NJU6821H [NJRC]

Liquid Crystal Driver, 478-Segment, CMOS, TCP;
NJU6821H
型号: NJU6821H
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Liquid Crystal Driver, 478-Segment, CMOS, TCP

驱动 接口集成电路
文件: 总113页 (文件大小:1127K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6821  
Preliminary  
82-common X 128RGB-Segment, in 256-Color  
STN LCD DRIVER  
GENERAL DESCRIPTION  
PACKAGE OUTLINE  
The NJU6821 is a STN LCD driver with 82-common x  
128RGB-segment  
in  
256-color.  
It  
consists  
of  
384(128xRGB)-segment, 82-common drivers, and serial  
and parallel MPU interface circuits, internal power supply  
circuits, gradation palettes and 81,920-bit for graphic and  
2,048-bit for icon display data RAM.  
Each segment driver outputs 8-(for R and G) and 4-(for  
B) gradation level out of 32-gradation level of gradation  
palette.  
NJU6821CJ  
Since the NJU6821 provides a low operating voltage of  
1.7V and low operating current, it is ideally suited for  
battery-powered handheld applications.  
In addition, it is possible to drive up to 164 x 128 pixels  
LCD panel when use two of NJU6821 as a master and  
slave LSIs.  
FEATURES  
256-color STN LCD driver  
LCD drivers  
80 and 2-icon commons, 128RGB-segments, 4RGB-icon segments  
81,920-bit for graphic display  
Display data RAM (DDRAM)  
2,048-bit for icon display  
Color display mode  
8-(R and G) or 4-(B) gradation level out of 32-gradation level  
of gradation palette  
Black & white display mode  
82 x 384 pixels in B&W  
8/16bit Parallel interface directly- connective to 68/80 series MPU  
Programmable 8- or 16-bit data bus length for display data  
3-/4-line Serial interface  
Programmable duty and bias ratios  
Programmable internal voltage booster (Maximum 7-times)  
Programmable contrast control using 128-step EVR  
Various instructions  
Display data read/write, Display ON/OFF, Reverse display ON/OFF, All pixels ON/OFF,  
column address, row address, N-line inversion, Initial display line, Initial COM line, Read-modify-write,  
Gradation mode control, Increment control, Data bus length, Discharge ON/OFF,  
Duty cycle ratio, LCD bias ratio, Boost level, EVR control, Power save ON/OFF, etc  
Low operating current  
Low logic supply voltage  
LCD driving supply voltage  
C-MOS process  
1.7V to 3.3V  
5.0V to 18.0V  
Package  
Bumped chip / TCP  
2003/01/28  
- 1 -  
NJU6821  
PAD LOCATION  
DMY6(L)  
DMY6(R)  
SEGSA2  
SEGSC3  
COM40  
COM66  
DMY7(L)  
DMY7(R)  
1
Note1) The PADs of (L), (R) and (C) are shorted mutually in the LSI.  
Note2) The DMY PADs are electrically open.  
Chip Center  
Chip Size  
:X= 0µm, Y= 0µm  
:19.91mm x 2.55mm  
Chip Thickness  
Bump Size  
:625µm ± 25µm  
:100µm x 32µm  
Bump Pitch  
Bump Height  
Bump Material  
:50µm(Min)  
:14.0~22.5µm (Typical 18µm) <tolerance : ±3µm >  
:Au  
Alignment marks  
a
a: 30µm  
b: 6µm  
d
c: 120µm  
d: 27µm  
d
b
Alignment mark coordinates  
c
a
X=-9732µm, Y=-1052µm  
X= 9732µm, Y=-1052µm  
b
c
- 2 -  
NJU6821  
DMY3(R)  
DMY3(L)  
SEGSC1  
Y
SEGSA0  
COMI0  
COM0  
X
COM25  
DMY2(R)  
DMY2(L)  
PAD size  
VSSA, VSS, VDD, VSSH, VEE, VOUT PADs types  
17to19, 21to23, 29to31, 37to39, 43to45, 77to79, 91to93,  
109to111, 112to114, 140to142  
118  
18  
x
x
x
106  
50  
50  
- 3 -  
NJU6821  
PAD COORDINATES 1  
Chip Size 19910µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
No.  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X (µm)  
Y (µm)  
Terminal  
X (µm)  
Y (µm)  
No.  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
1
2
3
4
5
6
7
8
DMY0(L)  
DMY0(R)  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
VSSA(L)  
VSSA(C)  
VSSA(R)  
TEST  
VDD(L)  
VDD(C)  
VDD(R)  
RESb  
CSb  
RS  
VSS(L)  
VSS(C)  
VSS(R)  
M/S  
VDDA  
P/S  
-9625 -1068 52  
-9575 -1068 53  
-9525 -1068 54  
-9475 -1068 55  
-9425 -1068 56  
-9375 -1068 57  
-9325 -1068 58  
-9275 -1068 59  
-9225 -1068 60  
-9175 -1068 61  
-9125 -1068 62  
-9075 -1068 63  
-9025 -1068 64  
-8975 -1068 65  
-8925 -1068 66  
-8875 -1068 67  
-8670 -1068 68  
-8500 -1068 69  
-8330 -1068 70  
-8171 -1068 71  
-7990 -1068 72  
-7820 -1068 73  
-7650 -1068 74  
-7480 -1068 75  
-7310 -1068 76  
-7140 -1068 77  
-6970 -1068 78  
-6800 -1068 79  
-6630 -1068 80  
-6448 -1068 81  
-6290 -1068 82  
-6120 -1068 83  
-5950 -1068 84  
-5780 -1068 85  
-5610 -1068 86  
-5440 -1068 87  
-5270 -1068 88  
-5111 -1068 89  
-4930 -1068 90  
-4760 -1068 91  
-4590 -1068 92  
-4420 -1068 93  
-4250 -1068 94  
-3995 -1068 95  
D10  
D11  
D12  
D13  
D14  
-2550  
-2380  
-2210  
-2040  
-1870  
-1700  
-1472  
-1340  
-1190  
-1020  
-850  
-680  
-510  
-340  
-107  
74  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
C4+(L)  
C4+(R)  
C4-(L)  
6120  
6290  
6460  
6630  
6800  
6970  
7140  
7310  
7480  
7650  
7820  
7990  
8160  
8330  
8500  
8670  
8875  
8925  
8975  
9025  
9075  
9125  
9175  
9225  
9275  
9325  
9375  
9425  
9475  
9525  
9575  
9625  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-1068  
-900  
-850  
-800  
-750  
-700  
-650  
-600  
-550  
-500  
-450  
-400  
-350  
-300  
-250  
-200  
-150  
-100  
C4-(R)  
C5+(L)  
C5+(R)  
C5-(L)  
D15  
VSS(L)  
VSS(C)  
VSS(R)  
CL  
FLM  
FR  
C5-(R)  
9
C6+(L)  
C6+(R)  
C6-(L)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
C6-(R)  
CLK  
VLCD(L)  
VLCD(R)  
VOUT(L)  
VOUT(R)  
COM39  
COM38  
COM37  
COM36  
COM35  
COM34  
COM33  
COM32  
COM31  
COM30  
COM29  
COM28  
COM27  
COM26  
DMY1(L)  
DMY1(R)  
DMY2(L)  
DMY2(R)  
COM25  
COM24  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
OSC1  
OSC2  
VSSH(L)  
VSSH(C)  
VSSH(R)  
VLCD(L)  
VLCD(R)  
V1(L)  
V1(R)  
V2(L)  
V2(R)  
V3(L)  
196  
318  
510  
680  
850  
1020  
1190  
1360  
1530  
1700  
1870  
2040  
2210  
2380  
2550  
2693  
2879  
3060  
3230  
3400  
3570  
3740  
3910  
4102  
4250  
4420  
4590  
4760  
4930  
5100  
5270  
5440  
5610  
5780  
5950  
V3(R)  
V4(L)  
V4(R)  
VREG(L)  
VREG(R)  
VBA(L)  
VBA(R)  
VREF  
SEL68  
VSSA(L)  
VSSA(C)  
VSSA(R)  
WRb  
VEE(L)  
VEE(C)  
VEE(R)  
VSSH(L)  
VSSH(C)  
VSSH(R)  
C1+(L)  
C1+(R)  
C1-(L)  
C1-(R)  
C2+(L)  
C2+(R)  
C2-(L)  
C2-(R)  
C3+(L)  
C3+(R)  
C3-(L)  
C3-(R)  
RDb  
VDD(L)  
VDD(C)  
VDD(R)  
D0/SCL  
D1/SDA  
44 D2/EXCS  
45 D3/SMODE -3740 -1068 96  
46  
47  
48  
49  
50  
51  
D4/SPOL -3570 -1068 97  
D5  
D6  
D7  
D8  
D9  
-3400 -1068 98  
-3230 -1068 99  
-3060 -1068 100  
-2890 -1068 101  
-2720 -1068 102  
-50  
0
- 4 -  
NJU6821  
PAD COORDINATES 2  
Chip Size 19910µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X (µm)  
Y (µm) PAD No. Terminal  
X (µm)  
Y (µm)  
No.  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
COMI0  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9726  
9675  
9625  
9575  
9525  
9475  
9425  
9375  
9325  
9275  
9225  
9175  
9125  
9075  
9025  
8975  
8925  
8875  
8825  
8775  
8725  
8675  
8625  
8575  
8525  
8475  
8425  
8375  
8325  
8275  
8225  
8175  
8125  
8075  
50  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
SEGB10  
SEGC10  
SEGA11  
SEGB11  
SEGC11  
SEGA12  
SEGB12  
SEGC12  
SEGA13  
SEGB13  
SEGC13  
SEGA14  
SEGB14  
SEGC14  
SEGA15  
SEGB15  
SEGC15  
SEGA16  
SEGB16  
SEGC16  
SEGA17  
SEGB17  
SEGC17  
SEGA18  
SEGB18  
SEGC18  
SEGA19  
SEGB19  
SEGC19  
SEGA20  
SEGB20  
SEGC20  
SEGA21  
SEGB21  
SEGC21  
SEGA22  
SEGB22  
SEGC22  
SEGA23  
SEGB23  
SEGC23  
SEGA24  
SEGB24  
SEGC24  
SEGA25  
SEGB25  
SEGC25  
SEGA26  
SEGB26  
SEGC26  
SEGA27  
8025  
7975  
7925  
7875  
7825  
7775  
7725  
7675  
7625  
7575  
7525  
7475  
7425  
7375  
7325  
7275  
7225  
7175  
7125  
7075  
7025  
6975  
6925  
6875  
6825  
6775  
6725  
6675  
6625  
6575  
6525  
6475  
6425  
6375  
6325  
6275  
6225  
6175  
6125  
6075  
6025  
5975  
5925  
5875  
5825  
5775  
5725  
5675  
5625  
5575  
5525  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
SEGB27  
SEGC27  
SEGA28  
SEGB28  
SEGC28  
SEGA29  
SEGB29  
SEGC29  
SEGA30  
SEGB30  
SEGC30  
SEGA31  
SEGB31  
SEGC31  
SEGA32  
SEGB32  
SEGC32  
SEGA33  
SEGB33  
SEGC33  
SEGA34  
SEGB34  
SEGC34  
SEGA35  
SEGB35  
SEGC35  
SEGA36  
SEGB36  
SEGC36  
SEGA37  
SEGB37  
SEGC37  
SEGA38  
SEGB38  
SEGC38  
SEGA39  
SEGB39  
SEGC39  
SEGA40  
SEGB40  
SEGC40  
SEGA41  
SEGB41  
SEGC41  
SEGA42  
SEGB42  
SEGC42  
SEGA43  
SEGB43  
SEGC43  
SEGA44  
5475  
5425  
5375  
5325  
5275  
5225  
5175  
5125  
5075  
5025  
4975  
4925  
4875  
4825  
4775  
4725  
4675  
4625  
4575  
4525  
4475  
4425  
4375  
4325  
4275  
4225  
4175  
4125  
4075  
4025  
3975  
3925  
3875  
3825  
3775  
3725  
3675  
3625  
3575  
3525  
3475  
3425  
3375  
3325  
3275  
3225  
3175  
3125  
3075  
3025  
2975  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
164 SEGSA0  
165 SEGSB0  
166 SEGSC0  
167 SEGSA1  
168 SEGSB1  
169 SEGSC1  
170 DMY3(L)  
171 DMY3(R)  
172 DMY4(L)  
173 DMY4(R)  
1068 223  
1068 224  
1068 225  
1068 226  
1068 227  
1068 228  
1068 229  
1068 230  
1068 231  
1068 232  
1068 233  
1068 234  
1068 235  
1068 236  
1068 237  
1068 238  
1068 239  
1068 240  
1068 241  
1068 242  
1068 243  
1068 244  
1068 245  
1068 246  
1068 247  
1068 248  
1068 249  
1068 250  
1068 251  
1068 252  
1068 253  
1068 254  
1068 255  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
SEGA0  
SEGB0  
SEGC0  
SEGA1  
SEGB1  
SEGC1  
SEGA2  
SEGB2  
SEGC2  
SEGA3  
SEGB3  
SEGC3  
SEGA4  
SEGB4  
SEGC4  
SEGA5  
SEGB5  
SEGC5  
SEGA6  
SEGB6  
SEGC6  
SEGA7  
SEGB7  
SEGC7  
SEGA8  
SEGB8  
SEGC8  
SEGA9  
SEGB9  
SEGC9  
SEGA10  
- 5 -  
NJU6821  
PAD COORDINATES 3  
Chip Size 19910µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
No.  
PAD  
No.  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X (µm)  
Y (µm) PAD No. Terminal  
X (µm)  
Y (µm)  
307 SEGB44  
308 SEGC44  
309 SEGA45  
310 SEGB45  
311 SEGC45  
312 SEGA46  
313 SEGB46  
314 SEGC46  
315 SEGA47  
316 SEGB47  
317 SEGC47  
318 SEGA48  
319 SEGB48  
320 SEGC48  
321 SEGA49  
322 SEGB49  
323 SEGC49  
324 SEGA50  
325 SEGB50  
326 SEGC50  
327 SEGA51  
328 SEGB51  
329 SEGC51  
330 SEGA52  
331 SEGB52  
332 SEGC52  
333 SEGA53  
2925  
2875  
2825  
2775  
2725  
2675  
2625  
2575  
2525  
2475  
2425  
2375  
2325  
2275  
2225  
2175  
2125  
2075  
2025  
1975  
1925  
1875  
1825  
1775  
1725  
1675  
1625  
1575  
1525  
1475  
1425  
1375  
1325  
1275  
1225  
1175  
1125  
1075  
1025  
975  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
SEGB61  
SEGC61  
SEGA62  
SEGB62  
SEGC62  
SEGA63  
SEGB63  
SEGC63  
SEGA64  
SEGB64  
SEGC64  
SEGA65  
SEGB65  
SEGC65  
SEGA66  
SEGB66  
SEGC66  
SEGA67  
SEGB67  
SEGC67  
SEGA68  
SEGB68  
SEGC68  
SEGA69  
SEGB69  
SEGC69  
SEGA70  
SEGB70  
SEGC70  
SEGA71  
SEGB71  
SEGC71  
SEGA72  
SEGB72  
SEGC72  
SEGA73  
SEGB73  
SEGC73  
SEGA74  
SEGB74  
SEGC74  
SEGA75  
SEGB75  
SEGC75  
SEGA76  
SEGB76  
SEGC76  
SEGA77  
SEGB77  
SEGC77  
SEGA78  
375  
325  
275  
225  
175  
125  
75  
25  
-25  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
SEGB78  
SEGC78  
SEGA79  
SEGB79  
SEGC79  
SEGA80  
SEGB80  
SEGC80  
SEGA81  
SEGB81  
SEGC81  
SEGA82  
SEGB82  
SEGC82  
SEGA83  
SEGB83  
SEGC83  
SEGA84  
SEGB84  
SEGC84  
SEGA85  
SEGB85  
SEGC85  
SEGA86  
SEGB86  
SEGC86  
SEGA87  
SEGB87  
SEGC87  
SEGA88  
SEGB88  
SEGC88  
SEGA89  
SEGB89  
SEGC89  
SEGA90  
SEGB90  
SEGC90  
SEGA91  
SEGB91  
SEGC91  
SEGA92  
SEGB92  
SEGC92  
SEGA93  
SEGB93  
SEGC93  
SEGA94  
SEGB94  
SEGC94  
SEGA95  
-2175  
-2225  
-2275  
-2325  
-2375  
-2425  
-2475  
-2525  
-2575  
-2625  
-2675  
-2725  
-2775  
-2825  
-2875  
-2925  
-2975  
-3025  
-3075  
-3125  
-3175  
-3225  
-3275  
-3325  
-3375  
-3425  
-3475  
-3525  
-3575  
-3625  
-3675  
-3725  
-3775  
-3825  
-3875  
-3925  
-3975  
-4025  
-4075  
-4125  
-4175  
-4225  
-4275  
-4325  
-4375  
-4425  
-4475  
-4525  
-4575  
-4625  
-4675  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
-75  
-125  
-175  
-225  
-275  
-325  
-375  
-425  
-475  
-525  
-575  
-625  
-675  
-725  
-775  
-825  
-875  
-925  
-975  
-1025  
-1075  
-1125  
-1175  
-1225  
-1275  
-1325  
-1375  
-1425  
-1475  
-1525  
-1575  
-1625  
-1675  
-1725  
-1775  
-1825  
-1875  
-1925  
-1975  
-2025  
-2075  
-2125  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
SEGB53  
SEGC53  
SEGA54  
SEGB54  
SEGC54  
SEGA55  
SEGB55  
SEGC55  
SEGA56  
SEGB56  
SEGC56  
SEGA57  
SEGB57  
SEGC57  
SEGA58  
SEGB58  
SEGC58  
SEGA59  
SEGB59  
SEGC59  
SEGA60  
SEGB60  
SEGC60  
SEGA61  
925  
875  
825  
775  
725  
675  
625  
575  
525  
475  
425  
- 6 -  
NJU6821  
PAD COORDINATES 4  
Chip Size 19910µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
No.  
PAD  
No.  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X (µm)  
Y (µm) PAD No. Terminal  
X (µm)  
Y (µm)  
460 SEGB95  
461 SEGC95  
462 SEGA96  
463 SEGB96  
464 SEGC96  
465 SEGA97  
466 SEGB97  
467 SEGC97  
468 SEGA98  
469 SEGB98  
470 SEGC98  
471 SEGA99  
472 SEGB99  
473 SEGC99  
474 SEGA100  
475 SEGB100  
476 SEGC100  
477 SEGA101  
478 SEGB101  
479 SEGC101  
480 SEGA102  
481 SEGB102  
482 SEGC102  
483 SEGA103  
484 SEGB103  
485 SEGC103  
486 SEGA104  
487 SEGB104 -6075 1068  
488 SEGC104 -6125 1068  
489 SEGA105 -6175 1068  
490 SEGB105 -6225 1068  
491 SEGC105 -6275 1068  
492 SEGA106 -6325 1068  
493 SEGB106 -6375 1068  
494 SEGC106 -6425 1068  
495 SEGA107 -6475 1068  
496 SEGB107 -6525 1068  
497 SEGC107 -6575 1068  
498 SEGA108 -6625 1068  
499 SEGB108 -6675 1068  
500 SEGC108 -6725 1068  
501 SEGA109 -6775 1068  
502 SEGB109 -6825 1068  
503 SEGC109 -6875 1068  
-4725 1068  
-4775 1068  
-4825 1068  
-4875 1068  
-4925 1068  
-4975 1068  
-5025 1068  
-5075 1068  
-5125 1068  
-5175 1068  
-5225 1068  
-5275 1068  
-5325 1068  
-5375 1068  
-5425 1068  
-5475 1068  
-5525 1068  
-5575 1068  
-5625 1068  
-5675 1068  
-5725 1068  
-5775 1068  
-5825 1068  
-5875 1068  
-5925 1068  
-5975 1068  
-6025 1068  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
SEGB112  
SEGC112  
SEGA113  
SEGB113  
SEGC113  
SEGA114  
SEGB114  
SEGC114  
SEGA115  
SEGB115  
SEGC115  
SEGA116  
SEGB116  
SEGC116  
SEGA117  
SEGB117  
SEGC117  
SEGA118  
SEGB118  
SEGC118  
SEGA119  
SEGB119  
SEGC119  
SEGA120  
SEGB120  
-7275  
-7325  
-7375  
-7425  
-7475  
-7525  
-7575  
-7625  
-7675  
-7725  
-7775  
-7825  
-7875  
-7925  
-7975  
-8025  
-8075  
-8125  
-8175  
-8225  
-8275  
-8325  
-8375  
-8425  
-8475  
-8525  
-8575  
-8625  
-8675  
-8725  
-8775  
-8825  
-8875  
-8925  
-8975  
-9025  
-9075  
-9125  
-9175  
-9225  
-9275  
-9325  
-9375  
-9425  
-9475  
-9525  
-9575  
-9625  
-9675  
-9726  
-9726  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
1068  
900  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
SEGSA2  
SEGSB2  
SEGSC2  
SEGSA3  
SEGSB3  
SEGSC3  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
DMY7(L)  
DMY7(R)  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
-9726  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-500  
-550  
-600  
-650  
-700  
-750  
-800  
-850  
-900  
536 SEGC120  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
SEGA121  
SEGB121  
SEGC121  
SEGA122  
SEGB122  
SEGC122  
SEGA123  
SEGB123  
SEGC123  
SEGA124  
SEGB124  
SEGC124  
SEGA125  
SEGB125  
SEGC125  
SEGA126  
SEGB126  
SEGC126  
SEGA127  
SEGB127  
SEGC127  
DMY5(L)  
DMY5(R)  
DMY6(L)  
DMY6(R)  
504  
505  
SEGA110 -6925 1068  
SEGB110 -6975 1068  
506 SEGC110 -7025 1068  
507  
508  
509  
510  
SEGA111 -7075 1068  
SEGB111 -7125 1068  
SEGC111 -7175 1068  
SEGA112 -7225 1068  
850  
- 7 -  
NJU6821  
BLOCK DIAGRAM  
VSSA  
VDDA  
VSSH  
VSS  
VDD  
Segment Driver  
Common Driver  
Shift Register  
5
V
LCD, V1 -V4  
Gradation Circuit  
Data Latch Circuit  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
Voltage  
booster  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
Display Data RAM  
(DD RAM)  
128x80x(3+3+2)bit  
Voltage  
regulator  
VOUT  
VEE  
VREF  
VBA  
VREG  
Icon Data RAM  
(PG RAM)  
128x2x(3+3+2)bit  
D15  
Column Address Decoder  
Column Address Counter  
Column Address Register  
D14  
FR  
D13  
RAM  
Interface  
Display  
timing  
Generator  
FLM  
CL  
D12  
D11  
D10  
D9  
CLK  
D8  
OSC2  
OSC1  
Oscillator  
D7  
D6  
D5  
D4/SPOL  
D3/SMODE  
D2/EXCS  
D1/SDA  
D0/SCL  
Instruction  
Decoder  
Register Read  
Control  
Bus Holder  
Pole Control  
Internal Bus  
MPU Interface  
CSb RS  
M/S  
RDb WRb P/S  
SEL68 RESb TEST  
- 8 -  
NJU6821  
POWER SUPPLY CIRCUITS BLOCK DIAGRAM  
+
-
Reference  
VBA  
+
-
VLCD  
Voltage Generator  
+
-
V1  
Voltage regulator  
VREG  
VREF  
+
-
+
-
V2  
Gain  
Control  
(1x-7x)  
+
-
V3  
E.V.R.  
1/2VRE  
+
-
V4  
EVR register  
Boost level register  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
VEE  
Voltage  
Booster  
VOUT  
- 9 -  
NJU6821  
TERMINAL DESCRIPTION 1  
No.  
Symbol  
VDD  
I/O  
Power  
Function  
Power supply for logic circuits  
21,22,23,  
39,40,41  
27,28,29,  
58,59,60  
67,68,69,  
88,89,90  
31  
VSS  
VSSH  
VDDA  
Power  
Power  
Power  
GND for logic circuits  
GND for high voltage circuits  
This terminal is internally connected to the VDD level.  
This terminal is used to fix the selection terminals to the VDD  
level.  
Note) Do not use this terminal for a main power supply.  
This terminal is internally connected to the VSS level.  
This terminal is used to fix the selection terminals to the VSS  
level.  
17,18,19,  
34,35,36  
VSSA  
Power  
Note) Do not use this terminal for a main GND.  
70,71,115,116  
72,73  
VLCD  
V1  
Power/O LCD driving voltages  
When the internal voltage booster is not used, external LCD  
74,75  
76,77  
78,79  
V2  
V3  
V4  
driving voltages (V1 to V4 and VLCD) must be supplied on these  
terminals. And the external voltages must be maintained in the  
following relation.  
VSS<V4<V3<V2<V1<VLCD  
When the internal voltage booster is used, the LCD driving  
voltages (V1 to V4 and VLCD) are enabled by the “Power control”  
instruction in the master mode operation. The capacitors  
between the VSS and these terminals are necessary.  
Capacitor connection terminals for the voltage booster  
91,92  
93,94  
95,96  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
VBA  
O
O
Capacitor connection terminals for the voltage booster  
Capacitor connection terminals or the voltage booster  
Capacitor connection terminals for the voltage booster  
Capacitor connection terminals for the voltage booster  
Capacitor connection terminals for the voltage booster  
Output of the reference-voltage generator  
97,98  
99,100  
101,102  
103,104  
105,106  
107,108  
109,110  
111,112  
113,114  
82,83  
O
O
O
O
O
I
84  
VREF  
VEE  
Input of the voltage regulator  
85,86,87  
117,118  
80,81  
24  
Power  
Input of the voltage booster  
This terminal is normally connected to the VDD level.  
Power/O Output of the voltage booster  
Input for high voltage circuits in using external power supply  
Output of the voltage regulator  
VOUT  
VREG  
O
I
Reset  
Active “0”  
RESb  
- 10 -  
NJU6821  
TERMINAL DESCRIPTION 2  
No.  
42  
Symbol  
D0/SCL  
I/O  
I/O  
Function  
Parallel interface:  
D7 to D0 : 8-bit bi-directional bus  
In the parallel interface mode (P/S=“1”), these terminals  
connect to 8-bit bi-directional MPU bus.  
43  
44  
D1/SDA  
D2/EXCS  
D3/SMODE  
D4/SPOL  
D5,D6,D7  
I/O  
I/O  
I/O  
I/O  
I/O  
Serial interface:  
SDA : serial data  
SCL : serial clock  
EXCS : extension chip-selection  
SMODE : 3-/4-line serial interface mode selection  
SPOL : RS polarity selection  
(in the 3-line serial interface mode)  
45  
46  
In the 3-/4-line serial interface mode (P/S=“0”), the D0 terminal  
is assigned to the SCL and the D1 terminal to the SDA.  
In the 3-line serial interface mode, the D4 terminal is assigned  
to the SPOL.  
47,48,49  
Serial data on the SDA is fetched at the rising edge of the  
SCL signal in the order of the D7, D6…D0, and the fetched data  
is converted into 8-bit parallel data at the falling edge of the 8th  
SCL signal.  
The SCL signal must be set to “0” after data transmissions or  
during non-access.  
50,51,52,53  
54,55,56,57  
D8,D9,D10,D11,  
D12,D13,D14,D15  
I/O  
8-bit bi-directional bus  
In the 16-bit data bus mode, these terminals are assigned to  
upper 8-bit data bus.  
In the serial interface mode or the 8-bit data bus mode of the  
parallel interface, these terminals must be fixed to “1” or “0”.  
