  
5/7  
7/7  
Correspondence between display data and gradation level (B&W mode, MON=”1”)  
Table 13  
Gradation  
(MSB) Display data (LSB)  
level  
0
*
*
*
*
*
0
1
1
*
*:Don’t care  
- 35 -  
NJU6818  
(12) Gradation control and display data  
(12-1) Gradation mode  
In the graduation mode, each pixel for RGB corresponds to successive 3 segment-drivers, and each segment  
driver provides 16-gradation PWM output by controlling 4-bit display data of the DDRAM. Accordingly, the LSI can  
drive up to 104x80 pixels in 4096-color (16-gradation x 16-gradation x 16-gradation = 4-bit x 4-bit x 4-bit).  
In addition, the LSI can transfer the display data for the RGB by 16-bit at once or 8-bit two times. The data  
assignment between gradation palettes and segment drivers varies in accordance with setting for the “SWAP” and  
“REF” registers of the "Display control (2)" instruction.  
(REF, SWAP)=(0, 0) or (1, 1)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 103)  
Gradation palette  
j=0 to 15  
PaletteAj  
PaletteBj  
PaletteCj  
Gradation control circuit  
Display data in DDRAM  
0
MSB  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
LSB  
LSB MSB  
LSB MSB  
0
0
0
0
1
1
1
Display data from MPU  
Column address:2nH :2n+1H  
D7  
D6  
D5  
D1  
D5  
D5  
D4  
D0  
D4  
*
D2  
D7  
D3  
D4  
D1  
D6  
D2  
D3  
D0  
D5  
D1  
D2  
D7  
D4  
D0  
*
D4  
D3  
D7  
D1  
D3  
D2  
D6  
D0  
D2  
D1  
D5  
*
D1  
ABS=1  
HSW=1  
C256=1  
(D3 D2  
(D7 D6  
(D7 D6  
D0)  
D4)  
* )  
Note) DDRAM column address :2nH ,2nH+1H  
(REF=”0”)  
(REF=”1”)  
:CEH -2nH , CFH-(2nH+1H)  
HSW=1; 00H to 9BH  
C256=1; 00H to 67H  
(REF, SWAP)=(0, 1) or (1, 0)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 103)  
Gradation palette  
j=0 to 15  
PaletteAj  
PaletteBj  
PaletteCj  
Gradation control circuit  
1
LSB  
1
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
MSB  
Display data in DDRAM  
MSB LSB  
MSB LSB  
0
0
0
0
1
1
1
Display data from MPU  
Column address:2nH :2n+1H  
D7  
D6  
D5  
D1  
D5  
D5  
D4  
D0  
D4  
*
D2  
D7  
D3  
D4  
D1  
D6  
D2  
D3  
D0  
D5  
D1  
D2  
D7  
D4  
D0  
*
D4  
D3  
D7  
D1  
D3  
D2  
D6  
D0  
D2  
D1  
D5  
*
D1  
ABS=1  
HSW=1  
C256=1  
(D3 D2  
(D7 D6  
(D7 D6  
D0)  
D4)  
* )  
Note) DDRAM column address : 2nH ,2nH+1H  
(REF=”0”)  
(REF=”1”)  
: CEH -2nH , CFH-(2nH+1H)  
HSW=1; 00H to 9BH  
C256=1; 00H to 67H  
- 36 -  
NJU6818  
In the 16-bit data bus mode, the data assignments between the gradation palettes and the segment drivers vary in  
accordance with setting for the “SWAP” and “REF” bits of the "Display control (2)" instruction as well as the  
assignment in the 8-bit data bus mode.  
(REF, SWAP)=(0, 0) or (1, 1)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 103)  
Gradation palette  
j=0 to 15  
PaletteAj  
PaletteBj  
PaletteCj  
Gradation control circuit  
0
MSB  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
LSB  
Display data in DDRAM  
LSB MSB  
LSB MSB  
Display data from MPU  
0
0
0
1
1
1
D15 D14 D13 D12 D10 D9  
(D11 D10 D9 D8 D7 D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0)  
; n  
Column address  
H
ABS=1  
Note) DDRAM column address :nH  
(REF=”0”)  
:67H - nH (REF=”1”)  
(REF, SWAP)=(0, 1) or (1, 0)  
SEGAi  
SEGBi  
SEGCi  
i=0 to 103  
Gradation palette  
j=0 to 15  
PaletteAj  
PaletteBj  
PaletteCj  
Gradation control circuit  
Display data in DDRAM  
1
LSB  
1
0
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
MSB  
MSB LSB  
MSB LSB  
Display data from MPU  
0
0
0
1
1
1
D15 D14 D13 D12 D10 D9  
(D11 D10 D9 D8 D7 D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0)  
; n  
Column address  
H
ABS=1  
Note) DDRAM column address :nH  
(REF=”0”)  
:67H -nH (REF=”1”)  
- 37 -  
NJU6818  
(12-2) B&W mode (MON=”1”)  
In the B&W mode, 3 bits of the MSB data are used in both of the 16-bit and 8-bit data bus modes.  
In the 16-bit data bus mode (Similarly 8-bit data bus access)  
(REF, SWAP)=(0, 0) or (1, 1)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 103)  
Gradation palette  
j=0 to 15  
PaletteAj  
PaletteBj  
PaletteCj  
Gradation control circuit  
Display data in DDRAM  
0
MSB  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
LSB  
LSB MSB  
LSB MSB  
Display data in DDRAM  
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
(D11 D10 D9 D8 D7 D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0)  
n
Column address;  
H
ABS=1  
Note) DDRAM column address : nH  
: 67H-nH  
(REF=”0”)  
(REF=”1”)  
(REF, SWAP)=(0, 1) or (1, 0)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 103)  
Gradation palette  
j=0 to 15  
PaletteAj  
PaletteBj  
PaletteCj  
Gradation control circuit  
Display data in DDRAM  
1
1
0
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
LSB  
MSB LSB  
MSB LSB  
MSB  
Display data in DDRAM  
0
0
0
1
1
1
D15 D14 D13 D12 D10 D9  
(D11 D10 D9 D8 D7 D6  
D8  
D5  
D7  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0)  
n
Column address;  
H
D4  
ABS=1  
4
Note ) DDRAM column address: nH  
: 67H-nH  
(REF=”0”)  
(REF=”1”)  
- 38 -  
NJU6818  
(13) Display timing generator  
The display-timing generator creates the timing pulses such as the CL, the FLM, the FR and the CLK by dividing  
the oscillation frequency oscillate an external or internal resister mode. The each of timing pulses is outputted  
through the each output terminals by “SON”=1.  
(14) LCD line clock (CL)  
The LCD line clock (CL) is used as a count-up signal for the line counter and a latch signal for the data latch circuit.  
At the rising edge of the CL signal, the line counter is counted-up and 312-bit display data, corresponding to this  
line address, is latched into the data latch circuit. And at the falling edge of the CL signal, this latched data output  
on the segment drivers. Read out timing of the display data, from DDRAM to the latch circuits, is completely  
independent of the access timing to MPU. For this reason, the MPU can access to the LSI regardless of an  
internal operation.  
(15) LCD alternate signal (FR) and LCD synchronous signal (FLM)  
The FR and FLM signals are created from the CL signal. The FR signal is used to alternate the crystal polarization  
on a LCD panel. It is programmed that the FR signal is toggle on every frame in the default setting or once every N  
lines in the N-line inversion mode. The FLM signal is used to indicate a start line of a new display frame. It presets  
an initial display line address of the line counter when the FLM signal becomes ”1”.  
(16) Data latch circuit  
The data latch circuit is used to temporarily store the display data that will output on the segment drivers. The  
display data in this circuit is updated in synchronization of the CL signal.  
The “All pixels ON/OFF”, “Display ON/OFF” and “Reverse display ON/OFF” instructions change the display data in  
this circuit but do not change the display data of the DDRAM.  
(17) Common and segment drivers  
The LSI includes 312-segment drivers and 80-common drivers. The common drivers generate LCD driving  
waveforms composed of the VLCD, V1, V4 and VSS in accordance with the FR signal and scanning data. The  
segment drivers generate waveforms composed of the VLCD, V2, V3 and VSS in accordance with the FR signal and  
display data.  
(18) Chip Identification (ID)  
The NJU6818 can read ID data, which is determined by fixing ID3, ID2, ID1 and ID0 pins to “1” (VDD) or “0” (VSS).  
When the parallel interface is used, the ID data can be read out through the D7, D6, D5 and D4 pins as upper 4-bit  
data of the internal register. When the serial interface is used, the ID data can be read out as follows.  
In the 4-line serial interface mode, “ID read-out instruction” must be set by IDR=1 during the SDA and SCL pins  
are enabled by CS=1. First, the serial data on the SDA must be input at the rising edge of the SCL clock, next the  
SDA must be in high-impedance (Hi-Z) at the falling edge of the 8th SCL clock. From the rising edge of the 9th SCL  
clock, the ID data such as ID3, ID2, ID1 and ID0 is read out. The serial data after the ID0 is undefined, and this  
reading mode is returned to the writing mode at the rising edge of the 16th SCL clock. The serial data on the SDA  
at the 8th and 16th SCL clocks applies specified serial interface timing.  
In the 3-line serial interface mode, the SDA must be in high-impedance (Hi-Z) at the falling edge of the 9th SCL  
clock. From the rising edge of the 10th SCL clock, the ID data is read out as well as operation in the 4-line serial  
interface mode. The serial data after ID0 is undefined, and this reading mode is returned to the writing mode at the  
rising edge of the 18th SCL clock. The serial data on the SDA at the 9th and 18th SCL clocks applies specified serial  
interface timing.  
Note) Refer to the “Serial Interface Timing” for the detail  
- 39 -  
NJU6818  
ID Read in the 4-Line serial interface mode  
CSb  
RS  
VALID  
un-  
SDA  
SCL  
D7  
1
D6  
2
D0  
ID3  
ID2  
ID1  
ID0  
unfixed  
・・・  
Hi-z  
9
・・・  
fixed  
8
10  
11  
12  
・・・  
15  
16  
ID Read in the 4-Line serial interface mode  
CSb  
SDA  
un-  
unfixed  
RS  
1
D7  
2
D0  
9
ID3  
ID2  
ID1  
ID0  
Hi-z  
・・・  
・・・  
fixed  
SCL  
10  
11  
12  
13  
・・・  
17  
18  
- 40 -  
NJU6818  
LCD Driving waveforms (In the B&W mode, Reverse display OFF, 1/81 duty)  
COM0  
1
2
3
4
5
1
2
3
4
5
1
81  
81  
81  
COM1  
CL  
FLM  
FR  
VLCD  
V1  
V2  
COM0  
V3  
V4  
VSS  
VLCD  
V1  
V2  
COM1  
SEG0  
V3  
V4  
VSS  
VLCD  
V1  
V2  
V3  
V4  
VSS  
VLCD  
V1  
SEG1  
V2  
V3  
V4  
VSS  
Fig 8  
- 41 -  
NJU6818  
(19) Oscillator  
The oscillator generates internal clocks for the display timing and the voltage booster. Since the LSI has internal  
capacitor (C) and resistor (R) for the oscillation, external capacitor and resistor are not usually required. However,  
in case that an external resistor is used, the resister is connected between the OSC1 and OSC2 terminals. The  
external resistor becomes enabled by setting “1” to the “CKS” register of “Data bus length” instruction. When the  
internal oscillator is not used, the external clocks with 50% duty cycle ratio must be input to the OSC1 terminal.  
In addition, the feed back resister for the oscillation is varied by programming the “Rf” register of the “Frequency  
control” instruction, so that it is possible to optimize the frame frequency for a LCD panel. Setting examples of the  
MON (B&W /Gradation) and the PWM (Variable gradation /Fixed gradation) are described, as follows.  
(19-1) Internal oscillation mode (CKS=0)  
Symbol  
FR1  
MON  
PWM  
Display mode  
Variable gradation mode  
Fixed gradation mode  
B&W mode  
0
0
1
0
1
*
FR2  
FR3  
*: Don’t care  
(19-2) External resistor oscillation mode (CKS=1)  
The internal clocks must be adjusted to the same frequency as the one in using the internal oscillation mode, and  
the “MON” and “PWM” registers must be set as well.  
(19-3) External clock input mode (CKS=1)  
The external clocks must be adjusted to the same frequency as the one in using the internal oscillation mode, and  
the “MON” and “PWM” registers must be set as well.  
(20) Power supply circuits  
The internal power supply circuits are composed of the voltage booster, the electrical variable resister (EVR), the  
voltage regulator, reference voltage generator and the voltage followers.  
The condition of the power supply circuits is arranged by programming the “DCON” and “AMPON” registers on the  
“Power control” instruction. For this arrangement, some parts of the internal power supply circuits are activated in  
using an external power supply, as shown in the following table.  
Table 15  
Voltage followers  
DCON  
AMPON  
Voltage booster  
Voltage regulator  
EVR  
External voltage  
Note  
0
0
1
0
1
1
Disable  
Disable  
Enable  
Disable  
Enable  
Enable  
VOUT, VLCD, V1, V2, V3, V4  
1, 3  
2, 3  
VOUT  
+
-
+
-
+
-
Note1) Th+e interna+l power circuits are not used. The external VOUT is required and the C1 , C1 , C2 , C2 , C3 , C3 ,  
-
-
C4 , C4 , C5 , C5 , VREF, VREG and VEE terminals must be open.  
+
Note2) The int+ernal power circuits excep+t the-voltage booster are used. The external VOUT is required and the C1 ,  
-
-
+
-
+
-
C1 , C2 , C2 , C3 , C3 , C4 , C4 , C5 , C5 and VEE terminals must be open. The reference voltage is required  
to VREF terminal.  
