NJU6825H [NJRC]

Liquid Crystal Driver, 546-Segment, CMOS, TCP;
NJU6825H
型号: NJU6825H
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Liquid Crystal Driver, 546-Segment, CMOS, TCP

驱动 接口集成电路
文件: 总102页 (文件大小:1297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6825  
162COMMON x 128RGB LCD DRIVER  
FOR 4,096-COLOR STN DISPLAY  
GENERAL DESCRIPTION  
PACKAGE  
The NJU6825 is a 162COMMON x 128RGB LCD driver  
for 4,096-color STN display. It contains common drivers,  
RGB drivers, a serial and a parallel MPU interface circuit, an  
internal LCD power supply, grayscale palettes and  
248,832-bit display data RAM. The segment drivers for RGB  
(Red, Green, Blue) independently produce optimum 16  
grayscales from a built-in 32-grayscale palette, and the LSI  
achieves 4,096 colors (16x16x16).  
In addition, the NJU6825 operates with a low voltage of  
1.7V and a low operating current, therefore it is ideally suited  
for battery-powered handheld applications.  
TCP  
FEATURES  
4,096-color STN LCD driver  
Built-in LCD Drivers  
: 162-common Drivers  
x
128RGB Drivers (384-segment Drivers in B&W)  
Built-in Display Data RAM (DDRAM) : 248,832 bits for Graphic Display  
Programmable Display Mode  
- Variable 16-grayscale Mode  
- Variable 8-grayscale Mode  
- Fixed 8-grayscale Mode  
- B&W Mode  
: 4,096 Colors  
: 256 Colors  
: 256 Colors  
: Black & White  
8-/16-bit Parallel Interface Selectable  
8-/16-bit Bus Length for Display Data Selectable  
3-/4-line Serial Interface Selectable  
Programmable Duty Ratio and Bias Ratio  
Programmable Internal Voltage Booster : Maximum 7 times  
Programmable Contrast Control  
Various Useful Instructions  
Low Operating Current  
Low Logic Voltage  
: 128-step Electrical Variable Resistor (EVR)  
: 450uA Typical at VDD=3V, 4-time Boost, Checker Flag Display  
: 1.7V to 3.3V  
: 5.0V to 18.0V  
Wide LCD Voltage Range  
C-MOS Technology  
Package  
: TCP  
Ver.2004-05-12  
- 1 -  
NJU6825  
TABLE OF CONTENTS  
GENERAL DESCRIPTION  
PACKAGE .............................................................................................. 1  
FEATURES ................................................................................................................................................... 1  
BLOCK DIAGRAM ....................................................................................................................................... 5  
LCD POWER SUPPLY BLOCK DIAGRAM................................................................................................. 6  
TERMINAL DESCRIPTION 1....................................................................................................................... 7  
TERMINAL DESCRIPTION 2....................................................................................................................... 8  
TERMINAL DESCRIPTION 3....................................................................................................................... 9  
FUNCTIONAL DESCRIPTION ................................................................................................................... 10  
(1) MPU INTERFACE......................................................................................................................................... 10  
(1-1) Selection of Parallel/Serial Interface Mode .....................................................................................................10  
(1-2) Selection of MPU Mode...................................................................................................................................10  
(1-3) Data Recognition.............................................................................................................................................10  
(1-4) Selection of 3-/4-line Serial Interface Mode ....................................................................................................10  
(1-5) 4-line Serial Interface Mode ............................................................................................................................10  
(1-6) 3-line Serial Interface Mode ............................................................................................................................11  
(1-7) Accessing DDRAM..........................................................................................................................................12  
(1-8) Accessing Instruction Register........................................................................................................................13  
(1-9) Selection of 8-/16-bit Bus Length (Parallel Interface Mode) ...........................................................................13  
(2) INITIAL DISPLAY LINE REGISTER ............................................................................................................. 13  
(3) COLUMN AND ROW ADDRESS COUNTERS ............................................................................................ 13  
(4) DDRAM......................................................................................................................................................... 14  
(4-1) DDRAM Address Range..................................................................................................................................14  
(4-2) Window Area for DDRAM Access ...................................................................................................................15  
(4-3) Segment Direction...........................................................................................................................................15  
(4-4) Bit Assignment of Display Data .......................................................................................................................16  
(4-4-1) Bit Assignment Overview ......................................................................................................................................16  
(4-4-2) Bit Assignment in Variable 16-grayscale Mode .....................................................................................................17  
(4-4-3) Bit Assignment in Variable 8-level Gradation Mode ..............................................................................................20  
(4-4-4) Bit Assignment in Fixed 8-level Gradation Mode...................................................................................................21  
(4-4-5) Bit Assignment in B&W Mode ...............................................................................................................................25  
(4-5) Write Data and Read Data ..............................................................................................................................29  
(5) GRAYSCALE CONTROL CIRCUIT.............................................................................................................. 30  
(5-1) Display Mode Selection...................................................................................................................................30  
(5-1-1) Variable 16-grayscale Mode..................................................................................................................................30  
(5-1-2) Variable 8-grayscale Mode....................................................................................................................................30  
(5-1-3) Fixed 8-grayscale Mode........................................................................................................................................30  
(5-1-4) B&W Mode............................................................................................................................................................30  
(6) GRAYSCALE PALETTE................................................................................................................................ 31  
(6-1) Grayscale Selection in Variable 16-grayscale Mode.......................................................................................31  
(6-2) Grayscale Selection in Variable 8-grayscale Mode.........................................................................................32  
(6-3) Grayscale Selection in Fixed 8-grayscale Mode.............................................................................................33  
(6-4) Grayscale Selection in B&W Mode .................................................................................................................33  
(7) DISPLAY TIMING GENERATOR.................................................................................................................. 34  
(8) DATA LATCH CIRCUIT................................................................................................................................. 34  
(9) COMMON DRIVERS AND SEGMENT DRIVERS........................................................................................ 34  
(10) OSCILLATOR.............................................................................................................................................. 35  