Chip select  
Active “0”  
Resister select  
25  
26  
I
I
CSb  
RS  
This signal distinguishes transferred data as an instruction or  
display data as follows.  
RS  
H
L
Distinct.  
Instruction  
Display data  
38  
37  
I
I
80 series MPU interface (P/S=“1”, SEL68=“0”)  
RDb signal. Active “0”.  
RDb (E)  
68 series MPU interface (P/S=“1”, SEL68=“1”)  
Enable signal. Active “1”.  
80 series MPU interface (P/S=“1”, SEL68=“0”)  
WRb signal. Active “0”.  
WRb (R/W)  
68 series MPU interface (P/S=“1”, SEL68=“1”)  
R/W signal.  
R/W  
H
L
Status  
Read  
Write  
- 11 -  
NJU6821  
TERMINAL DESCRIPTION 3  
No.  
33  
Symbol  
SEL68  
I/O  
I
Function  
MPU interface type selection  
SEL68  
H
L
Status  
68 series  
80 series  
32  
P/S  
I
Parallel / serial interface mode selection  
Chip  
Select  
P/S  
Data/Instruction  
Data  
Read/Write  
Serial clock  
H
L
CSb  
RS  
RS  
D0~D7  
RDb, WRb  
Write only  
-
CSb  
SDA (D1)  
SCL (D0)  
Since the D15 to D5 terminals are in the high impedance in the serial  
interface mode (P/S=“0”), they must be fixed to “1” or “0”. The RDb and  
WRb terminals also must be “1” or “0”.  
20  
61  
TEST  
CL  
I
Maker test terminal  
This terminal should be fixed to “0”.  
LCD line clock  
I/O  
This signal is used to count up the line counter and latch the display  
data into the data latch circuit.  
At the rising edge of the CL signal, the line counter is counted-up and  
the 384-bit display data, corresponding to the counted-up line address,  
is latched into the data latch circuit. At the falling edge of the CL signal,  
the latched data output onto the segment drivers.  
M/S  
H
L
Status  
Master  
Slave  
CL  
Output  
Input  
62  
FLM  
I/O  
LCD frame maker signal  
This signal is used to indicate the start of a new display frame. It  
presets an initial display line address into the line counter when the  
FLM signal becomes “1”.  
M/S  
H
L
Status  
Master  
Slave  
FLM  
Output  
Input  
63  
FR  
I/O  
LCD alternate signal  
This signal is toggled to alternate the crystal polarization of a LCD  
panel. It can be programmed so that the FR signal will toggle at every  
frame or once every N frames in the N-line inversion mode.  
M/S  
H
L
Status  
Master  
Slave  
FR  
Output  
Input  
30  
M/S  
I
Master / slave select  
M/S  
H
L
Status  
Master  
Slave  
Oscillator  
Enable  
Disable  
Power supply  
Enable  
Disable  
- 12 -  
NJU6821  
TERMINAL DESCRIPTION 4  
No.  
Symbol  
SEGA0-SEGA127  
SEGB0-SEGB127  
I/O  
O
Function  
,
,
Segment output  
REV Mode  
174557  
SEGC0-SEGC127  
Turn-off  
Turn-on  
Normal  
Reverse  
0
1
1
0
These terminals output LCD driving waveforms in accordance  
with the combination of the FR signal and display data.  
In the B/W mode  
FR signal  
Display data  
Normal display mode  
V2  
VLCD  
V2  
V3  
VSS  
V3  
Reverse display  
mode  
VLCD  
VSS  
SEGSA0-SEGSA3,  
SEGSB0-SEGSB3,  
SEGSC0-SEGSC3  
O
O
Icon-segment output  
164169,  
562567  
These terminals are assigned at both edge of normal segment  
output terminals line for out line frame display.  
Common output  
These terminals output LCD driving waveforms in accordance  
with the combination of the FR signal and scanning data.  
COM0-COM79  
162137,  
132119,  
568594,  
315  
Data  
H
L
H
L
FR  
H
H
L
Output level  
VSS  
V1  
VLCD  
V4  
L
163  
16  
65,  
66  
COMI0  
COMI1  
OSC1  
OSC2  
O
O
I
Icon common output  
Icon common output  
OSC  
O
When the internal oscillator clock is used in the master mode or  
when the LSI is used in the slave mode, these terminals must be  
opened. In these cases, the OSC1 outputs the VSS level.  
When an external oscillator is used, external clock is input to the  
OSC1 terminal or an external resistor is connected between the  
OSC1 and OSC2 terminals.  
64  
CLK  
I/O  
Display timing synchronous clock  
This signal is used to synchronize the display timing between the  
master and slave LSIs.  
M/S  
H
L
Mode  
Master  
Slave  
CLK  
Output  
Input  
(Terminal No. 1,2,133,134,135,136,170,171,172,173,558,559,560,561,595, and 596 are dummy.)  
- 13 -  
NJU6821  
FUNCTIONAL DESCRIPTION  
(1) MPU Interface  
(1-1) Selection of parallel / serial interface mode  
The P/S terminal is used to select parallel or serial interface mode as shown in the following table. In the  
serial interface mode, it is not possible to read out display data from the DDRAM, and status from the  
internal registers.  
Table  
WRb  
WRb  
-
P/S  
P/S mode  
Parallel I/F  
Serial I/F  
CSb  
CSb  
CSb  
RS  
RS  
RS  
RDb  
RDb  
-
SEL68  
SEL68  
-
SDA  
SDA  
SCL  
SCL  
Data  
D7-D0  
(D15-D0)  
H
L
-
Note 1) “ -” : Fix to “1” or “0”.  
(1-2) Selection of MPU interface type  
In the parallel interface mode, the SEL68 terminal is used to select 80- or 68-series MPU interface type, as  
shown in the following table.  
Table  
WRb  
R/W  
SEL68  
MPU type  
CSb  
CSb  
CSb  
RS  
RS  
RS  
RDb  
E
Data  
H
L
68 series MPU  
80 series MPU  
D7-D0 (D15-D0)  
D7-D0 (D15-D0)  
WRb  
RDb  
(1-3) Data distinction  
In the parallel interface mode, the combination of RS, RDb, and WRb (R/W) signals distinguishes  
transferred data between the LSI and MPU as instruction or display data, as shown in the following table.  
Table  
68 series  
80 series  
Function  
RS  
RDb  
WRb  
R/W  
H
Read out instruction data  
Write instruction data  
Read out display data  
Write display data  
H
H
L
L
H
L
H
L
L
H
H
L
L
L
H
(1-4) Selection of serial interface mode  
In the serial interface mode, the SMODE terminal is used to select the 3- or 4-line serial interface mode as  
shown in the following table.  
Table  
SMODE  
Serial interface mode  
H
L
3-line  
4-line  
- 14 -  
NJU6821  
(1-5) 4-line serial interface mode  
In the serial interface mode, when the chip select is active (CSb=“0”), the SDA and the SCL are enabled.  
When the chip select is not active (CSb=“1”), the SDA and the SCL are disabled, and the internal shift  
register and the counter are being initialized. The 8-bit serial data on the SDA is fetched at the rising edge  
of the SCL signal in order of the D7, D6…D0, and the fetched data is converted into the 8-bit parallel data at  
the rising edge of the 8th SCL signal.  
In the 4-line serial interface mode, the transferred data on the SDA is distinguished as display data or  
instruction data in accordance with the condition of the RS signal.  
Table  
RS  
H
Data distinction  
Instruction data  
Display data  
L
Since the serial interface operation is sensitive to external noises, the SCL should be set to “0” after data  
transmissions or during non-access. To release a mal-function caused by the external noises, the chip-  
selected status should be released (CSb=“1”) after each of the 8-bit data transmissions. The following  
figure illustrates the interface timing for the 4-line serial interface operation.  
CSb  
RS  
VALID  
D0  
SDA  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
6
D1  
7
SCL  
8
4-line serial interface timing  
(1-6) 3-line serial interface mode  
In the serial interface mode, when the chip select is active (CSb=“0”), the SDA and SCL are enabled.  
When the chip select is not active (CSb=“1”), the SDA and SCL are disabled and the internal shift register  
and counter are being initialized. 9-bit serial data on the SDA is fetched at the rising edge of the SCL  
signal in order of the RS, D7, D6…D0, and the fetched data is converted into the 9-bit parallel data at the  
falling edge of the 9th SCL signal.  
In the 3-line serial interface mode, data on the SDA is distinguished as display data or instruction data in  
accordance with the condition of the RS bit of SDA data and the status of the SPOL, as follows.  
Table  
SPOL=L  
Data distinction  
SPOL=H  
Data distinction  
RS  
L
RS  
L
Display data  
Instruction data  
Display data  
H
Instruction data  
H
- 15 -  
NJU6821  
Since the serial interface operation is sensitive to external noises, the SCL must be set to “0” after data  
transmissions or during non-access. To release a malfunction caused by the external noises, the chip-  
selected status should be released (CSb=“1”) after each of 9-bit data transmissions. The following figure  
illustrates the interface timing of the 3-line serial interface operation.  
CSb  
SDA  
SCL  
RS  
1
D7  
2
D6  
D5  
4
D4  
5
D3  
D2  
D1  
D0  
3
6
7
8
9
3-line serial interface timing  
(1-7) Unification of the CSb signals (in the serial interface mode)  
When two of the NJU6821 is used as a master and slave driver in the 3- or 4-line serial interface mode,  
both of the CSb signals can be notified using the EXCS terminals in order to simplify the control signals. In  
this time, the master’s EXCS is assigned to output and slave’s EXCS is assigned to input. The status of  
the EXCS signal is controlled by the “EXCS control” instruction.  
of the master LSI.  
During both of the EXCS and CSb are “0”, the slave LSI is enabled to accept instructions from MPU but  
the master LSI is disabled to accept any instruction except the “EXCS control” instruction. During the  
EXCS is “1” and CSb is “0”, the master LSI is enabled and the slave LSI is disabled.  
RS SCL SDA CSb  
EXCS: Extension CSb  
CSb  
EXCS=0, CSb=0: Slave LSI is enabled  
SDA  
EXCS=1,CSb=0: Master LSI is enabled  
SCL  
RS  
P/S: Parallel/serial interface mode select  
(MASTER)  
M/S  
P/S=0: Serial interface  
P/S=1: Parallel interface  
P/S  
SMODE  
SPOL  
EXCS  
M/S: Master/slave select  
M/S=0: Slave operation  
M/S=1: Master operation  
CSb  
SDA  
SCL  
SMODE: 3-/4-line serial interface mode select  
RS  
SMODE=0: 4-line serial interface  
SMODE=1: 3-line serial interface  
(SLAVE)  
M/S  
P/S  
SMODE  
SPOL  
EXCS  
SPOL: RS polarity select  
SPOL=0, RS=0: Display data  
SPOL=0, RS=1: Instruction data  
SPOL=1, RS=0: Instruction data  
SPOL=1, RS=1: Display data  
4-line serial interface  
(In the 3-line serial interface mode)  
- 16 -  
NJU6821  
(2) Access to the DDRAM  
When the CSb signal is ”0”, the transferred data from MPU is written into the DDRAM or instruction register in  
accordance with the condition of the RS signal.  
When the RS signal is “1”, the transferred data is distinguished as display data. After the “column address” and  
“row address” instructions are executed, the display data can be written into the DDRAM by the “display data  
write” instruction. The display data is written at the rising edge of the WRb signal in the 80 series MPU mode, or  
at the falling edge of the E signal in the 68 series MPU mode.  
Table  
RS  
H
Data distinction  
Display RAM Data  
L
Internal Command Register  
In the sequence of the “display data read” operation, the transferred data from MPU is temporarily held in the  
internal bus-holder and then transferred to the internal data-bus. When the “display data read” operation is  
executed just after the “column address” and “row address” instructions or “display data write” instruction,  
unexpected data on the bus-holder is read out at the 1st execution, then the data of designated DDRAM  
address is read out from the 2nd execution. For this reason, a dummy read cycle must be executed to avoid  
the unexpected 1st data read.  
Display data write operation  
n
n+1  
n+2  
n+3  
n+4  
D0 to D15  
WRb  
n
n+1  
n+2  
n+3  
n+4  
Bus Holder  
WRb  
Display data read operation  
WRb  
D0 to D7(D0 to D15)  
n
n
n+1  
Data Read  
n+1 Address n+2 Address  
n+2  
Address Set  
n
Dummy  
Read  
Data Read  
n Address  
Data Read  
RDb  
Note) In the 16-bit data bus mode, instruction data must be 16-bit as well as the display data.  
- 17 -  
NJU6821  
(3) Access to the instruction register  
Each of the instruction resisters is assigned to each address between 0H and FH and content of the instruction  
register can be read out by the combination of the “Instruction resister address” and ”Instruction resister read”.  
WRb  
M
m
N
n
D0~D7  
Instruction resister  
address set  
Instruction resister Instruction resister Instruction resister  
read address set read  
RDb  
(4) 8-/16-bit data bus length for display data (in the parallel interface mode)  
The 8- or 16-bit data bus length for display data is determined by the “WLS” of the “Data bus length” instruction.  
In the 16-bit data bus mode, instruction data must be 16-bit (D15 to D0) as well as display data. However, for the  
access to the instruction register, the only lower 8-bit data (D7 to D0) of the 16-bit data is valid. For the access  
to the DDRAM, all of the 16-bit data (D15 to D0) is valid.  
Table  
WLS  
L
Data bus length mode  
8-bit  
H
16-bit  
(5) Initial display line register  
The initial display line resister specifies the line address, corresponding to the initial COM line, by the “Initial  
display line” instruction. The initial COM line signifies the common driver, starting scanning the display data in  
the DDRAM, and specified by the “Initial COM line” instruction.  
The line address, established in the initial display line resister, is preset into the line counter whenever the FLM  
signal becomes “1”. At the rising edge of the CL signal, the line counter is counted-up and addressed 384-bit  
display data, corresponding to the counted-up line address, is latched into the data latch circuit. At the falling  
edge of the CL signal, the latched data outputs to the segment drivers.  
- 18 -  
NJU6821  
(6) DDRAM mapping  
The DDRAM is capable of 1,024-bit (8-bit x 128-segment) for the column address and 82-bit for the row  
address.  
In the gradation mode, each pixel for RGB corresponds to the successive 3-segment drivers that consist of 2-  
segment drivers for 8-gradation and 1-segment driver for 4-gradation, so that the LSI can drive a 256-color  
display (8-gradation x 8-gradation x 4-gradation) with up to 128x82 pixels. The 8-gradation level is controlled by  
3-bit display data in the DDRAM and 4-gradation level is controlled by 2-bit display data in the DDRAM  
respectively.  
In the B&W mode, only MSB data from each 3-bit and 2-bit RGB display data group in the DDRAM is used.  
Therefore, 384 x 82 pixels in the B&W display is also available.  
The range of the column address varies depending on data bus length. The range between 00H and 70F is  
used in the 8-bit data bus length and the range between 00H and 3FH is in the 16-bit data bus length.  
In the 8-bit data bus length mode  
column-address  
0H  
8bit  
1H  
8bit  
7EH  
8bit  
7FH  
8bit  
0 H  
row-  
address  
51H  
8bit  
8bit  
8bit  
8bit  
In the 16-bit data bus length mode  
column-address  
0H  
3FH  
0 H  
16bit  
16bit  
row-  
address  
51H  
16bit  
16bit  
The DDRAM is accessing 8-bit or 16-bit unit addressed by column and row address. In the 16-bit data bus  
length mode, over 40H address setting is prohibited.  
The increment for the column address and row address are set to the auto-increment mode by programming  
“AXI” and “AYI” registers of the “Increment control” instruction. In this mode, the contents of the column  
address and row address counters automatically increment whenever the DDRAM is accessed.  
The column address and row address counters, independent of the line counter. They are used to designate  
the column address and row address for the display data transferred from MPU. On the other hand, the line  
counter is used to generate the line address, and output display data to the segment drivers, being  
synchronized with the display control timing of the FLM and CL signals.  
- 19 -  
NJU6821  
(7) Window addressing mode  
In addition to the above usual DDRAM addressing, it is possible to access some part of DDRAM in using the  
window addressing mode, in which the start and end points are designated. The start point is determined by the  
“column address” and “row address” instructions, and the end point is determined by the “Window end column  
address “and ”Window end row address” instructions. The setting example of the window addressing is listed,  
as follows.  
1. Set WIN=1, AXI=1, and AYI=1 by the “Increment control” instruction  
2. Set the start point by the “column address” and “row address” instructions  
3. Set the end point by the “Window end column address” and “Window end row address” instructions  
4. Enable to access to the DDRAM in the window addressing mode  
In the window addressing mode (WIN=1, AXI=1, AYI=1), the read-modify-write operation is available by setting  
“0” to the “AIM” register of the “Increment control” instruction.  
And in the window addressing mode, the following start and end point must be maintained to abide a  
malfunction.  
AX (column address of start point) < EX (column address of end point) < Maximum of column address  
AY (row address of start point) < EY (row address of end point) < Maximum of row address  
column address  
(X, Y)  
Start point  
End point  
Window display area  
(X, Y)  
Whole DDRAM area  
(8) Reverse display ON/OFF  
The “Reverse display ON/OFF” function is used to reverse the display data without changing the contents of  
the DDRAM.  
Table  
REV  
0
Display  
Normal  
DDRAM data Display data  
0
1
0
1
0
1
1
0
1
Reverse  
(9) Segment direction  
The “Segment direction” function is used to reverse the assignment for the segment drivers and column  
address, and it is possible to reduce the restrictions for the placement of the LSI on the LCD modules.  
- 20 -  
NJU6821  
(10)The relationship among the DDRAM column address, display data and segment drivers  
In the color mode, and 16-bit data bus mode  
REF SWAP  
column address / bit / segment assign  
0
1
0
1
X=00H  
X=3FH  
X=3FH  
X=00H  
REF SWAP  
column address / bit / segment assign  
0
1
1
0
X=00H  
X=3FH  
X=3FH  
X=00H  
In the color mode, and 8-bit data bus mode  
REF SWAP  
column address / bit / segment assign  
0
1
0
1
X=00H  
X=7FH  
X=01H  
X=7EH  
X=7EH  
X=01H  
X=7FH  
X=00H  
REF SWAP  
column address / bit / segment assign  
0
1
1
0
X=00H  
X=7FH  
X=01H  
X=7EH  
X=7EH  
X=01H  
X=7FH  
X=00H  
- 21 -  
NJU6821  
In the B&W mode, and 16-bit data bus mode  
REF SWAP  
column address / bit / segment assign  
0
1
0
1
X=00H  
X=3FH  
X=3FH  
X=00H  
REF SWAP  
column address / bit / segment assign  
0
1
1
0
X=00H  
X=3FH  
X=3FH  
X=00H  
In the B&W mode, and 8-bit data bus mode  
REF SWAP  
column address / bit / segment assign  
0
1
0
1
X=00H  
X=7FH  
X=01H  
X=7EH  
X=7EH  
X=01H  
X=7FH  
X=00H  
REF SWAP  
column address / bit / segment assign  
0
1
1
0
X=00H  
X=7FH  
X=01H  
X=7EH  
X=7EH  
X=01H  
X=7FH  
X=00H  
- 22 -  
NJU6821  
Bit assignments bitween write and read data (in the 16-bit data bus mode)  
REF=0, SWAP=0  
Write data  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10 D11  
D12 D13 D14  
D15  
Segment data  
Read data  
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10SEG11SEG12SEG13SEG14 SEG15  
D0  
D1  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
D8  
D8  
D9  
D9  
D10 D11  
D10 D11  
D12 D13 D14  
D12 D13 D14  
D15  
D15  
REF=0, SWAP=1  
Write data  
D0  
D1  
D2  
Segment data  
Read data  
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10SEG11SEG12SEG13SEG14 SEG15  
D0  
D1  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
D8  
D8  
D9  
D9  
D10 D11  
D10 D11  
D12 D13 D14  
D12 D13 D14  
D15  
D15  
REF=1, SWAP=0  
Write data  
D0  
D1  
D2  
Segment data  
Read data  
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10SEG11SEG12SEG13SEG14 SEG15  
D0  
D1  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
D8  
D8  
D9  
D9  
D10 D11  
D10 D11  
D12 D13 D14  
D12 D13 D14  
D15  
D15  
REF=1, SWAP=1  
Write data  
D0  
D1  
D2  
Segment data  
Read data  
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10SEG11SEG12SEG13SEG14 SEG15  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10 D11  
D12 D13 D14  
D15  
- 23 -  
NJU6821  
Examples for write and read data (in the 16-bit data bus mode)  
REF=0, SWAP=0  
D15  
D0  
0
Write data  
1
1
1
0
0
1
0
0
1
1
1
1
0
0
1
(E4F2H)  
D1  
5
1
D0  
0
Read data  
Write data  
Read data  
Write data  
Read data  
Write data  
Read data  
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
0
0
1
0
0
0
1
0
0
1
0
0
0
1
1
1
0
1
1
1
0
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
(E4F2H)  
(E4F2H)  
(4F27H)  
(E4F2H)  
(E4F2H)  
(E4F2H)  
(4F27H)  
REF=0, SWAP=1  
D15  
D0  
0
1
1
1
D15  
0
D0  
1
1
0
REF=1, SWAP=0  
D15  
D0  
0
1
1
1
D15  
1
D0  
0
1
1
REF=1, SWAP=1  
D15  
D0  
0
1
1
1
D15  
0
D0  
1
1
0
- 24 -  
NJU6821  