Note3) The relation among the voltages should be maintained as follows.  
VOUT VLCD V1 V2 V3 V4 VSS  
- 42 -  
NJU6818  
(21) Voltage booster  
The voltage booster generates maximum 6x voltage of the VEE level. It is programmed so that the boost level is  
selected out of 1x, 2x, 3x, 4x, 5x and 6x by the “Boost level select” instruction. The boosted voltage VOUT must not  
exceed beyond the value of 18.0V, otherwise the voltage stress may cause a permanent damage to the LSI.  
Boosted voltages  
VOUT=18V  
VOUT=9.9V  
VEE=3V  
VSS=0V  
VEE=3.3V  
VSS=0V  
6-time boost  
3-time boost  
Capacitor connections for the voltage Booster  
6-time boost  
5-time boost  
C1+  
C1-  
C1+  
+
+
+
+
+
+
+
+
+
+
C1-  
C2+  
C2-  
C2+  
C2-  
C3+  
C3-  
C3+  
C3-  
C4+  
C4-  
C4+  
C4-  
C5+  
C5-  
C5+  
C5-  
VOUT  
VSS  
VOUT  
VSS  
+
4-time boost  
3-time boost  
2-time boost  
C1+  
C1-  
C1+  
C1-  
C1+  
C1-  
+
+
+
+
+
+
+
C2+  
C2-  
C2+  
C2-  
C2+  
C2-  
C3+  
C3-  
C3+  
C3-  
C3+  
C3-  
C4+  
C4-  
C4+  
C4-  
C4+  
C4-  
C5+  
C5-  
C5+  
C5-  
C5+  
C5-  
VOUT  
VSS  
VOUT  
VSS  
VOUT  
VSS  
+
+
Fig 9  
- 43 -  
NJU6818  
(22) Reference voltage generator  
The reference voltage generator is used to produce the reference voltage (VBA), which is output from the VBA  
terminal and should be input to the VREF terminal.  
VBA = VEE x 0.9  
(23) Voltage regulator  
The voltage regulator, composed of a gain control circuit and an operational amplifier, and is used to gain the  
reference voltage (VREF) and to create the regulated voltage (VREG). The VREG is used as an input voltage to the  
EVR circuits which is programmed by the “VU” register of the “Boost level” instruction.  
VREG = VREF x N  
(N: register value for the boost level)  
(24) Electrical variable resister (EVR)  
The EVR is variable within 128-step, and is used to fine-tune the LCD driving voltage (VLCD) by programming the  
“DV” register of the “EVR control” instruction, so that it is possible to optimize the contrast level of LCD panels.  
VLCD = 0.5 x VREG + M (VREG - 0.5 x VREG) / 127 (M: register value for the EVR)  
(25) LCD driving voltage generation circuit  
LCD driving voltage generation circuit generates the VLCD voltage levels as VLCD, V1, V2, V3 and V4 with internal  
E.V.R and the bleeder resistors. The bias ratio of the LCD driving voltage is selected out of 1/4, 1/5, 1/6, 1/7, 1/8,  
1/9 and 1/10.  
In using the internal power supply, the capacitors CA2 must be connected to the VLCD, V1, V2, V3 and V4 terminals,  
and the CA2 value must be determined by the evaluation with actual LCD modules.  
In using the external power supply, the external LCD driving voltages such as the VLCD, V1, V2, V3 and V4 are  
supplied and the internal power supply circuits must be set to “OFF” by DCON = AMPON = "0". In this mode,  
voltage booster terminals such as C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, VEE, VREF and VREG must be  
opened.  
In case that the voltage booster is not used but only some parts of internal power supply circuits (Voltage followers,  
Voltage regulator and EVR) are used, the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+ and C5- terminals must be  
opened. And, the external power supply is input to the VOUT terminal, and the reference voltage to the VREF terminal.  
The capacitor CA3 must connect to the VREG terminal for voltage stabilization.  
- 44 -  
NJU6818  
Connections of the capacitors for voltage booster  
Using all of the internal power supply circuits  
(6-time boost)  
Using only external power supply circuits  
VDD  
VDD  
VDD  
VEE  
VDD  
VEE  
VBA  
VBA  
VREF  
VREF  
VREG  
CA3  
VREG  
CA3  
VSS  
VSS  
C1-  
C1-  
C1+  
C2-  
C2+  
C3-  
C3+  
C4-  
C4+  
C5-  
C5+  
CA1  
C1+  
C2-  
CA1  
C2+  
C3-  
CA1  
C3+  
C4-  
NJU6818  
NJU6818  
CA1  
C4+  
C5-  
CA1  
C5+  
VOUT  
VOUT  
CA1  
VSS  
VLCD  
CA2  
VLCD  
V1  
VLCD  
V1  
V1  
CA2  
External  
V2  
V2  
V3  
V4  
V2  
Power  
circuit  
CA2  
V3  
V3  
CA2  
V4  
V4  
CA2  
VSS  
Fig 10  
Fig11  
Reference values  
CA1  
CA2  
CA3  
1.0 to 4.7uF  
1.0 to 2.2uF  
0.1uF  
Note) B grade capacitors are required.  
- 45 -  
NJU6818  
Using internal power supply circuits  
Using internal power supply circuits  
without the reference voltage generator (2)  
(6-time boost)  
without the reference voltage generator (1)  
(6-time boost)  
VDD  
VDD  
VDD  
VDD  
VEE  
VBA  
VREF  
VEE  
VBA  
VREF  
VREG  
VREG  
CA3  
VSS  
CA3  
VSS  
C1-  
C1-  
CA1  
C1+  
CA1  
C1+  
C2-  
CA1  
C2-  
CA1  
C2+  
C2+  
C3-  
CA1  
C3-  
CA1  
C3+  
C3+  
C4-  
C4-  
CA1  
CA1  
CA1  
CA1  
NJU6818  
NJU6818  
C4+  
C5-  
C4+  
C5-  
C5+  
C5+  
VOUT  
VOUT  
CA1  
VSS  
CA1  
VSS  
VLCD  
V1  
VLCD  
V1  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
V2  
V2  
V3  
V3  
V4  
V4  
VSS  
VSS  
Fig 12  
Fig 13  
Reference value  
CA1  
CA2  
CA3  
1.0 to 4.7µF  
1.0 to 2.2µF  
0.1µF  
Note) B grade capacitors are required.  
- 46 -  
NJU6818  
Using internal power supply circuits  
without the voltage booster  
VDD  
VDD  
VEE  
VBA  
CA3  
VREF  
VREG  
CA3  
VSS  
C1-  
C1+  
C2-  
C2+  
C3-  
C3+  
C4-  
C4+  
C5-  
C5+  
VSS  
NJU6818  
External  
power  
circuit  
VOUT  
VLCD  
V1  
CA2  
CA2  
V2  
CA2  
CA2  
CA2  
V3  
V4  
VSS  
Fig 14  
Reference value  
CA1  
CA2  
CA3  
1.0 to 4.7µF  
1.0 to 2.2µF  
0.1µF  
Note) B grade capacitors are required.  
- 47 -  
NJU6818  
(26) Partial display function  
The partial display function is used to partially specify some parts of display area on LCD panels. By using this  
function, LCD modules can work in lower duty cycle ratio, lower LCD bias ratio, lower boost level and lower LCD  
driving voltage. It is usually used to display a time and calendar, and is also used to optimize the LSI condition in  
accordance with the display size. It can be programmed to select the duty cycle ratio (1/13, 1/17, 1/27, 1/33,  
1/39,1/47, 1/57,1/69,1/77,1/81 in “DSE” is “0”), the LCD bias ratio, the boost level and the EVR value by the  
instructions.  
Partial display image  
NJRC  
LCD DRIVER  
Low Power and  
Low Voltage  
LCD DRIVER  
Partial display  
Normal display  
Partial display sequence  
Optional status  
Display OFF (ON/OFF=”0”)  
Internal Power supply OFF (DCON=”0”, AMPON=”0”)  
WAIT  
Setting for LCD driving voltage-related functions  
Internal Power supply ON (DCON=”1”, AMPON=”1”)  
- Boost level  
- EVR value  
- LCD bias ratio  
WAIT  
- Duty cycle ratio  
- Initial display line  
- Initial COM line  
- Other instructions  
Setting for display-related functions  
Display ON (ON/OFF =”1”)  
Partial display Status  
- 48 -  
NJU6818  
(27) Discharge circuit  
Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and the VLCD terminals.  
This circuit is activated by setting “0” to the “DIS” register of the “Discharge” instruction or by setting the “RESb”  
terminal to ”0” level. The “Discharge ON/OFF” instruction is usually required just after the internal power supply is  
turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is turned  
off. During the discharge operation, the internal or external power supply must not be turned on.  
(28) Reset circuit  
The reset circuit initializes the LSI into the following default status. It is activated by setting the RESb terminal to “0”.  
The RESb terminal is usually required to connect to MPU reset terminal in order that the LSI can be initialized at  
the same timing of the MPU.  
Default status  
1. DDRAM display data  
2. Column address  
3. Row address  
:Undefined  
:(00)H  
:(00)H  
4. Initial display line  
5. Display ON/OFF  
6. Reverse display ON/OFF  
7. Duty cycle ratio  
:(0)H (1st line)  
:OFF  
:OFF (normal)  
:1/81 duty(DSE=0)  
:OFF  
8. N-line Inversion ON/OFF  
9. COM scan direction  
10. Increment mode  
:COM0 COM79  
:OFF  
11. Reverse SEG direction  
12. SWAP mode  
:OFF (normal)  
:OFF (normal)  
:(0, 0, 0, 0, 0, 0, 0)  
:OFF  
13. EVR value  
14. Internal power supply  
15. Display mode  
:Gradation display mode  
:1/9 bias  
16. LCD bias ratio  
17. Gradation Palette 0  
18. Gradation Palette 1  
19. Gradation Palette 2  
20. Gradation Palette 3  
21. Gradation Palette 4  
22. Gradation Palette 5  
23. Gradation Palette 6  
24. Gradation Palette 7  
25. Gradation Palette 8  
26. Gradation Palette 9  
27. Gradation Palette 10  
28. Gradation Palette 11  
29. Gradation Palette 12  
30. Gradation Palette 13  
31. Gradation Palette 14  
32. Gradation Palette 15  
33. Gradation mode control  
34. Data bus length  
:(0, 0, 0, 0, 0)  
:(0, 0, 0, 1, 1)  
:(0, 0, 1, 0, 1)  
:(0, 0, 1, 1, 1)  
:(0, 1, 0, 0, 1)  
:(0, 1, 0, 1, 1)  
:(0, 1, 1, 0, 1)  
:(0, 1, 1, 1, 1)  
:(1, 0, 0, 0, 1)  
:(1, 0, 0, 1, 1)  
:(1, 0, 1, 0, 1)  
:(1, 0, 1, 1, 1)  
:(1, 1, 0, 0, 1)  
:(1, 1, 0, 1, 1)  
:(1, 1, 1, 0, 1)  
:(1, 1, 1, 1, 1)  
:Variable gradation mode  
:8-bit data bus length  
:(DIS/DIS2) : ”0”  
35. Discharge circuit  
- 49 -  
NJU6818  
(29) Power supply ON/OFF sequences  
The following paragraphs describe power supply ON/OFF sequences, which are to protect the LSI from over  
current.  
(29-1) Using an external power supply  
Power supply ON sequence  
Logic voltage (VDD) must be always input first, and next the LCD driving voltages (V1 to V4 and VLCD) are turned on.  
In using the external VOUT, the VDD must be input first, next the reset operation must be performed, and finally the  
VOUT can be input  
Power supply OFF sequence  
Either the reset operation, cutting off the V1 to V4 and VLCD from the LSI, by the RESb terminal or the “Power  
control” instruction must be performed first, and next the VDD is turned off. It is recommended that a series-resister  
between 50and 100is added on the VLCD line (or VOUT line in using only the external VOUT voltage) in order to  
protect the LSI from the over current.  
(29-2) Using the internal power supply circuits  
Power supply ON sequence  
The VDD must be input first, next the reset operation must be performed, and finally the V1 to V4 and the VLCD can  
be turned on by setting “1” to the “DCON” and “AMPON” registers of the “Power control” instruction.  
Power supply OFF sequence  
Either the reset operation by the RESb terminal or the “Power control” instruction must be performed first, and next  
the input voltage for the voltage booster (VEE) and the VDD can be turned off. If the VEE is supplied from different  
power sources for the VDD, the VEE is turned off first and next the VDD is turned off  
- 50 -  
NJU6818  
(30) Referential instruction sequences  
(30-1) Initialization in using the internal power supply circuits  
VDD, VEE power ON  
Wait for power-ON stabilization  
RESET Input  
WAIT  
Setting for LCD driving voltage-related functions  
End of initialization  
- EVR value  
- LCD bias ratio  
- Power control (DCON=”1”, AMPON=”1”)  
(30-2) Display data writing  
End of Initialization  
Setting for display-related functions  
- Initial display line  
- Increment mode  
- Column address  
- Row address  
Display data write  
Display ON (ON/OFF =”1”)  
- 51 -  
NJU6818  
(30-3) Power OFF  
Optional status  
- All COM/SEG output VSS level.  
Power save or reset operation  
Discharge ON  
WAIT  
VEE, VDD power OFF  
- 52 -  
NJU6818  
(31) Instruction table  
Instruction Table (1)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
CSb RS RDb WRb  
RE2 RE1 RE0 D7 D6 D5 D4 D3  
D2  
D1  
D0  
Display data write  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0/1 0/1 0/1  
0/1 0/1 0/1  
Write Data  
Read Data  
Write display data to DDRAM  
Display data read  
Column address  
Read display data from DDRAM  
DDRAM column address  
DDRAM column address  
DDRAM row address  
AX3  
AX7  
AY3  
*
AX2  
AX6  
AY2  
AY6  
LA2  
LA6  
N2  
AX1  
AX5  
AY1  
AY5  
LA1  
LA5  
N1  
AX0  
AX4  
AY0  
AY4  
LA0  
LA4  
N0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
(Lower) [0H]  
Column address  
(Upper) [1H]  
Row address  
(Lower) [2H]  
Row address  
(Upper) [3H]  
DDRAM row address  
Initial display line  
(Lower) [4H]  
Row address for an initial COM line  
(Scan start line)  
LA3  
*
Initial display line  
(Upper) [5H]  
Row address for an initial COM line  
(Scan start line)  
N-line inversion  
(Lower) [6H]  
N3  
*
The number of N-line inversion  
N-line inversion  
(Upper) [7H]  
N6  
N5  
N4  
The number of N-line inversion  
SHIFT: Common direction  
Display control (1)  
ALL  
ON  
ON/ MON: Gradation or B/W display mode  
SHIFT MON  
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
OFF  
ALLON: All pixels ON/OFF  
ON/OFF: Display ON/OFF  
[8H]  
[9H]  
REV: Reverse display ON/OFF  
NLIN: N-line inversion ON/OFF,  
SWAP: SWAP mode ON/OFF  
REF: Segment direction  
Display control (2)  
REV NLIN SWAP REF  
WIN: Window addressing mode ON/OFF  
AIM: Read-modify-write ON/OFF  
AYI: Row auto-increment mode ON/OFF  
AXI: Column auto-increment mode  
ON/OFF  
AMPON: Voltage followers ON/OFF  
HALT: Power save ON/OFF  
DCON: Voltage booster ON/OFF  
ACL: Reset  
Increment control  
WIN  
AIM  
AYI  
AXI  
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
1
[AH]  
Power control  
AMP  
ON  
DC  
ON  
HALT  
ACL  
[BH]  
[CH]  
Duty cycle ratio  
DS3 DS2 DS1 DS0  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
Set LCD duty cycle ratio  
Set boost level  
Boost level / ID read  
[DH]  
IDR  
VU2 VU1 VU0  
Sets ID reading in the serial  
interface  
LCD bias ratio  
B2  
B1  
B0  
*
Sets LCD bias ratio  
[EH]  
[FH]  
RE register  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
*
: Don’t care.  
Note 2) [ NH] : Address of instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 53 -  
NJU6818  
Instruction Table (2)  
Instructions  
Code (80 series MPU I/F)  
Code  
Functions  
CSb RS RDb WRb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette A0/A8  
(Lower) [0H]  
Sets palette values to gradation  
palette A0(PS=0)/A8(PS=1)  
PA03/ PA02/ PA01/ PA00/  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
PA83 PA82 PA81 PA80  
Gradation palette A0/A8  
(Upper) [1H]  
Sets palette values to gradation  
palette A0(PS=0)/A8(PS=1)  
PA04/  
*
*
*
PA84  
Gradation palette A1/A9  
(Lower) [2H]  
Sets palette values to gradation  
palette A1(PS=0)/A9(PS=1)  
PA13/ PA12/ PA11/ PA10/  
PA93 PA92 PA91 PA90  
Gradation palette A1/A9  
(Upper) [3H]  
Sets palette values to gradation  
palette A1(PS=0)/A9(PS=1)  
PA14/  
*
*
*
PA94  
Gradation palette A2/A10  
(Lower) [4H]  
Sets palette values to gradation  
palette A2(PS=0)/A10(PS=1)  
PA23/ PA22/ PA21/ PA20/  
PA103 PA102 PA101 PA100  
Gradation palette A2/A10  
(Upper) [5H]  
Sets palette values to gradation  
palette A2(PS=0)/A10(PS=1)  
PA24/  
*
*
*
PA104  
Gradation palette A3/A11  
(Lower) [6H]  
Sets palette values to gradation  
palette A3(PS=0)/A11(PS=1)  
PA33/ PA32/ PA31/ PA30/  
PA113 PA112 PA111 PA110  
Gradation palette A3/A11  
(Upper) [7H]  
Sets palette values to gradation  
palette A3(PS=0)/A11(PS=1)  
PA34/  
*
*
*
PA114  
Gradation palette A4/A12  
(Lower) [8H]  
Sets palette values to gradation  
palette A4(PS=0)/A12(PS=1)  
PA43/ PA42/ PA41/ PA40/  
PA123 PA122 PA121 PA120  
Gradation palette A4/A12  
(Upper) [9H]  
Sets palette values to gradation  
palette A4(PS=0)/A12(PS=1)  
PA44/  
*
*
*
PA124  
Gradation palette A5/A13  
(Lower) [AH]  
Sets palette values to gradation  
palette A5(PS=0)/A13(PS=1)  
PA53/ PA52/ PA51/ PA50/  
PA133 PA132 PA131 PA130  
Gradation palette A5/A13  
(Upper) [BH]  
Sets palette values to gradation  
palette A5(PS=0)/A13(PS=1)  
PA54/  
*
*
*
PA134  
Gradation palette A6/A14  
(Lower) [CH]  
Sets palette values to gradation  
palette A6(PS=0)/A14(PS=1)  
PA63/ PA62/ PA61/ PA60/  
PA143 PA142 PA141 PA140  
Gradation palette A6/A14  
(Upper) [DH]  
Sets palette values to gradation  
palette A6(PS=0)/A14(PS=1)  
PA64/  
*
*
*
PA144  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
*
: Don’t care.  
Note 2) [ NH] : Address of instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 54 -  
NJU6818  
Instruction Table (3)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
CSb RS RDb WRb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette A7/A15  
(Lower) [0H]  
Sets palette values to gradation  
palette A7(PS=0)/A15(PS=1)  
PA73/ PA72/ PA71/ PA70/  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
PA153 PA152 PA151 PA150  
Gradation palette A7/A15  
(Upper) [1H]  
Sets palette values to gradation  
palette A7(PS=0)/A15(PS=1)  
PA74/  
*
*
*
PA154  
Gradation palette B0/B8  
(Lower) [2H]  
Sets palette values to gradation  
palette B0(PS=0)/B8(PS=1)  
PB03/ PB02/ PB01/ PB00/  
PB83 PB82 PB81 PB80  
Gradation palette B0/B8  
(Upper) [3H]  
Sets palette values to gradation  
palette B0(PS=0)/B8(PS=1)  
PB04/  
*
*
*
PG84  
Gradation palette B1/B9  
(Lower) [4H]  
Sets palette values to gradation  
palette B1(PS=0)/B9(PS=1)  
PB13/ PB12/ PB11/ PB10/  
PB93 PB92 PB91 PB90  
Gradation palette B1/B9  
(Upper) [5H]  
Sets palette values to gradation  
palette B1(PS=0)/B9(PS=1)  
PB14/  
*
*
*
PB94  
Gradation palette B2/B10  
(Lower) [6H]  
Sets palette values to gradation  
palette B2(PS=0)/B10(PS=1)  
PB23/ PB22/ PB21/ PB20/  
PB103 PB102 PB101 PB100  
Gradation palette B2/B10  
(Upper) [7H]  
Sets palette values to gradation  
palette B2(PS=0)/B10(PS=1)  
PB24/  
*
*
*
PB104  
Gradation palette B3/B11  
(Lower) [8H]  
Sets palette values to gradation  
palette B3(PS=0)/B11(PS=1)  
PB33/ PB32/ PB31/ PB30/  
PB113 PB112 PB111 PB110  
Gradation palette B3/B11  
(Upper) [9H]  
Sets palette values to gradation  
palette B3(PS=0)/B11(PS=1)  
PB34/  
*
*
*
PB114  
Gradation palette B4/B12  
(Lower) [AH]  
Sets palette values to gradation  
palette B4(PS=0)/B12(PS=1)  
PB43/ PB42/ PB41/ PB40/  
PB123 PB122 PB121 PB120  
Gradation palette B4/B12  
(Upper) [BH]  
Sets palette values to gradation  
palette B4(PS=0)/B12(PS=1)  
PB44/  
*
*
*
PB124  
Gradation palette B5/B13  
(Lower) [CH]  
Sets palette values to gradation  
palette B5(PS=0)/B13(PS=1)  
PB53/ PB52/ PB51/ PB50/  
PB133 PB132 PB131 PB130  
Gradation palette B5/B13  
(Upper) [DH]  
Sets palette values to gradation  
palette B5(PS=0)/B13(PS=1)  
PB54/  
*
*
*
PB134  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
*
: Don’t care.  
Note 2) [ NH] : Address of instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 55 -  
NJU6818  
Instruction Table (4)  
Instructions  
Code (80 series MPU I/F)  
Code  
Functions  
CSb RS RDb WRb  
RE2 RE1 RE0 D7  
D6  
0
D5  
0
D4  
D3 D2  
D1 D0  
Gradation palette B6/B14  
(Lower) [0H]  
Sets palette values to gradation  
palette B6(PS=0)/B14(PS=1)  
PB63/ PB62/ PB61/ PB60/  
PB143 PB142 PB141 PB140  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
Gradation palette B6/B14  
(Upper) [1H]  
Sets palette values to gradation  
palette B6(PS=0)/B14(PS=1)  
PB64/  
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
*
*
*
PB144  
Gradation palette B7/B15  
(Lower) [2H]  
Sets palette values to gradation  
palette B7(PS=0)/B15(PS=1)  
PB73/ PB72/ PB71/ PB70/  
PB153 PB152 PB151 PB150  
Gradation palette B7/B15  
(Upper) [3H]  
Sets palette values to gradation  
palette B7(PS=0)/B15(PS=1)  
PB74/  
*
*
*
PB154  
Gradation palette C0/C8  
(Lower) [4H]  
Sets palette values to gradation  
palette C0(PS=0)/C8(PS=1)  
PC03/ PC02/ PC01/ PC00/  
PC83 PC82 PC81 PC80  
Gradation palette C0/C8  
(Upper) [5H]  
Sets palette values to gradation  
palette C0(PS=0)/C8(PS=1)  
PC04/  
*
*
*
PC84  
Gradation palette C1/C9  
(Lower) [6H]  
Sets palette values to gradation  
palette C1(PS=0)/C9(PS=1)  
PC13/ PC12/ PC11/ PC10/  
PC93 PC92 PC91 PC90  
Gradation palette C1/C9  
(Upper) [7H]  
Sets palette values to gradation  
palette C1(PS=0)/C9(PS=1)  
PC14/  
*
*
*
PC94  
Gradation palette C2/C10  
(Lower) [8H]  
Sets palette values to gradation  
palette C2(PS=0)/C10(PS=1)  
PC23/ PC22/ PC21/ PC20/  
PC103 PC102 PC101 PC100  
Gradation palette C2/C10  
(Upper) [9H]  
Sets palette values to gradation  
palette C2(PS=0)/C10(PS=1)  
PC24/  
*
*
*
PC104  
Gradation palette C3/C11  
(Lower) [AH]  
Sets palette values to gradation  
palette C3(PS=0)/C11(PS=1)  
PC33P PC32/ PC31/ PC30/  
C113 PC112 PC111 PC110  
Gradation palette C3/C11  
(Upper) [BH]  
Sets palette values to gradation  
palette C3(PS=0)/C11(PS=1)  
PC34/  
*
*
*
PC114  
Gradation palette C4/C12  
(Lower) [CH]  
Sets palette values to gradation  
palette C4(PS=0)/C12(PS=1)  
PC43/ PC42/ PC41/ PC40/  
PC123 PC122 PC121 PC120  
Gradation palette C4/C12  
(Upper) [DH]  
Sets palette values to gradation  
palette C4(PS=0)/C12(PS=1)  
PC44/  
*
*
*
PC124  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
*
: Don’t care.  
Note 2) [ NH] : Address of instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 56 -  
NJU6818  
Instruction Table (5)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
CSb RS RDb WRb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette C5/C13  
(Lower) [0H]  
Sets palette values to gradation  
palette C5(PS=0)/C13(PS=1)  
PC53/ PC52/ PC51/ PC50/  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
PC133 PC132 PC131 PC130  
Gradation palette C5/C13  
(Upper) [1H]  
Sets palette values to gradation  
palette C5(PS=0)/C13(PS=1)  
PC54/  
*
*
*
PC134  
Gradation palette C6/C14  
(Lower) [2H]  
Sets palette values to gradation  
palette C6(PS=0)/C14(PS=1)  
PC63/P PC62/ PC61/ PC60/  
C143 PC142 PC141 PC140  
Gradation palette C6/C14  
(Upper) [3H]  
Sets palette values to gradation  
palette C6(PS=0)/C14(PS=1)  
PC64/  
*
*
*
PC144  
Gradation palette C7/C15  
(Lower) [4H]  
Sets palette values to gradation  
palette C7(PS=0)/C15(PS=1)  
PC73/ PC72/ PC71/ PC70/  
PC153 PC152 PC151 PC150  
Gradation palette C7/C15  
(Upper) [5H]  
Sets palette values to gradation  
palette C7(PS=0)/C15(PS=1)  
PC74/  
*
*
*
PC154  
Initial COM line  
[6H]  
SC3 SC2 SC1 SC0  
Scan-starting common driver  
Display clock / Duty-1  
[7H]  
SON : Display clock ON/OFF  
DSE : Duty-1 ON/OFF  
SON  
0
0
1
1
1
1
0
0
1
1
0
0
0
0
0
1
1
0
1
0
1
0
*
*
DSE  
*
Gradation mode control  
[8H]  
PWM : Variable/Fixed gradation mode  
C256 : 256-color mode ON/OFF  
PWM C256  
*
HSW : High speed access ON/OFF  
ABS : ABS mode ON/OFF  
Data bus length  
[9H]  
HSW ABS CKS WLS  
DV3 DV2 DV1 DV0  
0
1
1
0
1
0
0
1
0
0
1
CKS : Internal/external oscillation  
WLS : Display data Length  
EVR control  
Sets EVR level  
(Lower bit)  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
1
1
0
0
1
1
0
1
0
(Lower) [AH]  
EVR control  
Sets EVR level  
(Upper bit)  
DV6 DV5 DV4  
RF2 RF1 RF0  
*
*
*
(Upper) [BH]  
Frequency control  
[DH]  
Oscillation frequency  
Discharge ON/OFF  
[EH]  
Discharge the electric charge in  
Capacitors on V1 to V4, VLCD  
DIS  
DIS2  
*
RE register  
[FH]  
TST0 RE2 RE1 RE0  
Register address  
Read Data  
0/1 0/1 0/1  
RE flag  
Instruction register address  
[CH]  
1
0
0
Sets instruction register address  
Read out instruction register data  
Instruction register read /  
ID read  
0/1 0/1 0/1 ID3 ID2 ID1 ID0  
Note 1)  
*
: Don’t care.  
Note 2) [ NH] : Address of instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
Note 4)  
CKS=0: Internal oscillation mode (default)  
CKS=1: External oscillation mode  
- 57 -  
NJU6818  
Instruction Table (6)  
Instructions  
Code (80 series MPU I/F)  
Code  
Functions  
CSb RS RDb WRb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Window end  
column address  
(Lower) [0H]  
Window end  
column address  
(Upper) [1H]  
EX3 EX2 EX1 EX0  
EX7 EX6 EX5 EX4  
EY3 EY2 EY1 EY0  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Sets column address for end point  
Sets column address for end point  
Sets row address for end point  
Sets row address for end point  
Sets address for reverse line  
Sets address for reverse line  
Sets address for reverse line  
Sets address for reverse line  
Window end row address  
(Lower) [2H]  
Window end row address  
(Upper) [3H]  
*
EY6 EY5 EY4  
Initial reverse line  
(Lower) [4H]  
LS3 LS2 LS1 LS0  
Initial reverse line  
(Upper) [5H]  
*
LS6 LS5 LS4  
Last reverse line  
(Lower) [6H]  
LE3 LE2 LE1 LE0  
Last reverse line  
(Upper) [7H]  
*
*
*
LE6 LE5 LE4  
Reverse line display  
ON/OFF  
BT : Blink type setting  
BT LREV  
*
*
LREV : Reverse line display ON/OFF  
[8H]  
Gradation palette setting  
PS  
*
PS : Gradation setting  
Sets PWM mode  
RE flag  
0
[9H]  
[AH]  
[FH]  
PWM control  
RE register  
PWM PWM PWM PWM  
0
0
S
A
B
C
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
Note 1)  
*
: Don’t care.  
Note 2) [ NH] : Address of instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 58 -  
NJU6818  
(32) Instruction descriptions  
This chapter provides detail descriptions and instructions and instruction registers. Nonexistent instruction codes  
must not be set into the LSI.  