Bit assignments between write and read data (in the 8-bit data bus mode)  
REF=0, SWAP=0  
Write data  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Segment data  
Read data  
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7  
D0  
D1  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
REF=0, SWAP=1  
Write data  
D0  
D1  
D2  
Segment data  
Read data  
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7  
D0  
D1  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
REF=1, SWAP=0  
Write data  
D0  
D1  
D2  
Segment data  
Read data  
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7  
D0  
D1  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
REF=1, SWAP=1  
Write data  
D0  
D1  
D2  
Segment data  
Read data  
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
- 25 -  
NJU6821  
Examples for write and read data (in the 8-bit data bus mode)  
REF=0, SWAP=0  
D15  
1
D0  
0
Write data  
Read data  
Write data  
Read data  
Write data  
Read data  
Write data  
Read data  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
0
0
1
(E4H)  
(E4H)  
(E4H)  
(27H)  
(E4H)  
(E4H)  
(E4H)  
(27H)  
D15  
1
D0  
0
1
1
REF=0, SWAP=1  
D15  
D0  
0
1
1
1
D15  
0
D0  
1
0
1
REF=1, SWAP=0  
D15  
D0  
0
1
1
1
D15  
1
D0  
0
1
1
REF=1, SWAP=1  
D15  
D0  
0
1
1
1
D15  
0
D0  
1
0
1
- 26 -  
NJU6821  
The relationship among the PGRAM column address, display data and segment drivers  
In the color mode, and 16-bit data bus mode  
REF SWAP  
column address / bit / segment assign  
0
1
0
1
X=00H  
X=01H  
X=01H  
X=00H  
REF SWAP  
column address / bit / segment assign  
0
1
1
0
X=00H  
X=01H  
X=01H  
X=00H  
In the color mode, and 8-bit data bus mode  
REF SWAP  
column address / bit / segment assign  
0
1
0
1
X=00H  
X=03H  
X=01H  
X=02H  
X=02H  
X=01H  
X=03H  
X=00H  
REF SWAP  
column address / bit / segment assign  
0
1
1
0
X=00H  
X=03H  
X=01H  
X=02H  
X=02H  
X=01H  
X=03H  
X=00H  
- 27 -  
NJU6821  
In the B&W mode, and 16-bit data bus mode  
REF SWAP  
column address / bit / segment assign  
0
1
0
1
X=00H  
X=01H  
X=01H  
X=00H  
REF SWAP  
column address / bit / segment assign  
0
1
1
0
X=00H  
X=01H  
X=01H  
X=00H  
In the B&W mode, and 8-bit data bus mode  
REF SWAP  
column address / bit / segment assign  
0
1
0
1
X=00H  
X=03H  
X=01H  
X=02H  
X=02H  
X=01H  
X=03H  
X=00H  
REF SWAP  
column address / bit / segment assign  
0
1
1
0
X=00H  
X=03H  
X=01H  
X=02H  
X=02H  
X=01H  
X=03H  
X=00H  
- 28 -  
NJU6821  
(11) Gradation palette  
In the gradation mode, each of the gradation palettes Aj can select 8-gradation levels out of a palette consisting  
of 32-gradation levels by setting 5-bit palette value into the “PA” registers in the “Gradation palette Aj”  
instructions (j=0 to 7). Each of the gradation palettes Bj and Cj can select 8-gradation levels as well as the  
gradation palette Aj.  
The gradation palettes Aj correspond to the SEGAi, the Bj to SEGBj and the Cj to SEGCi (j=0 to 7, i=0 to 127).  
The display data (0,0,0) corresponds to the gradation palettes Z0, the data (0,0,1) to the Z1, the data (0,1,0) to  
the Z2…the data (1,1,1) to the Z7 (Z=A, B and C).  
(12) Gradation LSB (GLSB)  
In the graduation mode, each pixel for RGB corresponds to the successive 3-segment drivers that consist of 2-  
segment drivers for 8-graduation and 1-segment driver for 4-gradietion. The 8-gradation segment drivers can  
generate 8-gradation levels controlled by 3-bit display data in the DDRAM. The 4-gradation segment drivers  
can generate 4-gradation levels by 2-bit in the DDRAM and 1-bit in the GLSB.  
All of the selected 8-gradation palettes Zj (Z=A, B and C, j=0 to 7) are available for the 8-gradation segment  
drivers. However, the only 4-gradation palettes Zj (Z=A, B and C, j= either 0,2,4,6 or 1,3,5,7) are available for  
the 4-gradation segment drivers, because the GLSB is fixed to either “0” or “1” by setting the “GLSB” register in  
the “Gradation control” instruction and adopted to all of the 4-gradation segment derivers.  
GLSB=0:  
The LSB of display data is always set to “0”.  
Display data: (0,0,0), (0,1,0), (1,0,0), (1,1,0) Gradation palettes: Z0, Z2, Z4, Z6  
(Z=A, B and C)  
GLSB=1:  
The LSB of display data is always set to “1”.  
Display data: (0,0,1), (0,1,1), (1,0,1), (1,1,1) Gradation palettes: Z1, Z3, Z5, Z7  
(Z=A, B and C)  
(13) Variable or fixed gradation mode  
In the gradation mode, either variable or fixed gradation mode is selected by programming the “PWM” register  
of the “Gradation control” instruction.  
PWM=0:  
PWM=1:  
Variable gradation mode  
(Select 8 gradation levels out of 32-gradation level of the gradation palette)  
Fixed gradation mode  
(Fixed 8-gradation levels)  
- 29 -  
NJU6821  
Correspondence between display data and gradation palettes (MON=”0”; Gradation mode)  
(Z=A, B and C, j=0 to 7)  
(MSB) Display data (LSB)  
Gradation palette Zj  
Palette Z0  
Default palette value  
0 0 1 0 0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Palette Z1  
Palette Z2  
Palette Z3  
Palette Z4  
Palette Z5  
Palette Z6  
Palette Z7  
0 0 1 0 1  
0 1 0 1 0  
0 1 1 1 0  
1 0 0 0 1  
1 0 1 0 1  
1 1 0 1 0  
1 1 1 1 1  
Gradation palette table (Variable gradation mode, PWM=”0”, MON=”0”)  
(Z=A, B and C, j=0 to 7)  
Palette value  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
Gradation level  
0
Gradation palette Zj  
Palette Z0 (default)  
Palette value  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
Gradation level  
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
Gradation palette Zj  
Palette Z4 (default)  
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
Palette Z1 (default)  
Palette Z5 (default)  
Palette Z6 (default)  
Palette Z7 (default)  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Palette Z2 (default)  
Palette Z3 (default)  
Gradation palette table (Fixed gradation mode, PWM=”1”, MON=”0”)  
8-gradation segment drivers  
Display data  
4-gradation segment drivers  
Display data  
Gradation level  
Gradation level  
0
(MSB) DDRAM (LSB)  
DDRAM  
GLSB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/7  
2/7  
3/7  
4/7  
5/7  
6/7  
7/7  
2/7  
3/7  
4/7  
5/7  
7/7  
Correspondence between display data and gradation level (B&W mode, MON=”1”)  
8-gradation segment drivers  
Display data  
4-gradation segment drivers  
Display data  
Gradation level  
Gradation level  
(MSB) DDRAM (LSB)  
DDRAM  
GLSB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
*
*
*
*
0
0
1
1
*: Don’t care  
- 30 -  
NJU6821  
(14)Gradation control and display data  
(14-1) Gradation mode  
In the graduation mode, each pixel for RGB corresponds to the successive 3 segment drivers that consist  
of 2 segment drivers for 8-graduation and 1 segment driver for 4-gradietion, so that NJU6821 can drive a  
256-color display (8-gradation x 8-gradation x 4-gradition) with up to 128x82 pixels. The 8-gradation  
segment drivers can generate 8-gradation levels controlled by using 3-bit of display data in the DDRAM.  
The 4-gradation segment drivers can generate 4-gradation levels by using 2-bit in the DDRAM and 1-bit in  
the GLSB.  
In addition, the LSI can transfer 8-bit display data for 1-pixel the RGB or 16-bit for 2-pixels RGB to the  
DDRAM at one-time access. The data assignment between gradation palettes and segment drivers varies  
in accordance with the setting for the “SWAP” and “REF” registers of the "Display control (2)" instruction.  
(REF, SWAP)=(0, 0) or (1, 1)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
(j=0 to 7)  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
0
0
0
1
0
0
1
1
1
Display data in DDRAM  
GLSB  
MSB  
LSB  
MSB  
LSB  
MSB  
Display data from MPU  
column address: nH  
0
0
1
0
0
1
1
1
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Note) DDRAM column address  
: 7H 7FH (REF=”0”)  
:7FH nH (REF=”1”)  
(REF, SWAP)=(0, 1) or (1, 0)  
(i=0 to 127)  
SEGAi  
SEGBi  
SEGCi  
Gradation palette  
(j=0 to 7)  
Palette Cj  
Palette Bj  
Palette Aj  
Gradation control circuit  
Display data in DDRAM  
0
1
1
1
0
0
1
0
0
GLSB  
MSB  
LSB  
MSB  
LSB  
MSB  
Display data from MPU  
column address: nH  
0
0
1
0
0
1
1
1
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Note) DDRAM column address  
: nH (REF=”0”)  
: 7FH nH (REF=”1”)  
- 31 -  
NJU6821  
In the 16-bit data bus mode, the data assignments between the gradation palettes and the segment  
drivers vary in accordance with setting for the “SWAP” and “REF” bit of the "Display control (2)" instruction  
as well as the assignment in the 8-bit data bus mode.  
(REF, SWAP)=(0, 0) or (1, 1)  
SEGAi  
SEGBi  
SEGCi  
SEGAi+1  
SEGBi+1  
SEGCi+1  
(i=0 to 126)  
Gradation palette  
(j=0 to 7)  
Palette Aj  
Palette Bj  
Palette Cj  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation  
control circuit  
0
Display data in DDRAM  
0
0
0
1
0
0
1
1
1
1
0
0
0
1
0
0
0
1
1
1
1
GLSB  
MSB LSB  
MSBLSB  
MSB  
MSB LSB  
MSBLSB  
MSB  
Display data from MPU  
column address: nH  
0
1
0
0
1
1
0
1
0
1
1
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15  
Note) DDRAM column address  
: nH (REF=”0”)  
: 3FH nH (REF=”1”)  
(REF, SWAP)=(0, 0) or (1, 1)  
(i=0 to 126)  
SEGAi  
SEGBi  
SEGCi  
SEGAi+1  
SEGBi+1  
SEGCi+1  
Palette Cj  
Palette Bj  
Palette Aj  
Palette Cj  
Palette Bj  
Palette Aj  
Gradation palette  
(j=0 to 7)  
Gradation  
control circuit  
0
Display data in DDRAM  
1
1
0
1
0
0
1
0
0
1
1
0
1
0
0
0
1
0
0
1
GLSB  
MSB  
LSB MSB  
LSB MSB  
MSB  
LSB MSB  
LSB MSB  
Display data from MPU  
column address: nH  
0
1
0
0
1
1
1
0
1
0
1
1
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15  
Note) DDRAM column address  
:nH (REF=”0”)  
:3FH nH (REF=”1”)  
- 32 -  
NJU6821  
(14-2) B&W mode (MON=”1”)  
In the B&W mode and 8-bit data bus mode, only 3 of MSB of each display data is used for the display. In  
the 16-bit data bus mode, 6 of MSB of each display data are used.  
In the 8-bit data bus mode (Similarly 16-bit data bus access)  
(REF, SWAP)=(0, 0) or (1, 1)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
(j=0 to 7)  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
0
0
1
0
0
1
1
1
GLSB  
MSB LSB  
MSB LSB  
MSB  
Display data from MPU  
column address: nH  
0
0
1
0
0
1
1
1
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Note) DDRAM column address  
: nH (REF=”0”)  
: 7FH nH (REF=”1”)  
(REF, SWAP)=(0, 1) or (1, 0)  
(i=0 to 127)  
SEGAi  
SEGBi  
SEGCi  
Gradation palette  
(j=0 to 7)  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
1
1
1
0
0
1
0
0
GLSB  
MSB  
LSB MSB  
LSB MSB  
Display data from MPU  
column address: nH  
0
0
1
0
0
1
1
1
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Note) DDRAM column address  
: nH (REF=”0”)  
: 7FH nH (REF=”1”)  
- 33 -  
NJU6821  
(15) Display timing generator  
The display-timing generator creates the timing pulses such as the CL, the FLM, the FR and the CLK by  
dividing the oscillation frequency oscillate an external or internal resister mode. The timming pulse terminals  
and timing generator status is setting by the Master/Slave (M/S) terminal as described in the following table.  
The statuses of timing pulse terminal and generator  
M/S  
L
Mode  
Slave  
CL  
Input  
FR  
Input  
FLM  
Input  
CLK  
Input  
H
Master  
Output  
Output  
Output  
Output  
(16) LCD line clock (CL)  
The LCD line clock (CL) is used as a count-up signal for the line counter and a latch signal for the data latch  
circuit. At the rising edge of the CL signal, the line counter is counted-up and the 384-bit display data,  
corresponding to this line address, is latched into the data latch circuit. And at the falling edge of the CL signal,  
this latched data output on the segment drivers. Read out timing of the display data, from DDRAM to the latch  
circuits, is completely independent of the accsess timing to the MPU. For this reason, the MPU can access to  
the LSI regardless of an internal operation.  
(17) LCD alternate signal (FR) and LCD synchronous signal (FLM)  
The FR and FLM signals are created from the CL signal. The FR signal is used to alternate the crystal  
polarization on a LCD panel. It is programmed that the FR signal is toggle on every frame in the default setting  
or once every N lines in the N-line inversion mode. The FLM signal is used to indicate a start line of a new  
display frame. It presets an initial display line address of the line counter when the FLM signal becomes ”1”.  
When two of NJU6821 is using as a Master and Slave, the CL, the FLM, the FR, and the CLK signals should  
be supplied from Master NJU6821 to Slave NJU6821.  
(18) Data latch circuit  
The data latch circuit is used temporarily store the display data that will output to the segment drivers. The  
display data in this circuit is updated in synchronization of the CL signal.  
The “All pixels ON/OFF”, “Display ON/OFF” and “Reverse display ON/OFF” instructions change the display  
data in this circuit but do not change the display data of the DDRAM.  
- 34 -  
NJU6821  
LCD Driving waveforms (In the B&W mode, Reverse display OFF, 1/82 duty)  
COM0  
82 1  
2
3
4
5
82 1  
2
3
4
5
82 1  
COM1  
CL  
FLM  
FR  
VLCD  
V1  
V2  
V3  
COM0  
V4  
VSS  
VLCD  
V1  
V2  
V3  
V4  
VSS  
COM1  
SEG0  
VLCD  
V1  
V2  
V3  
V4  
VSS  
VLCD  
V1  
V2  
SEG1  
V3  
V4  
VSS  
- 35 -  
NJU6821  
(19) Common and segment drivers  
The LSI includes 384-segment drivers and 82-commom drivers for a graphic display. 2 out of 82-common  
drivers are assigned to the COMI0 and COMI1 for an icon display. The common drivers generate the LCD  
driving waveforms composed of the VLCD, V1, V4 and VSS in accordance with the FR signal and scanning data.  
The segment drivers generate the waveforms composed of the VLCD, V2, V3 and VSS in accordance with the FR  
signal and display data.  
(20) Icon segment drivers  
The 12-icon-segment drivers: SEGSAk, SEGSBk and SEGSCk (k=0 to 3) are mainly used for an outer-frame  
display. 6-icon-segment drivers each are positioned in both sides of the segment drivers’ block. The icon  
segment drivers are controlled by the display data entered in the icon segment registers instead of the DDRAM.  
The dummy segment drivers SEGAk correspond to the gradation palette Aj, the SEGSBk to the palette Bj and  
the SEGSCk to the palette Cj (k=0 to 3, j=0 to 7). The icon segment registers are capable of 4-byte display data,  
in which each byte is corresponding to 1-set of the icon segment drivers such as the SEGSA0, SEGSB0 and  
SEGSC0.  
The icon segment registers are enabled by setting “1” into the “DMY” register in the “Icon segment register  
ON/OFF” instruction and then the “column address” instruction, where the column address such as 00H, 01H,  
02H and 03H are available in the 8-bit data bus mode and the column address such as 00H and 01H in the 16-  
bit mode. The icon segment drivers are independent of the “row address set” instruction.  
8-bit data bus mode (DMY=”1”)  
column address  
00H:  
01H:  
02H:  
03H:  
SEGSA0, SEGSB0, SEGSC0  
SEGSA1, SEGSB1, SEGSC1  
SEGSA2, SEGSB2, SEGSC2  
SEGSA3, SEGSB3, SEGSC3  
16-bit data bus mode (DMY=”1”)  
column address  
00H:  
01H:  
SEGSA0, SEGSB0, SEGSC0, SEGSA1, SEGSB1, SEGSC1  
SEGSA2, SEGSB2, SEGSC2, SEGSA3, SEGSB3, SEGSC3  
The icon segment drivers can support the “ALLON” and “REV” registers in the “Display control (1), (2)”  
instructions but they cannot support the “LREV” and “BT” registers in the “Line inverse control” instruction. As  
well as the read sequence for the DDRAM, the sequence for the segment registers also requires the dummy  
read.  
68 series  
R/W  
80 series  
RS  
DMY  
Function  
Read data from DDRAM  
Write data into DDRAM  
Read data from icon segment register  
Write data into icon segment register  
RD  
WR  
0
0
0
0
0
0
1
1
1
0
1
0
0
1
0
1
1
0
1
0
- 36 -  
NJU6821  
Examples for the icon segment registers (DMY=”1”)  
(In the 8-bit data bus mode, gradation mode, (REF, SWAP)=(0,0))  
column address: 00H  
SEGSA0  
SEGSB0  
SEGSC0  
Gradation palette  
(j=0 to 7)  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Icon segment register  
0
0
0
1
0
0
1
1
1
GLSB  
MSB LSB  
MSB LSB  
MSB  
Display data from MPU  
0
0
1
0
0
1
1
1
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
column address: 03H  
SEGSA3  
SEGSB3  
SEGSC3  
Gradation palette  
(j=0 to 7)  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Icon segment register  
0
GLSB  
0
0
1
0
0
1
1
1
MSB LSB  
MSB LSB  
MSB  
Display data from MPU  
0
0
1
0
0
1
1
1
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
- 37 -  
NJU6821  
(21)Oscillator  
The oscillator generates the internal clocks for the display timing and the voltage booster. It is enabled only in  
the master mode operation by setting the “M/S” terminal to “1”. The C and R for the oscillator are on chipped,  
therefore, there is no C, R required as an external components. Use an external R instead of internal R is also  
available(CKS=1), in this time connect the resister between OSC1 and OSC2 terminals. However, when the  
internal oscillator is not used, an external clock inputs to the OSC1 terminal.  
In addition, the feed back resister for the oscillator is varied by programming the “Rf” register in the “Frequency  
control” instruction, so that it is possible to optimize the frame frequency for a LCD panel. Setting examples of  
the MON(B&W /Gradation) and the PWM(Variable gradation /Fixed gradation) are described, as follows.  
Internal oscillation mode (CKS=0)  
Symbol  
FFL MON PWL  
Display mode  
f1  
f2  
f3  
f4  
f5  
f6  
1
0
1
0
1
0
0
0
0
0
1
1
0
0
1
1
*
Variable gradation mode  
Fixed gradation mode  
B&W mode  
*
*: Don’t care  
External resistor oscillation mode (CKS=1)  
The internal clocks must be adjusted to the same frequency as the one in using the internal oscillation  
mode, and the “FFL”, “MON” and “PWM” register must be set as well.  
External clock input mode (CKS=1)  
The external clocks must be adjusted to the same frequency as the one in using the internal oscillation  
mode, and the “FFL”, “MON” and “PWM” register must be set as well.  
(22)Power supply circuits  
The internal power supply circuits are composed of the voltage booster, the electrical variable resister (EVR),  
voltage regulator, reference voltage generator and the voltage followers.  
The condition of the power supply circuits is arranged by programming the “DCON” and “AMPON” registers on  
the “Power control” instruction. For this arrangement, some parts of the internal power supply circuits are  
activated in using an external power supply, as shown in the following table.  
Voltage followers  
DCON  
AMPON  
Voltage booster  
Voltage regulator  
EVR  
External voltage  
Note  
0
0
1
0
1
1
Disable  
Disable  
Enable  
Disable  
Enable  
Enable  
VOUT, VLCD, V1, V2, V3, V4  
1, 3  
2, 3  
VOUT  
Note1) The internal power circuits are not used. The external VOUT is required and C1+, C1-, C2+, C2-, C3+, C3-, C4+,  
C4-, C5+, C5-, C6+, C6-, VREF, VREG and VEE terminals must be open.  
Note2) The internal power circuits except the voltage booster are used. The external VOUT is required and the C1+,  
C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, C6+ and C6- terminals must be open. The reference voltage is  
required to VREF terminal.  
Note3) The relation among the voltages should be maintained as follows.  
VOUT VLCD V1 V2 V3 V4 VSS  
- 38 -  
NJU6821  
(23)Voltage booster  
The voltage booster generates maximum 7x voltage of the VEE level. It is programmed so that the boost level is  
selected out of 1x, 2x, 3x, 4x, 5x, 6x and 7x by the “Boost level select” instruction. The boosted voltage VOUT  
must not exceed beyond the value of 18.0V, otherwise the voltage stress may cause a permanent damage to  
the LSI.  
Boosted voltages  
VOUT=17.5V  
VOUT=9V  
VEE=2.5V  
VSS=0V  
VEE=3V  
VSS=0V  
7-time boost  
5-time boost  
3-time boost  
Capacitor connections for the voltage Booster  
7-time boost  
6-time boost  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
VOUT  
VOUT  
VOUT  
+
+
+
4-time boost  
3-time boost  
2-time boost  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
+
+
+
+
+
C4+  
C4-  
C4+  
C4-  
C4+  
C4-  
C5+  
C5-  
C5+  
C5-  
C5+  
C5-  
C6+  
C6-  
C6+  
C6-  
C6+  
C6-  
VOUT  
VOUT  
VOUT  
+
+
+
- 39 -  
NJU6821  
(24)Reference voltage generator  
The reference voltage generator is used to produce the reference voltage (VBA), which is output from the VBA  