(32-1) Display data write  
The “Display data write” instruction is used to write 8-bit display data into the DDRAM.  
WRb  
0
CSb  
0
RS  
0
RDb  
1
RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Display data  
(32-2) Display data read  
The “Display data read” instruction is used to read out 8-bit display data from the DDRAM, where the column  
address and row address must be specified beforehand by the “column address” and “row address” instructions.  
The dummy read is required just after the “column address” and “row address” instructions.  
WRb  
1
CSb  
0
RS  
0
RDb  
0
RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Display data  
(32-3) Column address  
The “column address” instruction is used to specify the column address for display data’s reading and writing  
operations. It requires dual bytes for lower 4-bit and upper 4-bit data. The instruction for the lower 4-bit data must  
be executed first, next the instruction for the upper 4-bit.  
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
AX3  
D2  
AX2  
D1  
D0  
0
0
0
AX1 AX0  
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
AX7  
D2  
AX6  
D1  
D0  
0
0
0
AX5 AX4  
(32-4) Row address  
The “row address” instruction is used to specify the row address for display data read and write operations. It  
requires dual bytes for lower 4-bit and upper 3-bit data. The instruction for the lower 4-bit data must be executed  
first, next the instruction for the upper 3-bit. The row address is specified in between 00H and 4FH. The setting for  
nonexistent row address between 50H and FFH is prohibited.  
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
AY3  
D2  
AY2  
D1  
D0  
0
0
0
AY1 AY0  
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
AY6  
D1  
D0  
0
0
0
AY5 AY4  
- 59 -  
NJU6818  
(32-5) Initial display line  
The “Initial display line” instruction is used to specify the line address corresponding to the initial COM line. The  
initial COM line is specified by the “Initial COM line” instruction and indicates the common driver that starts  
scanning display data.  
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
LA3  
D2  
LA2  
D1  
LA1  
D0  
LA0  
0
0
0
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
LA6  
D1  
LA5  
D0  
LA4  
0
0
0
LA6  
0
0
LA5  
0
0
LA4  
0
0
LA3  
0
0
LA2  
0
0
LA1  
0
0
LA0  
0
1
Line address  
0
1
:
:
:
:
1
0
0
1
1
1
1
79  
(32-6) N-line inversion  
The “N-line inversion” instruction is used to control the alternate rates of liquid crystal direction. It is programmed to  
select the N value between 2 and 80, and the FR signal toggles once every N lines by setting “1” into the “NLIN”  
register of the “Display control (2)” instruction. When the N-line inversion is disabled by setting “0” into the “NLIN”  
register, the FR signal toggles by the frame.  
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
N3  
D2  
N2  
D1  
N1  
D0  
N0  
0
0
0
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
N6  
D1  
N5  
D0  
N4  
0
0
0
N6  
0
0
N5  
0
0
N4  
0
0
N3  
0
0
N2  
0
0
N1  
0
0
N0  
0
1
N value  
Inhibited  
2
:
:
:
:
1
1
0
0
1
1
1
80  
- 60 -  
NJU6818  
N-line Inversion Timing (1/81 duty cycle ratio)  
N-line inversion OFF  
1st line  
3rd line  
80th line  
1st line  
2nd line  
81th line  
CL  
FLM  
FR  
N-line inversion ON  
N-line control  
1st line  
3rd line  
N line  
2nd line  
2nd line  
1st line  
CL  
FR  
(32-7) Display control (1)  
The “Display control (1)” instruction is used to control display conditions by setting the “Display ON/OFF”, “All  
pixels ON/OFF”, “Display mode” and “Common direction” registers.  
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
ALL  
ON  
D0  
ON/  
OFF  
SHIFT  
MON  
0
0
0
ON/OFF register  
ON/OFF=0  
ON/OFF=1  
: Display OFF (All COM/SEG output the Vss level.)  
: Display ON  
All ON register  
The “All pixels ON/OFF” register is used to turn on all pixels without changing display data of the DDRAM. The  
setting for the “All pixels ON/OFF” register has a priority over the “Reverse display ON/OFF” register.  
ALLON=0  
ALLON=1  
: Normal  
: All pixels turn on.  
MON register  
MON=0  
MON=1  
: Gradation mode  
: B&W mode  
SHIFT register  
SHIFT=0  
SHIFT=1  
: COM0 COM79  
: COM79 COM0  
- 61 -  
NJU6818  
(32-8) Display control (2)  
The “Display control (2)” instruction is used to control display conditions by setting the “Segment direction”, “SWAP  
mode ON/OFF”, “N-line inversion ON/OFF” and “Reverse display ON/OFF” registers.  
WRb  
0
CSb  
0
RS  
1
RDb  
1
RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
REV  
NLIN  
SWAP  
REF  
0
0
0
REF register  
The “REF” register is used to reverse the assignment between segment drivers and column address, and it is  
possible to reduce restrictions for placement of the LSI on the LCD module. For more information, see (10) “The  
relation among the DDRAM column address, display data and segment drivers”.  
SWAP register  
The “SWAP” register is used to reverse the arrangement of display data in the DDRAM.  
SWAP=0 : SWAP mode OFF  
SWAP=1 : SWAP mode ON  
(Normal)  
SWAP=”0”  
D7 D6 D5 D4 D3 D2 D1 D0  
SWAP=”1”  
Write data  
D7 D6 D5 D4 D3 D2 D1 D0  
RAM data  
D7 d6 d5 d4 d3 d2 d1 d0  
d0 d1 d2 d3 d4 d5 d6 d7  
D7 D6 D5 D4 D3 D2 D1 D0  
Read data  
D7 D6 D5 D4 D3 D2 D1 D0  
NLIN register  
The “NLIN” is used to enable or disable the N-line inversion.  
NLIN=0 : N-line inversion OFF  
NLIN=1 : N-line inversion ON  
(The FR signal toggles by the flame.)  
(The FR signal toggles once every N lines.)  
REV register  
The “REV” register is used to enable or disable the reverse display mode that reverses the polarity of display data  
without changing display data of the DDRAM.  
REV=0 : Reverse display mode OFF  
REV=1 : Reverse display mode ON  
REV  
0
Display  
Normal  
DDRAM data Display data  
0
1
0
1
0
1
1
0
1
Reverse  
- 62 -  
NJU6818  
(32-9) Increment control  
The “Increment control” instruction is used for the increment mode. In using the auto-increment mode, DDRAM  
address automatically increments (+1) whenever the DDRAM is accessed by the “Display data write” or “Display  
data read” instruction. Therefore, once “Display data write” or “Display data read” instruction is established, it is  
possible to continuously access to the DDRAM without the “column address” and “row address” instructions. The  
settings for the “AIM”, “AXI” and “AYI” registers are listed in the following tables.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
AYI  
D0  
AXI  
1
0
0
0
0
WIN AIM  
AIM, AYI and AXI registers  
AIM  
0
1
Increment mode  
Note  
1
2
Auto-increment for the both of display data read and write operations  
Auto-increment for the display write operation (Read-modify-write)  
Note 1) It is effective for usual operations accessing successive addresses.  
Note 2) It is effective for the read-modify-write operation.  
AYI  
0
AXI  
0
Increment mode  
Note  
No auto-increment  
1
2
3
4
0
1
Auto-increment for the column address  
1
1
0
1
Auto-increment for the row address  
Auto-increment for the column address and row address  
Note 1) Auto-increment is disabled regardless of the “AIM” register.  
Note 2) Auto-increment of the column address is enabled in accordance with the “AIM” register.  
MAXH  
00H  
MAXH in the 8-bit data bus mode  
: CFH  
MAXH in the 16-bit data bus mode : 67H  
Note 3) Auto-increment of the row address is enabled in accordance with the “AIM” register.  
4FH  
00H  
Note 4) Auto-increments of the column address and the row address are enabled. The row address increments  
whenever the column address reaches to the MAXH.  
MaxH  
Column address  
MAXH in the 8-bit data bus mode  
00H  
4FH  
Row address  
00H  
: CFH  
MAXH in the 16-bit data bus mode  
: 67H  
- 63 -  
NJU6818  
WIN register  
The “WIN” register is used to access to the DDRAM for the window display area, where the start point is  
determined by the “column address” and “row address” instructions, and the end point by the “Window end column  
address “and ”Window end row address” instructions. The setting sequence for the window display area is listed  
as follows. For more detail, see (6) “Window addressing mode”.  
WIN=0 : Window addressing mode OFF  
WIN=1 : Window addressing mode ON  
1. Set WIN=1, AXI=1, and AYI=1 by the “Increment control” instruction  
2. Set the start point by the “column address” and “row address” instructions  
3. Set the end point by the “Window end column address” and “Window end row address” instructions  
4. Enable to access to the DDRAM in the window addressing mode  
START  
END  
END  
START  
Address  
Address  
Address  
Address  
Column address  
Row address  
- 64 -  
NJU6818  
(32-10) Power control  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
D2  
D1  
D0  
ACL  
AMPON HALT DCON  
1
0
0
0
0
ACL register  
The “ACL” register is used to initialize the internal power supply circuits.  
ACL=0 : Initialization OFF (Normal)  
ACL=1 : Initialization ON  
When the data of the “ACL register” is read out by the “Instruction register read” instruction, the read-out data is “1”  
during the initialization, and “0” after the initialization. This initialization is performed by using the signal produced  
by 2 clocks on the OSC1. For this reason, the wait time for 2 clocks of the OSC1 is necessary until next instruction.  
DCON register  
The “DCON” register is used to enable or disable the voltage booster.  
DCON=0  
DCON=1  
: Voltage booster OFF  
: Voltage booster ON  
HALT register  
The “HALT” register is used to enable or disable the power save mode. It is possible to reduce operating current  
down to stand-by level. The internal status in the power save mode is listed below.  
HALT=0 : Power save OFF (Normal)  
HALT=1 : Power save ON  
Internal status in the power save mode  
The oscillation circuits and internal power supply circuits are halted.  
All segment and common drivers output the VSS level.  
The clock input into the OSC1 is inhibited.  
The display data in the DDRAM is maintained.  
The operational modes before the power save mode are maintained.  
The V1 to V4 and the VLCD are in high impedance.  
As a power save ON sequence, the “Display OFF” must be executed first, next the “Power save ON” instruction,  
and then all common and segment drivers output the VSS level. And as power save OFF sequence, the “Power  
save OFF” instruction is executed first, next the “Display ON” instruction. If the “Power save OFF” instruction is  
executed in the display ON status, unexpected pixels may instantly turn on.  
AMPON register  
The “AMPON” register is used to enable or disable the voltage followers, voltage regulator and EVR.  
AMPON=0 : The voltage followers, the voltage regulator and the EVR OFF  
AMPON=1 : The voltage followers, the voltage regulator and the EVR ON  
- 65 -  
NJU6818  
(32-11) Duty cycle ratio  
The “Duty cycle ratio” instruction is used to select LCD duty cycle ratio for the partial display function. The partial  
display function specifies some parts of display area on a LCD panel in the condition of lower duty cycle ratio,  
lower LCD bias ratio, lower boost level and lower LCD driving voltage. Therefore, it is possible to optimize the LSI’s  
conditions with extremely low power consumption.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
DS3 DS2 DS1 DS0  
Duty cycle ratio  
Row way  
displays  
DS3  
DS2  
DS1  
DS0  
DSE=0  
DES=1  
1/80  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1/81  
1/77  
1/69  
1/57  
1/47  
1/39  
1/33  
1/27  
1/17  
1/13  
80 commons  
76 commons  
68 commons  
56 commons  
46 commons  
38 commons  
32 commons  
26 commons  
16 commons  
12 commons  
1/76  
1/68  
1/56  
1/46  
1/38  
1/32  
1/26  
1/16  
1/12  
Inhibited  
Inhibited  
Inhibited  
Inhibited  
Inhibited  
Inhibited  
The duty cycle ratio is controlled by the “DS3 to DS0” registers of the “Duty cycle ratio” instruction and the “DSE”  
register of the “Display clock / Duty-1” instruction.  
DSE=0 : The number of commons +1  
(Duty cycle ratio in the default setting)  
DSE=1 : The number of commons (Duty-1)  
When the “DSE” is “0”, all common drivers output non-selective levels in period of lost common. And the segment  
drivers output the same data for the last line as the data for previous line: For instance they output the same data  
for the 80th and 81st lines when the duty cycle ratio is set to 1/81. For the setting of the “DSE” register, see (32-17)  
“Display clock / Duty-1”.  
(32-12) Boost level  
The “Boost level” is used to select multiple of the voltage booster for the partial display function.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
IDR  
D2  
D1  
D0  
1
0
0
0
0
VU2 VU1 VU0  
a) ID read in serial interface  
ID data can be read out by setting IDR=1.  
b) Boost level set  
VU2  
0
VU1  
0
VU0  
0
Boost level  
1-time (No boost)  
2-time  
0
0
1
0
1
0
3-time  
0
1
1
4-time  
1
0
0
5-time  
1
0
1
6-time  
1
1
0
Inhibited  
Inhibited  
1
1
1
- 66 -  
NJU6818  
(32-13) LCD bias ratio  
The “LCD bias ratio” is used to select the LCD bias ratio for the partial display function.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
B2  
D1  
B1  
D0  
B0  
1
0
0
0
0
B2  
0
B1  
0
B0  
0
LCD bias ratio  
1/9  
1/8  
0
0
1
0
1
0
1/7  
0
1
1
1/6  
1
0
0
1/5  
1
0
1
1/4  
1
1
0
1/10  
Inhibited  
1
1
1
(32-14) RE flag  
The “RE flag” registers are used to determine the contents for the RE registers (RE2, RE1 and RE0), and it is  
possible to access to the instruction registers.  
The data of the “TST0” register must be “0”, and it is used for maker tests only.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
1
D6  
1
D5  
1
D4  
1
D3  
D2  
D1  
D0  
1
0
TST0 RE2 RE1 RE0  
- 67 -  
NJU6818  
(32-15) Gradation palette A, B and C  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA03/ PA02/ PA01/ PA00/  
PA83 PA82 PA81 PA80  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA04/  
PA84  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA13/ PA12/ PA11/ PA10/  
PA93 PA92 PA91 PA90  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA14/  
PA94  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA23/ PA22/ PA21/ PA20/  
PA103 PA102 PA101 PA100  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA24/  
PA104  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA33/ PA32/ PA31/ PA30/  
PA113 PA112 PA111 PA110  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA34/  
PA114  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA43/ PA42/ PA41/ PA40/  
PA123 PA122 PA121 PA120  
1
0
0
0
1
- 68 -  
NJU6818  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA44/  
PA124  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA53/ PA52/ PA51/ PA50/  
PA133 PA132 PA131 PA130  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA54/  
PA134  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA63/ PA62/ PA61/ PA60/  
PA143 PA142 PA141 PA140  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA64/  
PA144  
1
0
0
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA73/ PA72/ PA71/ PA70/  
PA153 PA152 PA151 PA150  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA74/  
PA154  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB03/ PB02/ PB01/ PB00/  
PB83 PB82 PB81 PB80  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB04/  
PB84  
1
0
0
1
0
- 69 -  
NJU6818  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB13/ PB12/ PB11/ PB10/  
PB93 PB92 PB91 PB90  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB14/  
PB94  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB23/ PB22/ PB21/ PB20/  
PB103 PB102 PB101 PB100  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB24/  
PB104  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB33/ PB32/ PB31/ PB30/  
PB113 PB112 PB111 PB110  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB34/  
PB114  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB43/ PB42/ PB41/ PB40/  
PB123 PB122 PB121 PB120  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB44/  
PB124  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB53/ PB52/ PB51/ PB50/  
PB133 PB132 PB131 PB130  
1
0
0
1
0
- 70 -  
NJU6818  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB54/  
PB134  
1
0
0
1
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB63/ PB62/ PB61/ PB60/  
PB143 PB142 PB141 PB140  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB64/  
1
0
0
1
1
PB144  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB73/ PB72/ PB71/ PB70/  
1
0
0
1
1
PB153 PB152 PB151 PB150  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB74/  
PB154  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC03/ PC02/ PC01/ PC00/  
PC83 PC82 PC81 PC80  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC04/  
PC84  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC13/ PC12/ PC11/ PC10/  
PC93 PC92 PC91 PC90  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC14/  
PC94  
1
0
0
1
1
- 71 -  
NJU6818  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC23/ PC22/ PC21/ PC20/  
PC103 PC102 PC101 PC100  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC24/  
PC104  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC33/ PC32/ PC31/ PC30/  
PC113 PC112 PC111 PC110  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC34/  
PC114  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC43/ PC42/ PC41/ PC40/  
PC123 PC122 PC121 PC120  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC44/  
PC124  
1
0
0
1
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC53/ PC52/ PC51/ PC50/  
PC133 PC132 PC131 PC130  
1
0
1
0
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC54/  
PC134  
1
0
1
0
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC63/ PC62/ PC61/ PC60/  
PC143 PC142 PB141 PB140  
1
0
1
0
0
- 72 -  
NJU6818  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC64/  
PC144  
1
0
1
0
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC73/ PC72/ PC71/ PC70/  
PC153 PC152 PC151 PC150  
1
0
1
0
0
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC74/  
PC154  
1
0
1
0
0
Gradation palette table (Variable gradation mode, PWM=”0” and MON=”0”)  
(Palette Aj, Palette Bj, Palette Cj (j=0 to 15))  
Palette  
value  
Gradation  
level  
Palette  
Gradation  
Gradation palette  
Palette 0(default)  
Gradation palette  
value  
level  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
0
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Palette 8(default)  
Palette 9(default)  
Palette 10(default)  
Palette 11(default)  
Palette 12(default)  
Palette 13(default)  
Palette 14(default)  
Palette 15(default)  
Palette 1(default)  
Palette 2(default)  
Palette 3(default)  
Palette 4(default)  
Palette 5(default)  
Palette 6(default)  
Palette 7(default)  
- 73 -  
NJU6818  
(32-16) Initial COM line  
The “Initial COM line” instruction is used to specify the common driver that starts scanning display data. The line  
address, corresponding to the initial COM line, is specified by the “Initial display line” instruction.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
SC3 SC2 SC1 SC0  
SC3  
0
SC2  
0
SC1  
0
SC0  
0
Initial COM line (SHIFT=0)  
COM0  
Initial COM line (SHIFT=1)  
COM79  
0
0
0
1
COM4  
COM75  
0
0
1
0
COM8  
COM71  
0
0
1
1
COM16  
COM63  
0
1
0
0
COM24  
COM55  
0
1
0
1
COM32  
COM47  
0
1
1
0
COM40  
COM39  
0
1
1
1
COM48  
COM31  
1
0
0
0
COM56  
COM23  
1
0
0
1
COM64  
COM15  
1
0
1
0
COM72  
COM7  
1
0
1
1
Inhibited  
Inhibited  
Inhibited  
Inhibited  
Inhibited  
Inhibited  
Inhibited  
Inhibited  
Inhibited  
Inhibited  
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
SHIFT=0: Positive scan direction  
SHIFT=1: Negative scan direction  
(COM0 COM79)  
(COM79 COM0)  
(32-17) Display clock / Duty-1  
The “Display clock / Duty-1” instruction is used to enable or disable the display clocks (CL, FLM, FR, and CLK),  
and to control ON/OFF of the “Duty-1”. For more detail about the “Duty-1”, see (32-11) “Duty cycle ratio”.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
D0  
1
0
1
0
0
DSE SON  
SON=0:  
SON=1:  
CL, FLM, FR, and CLK are level “0”  
CL, FLM, FR, and CLK outputs are active.  
DSE=0:  
DSE=1:  
Duty-1 OFF  
Duty-1 ON  
- 74 -  
NJU6818  
(32-18) Gradation mode control  
The “Gradation mode control” is used to select display mode as follows.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
*
D0  
*
1
0
1
0
0
PWM C256  
PWM register  
PWM=0: Variable gradation mode  
(Variable 16-gradation levels out of 32-gradation level of the gradation palette)  
PWM=1: Fixed gradation mode  
(Fixed 8-gradation levels)  
C256 register  
C256=0 256-color mode OFF (4,096-color in the default setting)  
C256=1 256-color mode ON  
(32-19) Data bus length  
The “Data bus length” instruction is used to select 8- or 16- bit data bus length and determine the internal or  
external oscillation. In the 16-bit data bus mode, instruction data must be 16-bit (D15 to D0) as well as display data.  
However, for the access to the instruction registers, the lower 8-bit data (D7 to D0) of the 16-bit data is valid. For  
the access to the DDRAM, all of the 16-bit data (D15 to D0) is valid.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
1
0
0
HSW ABS CKS WLS  
HSW register  
HSW =0 :High speed access mode OFF  
HSW=1 :High speed access mode ON (only in the 8-bit data bus length)  
ABS register  
ABS=0 :ABS mode OFF (normal)  
ABS=1 :ABS mode ON  
WLS register  
WLS=0 :8-bit data bus length  
WLS =1 :16-bit data bus length  
CKS register  
CKS =0 :Internal oscillation  
(The OSC1 terminal must be fixed “1” or “0”.)  
CKS =1 :External oscillation  
(By the external clock into the OSC1 or external resister between the OSC1 and OSC2.  
OSC2 should be open when clock is inputted from OSC1.)  
- 75 -  
NJU6818  
(32-20) EVR control  
The “EVR control” instruction is used to fine-tune the LCD driving voltage (VLCD), so that it is possible to optimize  
contrast level for a LCD panel.  
This instruction must be programmed by upper 3-bit data first, next lower 4-bit data. And it becomes enabled when  
the lower 4-bit data is programmed, so that it can prevent unexpected high voltage for the VLCD from being  
generated.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
DV3 DV2 DV1 DV0  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
0
DV6 DV5 DV4  
DV6  
DV5  
0
DV4 DV3  
DV2  
0
DV1  
0
DV0  
0
VLCD  
0
0
0
0
0
0
:
Low  
0
0
0
1
:
:
:
:
1
1
1
1
1
1
1
High  
The formula of the VLCD is shown below.  
VLCD [V] = 0.5 x VREG + M (VREG – 0.5 x VREG) / 127  
VBA = VEE x 0.9  
VREG = VREF x N  
VBA  
VREF  
VREG  
N
: Output voltage of the reference voltage generator  
: Input voltage of the voltage regulator  
: Output voltage of the voltage regulator  
: Register value for the voltage booster  
: Register value for the EVR  
M
- 76 -  
NJU6818  
(32-21) Frequency control  
The “Frequency control” instruction is used to control the frame frequency for a LCD panel.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
Rf2  
D1  
Rf1  
D0  
Rf0  
1
0
1
0
0
Rfx register (x=0, 1, 2)  
The “Rfx” register is used to determine the feed back resister value for the internal oscillator, and it is possible to  
adjust the frame frequency for the LCD modules.  
Rf 2  
0
Rf 1  
0
Rf 0  
0
Feedback resistor value  
Reference value  
0
0
1
0.8 x reference value  
0.9 x reference value  
1.1 x reference value  
1.2 x reference value  
0.7 x reference value  
1.3 x reference value  
Inhibited  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
(32-22) Discharge ON/OFF  
Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and the VLCD terminals.  
The “Discharge ON/OFF” instruction is usually required just after the internal power supply is turned off by setting  
“0” into the “DCON” and “AMPON” registers, or just after the external power supply is turned off. During the  
discharge operation, the internal or external power supply must not be turned on.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
*
D1  
D0  
1
0
1
0
0
DIS2 DIS  
DIS=0:  
DIS=1:  
Discharge OFF  
Discharge ON  
(Capacitors on the VLCD, V1, V2, V3 and V4)  
(Capacitors on the VLCD, V1, V2, V3 and V4)  
DIS2=0:  
DIS2=1:  
Discharge OFF  
Discharge ON  
(Resistance between VOUT and VEE)  
(Resistance between VOUT and VEE)  
Note ) VOUT and VEE are internally connected with the resistor (100ktypical) in the power-ON.  
- 77 -  
NJU6818  
(32-23) Instruction register address  
The “Instruction register address” is used to specify the instruction register address, so that it is possible to read  
out the contents of the instruction registers in combination with the “Instruction register read” instruction.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
RA3 RA2 RA1 RA0  
(32-24) Instruction register read / ID read  