terminal and should be input to the VREF terminal.  
VBA = VEE x 0.9  
(25)Voltage regulator  
The voltage regulator, composed of the gain control circuit and an operational amplifier, and is used to gain the  
reference voltage (VREF) and to create the regulated voltage (VREG). The VREG is used as an input voltage to the  
EVR circuits, which is programming by the “VU” register of the “Boost level” instruction.  
VREG = VREF x N  
(N: register value for the boost level)  
(26)Electrical variable resister (EVR)  
The EVR is variable within 128-step, and is used to fine-tune the LCD driving voltage (VLCD) by programming  
the “DV” register in the “EVR control” instruction, so that it is possible to optimize the contrast level of LCD  
panels.  
VLCD = 0.5 x VREG + M (VREG - 0.5 x VREG) / 127  
(M: register value for the EVR)  
(27)LCD driving voltage generation circuit  
LCD driving voltage generation circuit generates the VLCD voltage levels as VLCD, V1, V2, V3 and V4 with internal  
E.V.R and the Bleeder resistors. The bias ratio of the LCD driving voltage is selected out of 1/5, 1/6, 1/7, 1/8,  
1/9, and 1/10.  
In using the internal power supply, the capacitors CA2 must be connected to the VLCD, V1, V2, V3 and V4  
terminals, and the CA2 value must be determined by the evaluation with actual LCD modules.  
In using the external power supply, the external LCD driving voltages such as the VLCD, V1, V2, V3 and V4 are  
supplied and the internal power supply circuits must be set to “OFF” by DCON = AMPON = "0". In this mode,  
voltage booster terminals such as C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, C6+, C6-, VEE, VREF and VREG  
must be opened.  
In case that the voltage booster is not used but only some parts of internal power supply circuits (Voltage  
followers, Voltage regulator and EVR) are used, the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+ C5-, C6+, and  
C6- terminals must be opened. And, the external power supply is input to the VOUT terminal, and the reference  
voltage to the VREF terminal. The capacitor CA3 must connect to the VREG terminal for voltage stabilization.  
- 40 -  
NJU6821  
Connections of the capacitors for the voltage booster  
Using all of the internal power supply circuits  
(7-time boost)  
Using only external power supply circuits  
VDD  
CA1  
VDD  
VDD  
VEE  
VDD  
VEE  
CA1  
VBA  
VBA  
CA3  
VSS  
VREF  
VREG  
VREF  
VREG  
CA3  
VSS  
C1-  
C1-  
CA1  
C1+  
C1+  
C2-  
C2-  
CA1  
C2+  
C3-  
C2+  
C3-  
CA1  
C3+  
C4-  
C3+  
C4-  
CA1  
NJU6821  
C4+  
C5-  
C4+  
NJU6821  
C5-  
CA1  
C5+  
C5+  
C6-  
C6-  
CA1  
C6+  
VOUT  
C6+  
VOUT  
CA1  
CA1  
VSS  
VLCD  
V1  
VLCD  
V1  
VLCD  
CA2  
V1  
V2  
V3  
V4  
External  
power  
circuit  
CA2  
CA2  
CA2  
CA2  
V2  
V2  
V3  
V3  
V4  
V4  
VSS  
CA2  
CA2  
CA2  
CA2  
Reference values  
CA1  
CA2  
CA3  
1.0 - 4.7µF  
1.0 - 2.2µF  
0.1µF  
Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is  
recommended to decide an optimum value of these capacitors.  
Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4)  
reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation  
and display quality. To minimize this impact, use the shortest possible wires and place the capacitors  
to be as close as possible to the LSI.  
- 41 -  
NJU6821  
Using internal power supply circuits  
Without the reference voltage generator (1)  
(7-time boost)  
Using internal power supply circuits  
Without the reference voltage generator (2)  
(7-time boost)  
VDD  
VDD  
VDD  
VDD  
VEE  
VEE  
CA1  
CA1  
VBA  
VBA  
VREF  
VREF  
VREG  
VREG  
CA3  
VSS  
CA3  
VSS  
C1-  
C1-  
CA1  
C1+  
CA1  
C1+  
C2-  
C2-  
CA1  
CA1  
CA1  
CA1  
CA1  
CA1  
C2+  
C2+  
C3-  
C3-  
CA1  
C3+  
C3+  
C4-  
C4-  
CA1  
NJU6821  
NJU6821  
C4+  
C4+  
C5-  
C5-  
CA1  
C5+  
C5+  
C6-  
C6-  
CA1  
C6+  
C6+  
VOUT  
VOUT  
CA1  
VSS  
CA1  
VSS  
VLCD  
CA2  
VLCD  
V1  
CA2  
CA2  
CA2  
CA2  
CA2  
V1  
CA2  
V2  
V2  
CA2  
V3  
V3  
CA2  
V4  
V4  
CA2  
VSS  
VSS  
Reference values  
CA1  
CA2  
CA3  
1.0 - 4.7µF  
1.0 - 2.2µF  
0.1µF  
Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is  
recommended to decide an optimum value of these capacitors.  
Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4)  
reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation  
and display quality. To minimize this impact, use the shortest possible wires and place the capacitors  
to be as close as possible to the LSI.  
- 42 -  
NJU6821  
Using nternal power supply circuits  
Without the voltage booster  
VDD  
VDD  
VEE  
CA1  
VBA  
CA3  
VSS  
VREF  
VREG  
CA3  
VSS  
C1-  
C1+  
C2-  
C2+  
C3-  
C3+  
C4-  
NJU6821  
C4+  
C5-  
C5+  
C6-  
C6+  
VOUT  
External  
power  
circuit  
CA1  
VLCD  
V1  
CA2  
CA2  
CA2  
CA2  
CA2  
V2  
V3  
V4  
VSS  
Reference values  
CA1  
CA2  
CA3  
1.0 - 4.7µF  
1.0 - 2.2µF  
0.1µF  
Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is  
recommended to decide an optimum value of these capacitors.  
Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4)  
reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation  
and display quality. To minimize this impact, use the shortest possible wires and place the capacitors  
to be as close as possible to the LSI.  
- 43 -  
NJU6821  
(28) Partial display function  
The partial display function is used to specify some parts of display area on a LCD panels. By using this  
function, LCD modules can work in lower duty cycle ratio, lower LCD bias ratio, lower boost level and lower  
LCD driving voltage. It is usually used to display a time and calendar in the extremely low power consumption. It  
can be programmed to select the duty cycle ratio (1/17, 1/26, 1/32, 1/38, 1/47, 1/66, 1/77), the LCD bias ratio,  
the boost level and EVR value by the instructions.  
Partial display image  
NJRC  
LCD DRIVER  
Low Power and  
Low Voltage  
LCD DRIVER  
Partial display  
Normal display  
Partial display sequence  
Optional status  
Display OFF (ON/OFF=”0”)  
Internal Power supply OFF (DCON=”0”, AMPON=”0”)  
WAIT  
Setting for LCD driving voltage-related functions  
Internal Power supply ON (DCON=”1”, AMPON=”1”)  
- Boost level  
- EVR value  
- LCD bias ratio  
WAIT  
- Duty cycle ratio  
- Initial display line  
- Initial COM line  
- Other instructions  
Setting for display-related functions  
Display ON (ON/OFF =”1”)  
Partial display Status  
- 44 -  
NJU6821  
(29) Discharge circuit  
Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and VLCD terminals.  
This circuit is activated by setting “1” to the “DIS” register of the “Discharge” instruction or by setting the “RESb”  
terminal to ”0” level. The “Discharge ON/OFF” instruction is usually required just after the internal power supply  
is turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is  
turned off. During the discharge operation, the internal or external power supply must not be turned on.  
(30) Reset circuit  
The reset circuit initializes the LSI into the following default status. It is activated by setting the RESb terminal to  
“0” level. The RESb terminal is usually required to connect to MPU reset terminal in order that the LSI can be  
initialized at the same timing of the MPU.  
Default status  
1. DDRAM display data  
2. column address  
3. row address  
:Undefined  
:00H  
:00H  
4. Initial display line  
5. Display ON/OFF  
6. Reverse display ON/OFF  
7. Duty cycle ratio  
:0H(1st line)  
:OFF  
:OFF (normal)  
:1/82 duty  
8. N-line Inversion ON/OFF  
9. COM scan direction  
10. Increment mode  
11. Reverse SEG direction  
12. SWAP mode  
13. EVR value  
14. Internal power supply  
15. Display mode  
:OFF  
:COM0 COM79, COMI0, COMI1  
:OFF  
:OFF (normal)  
:OFF (normal)  
:(0, 0, 0, 0, 0, 0, 0)  
:OFF  
:Gradation display mode  
:1/9 bias  
16. LCD bias ratio  
17. Gradation Palette 0  
18. Gradation Palette 1  
19. Gradation Palette 2  
20. Gradation Palette 3  
21. Gradation Palette 4  
22. Gradation Palette 5  
23. Gradation Palette 6  
24. Gradation Palette 7  
25. Gradation mode control  
26. GLSB  
:(0, 0, 0, 0, 0)  
:(0, 0, 1, 0, 1)  
:(0, 1, 0, 1, 0)  
:(0, 1, 1, 1, 0)  
:(1, 0, 0, 0, 1)  
:(1, 0, 1, 0, 1)  
:(1, 1, 0, 1, 0)  
:(1, 1, 1, 1, 1)  
:Variable gradation mode  
:GLSB=0  
27. Data bus length  
28. Discharge circuit  
:8-bit data bus length  
:OFF  
- 45 -  
NJU6821  
(31)Power supply ON/OFF sequences  
The following paragraphs describe power supply ON/OFF sequences, which are to protect the LSI from over  
current.  
(31-1) Using an external power supply  
Power supply ON sequence  
Logic voltage (VDD) must be always input first, and next the LCD driving voltages (V1 to V4 and VLCD) are  
turned on. In using the external VOUT, the VDD must be input first, next the reset operation must be  
performed, and finally the VOUT can be input.  
Power supply OFF sequence  
Either the reset operation, cutting off the V1 to V4 and VLCD from the LSI by the RESb terminal or the  
“Power control” instruction must be performed first, and next the VDD is turned off. It is recommended that  
a series-resister between 50and 100is added on the VLCD line (or VOUT line in using only the external  
VOUT voltage) in order to protect the LSI from the over current.  
(31-2) Using the internal power supply circuits  
Power supply ON sequence  
The VDD must be input first, next the reset operation must be performed, and finally the V1 to V4 and VLCD  
can be turned on by setting “1” to the “DCON” and “AMPON” registers of the “Power control” instruction.  
Power supply OFF sequence  
Either the reset operation by the RESb terminal or the “Power control” instruction must be performed first,  
and next the input voltage for the voltage booster (VEE) and the VDD can be turned off. If the VEE is supplied  
from different power sources for VDD, the VEE is turned off first, and next the VDD is turned off.  
- 46 -  
NJU6821  
(32)Referential instruction sequences  
(32-1) Initialization in using the internal power supply circuits  
VDD, VEE power ON  
Wait for power-ON stabilization  
RESET Input  
WAIT  
Setting for LCD driving voltage-related functions  
End of initialization  
- EVR value  
- LCD bias ratio  
- Power control (DCON=”1”, AMPON=”1”)  
(32-2) Display data writing  
End of Initialization  
Setting for display-related functions  
- Initial display line  
- Increment mode  
- Column address  
- Row address  
Display data write  
Display ON (ON/OFF =”1”)  
- 47 -  
NJU6821  
(32-3) Power OFF  
Optional status  
- All COM/SEG output VSS level.  
Power save or reset operation  
Discharge ON  
WAIT  
VEE, VDD power OFF  
- 48 -  
NJU6821  
(33)Instruction table  
Instruction Table (1)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Display data write  
Display data read  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0/1 0/1 0/1  
0/1 0/1 0/1  
Write Data  
Read Data  
Write display data to DDRAM  
Read display data from DDRAM  
DDRAM column address  
DDRAM column address  
DDRAM row address  
column address  
(Lower) [0H]  
AX3 AX2 AX1 AX0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
column address  
(Upper) [1H]  
*
AX6 AX5 AX4  
row address  
AY3 AY2 AY1 AY0  
(Lower) [2H]  
row address  
*
AY6 AY5 AY4  
DDRAM row address  
(Upper) [3H]  
Initial display line  
(Lower) [4H]  
Row address for an initial COM line  
(Scan start line)  
LA3 LA2 LA1 LA0  
Initial display line  
(Upper) [5H]  
Row address for an initial COM line  
(Scan start line)  
*
N3  
*
LA6 LA5 LA4  
N-line inversion  
(Lower) [6H]  
N2  
N6  
N1  
N5  
N0  
N4  
The number of N-line inversion  
N-line inversion  
(Upper) [7H]  
The number of N-line inversion  
SHIFT: Common direction  
Display control (1)  
[8H]  
SHI MO ALL ON/ MON: Gradation or B/W display mode  
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
FT  
N
ON OFF  
ALLON: All pixels ON/OFF  
ON/OFF: Display ON/OFF  
REV: Reverse display ON/OFF  
Display control (2)  
[9H]  
RE  
V
NL SW RE NLIN: N-line inversion ON/OFF,  
IN  
AP  
F
SWAP: SWAP mode ON/OFF  
REF: Segment direction  
WIN: Window addressing mode ON/OFF  
AIM: Read-modify-write ON/OFF  
AYI: Row auto-increment mode ON/OFF  
AXI: Column auto-increment mode  
ON/OFF  
Increment control  
[AH]  
WIN AIM AYI AXI  
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
1
AMPON: Voltage followers ON/OFF  
Power control  
[BH]  
AMP HA DC AC HALT: Power save ON/OFF  
ON  
LT  
ON  
L
DCON: Voltage booster ON/OFF  
ACL: Reset  
Duty cycle ratio  
[CH]  
*
DS2 DS1 DS0  
VU2 VU1 VU0  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
Sets LCD duty cycle ratio  
Sets boost level  
Boost level  
[DH]  
*
*
LCD bias ratio  
[EH]  
B2  
B1  
B0  
Sets LCD bias ratio  
RE flag set  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
Note 1)  
*
: Don’t care.  
Note 2) [NH] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 49 -  
NJU6821  
Instruction Table (2)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette A0  
(Lower) [0H]  
Sets palette values to gradation  
palette A0  
PA03 PA02 PA01 PA00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
Gradation palette A0  
(Upper) [1H]  
Sets palette values to gradation  
palette A0  
*
*
*
PA04  
Gradation palette A1  
(Lower) [2H]  
Sets palette values to gradation  
palette A1  
PA13 PA12 PA11 PA10  
Gradation palette A1  
(Upper) [3H]  
Sets palette values to gradation  
palette A1  
*
*
*
PA14  
Gradation palette A2  
(Lower) [4H]  
Sets palette values to gradation  
palette A2  
PA23 PA22 PA21 PA20  
Gradation palette A2  
(Upper) [5H]  
Sets palette values to gradation  
palette A2  
*
*
*
PA24  
Gradation palette A3  
(Lower) [6H]  
Sets palette values to gradation  
palette A3  
PA33 PA32 PA31 PA30  
Gradation palette A3  
(Upper) [7H]  
Sets palette values to gradation  
palette A3  
*
*
*
PA34  
Gradation palette A4  
(Lower) [8H]  
Sets palette values to gradation  
palette A4  
PA43 PA42 PA41 PA40  
Gradation palette A4  
(Upper) [9H]  
Sets palette values to gradation  
palette A4  
*
*
*
PA44  
Gradation palette A5  
(Lower) [AH]  
Sets palette values to gradation  
palette A5  
PA53 PA52 PA51 PA50  
Gradation palette A5  
(Upper) [BH]  
Sets palette values to gradation  
palette A5  
*
*
*
PA54  
Gradation palette A6  
(Lower) [CH]  
Sets palette values to gradation  
palette A6  
PA63 PA62 PA61 PA60  
Gradation palette A6  
(Upper) [DH]  
Sets palette values to gradation  
palette A6  
*
*
*
PA64  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
*
: Don’t care.  
Note 2) [NH] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 50 -  
NJU6821  
Instruction Table (3)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette A7  
(Lower) [0H]  
Sets palette values to gradation  
palette A7  
PA73 PA72 PA71 PA70  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
Gradation palette A7  
(Upper) [1H]  
Sets palette values to gradation  
palette A7  
*
*
*
PA74  
Gradation palette B0  
(Lower) [2H]  
Sets palette values to gradation  
palette B0  
PB03 PB02 PB01 PB00  
Gradation palette B0  
(Upper) [3H]  
Sets palette values to gradation  
palette B0  
*
*
*
PB04  
Gradation palette B1  
(Lower) [4H]  
Sets palette values to gradation  
palette B1  
PB13 PB12 PB11 PB10  
Gradation palette B1  
(Upper) [5H]  
Sets palette values to gradation  
palette B1  
*
*
*
PB14  
Gradation palette B2  
(Lower) [6H]  
Sets palette values to gradation  
palette B2  
PB23 PB22 PB21 PB20  
Gradation palette B2  
(Upper) [7H]  
Sets palette values to gradation  
palette B2  
*
*
*
PB24  
Gradation palette B3  
(Lower) [8H]  
Sets palette values to gradation  
palette B3  
PB33 PB32 PB31 PB30  
Gradation palette B3  
(Upper) [9H]  
Sets palette values to gradation  
palette B3  
*
*
*
PB34  
Gradation palette B4  
(Lower) [AH]  
Sets palette values to gradation  
palette B4  
PB43 PB42 PB41 PB40  
Gradation palette B4  
(Upper) [BH]  
Sets palette values to gradation  
palette B4  
*
*
*
PB44  
Gradation palette B5  
(Lower) [CH]  
Sets palette values to gradation  
palette B5  
PB53 PB52 PB51 PB50  
Gradation palette B5  
(Upper) [DH]  
Sets palette values to gradation  
palette B5  
*
*
*
PB54  
RE register  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
[FH]  
Note 1)  
*
: Don’t care.  
Note 2) [NH] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 51 -  
NJU6821  
Instruction Table (4)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette B6  
(Lower) [0H]  
Sets palette values to gradation  
palette B6  
PB63 PB62 PB61 PB60  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
Gradation palette B6  
(Upper) [1H]  
Sets palette values to gradation  
palette B6  
*
*
*
PB64  
Gradation palette B7  
(Lower) [2H]  
Sets palette values to gradation  
palette B7  
PB73 PB72 PB71 PB70  
Gradation palette B7  
(Upper) [3H]  
Sets palette values to gradation  
palette B7  
*
*
*
PB74  
Gradation palette C0  
(Lower) [4H]  
Sets palette values to gradation  
palette C0  
PC03 PC02 PC01 PC00  
Gradation palette C0  
(Upper) [5H]  
Sets palette values to gradation  
palette C0  
*
*
*
PC04  
Gradation palette C1  
(Lower) [6H]  
Sets palette values to gradation  
palette C1  
PC13 PC12 PC11 PC10  
Gradation palette C1  
(Upper) [7H]  
Sets palette values to gradation  
palette C1  
*
*
*
PC14  
Gradation palette C2  
(Lower) [8H]  
Sets palette values to gradation  
palette C2  
PC23 PC22 PC21 PC20  
Gradation palette C2  
(Upper) [9H]  
Sets palette values to gradation  
palette C2  
*
*
*
PC24  
Gradation palette C3  
(Lower) [AH]  
Sets palette values to gradation  
palette C3  
PC33 PC32 PC31 PC30  
Gradation palette C3  
(Upper) [BH]  
Sets palette values to gradation  
palette C3  
*
*
*
PC34  
Gradation palette C4  
(Lower) [CH]  
Sets palette values to gradation  
palette C4  
PC43 PC42 PC41 PC40  
Gradation palette C4  
(Upper) [DH]  
Sets palette values to gradation  
palette C4  
*
*
*
PC44  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
*
: Don’t care.  
Note 2) [NH] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 52 -  
NJU6821  
Instruction Table (5)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette C5  
(Lower) [0H]  
Sets palette values to gradation  
palette C5  
PC53 PC52 PC51 PC50  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
*
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
*
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
*
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
*
Gradation palette C5  
(Upper) [1H]  
Sets palette values to gradation  
palette C5  
*
*
*
PC54  
Gradation palette C6  
(Lower) [2H]  
Sets palette values to gradation  
palette C6  
PC63 PC62 PC61 PC60  
Gradation palette C6  
(Upper) [3H]  
Sets palette values to gradation  
palette C6  
*
*
*
PC64  
Gradation palette C7  
(Lower) [4H]  
Sets palette values to gradation  
palette C7  
PC73 PC72 PC71 PC70  
Gradation palette C7  
(Upper) [5H]  
Sets palette values to gradation  
palette C7  
*
*
*
*
*
PC74  
Initial COM line  
[6H]  
SC2 SC1 SC0  
EX  
Sets scan-starting common driver  
Controls EXCS signal  
EXCS control  
[7H]  
*
*
CS  
Gradation mode control  
[8H]  
Sets variable or fixed gradation  
mode  
PW  
M
GL  
SB  
*
*
Data bus length  
[9H]  
WL  
S
*
*
CKS  
Sets 8- or 16-bit data bus length  
EVR control  
Sets EVR level  
(Lower bit)  
DV3 DV2 DV1 DV0  
(Lower) [AH]  
EVR control  
Sets EVR level  
(Upper bit)  
*
DV6 DV5 DV4  
(Upper) [BH]  
Frequency control  
[DH]  
FFL RF2 RF1 RF0  
Oscillation frequency  
Discharge ON/OFF  
[EH]  
Discharge the electric charge in  
capacitors on V1 to V4 and VLCD  
*
*
*
DIS  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag  
Instruction register address  
[CH]  
RA3 RA 2 RA 1 RA 0  
Read Data  
1
0
0
Sets instruction register address  
Read out instruction register data  
Instruction register read  
0/1 0/1 0/1  
Note 1)  
*
: Don’t care.  
Note 2) [NH] : Address of Instruction register  
Note 3)  
Note 4)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
CKS=0: Internal oscillation mode (default)  
CKS=1: External oscillation mode  
- 53 -  
NJU6821  
Instruction Table (6)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Window end  
column address  
(Lower) [0H]  
Window end  
column address  
(Upper) [1H]  
EX3 EX2 EX1 EX0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Sets column address for end point  
Sets column address for end point  
Sets row address for end point  
Sets row address for end point  
Sets address for reverse line  
Sets address for reverse line  
Sets address for reverse line  
Sets address for reverse line  
Controls reverse line display  
Controls icon segment register  
Sets PWM mode  
*
EX6 EX5 EX4  
Window end row address  
(Lower) [2H]  
EY3 EY2 EY1 EY0  
Window end row address  
(Upper) [3H]  
*
EY6 EY5 EY4  
Initial reverse line  
(Lower) [4H]  
LS3 LS2 LS1 LS0  
Initial reverse line  
(Upper) [5H]  
*
LS6 LS5 LS4  
Last reverse line  
(Lower) [6H]  
LE3 LE2 LE1 LE0  
Last reverse line  
(Upper) [7H]  
*
*
*
LE6 LE5 LE4  
Reverse line display  
ON/OFF  
LR  
*
*
BT  
*
EV  
[8H]  
Dummy segment register  
ON/OFF  
[9H]  
DM  
Y
PWM control  
[AH]  
PW PW PW PW  
MS MA MB MC  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag  
Note 1)  
*
: Don’t care.  
Note 2) [NH] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 54 -  
NJU6821  
(34)Instruction descriptions  
This chapter provides detail descriptions and instruction registers. Nonexistent instruction codes must not be  
set into the LSI.  
(34-1) Display data write  
The “Display data write” instruction is used to write 8-bit display data into the DDRAM.  
CSb RS RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
1
0
Display data  
(34-2) Display data read  
The “Display data read” instruction is used to read out 8-bit display data from the DDRAM, where the  
column address and row address must be specified beforehand by the “column address” and “row  
address” instructions. The dummy read is required just after the “column address” and “row address”  
instructions.  
CSb RS RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
1
Display data  
(34-3) Column address  
The “column address” instruction is used to specify the column address for display data’s reading and  
writting operations. It requires dual bytes for lower 4-bit and upper 3-bit data. The instruction for the lower  
4-bit data must be executed first, next the instruction for the upper 3-bit.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
AX3 AX2 AX1 AX0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
0
0
0
AX6 AX5 AX4  
(34-4) Row address  
The “row address” instruction is used to specify the row address for the display data read and write  
operations. It requires dual bytes for lower 4-bit and upper 3-bit data. The instruction for the lower 4-bit  
data must be executed first, next the instruction for upper 3-bit.  
The row address is specified in between 00H and 51H, where the address 50H and 51H are assigned to the  
PGRAM for the icon display. The setting for the nonexistent row address between 52H and FFH is  
prohibited.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
AY3 AY2 AY1 AY0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
0
0
0
AY6 AY5 AY4  
- 55 -  
NJU6821  
(34-5) Initial display line  
The “Initial display line” instruction is used to specify the line address corresponding to the initial COM line.  
The initial COM line specified by the “Initial COM line” instruction and indicates the common driver that  
starts scanning data.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
LA3 LA2 LA1 LA0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
0
0
0
LA6 LA5 LA4  
LA6  
0
LA5  
0
LA4  
0
LA3  
0
LA2  
0
LA1  
LA0  
0
Line address  
0
0
0
1
0
0
0
0
0
1
:
:
:
:
1
0
0
1
1
1
1
79  
(34-6) N-line inversion  
The “N-line inversion” instruction is used to control the alternate rates of the liquid crystal direction. It is  
programmed to select the N value between 2 and 80, and the FR signal toggles once every N lines by  
setting “1” into the “NLIN” register of the “Display control (2)” instruction. When the N-line inversion is  
disabled by setting “0” into the “NLIN” register, the FR signal toggles by the frame.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
N3  
D2  
N2  
D1  
N1  
D0  
N0  
0
1
1
0
0
0
0
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
N6  
D1  
N5  
D0  
N4  
0
1
1
0
0
0
0
N6  
N5  
N4  
0
N3  
0
N2  
0
N1  
N0  
0
N value  
0
0
0
0
0
0
Inhibited  
2
0
0
0
1
:
:
:
:
1
0
0
1
1
1
1
80  
- 56 -  
NJU6821  
N-line Inversion Timing (1/82 duty cycle ratio)  
N-line inversion OFF  
1st line  
3rd line  
81st line  
1st line  
82nd line  
2nd line  
CL  
FLM  
FR  
N-line inversion ON  
N-line control  
1st line  
3rd line  
Nst line  
2nd line  
2nd line  
1st line  
CL  
FR  
(34-7) Display control (1)  
The “Display control (1)” instruction is used to control display conditions by setting the “Display ON/OFF”,  
“All pixels ON/OFF”, Display mode” and “Common direction” registers.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
SHIFT  
MON  
ALLON ON/OFF  
0
1
1
0
0
0
0
ON/OFF register  
ON/OFF=0  
: Display OFF (All COM/SEG output Vss level.)  
ON/OFF=1: Display ON  
All ON register  
The “All pixels ON/OFF” register is used to turn on all pixels without changing display data of the DDRAM.  
The setting for the “All pixels ON/OFF” register has a priority over the “Reverse display ON/OFF” register.  
ALLON=0 : Normal  
ALLON=1 : All pixels turn on.  
MON register  
MON=0  
MON=1  
: Gradation mode  
: B&W mode  
SHIFT register  
SHIFT=0 : COM0 COM79  
SHIFT=1 : COM79 COM0  
- 57 -  
NJU6821  
(34-8) Display control (2)  
The “Display control (2)” instruction is used to control display conditions by setting the “Segment direction”,  
“SWAP mode ON/OFF”, “N-line inversion ON/OFF” and “Reverse display ON/OFF” registers.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
REV  
NLIN  
SWAP  
REF  
0
1
1
0
0
0
0
REF register  
The “REF” register is used to reverse the assignment between segment drivers and column address, and  
it is possible to reduce restrictions for placement of the LSI on the LCD module. For more information, see  
(10) “The relation among the DDRAM column address, display data and segment drivers”.  
SWAP register  
The “SWAP” register is used to reverse the arrangement of the display data in the DDRAM.  
SWAP=0 : SWAP mode OFF  
SWAP=1 : SWAP mode ON  
(Normal)  
SWAP=”0”  
SWAP=”1”  
Write data  
RAM data  
Read data  
D7 D6 D5 D4 D3 D2 D1 D0  
d7 d6 d5 d4 d3 d2 d1 d0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
d0 d1 d2 d3 d4 d5 d6 d7  
D7 D6 D5 D4 D3 D2 D1 D0  
NLIN register  
The “NLIN” is used to enable or disable the N-line inversion.  
NLIN=0  
NLIN=1  
: N-line inversion OFF  
: N-line inversion ON  
(The FR signal toggles by the flame.)  
(The FR signal toggles once every N frames.)  
REV register  
The “REV” register is used to enable or disable the reverse display mode that reverses the polarity of the  
display data without changing the display data of the DDRAM.  
REV=0  
REV=1  
: Reverse display mode OFF  
: Reverse display mode ON  
REV  
Display  
Normal  
DDRAM data Display data  
0
1
0
1
0
1
1
0
0
1
Reverse  
- 58 -  
NJU6821  
(34-9) Increment control  
The “Increment control” instruction is used for the increment mode. In using the auto-increment mode,  
DDRAM address automatically increment (+1) whenever the DDRAM is accessed by the “Display data  
write” or “Display data read” instruction, Therefore, once “Display data write” or “Display data read”  
instruction is established, it is possible to continuously access to the DDRAM without the “column address”  
and “row address” instructions. The settings for the “AIM”, “AXI” and “AYI” registers are listed in the  
following tables.  
CS  
0
RS  
1
RD WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
WIN AIM AYI AXI  
AIM, AYI and AXI registers  
AIM  
Increment mode  
Note  
Auto-increment for both of the display data read and write operations  
Auto-increment for the display write operation (Read modify write)  
0
1
-
-
AYI  
0
0
AXI  
0
1
Increment mode  
Note  
No auto-increment  
1
2
3
Auto-increment for the column address  
Auto-increment for the row address  
1
0
Auto-increment for the column address and row  
address  
1
1
4
Note 1) Auto-increment is disabled independent of the “AIM” register.  
Note 2) Auto-increment of the column address is enabled in accordance with the “AIM” register.  
MAXH  
MAXH in the 8-bit data bus mode  
00H  
: 7FH  
MAXH in the 16-bit data bus mode : 3FH  
Note 3) Auto-increment of the row address is enabled in accordance with the “AIM” register.  
51H  
00H  
Note 4) Auto-increment of the column address and row address are enabled. The row address increments  
whenever the column address reaches to the MAXH.  
MaxH  
00H  
51H  
00H  
column address  
row address  
MAXH in the 8-bit data bus mode  
: 7FH  
MAXH in the 16-bit data bus mode : 3FH  
- 59 -  
NJU6821  
WIN register  
The “WIN” register is used to access to the DDRAM for the window display area, where the start point is  
determined by the “column address” and “row address” instructions, and the end point by the “Window end  
column address “and ”Window end row address” instructions. The setting sequence for the window display  
area is listed as follows. For more detail, see (7) “Window addressing mode”.  
WIN=0 :Window addressing mode OFF  
WIN=1 :Window addressing mode ON  
1. Set WIN=1, AXI=1, and AYI=1 by “Increment control” instruction  
2. Set the start point by the “column address” and “row address” instructions  
3. Set the end point by the “Window end column address” and “Window end row address” instructions  
4. Enable to access to the DDRAM in the window addressing mode  
START  
Address  
END  
Address  
END  
Address  
START  
Address  
column address  
row address  
- 60 -  
NJU6821  
(34-10) Power control  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
D2  
D1  
D0  
AMPON HALT DCON  
ACL  
0
1
1
0
0
0
0
ACL register  
The “ACL” register is used to initialize the internal power supply circuits. It is available only in the master  
mode.  
ACL=0  
ACL=1  
: Initialization OFF (Normal)  
: Initialization ON  
When the data of the “ACL register” is read out by the “Instruction register read” instruction, the read-out  
data is “1” during the initialization and “0” after the initialization. This initialization is performed by using the  
signal produced by 2 clocks on the OSC1. For this reason, the wait time for 2 clocks of the OSC1 is  
necessary until next instruction after the initialization by programming “ACL” register.  
DCON register  
The “DCON” register is used to enable or disable the voltage booster.  
DCON=0  
DCON=1  
: Voltage booster OFF  
: Voltage booster ON  
HALT register  
The “HALT” register is used to enable or disable the power save mode. It is possible to reduce operating  
current down to stand-by level. The internal status in the power save mode is listed below.  
HALT=0  
HALT=1  
: Power save OFF (Normal)  
: Power save ON  
Internal status in the power save mode  
The oscillation circuits and internal power supply circuits are halted.  
All segment and common drivers output Vss level.  
The clock input into the OSC1 is inhibited.  
The display data in the DDRAM is maintained.  
The operational modes before the power save mode are maintained.  
The V1 to V4 and VLCD are in the high impedance.  
As a power save ON sequence, the “Display OFF” must be executed first, next the “Power save ON”  
instruction, and then all common and segment drivers output the Vss level. And as power save OFF  
sequence, the “Power save OFF” instruction is executed first, next the “Display ON” instruction. If the  
“Power save OFF” instruction is executed in the display ON status, unexpected pixels may instantly turn  
on.  
AMPON register  
The “AMPON” register is used to enable or disable the voltage followers, voltage regulator and EVR.  
AMPON=0  
AMPON=1  
: The voltage followers, voltage regulator and the EVR OFF  
: The voltage followers, voltage regulator and the EVR ON  
- 61 -  
NJU6821  
(34-11) Duty cycle ratio  
The “Duty cycle ratio” instruction is used to select LCD duty cycle ratio for the partial display function. The  
partial display function specifies some parts of display area on a LCD panel in the condition of lower duty  
cycle ratio, lower LCD bias ratio, lower boost level and lower LCD driving voltage. Therefore, it is possible  
to optimize the LSI’s conditions with extremely low power consumption.  
It can be also programmed to select not only the duty cycle ratio but also the LCD bias ratio, boost level  
and EVR value by the instructions so that it is possible to optimize the LSI conditions in accordance with  
the display.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
*
D2  
D1  
D0  
0
1
1
0
0
0
0
DS2 DS1 DS0  
DS2 DS1 DS0  
Duty cycle ratio  
1/82  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/77  
1/66  
1/47  
1/32  
1/17  
1/38  
1/26  
(34-12) Boost level  
The “Boost level” is used to select the multiple of the voltage booster for the partial display function.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
0
0
0
VU2 VU1 VU0  
VU2 VU1  
VU0  
0
1
0
1
0
1
0
1
Boost level  
1-time (No boost)  
2-time  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
3-time  
4-time  
5-time  
6-time  
7-time  
Inhibited  
- 62 -  
NJU6821  
(34-13) LCD bias ratio  
The “LCD bias ratio” is used to select the LCD bias ratio for the partial display function.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
B2  
D1  
B1  
D0  
B0  
0
1
1
0
0
0
0
B2  
0
0
0
0
1
1
1
1
B1  
0
0
1
1
0
0
1
1
B0  
0
1
0
1
0
1
0
1
LCD bias ratio  
1/  
9
1/8  
1/7  
1/6  
1/5  
1/10  
Inhibited  
Inhibited  
(34-14) RE flag  
The “RE flag” registers are used to determine the contents for the Rf registers (RE2, RE1 and RE0) and it  
is possible to access to the instruction registers.  
The data in the “TST0” register must be “0”, and it is used only for maker tests only.  
CSb RS RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
1
D6  
1
D5  
1
D4  
1
D3  
D2  
D1  
D0  
0
1
1
0
TST0 RE2 RE1 RE0  
- 63 -  
NJU6821  
(34-15) Gradation palette A, B and C  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
1
PA03 PA02 PA01 PA00  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
0
1
PA04  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
1
PA13 PA12 PA11 PA10  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
0
1
PA14  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
1
PA23 PA22 PA21 PA20  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
0
1
PA24  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
1
PA33 PA32 PA31 PA30  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
0
1
PA34  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
1
PA43 PA42 PA41 PA40  
- 64 -  
NJU6821  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
0
1
PA44  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
1
PA53 PA52 PA51 PA50  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
0
1
PA54  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
1
PA63 PA62 PA61 PA60  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
0
1
PA64  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
0
PA73 PA72 PA71 PA70  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
0
PA74  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
0
PB03 PB02 PB01 PB00  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
0
PB04  
- 65 -  
NJU6821  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
0
PB13 PB12 PB11 PB10  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
0
PB14  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
0
PB23 PB22 PB21 PB20  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
0
PB24  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
0
PB33 PB32 PB31 PB30  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
0
PB34  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
0
PB43 PB42 PB41 PB40  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
0
PB44  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
0
PB53 PB52 PB51 PB50  
- 66 -  
NJU6821  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
0
PB54  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
1
PB63 PB62 PB61 PB60  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
1
PB64  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
1
PB73 PB72 PB71 PB70  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
1
PB74  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
1
PC03 PC02 PC01 PC00  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
1
PC04  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
1
PC13 PC12 PC11 PC10  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
1
PC14  
- 67 -  
NJU6821  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
1
PC23 PC22 PC21 PC20  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
1
PC24  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
1
PC33 PC32 PC31 PC30  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
1
PC34  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
1
1
PC43 PC42 PC41 PC40  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
0
1
1
PC44  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
PC53 PC52 PC51 PC50  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
1
0
0
PC54  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
PC63 PC62 PC61 PC60  
- 68 -  
NJU6821  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
1
0
0
PC64  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
PC73 PC72 PC71 PC70  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
1
0
0
PC74  
Gradation palette table (Variable gradation mode, PWM=”0” and MON=”0”)  
(Palette Aj, Palette Bj, Palette Cj (j=0 to 7))  
Gradation  
Gradation  
level  
Palette value  
Gradation palette  
Palette 0 (default)  
Palette value  
Gradation palette  
level  
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Palette 4 (default)  
Palette 1 (default)  
Palette 5 (default)  
Palette 6 (default)  
Palette 7 (default)  
Palette 2 (default)  
Palette 3 (default)  
- 69 -  
NJU6821  
(34-16) Initial COM line  
The “Initial COM line” instruction is used to specify the common driver that starts scanning the display data.  
The line address, corresponding to the initial COM line, is specified by the “Initial display line” instruction.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
0
SC2 SC1 SC0  
SC2 SC1 SC0  
Initial COM line (SHIFT=0)  
Initial COM line (SHIFT=1)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
COM0  
COM15  
COM30  
COM45  
COM60  
COM75  
Inhibited  
Inhibited  
COM79  
COM64  
COM49  
COM34  
COM19  
COM4  
Inhibited  
Inhibited  
SHIFT=0: Positive direction  
SHIFT=1: Negative direction  
(for instance, COM0 COM79)  
(for instance, COM79 COM0)  
(34-17) EXCS control  
The “EXCS control” instruction is available only in the master mode, where it is used to control the polarity  
for the EXCS output.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
EXCS  
0
1
1
0
1
0
0
EXCS=0: Output level “0”  
EXCS=1: Output level “1”  
(34-18) Gradation mode control  
The “Gradation mode control” is used to determine the display data for the GLSB and select the gradation  
mode.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
*
D0  
*
PWM GLSB  
0
1
1
0
1
0
0
GLSB register  
GLSB=0: GLSB “0”  
GLSB=1: GLSB “1”  
PWM register  
PWM=0: Variable gradation mode  
(Variable 8-gradation levels out of 32-gradation level of the gradation palette)  
PWM=1: Fixed gradation mode  
(Fixed 8-gradation levels)  
- 70 -  
NJU6821  
(34-19) Data bus length  
The “Data bus length” instruction is used to select the 8- or 16- bit data bus length and determine the  
internal or external oscillation. In the 16-bit data bus mode, instruction data must be 16-bit data (D15 to D0)  
as well as display data. However, for the access to the instruction registers, the lower 8-bit data (D7 to D0)  
of the 16-bit data is valid. For the access to the DDRAM, all of the 16-bit data (D15 to D0) is valid.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
D0  
0
1
1
0
1
0
0
CKS WLS  
WLS register  
WLS =0: 8-bit data bus length  
WLS =1: 16-bit data bus length  
CKS register  
CKS =0: Internal oscillation  
(The OSC1 and OSC2 must be fixed “1” or “0”.)  
CKS =1: External oscillation  
(By the external clock into the OSC1 or external resister between the OSC1 and OSC2.  
OSC2 should be open when clock is inputted from OSC1.)  
(34-20) EVR control  
The “EVR control” instruction is used to fine-tune the LCD driving voltage (VLCD) so that it is possible to  
optimize the contrast level for a LCD panel.  
This instruction must be programmed by the upper 3-bit data first, next lower 4-bit data. And it becomes  