The “Instruction register read” instruction is used to read out the contents of the instruction register in combination  
with the “Instruction register address” instruction. Upper 4-bit of the read-out data is assigned to the ID data.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
ID3  
D6  
ID2  
D5  
ID1  
D4  
ID0  
D3  
D2  
D1  
D0  
0
1
Internal register data read  
(32-25) Window end column address  
The “Window end column address” is used to specify the column address for the window end point. The lower 4-  
bit data is required to be programmed first and then the upper 3-bit data can be programmed.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
EX3 EX2 EX1 EX0  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
1
0
1
EX7 EX6 EX5 EX4  
(32-26) Window end row address set  
The “Window end row address” is used to specify the row address for the window end point. The lower 4-bit data  
is required to be programmed first and then the upper 3-bit data can be programmed.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
EY3 EY2 EY1 EY0  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
1
EY6 EY5 EY4  
- 78 -  
NJU6818  
(32-27) Initial reverse line  
The “Initial reverse line” instruction is used to specify the initial reverse line address for the reverse line display.  
Lower 4-bit data must be programmed first, next upper 3-bit data. It is programmed in between 00H and 4FH and  
the line address beyond 4FH is inhibited. The address relation: LSi < LEi (i=7 to 0) must be maintained in the  
reverse line display.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
LS3  
D2  
LS2  
D1  
LS1  
D0  
LS0  
1
0
1
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
LS6  
D1  
LS5  
D0  
LS4  
1
0
1
0
1
(32-28) Last reverse line  
The “Last reverse line” instruction is used to specify the last reverse line address for the reverse line display. Lower  
4-bit data must be programmed first, next upper 3-bit. It is programmed in between 00H and 4FH and the line  
address beyond the 4FH is inhibited. The address relation: LSi < LEi (i=7 to 0) must be maintained in the reverse  
line display.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
LE3  
D2  
LE2  
D1  
LE1  
D0  
LE0  
1
0
1
0
1
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
LE6  
D1  
LE5  
D0  
LE4  
1
0
1
0
1
(32-29) Reverse line display ON/OFF  
The “Reverse line display ON/OFF” is used to enable or disable the reverse line display for the blink operation and  
determine the reverse line display mode.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
*
D2  
*
D1  
D0  
1
0
1
0
1
BT LREV  
LREV register  
The “LREV” register is used to enable or disable the reverse line display.  
LREV =0:  
LREV =1:  
Reverse line display OFF (Normal)  
Reverse line display ON  
- 79 -  
NJU6818  
BT register  
The “BT” register is used to determine the reverse line display mode in the reverse line display ON (LREV=1)  
status.  
BT =0:  
BT =1:  
Normal reverse line display  
Blink once every 32 frames  
Display examples in the LREV=”1” and BT=”1”  
ꢂꢀꢀꢀꢂ  
ꢀꢂꢂꢂꢀ  
ꢀꢂꢂꢂꢂ  
ꢂꢀꢀꢀꢂ  
ꢂꢂꢂꢂꢀ  
ꢀꢂꢂꢂꢀ  
ꢂꢀꢀꢀꢂ  
ꢂꢂꢂꢂꢂ  
ꢀꢂꢂꢂꢀ  
ꢂꢀꢀꢀꢂ  
ꢂꢀꢀꢀꢀ  
ꢀꢂꢂꢂꢀ  
ꢀꢀꢀꢀꢂ  
ꢂꢀꢀꢀꢂ  
ꢀꢂꢂꢂꢀ  
ꢀꢀꢀꢀꢀ  
Blink once every 32 frames  
NJRC  
LCD DRIVER  
Low Power and  
Low Voltage  
Blink once every 32 frames  
NJRC  
Initial reverse line address  
Last reverse line address  
LCD DRIVER  
Low Power and  
Low Voltage  
- 80 -  
NJU6818  
(32-30) Gradation Palette setting control  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PS  
1
0
1
0
1
PS register  
PS=0:  
PS=1:  
Lower 8 Gradation setting  
Upper 8 Gradation setting  
(32-31) PWM control  
The “PWM control” is used to determine the PWM type for segment waveforms, where the type can be specified  
for each of the SEGAi, SEGBi and SEGCi (i=0-103) drivers.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PWMS PWMA PWMB PWMC  
1
0
1
0
1
PWMS register  
PWMS=0: Type 1  
PWMS=1: Type 2  
PWMA, B and C registers  
The “PWMA, PWMB and PWMC” registers are used to select the type 1-O or type 1-E.  
PWMZ=0 (Z=A, B and C): Type 1-O  
PWMZ=1 (Z=A, B and C): Type 1-E  
PWM type1 (PWMS=”0”)  
Odd line  
Even line  
“H”  
“L”  
CL  
VLCD  
V2  
Type-O  
Type-E  
SEG  
VLCD  
V2  
PWM type2 (PWMS=”1”)  
“H”  
CL  
“L”  
VLCD  
V2  
SEG  
- 81 -  
NJU6818  
(33) The relation between Common drivers and Row addresses  
Row address assignment of common drivers is programmed by the “SHIFT” register of the “Display control (1)”,  
“Duty cycle ratio”, “Initial display line” and “Initial COM line” instructions.  
When initial display line is “0”  
If the “SHIFT” is “0”, the scan direction is normal. When the “LA0 to LA6“ registers of the “Initial display line”  
instruction is “0”, the “MY” corresponding to the initial COM line is “0” and is increasing during display.  
When initial display line is not “0”  
If the “SHIFT” is “1”, the scan direction is inversed. When the “LA0 to LA6“ registers of the “Initial display line”  
instruction is not “0”, the “MY” corresponding to the initial COM line is this setting value and is increasing during  
display.  
The followings are examples of setting the start-line 0 or 5 at 1/81, or 1/13 duty.  
- 82 -  
NJU6818  
(33-1)Initial display line “0”, 1/81 duty cycle (Common forward scan)  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
0=”0000”, LA6….LA0=”00000000”(Initial display line 0)  
1
SC3  
SC2  
SC1  
SC0  
0000  
0
0001  
76  
0010  
72  
0011  
64  
0100  
56  
0101  
48  
0110  
40  
0111  
32  
1000  
24  
1001  
16  
1010  
8
COM0  
COM1  
COM2  
COM3  
79  
0
COM4  
COM5  
COM6  
COM7  
79  
0
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
79  
75  
79  
71  
79  
63  
79  
55  
79  
47  
79  
39  
79  
31  
79  
23  
79  
15  
79  
7
79  
(81th COM period) *1  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 81th COM period is not selected.  
- 83 -  
NJU6818  
(33-2) Initial display line “0”, 1/13 duty cycle (Common forward scan)  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
0=”1001”, LA6….LA0=”00000000”(Initial display line 0)  
1
SC3  
SC2  
SC1  
SC0  
0000  
0
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
8
COM0  
COM1  
COM2  
COM3  
11  
COM4  
0
COM5  
COM6  
COM7  
COM8  
0
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
11  
11  
0
11  
0
11  
0
11  
0
11  
0
11  
0
11  
0
11  
0
11  
11  
7
11  
(13th COM period) *1  
11  
11  
11  
11  
11  
11  
11  
11  
11  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 13th COM period is not selected.  
- 84 -  
NJU6818  
(33-3)Initial display line “0”, 1/81 duty cycle (Common backward scan)  
SHIFT=”1”(Common backward scan), DS3, 2  
,
,
0=”0000”, LA6….LA0=”00000000”(Initial display line 0)  
1
SC3  
SC2  
SC1  
SC0  
0000  
79  
0001  
75  
0010  
71  
0011  
63  
0100  
55  
0101  
47  
0110  
39  
0111  
31  
1000  
23  
1001  
15  
1010  
7
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
0
79  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
76  
79  
72  
79  
64  
79  
56  
79  
48  
79  
40  
79  
32  
79  
24  
79  
16  
79  
8
79  
(81th COM period) *1  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 81th COM period is not selected.  
- 85 -  
NJU6818  
(33-4)Initial display line “5”, 1/81 duty cycle (Common forward scan)  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
0=”0000”, LA6….LA0=”00000101”(Initial display line 5)  
1
SC3  
SC2  
SC1  
SC0  
0000  
5
0001  
1
0010  
0011  
69  
0100  
61  
0101  
53  
0110  
45  
0111  
37  
1000  
29  
1001  
21  
1010  
13  
COM0  
77  
78  
79  
0
COM1  
COM2  
COM3  
COM4  
5
COM5  
COM6  
COM7  
COM8  
5
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
79  
0
5
79  
0
5
79  
0
5
79  
0
5
79  
0
5
79  
0
5
79  
0
5
79  
0
5
79  
0
79  
0
79  
4
79  
76  
79  
68  
79  
60  
79  
52  
79  
44  
79  
36  
79  
28  
79  
20  
79  
12  
79  
(81th COM period) *1  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 81th COM period is not selected.  
- 86 -  
NJU6818  
(33-5)Initial display line “0”, 1/80 duty cycle (Common forward scan, DSE=”1”)  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
0=”0000”, LA6….LA0=”00000000”(Initial display line 0) DSE=”1”  
1
SC3  
SC2  
SC1  
SC0  
0000  
0
0001  
76  
0010  
72  
0011  
64  
0100  
56  
0101  
48  
0110  
40  
0111  
32  
1000  
24  
1001  
16  
1010  
8
COM0  
COM1  
COM2  
COM3  
79  
0
COM4  
COM5  
COM6  
COM7  
79  
0
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
0
79  
75  
71  
63  
55  
47  
39  
31  
23  
15  
7
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 87 -  
NJU6818  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Supply Voltage (1)  
Supply Voltage (2)  
Supply Voltage (3)  
Supply Voltage (4)  
Supply Voltage (5)  
Supply Voltage (6)  
Input Voltage  
SYMBOL  
VDD  
CONDITION  
TERMINAL  
VDD  
RATING  
-0.3 to +4.0  
UNIT  
V
VEE  
VEE  
-0.3 to +4.0  
V
VOUT  
VOUT  
-0.3 to +19.0  
-0.3 to +19.0  
-0.3 to +19.0  
-0.3 to VLCD + 0.3  
-0.3 to VDD + 0.3  
-45 to +125  
V
VSS=0V  
VREG  
VREG  
V
Ta = +25°C  
VLCD  
VLCD  
V
V1, V2, V3, V4  
VI  
V1, V2, V3, V4  
*1  
V
V
Storage Temperature  
Tstg  
°C  
Note 1) D0 to D15, CSb, RS, RDb, WRb, OSC1, RESb, TEST1, TEST2, terminals.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
Supply Voltage  
SYMBOL  
VDD1  
TERMINAL  
VDD  
MIN  
1.7  
2.4  
2.4  
5
TYP  
MAX  
3.3  
UNIT  
NOTE  
*1  
V
V
V
V
V
V
V
VDD2  
3.3  
*2  
VEE  
VEE  
VLCD  
VOUT  
VREG  
VREF  
3.3  
*3  
*4  
VLCD  
18.0  
18.0  
OUT × 0.9  
3.3  
VOUT  
VREG  
VREF  
Operating Voltage  
V
2.1  
-30  
*5  
Operating  
Topr  
85  
°C  
Temperature  
Note1) Applies to the condition when the reference voltage generator is not used.  
Note2) Applies to the condition when the reference voltage generator is used.  
Note3) Applies to the condition when the voltage booster is used.  
Note4) The following relation among the supply voltages must be maintained.  
VSS<V4<V3<V2<V1<VLCD<VOUT  
Note5) The relation: VREF<VEE must be maintained.  
- 88 -  
NJU6818  
DC CHARACTERISTICS 1  
VSS = 0V, VDD = +1.7 to +3.3V, Ta = -30 to +85°C  
SYM  
PARAMETER  
BOL  
CONDITION  
MIN  
TYP  
MAX  
UNIT NOTE  
VIH  
VIL  
VOH1  
VOL1  
VOH2  
VOL2  
ILI  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
High level output voltage  
Low level output voltage  
Input leakage current  
0.8 VDD  
0
VDD  
V
V
*1  
*1  
*2  
*2  
*3  
*3  
*4  
*5  
0.2VDD  
IOH = -0.4mA  
VDD - 0.4  
V
IOL = 0.4mA  
0.4  
V
IOH = -0.1mA  
IOL = 0.1mA  
VI = VSS or VDD  
VI = VSS or VDD  
VDD - 0.4  
V
0.4  
10  
10  
2
4
15  
445  
101  
14.4  
V
-10  
-10  
µA  
µA  
ILO  
Output leakage current  
VLCD = 10V  
VLCD = 6V  
VDD = 3V  
1
2
RON1  
Driver ON-resistance  
*6  
|VON| = 0.5V  
kΩ  
µA  
ISTB  
*7  
CSb=VDD, Ta=25°C  
Stand-by current  
fOSC1  
fOSC2  
fOSC3  
fr1  
fr2  
fr3  
309  
69  
10.0  
377  
85  
*8  
*9  
*10  
VDD = 3V  
Internal oscillation  
Frequency  
kHz  
Ta = 25°C  
12.2  
382  
84  
Rf=24kΩ  
Rf=120kΩ  
Rf=820kΩ  
External oscillation  
Frequency  
kHz  
V
*11  
*12  
12.8  
N-time booster (N=2 to 6)  
Voltage converter  
output voltage  
(N x VEE  
)
VOUT  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
VBA  
x 0.95  
RL = 500k(VOUT - VSS  
)
VDD = 3V, 6-time booster  
Whole ON pattern  
Supply current (1)  
Supply current (2)  
Supply current (3)  
Supply current (4)  
Supply current (5)  
Supply current (6)  
VBA Operating voltage  
760  
930  
1140  
1400  
780  
VDD = 3V, 6-time booster  
Checker pattern  
VDD = 3V, 5-time booster  
Whole ON pattern  
520  
*13  
µA  
VDD = 3V, 5-time booster  
Checker pattern  
650  
980  
VDD = 3V, 4-time booster  
Whole ON pattern  
360  
540  
VDD = 3V, 4-time booster  
Checker pattern  
450  
680  
(0.9 VEE  
)
(0.9 VEE  
)
VEE = 2.4 to 3.3V  
VEE = 2.4 to 3.3V  
0.9 VEE  
V
V
*14  
*15  
x 0.98  
x 1.02  
(VREF x N)  
x 0.97  
(VREF x N)  
x 1.03  
VREG  
(VREF x N)  
VREG Operating voltage  
VREF = 0.9 x VEE  
N-time booster (N=2 to 6)  
V2  
V3  
VD12  
VD34  
VD24  
-100  
-100  
-30  
-30  
-30  
0
0
0
0
0
+100  
+100  
+30  
+30  
+30  
Output Voltage  
mV  
*16  
- 89 -  
NJU6818  
CLOCK and FRAME FREQUENCY  
Display duty cycle ratio (1/D) <DSE=0>  
PARAMETER SYMBOL  
NOTE  
FLM  
Display mode  
1/81 to 1/57  
fOSC / (62xD)  
OSC / (14xD)  
OSC / (2xD)  
fCK / (62xD)  
CK / (14xD)  
CK / (2xD)  
1/47 to 1/27  
1/17, 1/13  