enabled when the lower 4-bit data is programmed, so that it can prevent unexpected high voltage for the  
VLCD from being generated.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
DV3 DV2 DV1 DV0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
0
DV6 DV5 DV4  
DV6 DV5 DV4 DV3 DV2 DV1 DV0  
VLCD  
0
0
0
0
0
0
0
0
:
0
0
0
0
0
1
Low  
:
:
:
:
1
1
1
1
1
1
1
High  
The formula of the VLCD is shown below.  
VLCD [V] = 0.5 x VREG + M (VREG – 0.5 x VREG) / 127  
VBA = VEE x 0.9  
VREG = VREF x N  
VBA  
VREF  
VREG  
N
: Output voltage of the reference voltage generator  
: Input voltage of the voltage regulator  
: Output voltage of the voltage regulator  
: Register value for the voltage booster  
: Register value for the EVR  
M
- 71 -  
NJU6821  
(34-21) Frequency control  
The “Frequency control” instruction is used to control the frame frequency for a LCD panel.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
FFL Rf2 Rf1 Rf0  
Rfx register (x=0, 1, 2)  
The “Rfx” register is used to determine the feed back resister value for the internal oscillator and it is  
possible to adjust the frame frequency for the LCD modules.  
Rf 2  
0
0
0
0
Rf 1  
0
0
1
1
Rf 0  
0
1
0
1
Feedback resistor value  
Reference value  
0.8 x reference value  
0.9 x reference value  
1.1 x reference value  
1.2 x reference value  
Inhibited  
1
1
0
0
0
1
1
1
0
Inhibited  
1
1
1
Inhibited  
FFL register  
The “FFL” register is used to select normal or high-speed frame frequency mode.  
FFL =0:  
FFL =1:  
Normal  
(Frame frequency: 73Hz typical)  
High-speed mode (Frame frequency: 150Hz typical)  
Note) The above values for the typical frame frequency are based on the following conditions.  
Variable gradation mode, 1/82 duty cycle ratio, (Rf2, Rf1, Rf0) = (0,0,0)  
(34-22) Discharge ON/OFF  
Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and the VLCD  
terminals. The “Discharge ON/OFF” instruction is usually required just after the internal power supply is  
turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is  
turned off. During the discharge operation, the internal or external power supply must not be turned on.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
1
0
0
DIS  
DIS =0:  
DIS =1:  
Discharge OFF  
Discharge ON  
- 72 -  
NJU6821  
(34-23) Instruction register address  
The “Instruction register address” is used to specify the instruction register address, so that it is possible to  
read out the contents of the instruction registers in combination with the “Instruction register read”  
instruction.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
RA3 RA2 RA1 RA0  
(34-24) Instruction register read  
The “Instruction register read” instruction is used to read out the contents of the instruction register in  
combination with the “Instruction register address” instruction.  
CSb RS RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
*
D6  
*
D5  
*
D4  
*
D3  
D2  
D1  
D0  
0
1
0
1
Internal register data read  
(34-25) Window end column address  
The “Window end column address” is used to specify the column address for the window end point. The  
lower 4-bit data is required to be programmed first and then the upper 3-bit data can be programmed.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
1
EX3 EX2 EX1 EX0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
1
EX6 EX5 EX4  
(34-26) Window end row address set  
The “Window end row address” is used to specify the row address for the window end point. The lower 4-  
bit data is required to be programmed first and then the upper 3-bit data can be programmed.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
1
EY3 EY2 EY1 EY0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
1
EY6 EY5 EY4  
- 73 -  
NJU6821  
(34-27) Initial reverse line  
The “Initial reverse line” instruction is used to specify the initial line address for the reverse line display.  
Lower 4-bit data must be programmed first, next upper 3-bit data. It is programmed in between 00H and  
4FH and the line address beyond 4FH is inhibited. The address relation: LSi < LEi (i=6 to 0) must be  
maintained in the reverse line display.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
1
LS3 LS2 LS1 LS0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
1
LS6 LS5 LS4  
(34-28) Last reverse line  
The “Last reverse line” instruction is used to specify the last reverse line address for the reverse line  
display. Lower 4-bit must be programmed first, next upper 3-bit data. It is programmed in between 00H and  
4FH and the line address beyond 4FH is inhibited. The address relation: LSi < LEi (i=6 to 0) must be  
maintained in the reverse line display.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
1
LE3 LE2 LE1 LE0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
1
LE6 LE5 LE4  
(34-29) Reverse line display ON/OFF  
The “Reverse line display ON/OFF” is used to enable or disable the reverse line display for the blink  
operation and determine the reverse line display mode.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
*
D2  
*
D1  
D0  
0
1
1
0
1
0
1
BT LREV  
LREV register  
The “LREV” register is used to enable or disable the reverse line display.  
LREV =0: Reverse line display OFF (Normal)  
LREV =1: Reverse line display ON  
- 74 -  
NJU6821  
BT register  
The “BT” register is used to determine the reverse line display mode in the reverse line display ON  
(LREV=1) status.  
BT =0:  
BT =1:  
Normal reverse line display  
Blink once every 32 frames  
Display examples in the LREV=”1” and BT=”1”  
ꢁꢂꢂꢂꢁ  
ꢂꢁꢁꢁꢂ  
ꢂꢁꢁꢁꢁ  
ꢁꢂꢂꢂꢁ  
ꢁꢁꢁꢁꢂ  
ꢂꢁꢁꢁꢂ  
ꢁꢂꢂꢂꢁ  
ꢁꢁꢁꢁꢁ  
ꢂꢁꢁꢁꢂ  
ꢁꢂꢂꢂꢁ  
ꢁꢂꢂꢂꢂ  
ꢂꢁꢁꢁꢂ  
ꢂꢂꢂꢂꢁ  
ꢁꢂꢂꢂꢁ  
ꢂꢁꢁꢁꢂ  
ꢂꢂꢂꢂꢂ  
Blink once every 32 frames  
NJRC  
LCD DRIVER  
Low Power and  
Low Voltage  
Blink once every 32 frames  
NJRC  
Initial reverse line address  
Last reverse line address  
LCD DRIVER  
Low Power and  
Low Voltage  
(34-30) Icon segment register ON/OFF  
The “Icon segment address ON/OFF” is used to enable or disable to access to the icon segment register.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
0
1
1
0
1
0
1
DMY  
DMY register  
DMY=0: Access to the DDRAM  
DMY=1: Access to the icon segment register  
- 75 -  
NJU6821  
(34-31) PWM control  
The “PWM control” is used to determine the PWM type for the segment waveforms, where the type can be  
specified for each of the SEGAi, SEGBi and SEGCi (i=0-127) drivers.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PWMS PWMA PWMB PWMC  
0
1
1
0
1
0
1
PWMS register  
PWMS=0: Type 1  
PWMS=1: Type 2  
PWMA, B and C registers  
The “PWMA, PWMB and PWMC” registers are used to select the type 1-O or type 1-E.  
PWMZ=0 (Z=A, B and C): Type 1-O  
PWMZ=1 (Z=A, B and C): Type 1-E  
PWM type1 (PWMS=”0”)  
Odd line  
Even line  
“H”  
“L”  
CL  
VLCD  
V2  
Type-O  
Type-E  
SEG  
VLCD  
V2  
PWM type2 (PWMS=”1”)  
“H”  
CL  
“L”  
VLCD  
SEG  
V2  
- 76 -  
NJU6821  
(35)The relationship between Common drivers and row addresses  
Row address assignment for common drivers is programmed by the “SHIF” register of the “Display control (1),  
and “Duty cycle ratio”, “Initial display line” and “Initial COM line” instructions. The assignment for the COMI0 and  
COMI1 are independent of these instructions and always fixed.  
When initial display line is “0”  
The relation between common drivers and row address of DDRAM (MY) is changing each 15dots unit by the  
“Duty cycle ratio” and “Initial COM line” instructions. If the shift bit is “0”, the order of common scanning is  
normal and if it is “1”, the common scanning order is inversed. When LA0 to LA6 of initial display line setting is  
“0”, the “MY” corresponding to the Initial COM line is also “0”. And “MY” is increasing.  
Regardless above, COMI0 and COMI1 is fixed to MY80 and MY81 respectively.  
When initial display line is not “0”  
The relation between common drivers and row address of DDRAM (MY) is changing each 15dots unit by the  
“Duty cycle ratio” and “Initial COM line” instructions. If the shift bit is “0”, the order of common scanning is  
normal and if it is “1”, the common scanning order is inversed. When LA0 to LA6 of initial display line setting is  
not “0”, the “MY” corresponding to the Initial COM line is biased by the setting value. During the display, “MY” is  
increasing up to “79”. When “MY” over than “79”, its back to “0”. And “MY” is increasing from 0 continuously.  
Regardless above, COMI0 and COMI1 is fixed to MY80 and MY81 respectively.  
- 77 -  
NJU6821  
(35-1) Initial display line “0”, 1/82 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
SHIFT=”1” (Common backward scan)  
“000” (1/82 duty)  
DS2  
DS1  
SC1  
DS0  
“000” (1/82 duty)  
“010” “011”  
“0000000” (Initial display line 0)  
SC2  
LA6  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
“001”  
“010”  
“011”  
“100”  
“101”  
!!!!!!!!  
“0000000” (Initial display line 0)  
COMI0  
COM0  
80  
0
80  
65  
80  
50  
80  
35  
80  
20  
80  
5
80  
79  
80  
64  
80  
49  
80  
34  
80  
19  
80  
4
COM1  
COM2  
COM3  
COM4  
0
COM5  
79  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
79  
0
0
79  
79  
0
0
79  
79  
0
0
79  
79  
0
0
79  
79  
0
79  
81  
64  
81  
49  
81  
34  
81  
19  
81  
4
81  
0
81  
65  
81  
50  
81  
35  
81  
20  
81  
5
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 78 -  
NJU6821  
(35-2) Initial display line “0”, 1/77 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
“001” (1/77 duty)  
“010” “011”  
“0000000” (Initial display line 0)  
SHIFT=”1” (Common backward scan)  
“001” (1/77 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000000” (Initial display line 0)  
COMI0  
COM0  
80  
0
80  
65  
80  
50  
80  
35  
80  
20  
80  
5
80  
64  
80  
49  
80  
34  
80  
19  
80  
4
COM1  
COM2  
COM3  
COM4  
0
COM5  
74  
COM6  
COM7  
COM8  
COM9  
74  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
74  
0
0
74  
74  
0
0
74  
74  
0
0
74  
74  
0
0
74  
74  
74  
81  
0
64  
81  
49  
81  
34  
81  
19  
81  
4
81  
0
81  
65  
81  
50  
81  
35  
81  
20  
81  
5
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 79 -  
NJU6821  
(35-3) Initial display line “0”, 1/66 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
SHIFT=”1” (Common backward scan)  
“010” (1/66 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“010” (1/66 duty)  
“010” “011”  
“0000000” (Initial display line 0)  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000000” (Initial display line 0)  
COMI0  
COM0  
80  
0
80  
80  
50  
80  
35  
80  
20  
80  
5
80  
63  
80  
49  
80  
34  
80  
19  
80  
4
COM1  
COM2  
COM3  
COM4  
0
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
63  
0
63  
0
63  
63  
0
0
63  
63  
0
0
63  
63  
0
63  
0
63  
0
63  
81  
49  
81  
34  
81  
19  
81  
4
81  
0
81  
50  
81  
35  
81  
20  
81  
5
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 80 -  
NJU6821  
(35-4) Initial display line “0”, 1/47 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
“011” (1/47 duty)  
“010” “011”  
“0000000” (Initial display line 0)  
SHIFT=”1” (Common backward scan)  
“011” (1/47 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000000” (Initial display line 0)  
COMI0  
COM0  
80  
0
80  
80  
80  
35  
80  
20  
80  
5
80  
80  
80  
34  
80  
19  
80  
4
COM1  
COM2  
COM3  
COM4  
0
COM5  
44  
COM6  
COM7  
COM8  
COM9  
44  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
0
0
44  
44  
0
0
44  
44  
44  
44  
0
0
44  
44  
0
0
44  
44  
81  
0
34  
81  
19  
81  
4
81  
0
81  
35  
81  
20  
81  
5
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 81 -  
NJU6821  
(35-5) Initial display line “0”, 1/32 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
SHIFT=”1” (Common backward scan)  
“100” (1/32 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“100” (1/32 duty)  
“010” “011”  
“0000000” (Initial display line 0)  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000000” (Initial display line 0)  
COMI0  
COM0  
80  
0
80  
80  
80  
80  
20  
80  
5
80  
80  
80  
80  
19  
80  
4
COM1  
COM2  
COM3  
COM4  
0
COM5  
29  
COM6  
COM7  
COM8  
COM9  
29  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
0
0
29  
29  
29  
0
0
29  
29  
0
0
29  
29  
29  
0
0
29  
29  
81  
0
19  
81  
4
81  
0
81  
20  
81  
5
81  
81  
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 82 -  
NJU6821  
(35-6) Initial display line “0”, 1/17 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
“101” (1/17 duty)  
“010” “011”  
“0000000” (Initial display line 0)  
SHIFT=”1” (Common backward scan)  
“101” (1/17 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000000” (Initial display line 0)  
COMI0  
COM0  
80  
0
80  
80  
80  
80  
80  
5
80  
80  
80  
80  
80  
4
COM1  
COM2  
COM3  
COM4  
0
COM5  
14  
COM6  
COM7  
COM8  
COM9  
14  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
14  
0
0
14  
14  
0
0
14  
14  
0
0
14  
14  
0
0
14  
14  
14  
81  
0
4
81  
0
81  
5
81  
81  
81  
81  
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 83 -  
NJU6821  
(35-7) Initial display line “0”, 1/38 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
SHIFT=”1” (Common backward scan)  
“110” (1/38 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“110” (1/38 duty)  
“010” “011”  
“0000000” (Initial display line 0)  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000000” (Initial display line 0)  
COMI0  
COM0  
80  
0
80  
80  
80  
35  
80  
20  
80  
5
80  
80  
80  
34  
80  
19  
80  
4
COM1  
COM2  
COM3  
COM4  
0
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
35  
0
35  
0
35  
0
35  
0
35  
35  
0
0
35  
35  
0
0
35  
35  
0
34  
81  
19  
81  
4
81  
0
81  
35  
81  
20  
81  
5
81  
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 84 -  
NJU6821  
(35-8) Initial display line “0”, 1/26 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
“111” (1/26 duty)  
“010” “011”  
“0000000” (Initial display line 0)  
SHIFT=”1” (Common backward scan)  
“111” (1/26 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000000” (Initial display line 0)  
COMI0  
COM0  
80  
0
80  
80  
80  
80  
20  
80  
5
80  
80  
80  
80  
19  
80  
4
COM1  
COM2  
COM3  
23  
COM4  
0
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
23  
0
23  
0
23  
23  
0
0
23  
23  
0
0
23  
23  
0
23  
0
23  
0
23  
19  
81  
4
81  
0
81  
20  
81  
5
81  
81  
81  
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 85 -  
NJU6821  
(35-9) Initial display line “5”, 1/82 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
SHIFT=”1” (Common backward scan)  
“000” (1/82 duty)  
DS2  
DS1  
SC1  
DS0  
“000” (1/82 duty)  
“010” “011”  
“0000101” (Initial display line 5)  
SC2  
LA6  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
“001”  
“010”  
“011”  
“100”  
“101”  
!!!!!!!!  
“0000101” (Initial display line 5)  
COMI0  
COM0  
80  
5
80  
70  
80  
55  
80  
40  
80  
25  
80  
10  
80  
4
80  
69  
80  
54  
80  
39  
80  
24  
80  
9
COM1  
COM2  
COM3  
COM4  
0
5
COM5  
79  
COM6  
COM7  
COM8  
COM9  
79  
0
0
79  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
5
5
79  
0
0
79  
5
5
79  
0
0
79  
5
5
79  
0
0
79  
5
5
79  
0
0
79  
79  
0
5
4
81  
69  
81  
54  
81  
39  
81  
24  
81  
9
81  
5
81  
70  
81  
55  
81  
40  
81  
25  
81  
10  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 86 -  
NJU6821  
(35-10) Initial display line “5”, 1/77 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
“001” (1/77 duty)  
“010” “011”  
“0000101” (Initial display line 5)  
SHIFT=”1” (Common backward scan)  
“001” (1/77 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000101” (Initial display line 5)  
COMI0  
COM0  
80  
5
80  
70  
80  
55  
80  
40  
80  
25  
80  
10  
80  
69  
80  
54  
80  
39  
80  
24  
80  
9
COM1  
COM2  
COM3  
COM4  
5
COM5  
79  
COM6  
COM7  
COM8  
COM9  
79  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
79  
5
5
79  
79  
5
5
79  
79  
5
5
79  
79  
5
5
79  
79  
79  
81  
5
69  
81  
54  
81  
39  
81  
24  
81  
9
81  
5
81  
70  
81  
55  
81  
40  
81  
25  
81  
10  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 87 -  
NJU6821  
(35-11) Initial display line “5”, 1/66 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
SHIFT=”1” (Common backward scan)  
“010” (1/66 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“010” (1/66 duty)  
“010” “011”  
“0000101” (Initial display line 5)  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000101” (Initial display line 5)  
COMI0  
COM0  
80  
5
80  
80  
55  
80  
40  
80  
25  
80  
10  
80  
68  
80  
54  
80  
39  
80  
24  
80  
9
COM1  
COM2  
COM3  
COM4  
5
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
68  
5
68  
5
68  
68  
5
5
68  
68  
5
5
68  
68  
5
68  
5
68  
5
68  
81  
54  
81  
39  
81  
24  
81  
9
81  
5
81  
55  
81  
40  
81  
25  
81  
10  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 88 -  
NJU6821  
(35-12) Initial display line “5”, 1/47 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
“011” (1/47 duty)  
“010” “011”  
“0000101” (Initial display line 5)  
SHIFT=”1” (Common backward scan)  
“011” (1/47 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000101” (Initial display line 5)  
COMI0  
COM0  
80  
5
80  
80  
80  
40  
80  
25  
80  
10  
80  
80  
80  
39  
80  
24  
80  
9
COM1  
COM2  
COM3  
COM4  
5
COM5  
49  
COM6  
COM7  
COM8  
COM9  
49  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
5
5
49  
49  
5
5
49  
49  
49  
49  
5
5
49  
49  
5
5
49  
49  
81  
5
39  
81  
24  
81  
9
81  
5
81  
40  
81  
25  
81  
10  
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 89 -  
NJU6821  
(35-13) Initial display line “5”, 1/32 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
SHIFT=”1” (Common backward scan)  
“100” (1/32 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“100” (1/32 duty)  
“010” “011”  
“0000101” (Initial display line 5)  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000101” (Initial display line 5)  
COMI0  
COM0  
80  
5
80  
80  
80  
80  
25  
80  
10  
80  
80  
80  
80  
24  
80  
9
COM1  
COM2  
COM3  
COM4  
5
COM5  
34  
COM6  
COM7  
COM8  
COM9  
34  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
5
5
34  
34  
34  
5
5
34  
34  
5
5
34  
34  
34  
5
5
34  
34  
81  
5
24  
81  
9
81  
5
81  
25  
81  
10  
81  
81  
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 90 -  
NJU6821  
(35-14) Initial display line “5”, 1/17 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
“101” (1/17 duty)  
“010” “011”  
“0000101” (Initial display line 5)  
SHIFT=”1” Common backward scan)  
“101” (1/17 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000101” (Initial display line 5)  
COMI0  
COM0  
80  
5
80  
80  
80  
80  
80  
10  
80  
80  
80  
80  
80  
9
COM1  
COM2  
COM3  
COM4  
5
COM5  
19  
COM6  
COM7  
COM8  
COM9  
19  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
19  
5
5
19  
19  
5
5
19  
19  
5
5
19  
19  
5
5
19  
19  
19  
81  
5
9
81  
5
81  
10  
81  
81  
81  
81  
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 91 -  
NJU6821  
(35-15) Initial display line “5”, 1/38 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
SHIFT=”1” (Common backward scan)  
“110” (1/38 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“110” (1/38 duty)  
“010” “011”  
“0000101” (Initial display line 5)  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000101” (Initial display line 5)  
COMI0  
COM0  
80  
5
80  
80  
80  
40  
80  
25  
80  
10  
80  
80  
80  
39  
80  
24  
80  
9
COM1  
COM2  
COM3  
COM4  
5
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
40  
5
40  
5
40  
5
40  
5
40  
40  
5
5
40  
40  
5
5
40  
40  
5
39  
81  
24  
81  
9
81  
5
81  
40  
81  
25  
81  
10  
81  
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 92 -  
NJU6821  
(35-16) Initial display line “5”, 1/26 duty cycle  
SHIFT set value  
SHIFT=”0” (Common forward scan)  
“111” (1/26 duty)  
“010” “011”  
“0000101” (Initial display line 5)  
SHIFT=”1” (Common backward scan)  
“111” (1/26 duty)  
DS2  
SC2  
LA6  
DS1  
SC1  
!!!!!!!!  
DS0  
SC0  
LA0  
“000”  
“001”  
“100”  
“101”  
“000”  
80  
“001”  
“010”  
“011”  
“100”  
“101”  
“0000101” (Initial display line 5)  
COMI0  
COM0  
80  
5
80  
80  
80  
80  
25  
80  
10  
80  
80  
80  
80  
24  
80  
9
COM1  
COM2  
COM3  
28  
COM4  
5
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COMI1  
28  
5
28  
5
28  
28  
5
5
28  
28  
5
5
28  
28  
5
28  
5
28  
5
28  
24  
81  
9
81  
5
81  
25  
81  
10  
81  
81  
81  
81  
81  
81  
81  
81  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 93 -  
NJU6821  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Supply Voltage (1)  
Supply Voltage (2)  
Supply Voltage (3)  
Supply Voltage (4)  
Supply Voltage (5)  
Supply Voltage (6)  
Input Voltage  
SYMBOL  
VDD  
VEE  
VOUT  
VREG  
VLCD  
V1, V2, V3, V4  
VI  
CONDITION  
TERMINAL  
VDD  
RATING  
-0.3 to +4.0  
-0.3 to +4.0  
UNIT  
V
V
V
V
V
V
V
°C  
VEE  
VOUT  
VREG  
VLCD  
-0.3 to +20.0  
-0.3 to +20.0  
-0.3 to +20.0  
-0.3 to VLCD + 0.3  
-0.3 to VDD + 0.3  
-45 to +125  
VSS=0V  
Ta = +25°C  
V1, V2, V3, V4  
*1  
Storage Temperature  
Tstg  
Note 1) D0 to D15, CSb, RS, M/S, RDb, WRb, OSC1, CL, FLM, FR, CLK, RESb, TEST terminals.  
Note 2) To stabilize the voltage booster operation, decoupling capacitors must be connected between the  
VDD and VSS pins and between the VEE and VSSH pins.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
VDD1  
VDD2  
VEE  
VLCD  
VOUT  
VREG  
VREF  
TERMINAL  
VDD  
MIN  
1.7  
2.4  
2.4  
5
TYP  
MAX  
3.3  
3.3  
UNIT  
V
V
V
V
V
V
V
NOTE  
*1  
*2  
*3  
*4  
Supply Voltage  
VEE  
VLCD  
VOUT  
VREG  
VREF  
3.3  
18.0  
18.0  
OUT × 0.9  
3.3  
Operating Voltage  
V
2.1  
-30  
*5  
Operating  
Temperature  
Topr  
85  
°C  
Note1) Applies to the condition when the reference voltage generator is not used.  
Note2) Applies to the condition when the reference voltage generator is used.  
Note3) Applies to the condition when the voltage booster is used.  
Note4) The following relationship among the supply voltages must be maintained.  
VSS<V4<V3<V2<V1<VLCD<VOUT  
Note5) The relationship: VREF<VEE must be maintained.  
- 94 -  
NJU6821  
DC CHARACTERISTICS 1  
VSS = 0V, VDD = +1.7 to +3.3V, Ta = -30 to +85°C  
SYMB  
PARAMETER  
OL  
CONDITION  
MIN  
TYP  
MAX  
UNIT NOTE  
VIH  
VIL  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
High level output voltage  
Low level output voltage  
Input leakage current  
0.8 VDD  
0
VDD - 0.4  
VDD  
0.22VDD  
V
V
V
V
V
V
µA  
µA  
*1  
*1  
*2  
*2  
*3  
*3  
*4  
*5  
VOH1  
VOL1  
VOH2  
VOL2  
ILI  
IOH = -0.4mA  
IOL = 0.4 mA  
IOH = -0.1mA  
IOL = 0.1 mA  
VI = VSS or VDD  
VI = VSS or VDD  
0.4  
VDD - 0.4  
0.4  
10  
10  
2
-10  
-10  
ILO  
Output leakage current  
VLCD = 10V  
VLCD = 6V  
1
2
RON1  
Driver ON-resistance  
Stand-by current  
*6  
|VON| = 0.5V  
kΩ  
µA  
4
ISTB  
VDD = 3V  
15  
*7  
CSb=VDD, Ta=25°C  
fOSC1  
fOSC2  
fOSC3  
fOSC4  
fOSC5  
305  
68  
9.8  
625.3  
141.2  
20.1  
726  
401  
175  
86.2  
25.2  
12  
372  
84  
12  
762.6  
172.2  
24.6  
807  
445  
194  
95.8  
28  
439  
99.2  
14.2  
899.9  
203.2  
29.1  
888  
490  
213  
105.4  
30.8  
*8  
*9  
*10  
*8  
*9  
*10  
FFL = “0”  
(Standard)  
VDD = 3V  
Ta = 25°C  
Internal oscillation  
Frequency  
kHz  
FFL = “1”  
(Hi-speed)  
fOSC6  
fr1  
Rf=10kΩ  
Rf=20kΩ  
Rf=51kΩ  
Rf=110kΩ  
Rf=390kΩ  
Rf=820kΩ  
fr2  
fr3  
External oscillation  
Frequency  
kHz  
V
*16  
fr4  
fr5  
fr6  
13.3  
14.6  
N-time booster (N=2 to 7)  
Voltage converter  
output voltage  
VOUT  
NxVEEx0.95  
*11  
RL = 500k(VOUT - VSS)  
VDD = 2.5V  
IDD1  
IDD2  
IDD3  
Supply current (1)  
Supply current (2)  
Supply current (3)  
Supply current (4)  
Supply current (5)  
Supply current (6)  
Supply current (7)  
Supply current (8)  
FFL = “0”  
580  
870  
670  
1060  
490  
760  
580  
930  
870  
1300  
1010  
1590  
740  
7-time booster  
(Whole ON pattern)  
VDD = 2.5V  
7-time booster  
(Checker pattern)  
VDD = 3V  
6-time booster  
(Whole ON pattern)  
VDD = 3V  
6-time booster  
(Checker pattern)  
VDD = 3V  
5-time booster  
(Whole ON pattern)  
VDD = 3V  
5-time booster  
(Checker pattern)  
VDD = 3V  
4-time booster  
(Whole ON pattern)  
VDD = 3V  
4-time booster  
(Checker pattern)  
FFL = “1”  
FFL = “0”  
FFL = “1”  
FFL = “0”  
FFL = “1”  
FFL = “0”  
FFL = “1”  
IDD4  
IDD5  
IDD6  
IDD7  
IDD8  
1140  
870  
1400  
*12  
µA  
IDD9  
IDD10  
IDD11  
IDD12  
IDD13  
IDD14  
IDD15  
IDD16  
Supply current (9)  
Supply current (10)  
Supply current (11)  
Supply current (12)  
Supply current (13)  
Supply current (14)  
Supply current (15)  
Supply current (16)  
FFL = “0”  
FFL = “1”  
FFL = “0”  
FFL = “1”  
FFL = “0”  
FFL = “1”  
FFL = “0”  
FFL = “1”  
330  
520  
390  
650  
220  
360  
260  
450  
500  
780  
590  
980  
330  
540  
390  
680  
(0.9 VEE  
x 0.98  
)
(0.9 VEE  
x 1.02  
)
VBA  
VBA Operating Voltage  
VREG Operating Voltage  
VEE = 2.4 to 3.3V  
0.9 VEE  
V
V
*13  
*14  
VEE = 2.4 to 3.3V  
(VREF  
x
(VREF ×N)  
x 0.97  
VREG  
V
REF = 0.9 x VEE  
(VREF x N)  
N) x 1.03  
N-time booster (N=2 to 7)  
- 95 -  
NJU6821  
SYMB  
OL  
PARAMETER  
Output voltage  
CONDITION  
MIN  
TYP  
MAX  
UNIT NOTE  
V2  
V3  
VD12  
VD34  
VD24  
-100  
-100  
-30  
-30  
-30  
0
0
0
0
0
+100  
+100  
+30  
+30  
+30  
mV  
*15  
- 96 -  
NJU6821  
CLOCK and FRAME FREQUENCY  
Display duty cycle ratio (1/D)  
PARAMETER SYNBOL  
Display mode  
Gradation mode  
NOTE  
1/82, 1/77, 1/66  
1/47, 1/38, 1/32, 1/26  
fOSC / (62xDx2)  
fOSC / (14xDx2)  
fOSC / (2xDx2)  
fCK / (62xDx2)  
fCK / (14xDx2)  
fCK / (2xDx2)  
1/17  
fOSC / (62xD)  
fOSC / (14xD)  
fOSC / (2xD)  
fCK / (62xD)  
fCK / (14xD)  
fCK / (2xD)  
fOSC / (62xDx4)  
fOSC / (14xDx4)  
fOSC / (2xDx4)  
fCK / (62xDx4)  
fCK / (14xDx4)  
fCK / (2xDx4)  
Internal clock  
External clock  
fOSC  
Simplified gradation mode  
B&W mode  
Gradation mode  
FLM  
Simplified gradation mode  
fCK  
B&W mode  
APPLIED TERMINALS and CONDITIONS  
Note 1) D0-D15, CSb, RS, M/S, RDb, WRb, P/S, SEL68, CLK, CL, FLM, FR, RESb  
Note 2) D0-D15  
Note 3) CL, FLM, FR, CLK  
Note 4) CSb, RS, M/S, SEL68, RDb, WRb, P/S, RESb, OSC1  
Note 5) D0-D15, CL, FLM, FR, CLK in the high impedance  
Note 6) SEGA0-SEGA127, SEGB0-SEGB127, SEGC0-SEGC127, COM0-COM79, COMI0, COMI1  
- Defines the resistance between the COM/SEG terminals and the power supply terminals  
(VLCD, V1, V2, V3 and V4) at the condition of 0.5V deference and 1/9 LCD bias ratio.  
Note 7) VDD  
- The oscillator is halted, CSb=”1” (disabled), No-load on the COM/SEG drivers.  
Note 8) OSC  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the variable gradation mode.  
Note 9) OSC  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the fixed gradation mode.  
Note 10) OSC  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(1,0,0) (12kHz),  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,1,1) (24kHz),  
in the black and white mode.  
Note 11) VOUT  
- Applies to the condition when the internal voltage booster (N=2-7), the internal oscillator and the internal  
power circuits are used.  
- VEE=2.4V to 3.3V, EVR= (1,1,1,1,1,1,1)  
- 1/5 to 1/10 LCD bias, 1/82 duty cycle, No-load on the COM/SEG drivers.  
- RL=500Kohm between VOUT and VSS, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”  
Note 12) VDD  
- Applies to the condition using the internal oscillator and internal power circuits, no accsess between the  
LSI and MPU.  
- EVR= (1,1,1,1,1,1,1), All pixels turned-on or checkerboard display in gradation mode.  
- 1/82 duty cycle, No-load on the COM/SEG drivers  
- VDD=VEE, VREF=0.9VEE, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”, NLIN=”0”,  
1/82 Duty, Ta=25°C  
- 97 -  
NJU6821  
Note 13) VREG  
- Applies to the condition that VBA=VREF and voltage booster N= 1.  
DCON=”0”, VOUT=13.5V input.  
Note 14) VREG  
- VEE=2.4V to 3.3V, VREF=0.9VEE, VOUT=18.0V, 1/5 to 1/10 LCD bias ratio, 1/82 duty cycle,  
EVR=(1,1,1,1,1,1,1)  
- Checkerboard display, No-load on the COM/SEG drivers, the voltage booster N=2 to 7  
CA1=CA2=1.0 uF, CA3=0.1 uF, DCON=”0”, AMPON=”1”, NLIN=”0”  
Note 15) VLCD, V1, V2, V3, V4  
- VEE = 3.0V, VREF = 0.9 VEE, VOUT =15.0V, bias=1/5~1/10, EVR= “1111111”.  
Display OFF, No-load on the COM/SEG drivers, the voltage booster N=5  
CA2=1.0µF, CA3=0.1µF, DCON=“0”, AMPON=“1”  
VLCD  
(1)  
V1  
VD12 : (1) – (2)  
VD34 : (3) – (4)  
VD24 : (2) – (4)  
(2)  
V2  
V3  
(3)  
(4)  
V4  
VSS  
Note 16) VDD=3V, Ta=25°C  
- 98 -  
NJU6821  
AC CHARACTERISTERISTICS  
Write operation (80-type MPU)  
tAS8  
tAH8  
CSb  
RS  
WRb  
tWRLW8  
tWRHW8  
tDS8  
tDH8  
D0 D15  
tCYC8  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLW8  
tWRHW8  
90  
35  
35  
ns  
ns  
ns  
WRb  
Data setup time  
Data hold time  
tDS8  
tDH8  
30  
5
ns  
ns  
D0 to D15  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLW8  
tWRHW8  
160  
70  
70  
ns  
ns  
ns  
WRb  
Data setup time  
Data hold time  
tDS8  
tDH8  
40  
5
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLW8  
tWRHW8  
180  
80  
80  
ns  
ns  
ns  
WRb  
Data setup time  
Data hold time  
tDS8  
tDH8  
70  
10  
ns  
ns  
D0 to D15  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 99 -  
NJU6821  
Read operation (80-type MPU)  
tAH8  
tAS8  
CSb  
RS  
tWRLR8  
RDb  
tWRHR8  
tRDH8  
D0 D15  
tRDD8  
tCYC8  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
80  
ns  
ns  
ns  
RDb  
Read Data delay time  
Read Data hold time  
tRDD8  
tRDH8  
CL=15pF  
60  
ns  
ns  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
80  
ns  
ns  
ns  
RDb  
Read Data delay time  
Read Data hold time  
tRDD8  
tRDH8  
CL=15pF  
60  
ns  
ns  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLR8  
tWRHR8  
250  
120  
120  
ns  
ns  
ns  
RDb  
Read Data delay time  
Read Data hold time  
tRDD8  
tRDH8  
CL=15pF  
110  
ns  
ns  
D0 to D15  
0
Note) Each timing is specified based on 20% and 80% of VDD.  
- 100 -  
NJU6821  
Write operation (68-type MPU)  
tAS6  
tAH6  
CSb  
RS  
R/Wb  
(WRb)  
tELW6  
tEHW6  
E
(RDb)  
tDS6  
tDH6  
D0 D15  
tCYC6  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELW6  
tEHW6  
90  
35  
35  
ns  
ns  
ns  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
40  
5
ns  
ns  
D0 to D15  
(VDD=2.4 to 2.7V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELW6  
tEHW6  
160  
70  
70  
ns  
ns  
ns  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
50  
5
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELW6  
tEHW6  
180  
80  
80  
ns  
ns  
ns  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
70  
10  
ns  
ns  
D0 to D15  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 101  
NJU6821  
Read operation (68-type MPU)  
tAS6  
tAH6  
CSb  
RS  
R/Wb  
(WRb)  
tELR6  
tEHR6  
E
(RDb)  
tRDH6  
D0 D15  
tRDD6  
tCYC6  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL  
tAH6  
tAS6  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELR6  
tEHR6  
180  
80  
80  
ns  
ns  
ns  
E
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
CL=15pF  
70  
ns  
ns  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELR6  
tEHR8  
180  
80  
80  
ns  
ns  
ns  
E
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
CL=15pF  
70  
ns  
ns  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PRMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELR6  
tEHR6  
250  
120  
120  
ns  
ns  
ns  
E
110  
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
CL=15pF  
ns  
ns  
D0 D15  
0
Note) Each timing is specified based on 20% and 80% of VDD.  
- 102 -  
NJU6821  
Serial interface  
tCSH  
tCSS  
CSb  
RS  
tASS  
tAHS  
tSLW  
tSHW  
SCL  
tCYCS  
tDSS  
tDHS  
SDA  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
Serial clock cycle  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
50  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL  
RS  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
tCSH  
20  
20  
ns  
ns  
CSb  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
50  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
tCSH  
20  
20  
ns  
ns  
CSb  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
80  
35  
35  
35  
35  
35  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
tCSH  
35  
35  
ns  
ns  
CSb  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 103  
NJU6821  
Display control timing  
tCLKHW  
tCLKLW  
tDCL  
CLK  
tCLLW  
tCLHW  
CL  
tDFLM  
tDFLM  
tFRLM  
tFRHW  
tFR  
FLM  
FR  
<FFL=1>  
Input timing (Slave mode)  
(VDD=1.7 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
CLK ”H” level pulse width  
CLK ”L” level pulse width  
tCLKHW  
tCLKLW  
tCLHW  
tCLLW  
tDCL  
tDFLM  
tFR  
530  
530  
ns  
ns  
CLK  
CL ”H” level pulse width  
CL ”L” level pulse width  
CL delay time  
FLM delay time  
FR delay time  
32.9  
32.9  
0
-1.0  
-1.0  
µs  
µs  
ns  
µs  
µs  
CL  
250  
1.0  
1.0  
CL  
FLM  
FR  
Output timing (Master mode)  
PARAMETER  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
UNIT  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
CLK ”H” level pulse width  
CLK ”L” level pulse width  
tCLKHW  
tCLKLW  
tCLHW  
tCLLW  
tFRHW  
tFRLW  
tDCL  
tDFLM  
tFR  
540  
540  
ns  
ns  
CLK  
CL ”H” level pulse width  
CL ”L” level pulse width  
33.5  
33.5  
µs  
µs  
CL  
FLM ”H” level pulse width  
FLM ”L” level pulse width  
CL delay time  
FLM delay time  
FR delay time  
67  
5427  
0
0
0
µs  
µs  
ns  
ns  
FLM  
CL=15pF  
CL=15pF  
200  
500  
500  
CL  
FLM  
FR  
CL=15pF  
ns  
Output timing (Master mode)  
PARAMETER  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
CLK ”H” level pulse width  
CLK ”L” level pulse width  
tCLKHW  
tCLKLW  
tCLHW  
tCLLW  
tFRHW  
tFRLW  
tDCL  
tDFLM  
tFR  
540  
540  
ns  
ns  
CLK  
CL ”H” level pulse width  
CL ”L” level pulse width  
33.5  
33.5  
µs  
µs  
CL  
FLM ”H” level pulse width  
FLM ”L” level pulse width  
CL delay time  
FLM delay time  
FR delay time  
67  
5427  
0
0
0
µs  
µs  
ns  
ns  
ns  
FLM  
CL=15pF  
CL=15pF  
CL=15pF  
200  
1000  
1000  
CL  
FLM  
FR  
Note) Each timing is specified based on 20% and 80% of VDD.  
1/82 Duty  
- 104 -  
NJU6821  
<FFL=0>  
Input timing (Slave mode)  
(VDD=1.7 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
CLK ”H” level pulse width  
CLK ”L” level pulse width  
tCLKHW  
tCLKLW  
tCLHW  
tCLLW  
tDCL  
tDFLM  
tFR  
1100  
1100  
ns  
ns  
CLK  
CL ”H” level pulse width  
CL ”L” level pulse width  
CL delay time  
FLM delay time  
FR delay time  
80  
80  
0
-1.0  
-1.0  
µs  
µs  
ns  
µs  
µs  
CL  
250  
1.0  
1.0  
CL  
FLM  
FR  
Output timing (Master mode)  
PARAMETER  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
UNIT  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
CLK ”H” level pulse width  
CLK ”L” level pulse width  
tCLKHW  
tCLKLW  
tCLHW  
tCLLW  
tFRHW  
tFRLW  
tDCL  
tDFLM  
tFR  
1120  
1120  
ns  
ns  
CLK  
CL ”H” level pulse width  
CL ”L” level pulse width  
81  
81  
µs  
µs  
CL  
FLM ”H” level pulse width  
FLM ”L” level pulse width  
CL delay time  
FLM delay time  
FR delay time  
138  
11250  
µs  
µs  
ns  
ns  
FLM  
CL=15pF  
CL=15pF  
0
0
0
200  
500  
500  
CL  
FLM  
FR  
CL=15pF  
ns  
Output timing (Master mode)  
PARAMETER  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
CLK ”H” level pulse width  
CLK ”L” level pulse width  
tCLKHW  
tCLKLW  
tCLHW  
tCLLW  
tFRHW  
tFRLW  
tDCL  
tDFLM  
tFR  
1120  
1120  
ns  
ns  
CLK  
CL ”H” level pulse width  
CL ”L” level pulse width  
81  
81  
µs  
µs  
CL  
FLM ”H” level pulse width  
FLM ”L” level pulse width  
CL delay time  
FLM delay time  
FR delay time  
138  
11250  
µs  
µs  
ns  
ns  
ns  
FLM  
CL=15pF  
CL=15pF  
CL=15pF  
0
0
0
200  
1000  
1000  
CL  
FLM  
FR  
Note) Each timing is specified based on 20% and 80% of VDD.  
1/82 Duty  
- 105  
NJU6821  
Input clock timing  
tCKLW  
tCKHW  
OSC1  
(VDD=1.7 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
1.64  
1.64  
7.35  
7.35  
51.0  
51.0  
TERMINAL  
OSC1 “H” level pulse width (1)  
OSC1 “L” level pulse width (1)  
OSC1 “H” level pulse width (2)  
OSC1 “L” level pulse width (2)  
OSC1 “H” level pulse width (3)  
OSC1 “L” level pulse width (3)  
tCKHW1  
tCKLW1  
tCKHW2  
tCKLW2  
tCKHW3  
tCKLW3  
0.525  
0.525  
2.45  
2.45  
17.2  
17.2  
OSC1  
1
OSC1  
2
OSC1  
3
µs  
µs  
µs  
µs  
µs  
µs  
Note) Each timing is specified based on 20% and 80% of VDD.  
Note *1) Applied to the variable gradation mode / MON=”0”, PWM=”0”  
Note *2) Applied to the fixed gradation mode / MON=”0”, PWM=”1”  
Note *3) Applied to the B&W mode / MON=”1”  
- 106 -  
NJU6821  
Reset input timing  
tRW  
RESb  
tR  
Internal circuit  
status  
During reset  
End of reset  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
Reset time  
SYMBOL CONDITION  
MIN.  
10.0  
MAX.  
Terminal  
tR  
1.0  
µs  
µs  
RESb “L” level pulse width  
tRW  
RESb  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
Reset time  
SYMBOL CONDITION  
MIN.  
10.0  
MAX.  
Terminal  
tR  
1.5  
µs  
µs  
RESb “L” level pulse width  
tRW  
RESb  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 107  
NJU6821  
APPLICATION CIRCUIT EXAMPLES  
MPU Connections  
80-type MPU interface  
1.7V to 3.3V  
VCC  
VDD  
A0  
RS  
A1 to A7  
Decoder  
8
7
CSb  
(80-type CPU)  
IORQb  
D0 to D7  
D0 to D7  
RDb  
RDb  
WRb  
WRb  
RESb  
RESb  
VSS  
GND  
Reset input  
68-type MPU interface  
1.7V to 3.3V  
VCC  
VDD  
A0  
RS  
A1 to A15  
Decoder  
8
15  
CSb  
(68-typeCPU) VMA  
D0 to D7  
E
D0 to D7  
RDb(E)  
R/W  
WRb(R/W)  
RESb  
GND  
RESb  
VSS  
Reset input  
Serial interface  
1.7V to 3.3V  
VCC  
VDD  
A0  
RS  
A1 to A7  
Decoder  
7
CSb  
(CPU)  
PORT1  
PORT2  
SDA  
SCL  
RESb  
RESb  
VSS  
GND  
Reset input  
- 108 -  
NJU6821  
Master LSI and Slave LSI Connections  
a) Input interface  
(Parallel interface)  
(Slave)  
(Master)  
VDD  
RESb  
CSb1  
CSb2  
RS  
WRb(R/W)  
RDb(E)  
D0 to D7  
SEL68  
8
(4-line serial interface)  
(Master)  
(Slave)  
VDD  
RESb  
CSb1  
CSb2  
RS  
SDA  
SCL  
(4-line serial interface, EXCS unification)  
(Master)  
(Slave)  
VDD  
RESb  
CSb  
RS  
SDA  
SCL  
- 109  
NJU6821  
(3-line serial interface)  
(Master)  
(Slave)  
VDD  
RESb  
CSb 1  
CSb 2  
SDA  
SCL  
(3-line serial interface, EXCS unification)  
(Master)  
(Slave)  
VDD  
RESb  
CSb  
SDA  
SCL  
- 110 -  
NJU6821  
b) LCD driving generation circuit  
VDD  
VDD  
VDD  
VEE  
VBA  
VREF  
C1+  
VDD  
VEE  
VBA  
VREF  
C1+  
CA1  
VSS  
CA1  
VSS  
CA1  
CA1  
C1-  
C2+  
C1-  
C2+  
C2-  
C3+  
C2-  
C3+  
CA1  
CA1  
C3-  
C4+  
C3-  
C4+  
C4-  
C4-  
C5+  
C5+  
CA1  
CA1  
C5-  
C6+  
C5-  
C6+  
C6-  
C6-  
VOUT  
CA1  
VOUT  
VSS  
CA1  
VSS  
VREG  
VLCD  
VREG  
VLCD  
CA3  
VSS  
VLCD  
V1  
CA2  
V1  
V2  
V3  
V4  
V1  
V2  
V3  
V4  
CA2  
CA2  
V2  
V3  
CA2  
CA2  
V4  
CLK  
CL  
CLK  
CL  
FLM  
FR  
FLM  
FR  
The following paragraphs describes the caution of Master/Slave operation.  
1) Display timing is controlled by Master chip. The CL, FLM, FR, CLK signals are stopped when Master  
chip is display OFF. When “Display OFF” executions, Slave chip must execute “Display OFF”  
before Master.  
2) When “HALT” command is executed in Master chip, the voltage booster circuit and voltage regulator  
circuit is turned off. LCD driver outputs VSS level voltage then display goes to turn off. And VLCD for  
Slave chip goes to stop supply. When “HALT” command is executed in Master chip, Display off must  
be executed before. Because VLCD for Slave chip is stopped.  
3) The EVR control is valid in only Master chip (on this circuit diagram).  
4) VOUT terminal should connect to VLCD to prevent condition of floating.  
5) OSC1 terminal and OSC2 in Slave chip should be open.  
- 111  
NJU6821  
Typical characteristic  
PARAMETER  
Basic delay time of gste  
SYMBOL  
MIN  
TYP  
10  
MAX  
UNIT  
ns  
Ta=+25°C, VSS=0V, VDD=3.0V  
Input output terminal type  
(a) Input circuit1  
VDD  
Terminals:  
CSb, RS, RDb, WRb, SEL68, M/S  
P/S, RESb  
I
Input signal  
VSS(0V)  
(b-1) Input/Output circuit 1  
VDD  
Terminals:  
FLM, CL, FR, CLK  
I/O  
Input signal  
VSS(0V)  
VDD  
Output control signal  
Output signal  
VSS(0V)  
(b-2) Input/Output circuit 2  
VDD  
Terminals:  
D0~D15  
I/O  
Input signal  
VSS(0V)  
VSS(0V)  
Input control signal  
VDD  
Output control signal  
Output signal  
VSS(0V)  
- 112 -  
NJU6821  
(c) Display output circuit  
VLCD  
VLCD  
VLCD  
V1/V2  
Output control  
signal 1  
Output control signal 2  
O
Output control  
signal 3  
Output control signal 4  
VSS(0V)  
V3/V4  
VSS(0V)  
VSS(0V)  
Terminals:  
SEGA0 to SEGA127  
SEGB0 to SEGB127  
SEGC0 to SEGC127  
COM0 to COM79  
COMI0, to COMI1  
SEGSA0, to SEGSA3  
SEGSB0, to SEGSB3  
SEGSC0, to SEGSC3  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
- 113  