16 Gradation mode  
fOSC / (62xDx2)  
fOSC / (62xDx4)  
fOSC / (14xDx4)  
fOSC / (2xDx4)  
fCK / (62xDx4)  
fCK / (14xDx4)  
fCK / (2xDx4)  
Internal  
fOSC  
Simplified  
f
fOSC / (14xDx2)  
fOSC / (2xDx2)  
fCK / (62xDx2)  
fCK / (14xDx2)  
fCK / (2xDx2)  
clock  
8 gradation mode  
B&W mode  
f
16 Gradation mode  
External  
fCK  
Simplified  
f
clock  
8 gradation mode  
B&W mode  
f
- 90 -  
NJU6818  
APPLIED TERMINALS and CONDITIONS  
Note 1) D0-D15, CSb, RS, RDb, WRb, P/S, SEL68, RESb  
Note 2) D0-D15  
Note 3) CL, FLM, FR, CLK  
Note 4) CSb, RS, SEL68, RDb, WRb, P/S, RESb, OSC1  
Note 5) D0-D15 in high impedance  
Note 6) SEGA0-SEGA103, SEGB0-SEGB103, SEGC0-SEGC103, COM0-COM79  
- Defines the resistance between the COM/SEG terminals and the power supply terminals (VLCD, V1, V2, V3 and V4)  
at the condition of 0.5V deference and 1/9 LCD bias ratio  
Note 7) VDD  
- The oscillator is halted, CSb=”1” (disabled), No-load on the COM/SEG drivers  
Note 8) OSC  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the variable gradation mode  
Note 9) OSC  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the fixed gradation mode  
Note 10) OSC  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the Black & White mode  
Note 11)  
V
DD=3V, Ta=25°C  
Note 12) VOUT  
- Applies to the condition when the internal voltage booster, the internal oscillator and the internal power circuits are  
used  
- VEE=2.4V to 3.3V, EVR= (1,1,1,1,1,1,1), 1/4 to 1/10 LCD bias, 1/81 duty cycle, No-load on the COM/SEG drivers  
- RL=500kbetween the VOUT and the VSS, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”  
Note 13) VDD  
- Applies to the condition using the internal oscillator and the internal power circuits, no access between the LSI and  
MPU  
- EVR= (1,1,1,1,1,1,1), All pixels turned-on or checkerboard display in the gradation mode, No-load on the  
COM/SEG drivers  
- VDD=VEE, VREF=0.9VEE, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”, NLIN=”0”, 1/81 Duty cycle, Ta=25°C  
Note 14) VBA  
- Applies to the condition that VBA=VREF and the voltage booster N= 1, DCON=”0”, VOUT=13.5V input.  
Note 15) VREG  
- VEE=2.4V to 3.3V, VREF=0.9VEE, VOUT=18V, 1/4 to 1/10 LCD bias ratio, 1/81 duty cycle, EVR=(1,1,1,1,1,1,1),  
- Checkerboard display, No-load on the COM/SEG drivers, the voltage booster N=2 to 6, CA1=CA2=1.0uF,  
CA3=0.1uF, DCON=”0”, AMPON=”1”, NLIN=”0”  
Note 16)  
VLCD, V1, V2, V3, V4  
- VEE=3.0V, VREF=0.9VEE, VOUT=15V, 1/4 to 1/10 LCD Bias, EVR= (1,1,1,1,1,1,1), Display OFF, No-load on the  
COM/SEG drivers, voltage booster N=5, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1”  
VLCD  
V1  
VD12: (1)-(2)  
VD34: (3)-(4)  
VD24: (2)-(4)  
(1)  
(2)  
V2  
V3  
(3)  
(4)  
V4  
VSS  
- 91 -  
NJU6818  
AC CHARACTERISTICS  
Write operation (80-type MPU)  
tAS8  
tAH8  
CSb  
RS  
WRb  
tWRLW8  
tWRHW8  
tDS8  
tDH8  
D0 to D15  
tCYC8  
MIN.  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
CONDITION  
CONDITION  
CONDITION  
PARAMETER  
SYMBOL  
tAH8  
tAS8  
MAX.  
UNIT  
TERMINAL  
Address hold time  
0
ns  
CSb  
RS  
Address setup time  
0
ns  
System cycle time  
tCYC8  
tWRLW8  
tWRHW8  
90  
35  
35  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
WRb  
Data setup time  
Data hold time  
tDS8  
tDH8  
30  
5
ns  
ns  
D0 to D15  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
Address hold time  
Address setup time  
SYMBOL  
MIN.  
0
0
MAX.  
UNIT  
TERMINAL  
tAH8  
tAS8  
ns  
ns  
CSb  
RS  
System cycle time  
tCYC8  
tWRLW8  
tWRHW8  
160  
70  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
WRb  
70  
Data setup time  
Data hold time  
tDS8  
tDH8  
40  
5
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
tCYC8  
tWRLW8  
tWRHW8  
180  
80  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
WRb  
80  
Data setup time  
Data hold time  
tDS8  
tDH8  
70  
10  
ns  
ns  
D0 to D15  
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 92 -  
NJU6818  
Read operation (80-type MPU)  
tAH8  
tAS8  
CSb  
RS  
tWRLR8  
RDb  
tWRHR8  
tRDH8  
D0 to D15  
tRDD8  
tCYC8  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH8  
0
ns  
CSb  
RS  
Address setup time  
tAS8  
0
ns  
System cycle time  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
ns  
ns  
ns  
RDb  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
80  
Read Data delay time  
Read Data hold time  
tRDD8  
tRDH8  
60  
ns  
ns  
CL=15pF  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
ns  
ns  
ns  
RDb  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
80  
Read Data delay time  
Read Data hold time  
tRDD8  
tRDH8  
60  
ns  
ns  
CL=15pF  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
tCYC8  
tWRLR8  
tWRHR8  
300  
140  
140  
ns  
ns  
ns  
RDb  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
Read Data delay time  
Read Data hold time  
tRDD8  
tRDH8  
130  
ns  
ns  
CL=15pF  
D0 to D15  
0
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 93 -  
NJU6818  
Write operation (68-type MPU)  
tAS6  
tAH6  
CSb  
RS  
R/W  
(WRb)  
tELW6  
tEHW6  
E
(RDb)  
tDS6  
tDH6  
D0 to D15  
tCYC6  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
tAH6  
tAS6  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
0
ns  
CSb  
RS  
Address setup time  
0
ns  
System cycle time  
tCYC6  
tELW6  
tEHW6  
90  
35  
35  
ns  
ns  
ns  
E
Enable ”L” level pulse width  
Enable ”H” level pulse width  
Data setup time  
Data hold time  
tDS6  
tDH6  
40  
5
ns  
ns  
D0 to D15  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
tCYC6  
tELW6  
tEHW6  
160  
70  
ns  
ns  
ns  
E
Enable ”L” level pulse width  
Enable ”H” level pulse width  
70  
Data setup time  
Data hold time  
tDS6  
tDH6  
50  
5
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
tCYC6  
tELW6  
tEHW6  
180  
80  
ns  
ns  
ns  
E
Enable ”L” level pulse width  
Enable ”H” level pulse width  
80  
Data setup time  
Data hold time  
tDS6  
tDH6  
70  
10  
ns  
ns  
D0 to D15  
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 94 -  
NJU6818  
Read operation (68-type MPU)  
tAS6  
tAH6  
CSb  
RS  
R/W  
(WRb)  
tELR6  
tEHR6  
E
(RDb)  
tRDH6  
D0 to D15  
tRDD6  
tCYC6  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
0
ns  
CSb  
Address setup time  
tAS6  
0
ns  
RS  
System cycle time  
tCYC6  
tELR6  
tEHR6  
180  
80  
ns  
ns  
ns  
E
Enable ”L” level pulse width  
Enable ”H” level pulse width  
80  
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
70  
CL=15pF  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
0
ns  
CSb  
Address setup time  
tAS6  
0
ns  
RS  
System cycle time  
tCYC6  
tELR6  
tEHR6  
180  
80  
ns  
ns  
ns  
E
Enable ”L” level pulse width  
Enable ”H” level pulse width  
80  
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
70  
CL=15pF  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
0
ns  
CSb  
Address setup time  
tAS6  
0
ns  
RS  
300  
140  
140  
System cycle time  
tCYC6  
tELR6  
tEHR6  
ns  
ns  
ns  
E
Enable ”L” level pulse width  
Enable ”H” level pulse width  
130  
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
CL=15pF  
D0 to D15  
0
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 95 -  
NJU6818  
Serial interface  
CSb  
tCSH  
tCSS  
RS  
tASS  
tAHS  
tSLW  
tSHW  
SCL  
tCYCS  
tDSS  
tDHS  
SDA  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
Serial clock cycle  
SYMBOL CONDITION  
tCYCSB  
MIN.  
MAX.  
TERMINAL  
50  
20  
300  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”H” level pulse width 2  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
tSHW  
SCL  
tSHW2  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
Note 2)  
RS  
Data setup time  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
20  
ns  
CSb  
tCSH  
20  
ns  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
Serial clock cycle  
tCYCS  
50  
20  
400  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”H” level pulse width 2  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
tSHW  
SCL  
tSHW2  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
Note 2)  
RS  
Data setup time  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
20  
ns  
CSb  
tCSH  
20  
ns  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
Serial clock cycle  
tCYCS  
80  
35  
500  
35  
35  
35  
35  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”H” level pulse width 2  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
tSHW  
SCL  
tSHW2  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
Note 2)  
RS  
Data setup time  
SDA  
Data hold time  
CSb – SCL time  
tCSS  
35  
ns  
CSb  
tCSH  
35  
ns  
CSb hold time  
Note) Each timing is specified based on 20% and 80% of VDD  
.
Note 2) tSHW2 applies to the condition when the ID read-out. Refer to the (18) “Chip Identification” for the detail.  
- 96 -  
NJU6818  
Display control timing  
CLK  
tDCL  
CL  
tDFLM  
tDFLM  
FLM  
tFR  
FR  
Output timing  
PARAMETER  
FLM delay time  
FR delay time  
CL delay time  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
SYMBOL  
CONDITION  
CL=15pF  
MIN.  
MAX.  
UNIT  
TERMINAL  
tDFLM  
0
0
0
500  
500  
200  
ns  
ns  
ns  
FLM  
tFR  
FR  
CL  
tDCL  
Output timing  
PARAMETER  
FLM delay time  
FR delay time  
CL delay time  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
SYMBOL  
CONDITION  
CL=15pF  
MIN.  
MAX.  
UNIT  
TERMINAL  
tDFLM  
0
0
0
1000  
1000  
200  
ns  
ns  
ns  
FLM  
tFR  
FR  
CL  
tDCL  
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 97 -  
NJU6818  
Input clock timing  
tCKLW  
tCKHW  
OSC1  
(VDD=1.7 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
TERMINAL  
OSC1  
OSC1 “H” level pulse width (1)  
OSC1 “L” level pulse width (1)  
OSC1 “H” level pulse width (2)  
OSC1 “L” level pulse width (2)  
OSC1 “H” level pulse width (3)  
OSC1 “L” level pulse width (3)  
tCKHW1  
tCKLW1  
tCKHW2  
tCKLW2  
tCKHW3  
tCKLW3  
1.12  
1.12  
4.95  
4.95  
34.7  
34.7  
1.62  
1.62  
7.25  
7.25  
50.0  
50.0  
µs  
µs  
µs  
µs  
µs  
µs  
1
OSC1  
2
OSC1  
3
Note) Each timing is specified based on 20% and 80% of VDD  
.
Note 1) Applied to the variable gradation mode /MON=”0”,PWM=”0”  
Note 2) Applied to the fixed gradation mode /MON=”0”,PWM=”1”  
Note 3) Applied to the B&W mode /MON=”1”  
Reset input timing  
tRW  
RESb  
tR  
Internal circuit  
During reset  
End of reset  
status  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL  
CONDITION  
CONDITION  
MIN.  
10.0  
MAX.  
Terminal  
Reset time  
tR  
1.0  
µs  
µs  
RESb “L” level pulse width  
tRW  
RESb  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL  
MIN.  
10.0  
MAX.  
Terminal  
Reset time  
tR  
1.5  
µs  
µs  
RESb “L” level pulse width  
tRW  
RESb  
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 98 -  
NJU6818  
Typical characteristic  
PARAMETER  
Basic delay time of gate  
SYMBOL  
Ta=+25°C, VSS=0V, VDD=3.0V  
MIN  
TYP  
10  
MAX  
UNIT  
ns  
Input output terminal type  
(a) Input circuit  
VDD  
Terminals:  
CSb, RS, RDb, WRb, SEL68,  
P/S, RESb  
I
Input signal  
VSS(0V)  
(b) Output circuit  
Terminals:  
FLM, CL, FR, CLK  
VDD  
Output control signal  
Output signal  
O
VSS(0V)  
(c) Input/Output circuit  
VDD  
Terminals:  
D0 to D15  
I/O  
Input signal  
VSS(0V)  
VSS(0V)  
Input control signal  
VDD  
Output control signal  
Output signal  
VSS(0V)  
- 99 -  
NJU6818  
(d) Display output circuit  
VLCD  
VLCD  
VLCD  
V1/V2  
Output control  
signal 1  
Output control signal 2  
Output control signal 4  
O
Output control  
signal 3  
VSS(0V)  
V3/V4  
VSS(0V)  
VSS(0V)  
Terminals:  
SEGA0 to SEGA103  
SEGB0 to SEGB103  
SEGC0 to SEGC103  
COM0 to COM79  
- 100 -  
NJU6818  
APPLICATION CIRCUIT EXAMPLES  
(1) MPU Connections  
80-type MPU interface  
1.7V to 3.3V  
VCC  
VDD  
A
0  
RS  
A to A7  
(80-type MPU) 1  
IORQb  
Decoder  
8
7
CSb  
D0 to D7  
D0 to D7  
RDb  
WRb  
RDb  
WR  
RESb  
RESb  
VSS  
GND  
RESET  
68-type MPU interface  
1.7V to 3.3V  
VCC  
VDD  
A
0  
RS  
A1 to A15  
(68-type MPU) 
VMA  
Decoder  
8
15  
CSb  
D0 to D7  
E
R/W  
RESb  
D0 to D7  
RDb(E)  
WRb(R/W)  
RESb  
VSS  
GND  
RESET  
Serial interface  
1.7V to 3.3V  
VCC  
VDD  
A
0  
A
1
to A
7  
RS  
Decoder  
RESET  
7
CSb  
(MPU)  
PORT1  
SDA  
SCL  
RESb  
PORT2  
RESb  
VSS  
GND  
- 101  
NJU6818  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
- 102 -  