相关型号:

NJU6823

128-common x (128+2)-RGB segment 4096-color STN Bitmap LCD Driver
ETC

NJU6824

128-common x (128+2) RGB-Segment, in 4096-Color STN LCD DRIVER
NJRC

NJU6824CJ

Liquid Crystal Driver, 518-Segment, CMOS, 22.07 X 2.55 MM, DIE-817
NJRC

NJU6824H

Liquid Crystal Driver, 518-Segment, CMOS, TCP
NJRC

NJU6825

162-common x 128-RGB segment 4096-color STN Bitmap LCD Driver
ETC

NJU6825CJ

Liquid Crystal Driver, 546-Segment, CMOS, DIE-786
NJRC

NJU6825CJ-Z

Liquid Crystal Driver, 546-Segment, CMOS, BUMP, DIE-786
NJRC

NJU6825H

Liquid Crystal Driver, 546-Segment, CMOS, TCP
NJRC

NJU6854

132COMMON x 132RGB LCD DRIVER FOR 65,536 - COLOR STN DISPLAY
NJRC

NJU6854CJ

暂无描述
NJRC

NJU7001

LOW VOLTAGE C-MOS OPERATIONAL AMPLIFIER
NJRC

NJU7001/02/04

Low Voltage C-MOS Operational Amplifier
NJRC