相关型号:

NJU6818H

Liquid Crystal Driver, 392-Segment, CMOS, TCP
NJRC

NJU6820

40-common x 128RGB-Segment, in 4096-Color 4096-Color STN LCD DRIVER
NJRC

NJU6820CJ

40-common x 128RGB-Segment, in 4096-Color 4096-Color STN LCD DRIVER
NJRC

NJU6820H

Liquid Crystal Driver, 424-Segment, CMOS, TCP
NJRC

NJU6821

82-common x 128-RGB segment 256-color STN Bitmap LCD Driver
ETC

NJU6821ACJ

Liquid Crystal Driver, 466-Segment, CMOS, DIE-596
NJRC

NJU6821AH

Liquid Crystal Driver, 466-Segment, CMOS, TCP
NJRC

NJU6821AT

Liquid Crystal Driver, 466-Segment, CMOS, DIE
NJRC

NJU6821CH

Liquid Crystal Driver, 466-Segment, CMOS, BUMP, DIE-596
NJRC

NJU6821CJ

Liquid Crystal Driver, 478-Segment, CMOS, DIE-596
NJRC

NJU6821CJ-Z

Liquid Crystal Driver, 466-Segment, CMOS, BUMP, DIE-596
NJRC

NJU6821H

Liquid Crystal Driver, 478-Segment, CMOS, TCP
NJRC