(10-1) Using Internal Resistor (CKS=0) ...................................................................................................................35  
(10-2) Using External Resistor (CKS=1)..................................................................................................................35  
(10-3) Using External Clock (CKS=1) ......................................................................................................................35  
(11) LCD POWER SUPPLY................................................................................................................................ 35  
Ver.2004-05-12  
- 2 -  
NJU6825  
(11-1) Voltage Booster .............................................................................................................................................36  
(11-2) Voltage Converter..........................................................................................................................................37  
(11-2-1)  
(11-2-2)  
(11-2-3)  
(11-2-4)  
Reference Voltage Generator ...........................................................................................................................37  
Voltage Regulator..............................................................................................................................................37  
Electrical Variable Resistor (EVR).....................................................................................................................37  
LCD Bias Voltage Generator.............................................................................................................................37  
(11-3) External Components for LCD Power Supply ...............................................................................................38  
(11-4) Discharge Circuit ...........................................................................................................................................41  
(11-5) Power ON/OFF..............................................................................................................................................41  
(11-5-1)  
(11-5-2)  
Power ON/OFF in Using Internal LCD Power Supply .......................................................................................41  
Power ON/OFF in Using External LCD Power Supply......................................................................................41  
(12) RESET FUNCTION..................................................................................................................................... 42  
(13) INSTRUCTION TABLES............................................................................................................................. 43  
(13-1) Instruction Table and Register Address.........................................................................................................43  
(13-2) Instruction Table 0 (RE2, RE1, RE0)=(0, 0, 0)............................................................................................44  
(13-3) Instruction Table 1 (RE2, RE1, RE0)=(0, 0, 1)............................................................................................45  
(13-4) Instruction Table 2 (RE2, RE1, RE0)=(0, 1, 0)............................................................................................46  
(13-5) Instruction Table 3 (RE2, RE1, RE0)=(0, 1, 1)............................................................................................47  
(13-6) Instruction Table 4 (RE2, RE1, RE0)=(1, 0, 0)............................................................................................48  
(13-7) Instruction Table 5 (RE2, RE1, RE0)=(1, 0, 1)............................................................................................49  
(14) INSTRUCTION DESCRIPTIONS ............................................................................................................... 50  
(14-1) Display Data Write.........................................................................................................................................50  
(14-2) Display Data Read.........................................................................................................................................50  
(14-3) Column Address ............................................................................................................................................50  
(14-4) Row Address .................................................................................................................................................50  
(14-5) Initial Display Line..........................................................................................................................................50  
(14-6) N-line Inversion..............................................................................................................................................51  
(14-7) Display Control (1).........................................................................................................................................52  
(14-8) Display Control (2).........................................................................................................................................53  
(14-9) Increment Control..........................................................................................................................................54  
(14-10) Power Control..............................................................................................................................................55  
(14-11) Duty Cycle Ratio ..........................................................................................................................................56  
(14-12) Boost Level..................................................................................................................................................56  
(14-13) LCD Bias Ratio ............................................................................................................................................57  
(14-14) Instruction Table Select................................................................................................................................57  
(14-15) Palette A / B / C............................................................................................................................................58  
(14-16) Initial COM...................................................................................................................................................64  
(14-17) Duty-1 /Display Clock ON/OFF....................................................................................................................64  
(14-18) Display Mode Control ..................................................................................................................................64  
(14-19) Bus Length...................................................................................................................................................65  
(14-20) EVR Control.................................................................................................................................................65  
(14-21) Frequency Control .......................................................................................................................................66  
(14-22) Discharge ON/OFF......................................................................................................................................66  
(14-23) Register Address .........................................................................................................................................67  
(14-24) Register Read..............................................................................................................................................67  
(14-25) Window End Column Address.....................................................................................................................67  
(14-26) Window End Row Address ..........................................................................................................................67  
(14-27) Initial Line-reverse Address .........................................................................................................................67  
(14-28) Last Line-reverse Address...........................................................................................................................68  
(14-29) Line Reverse ON/OFF.................................................................................................................................68  
(14-30) Upper/Lower Palette Select.........................................................................................................................69  
(14-31) PWM Control ...............................................................................................................................................69  
(15) PARTIAL DISPLAY FUNCTION.................................................................................................................. 70  
(16) SWAP FUNCTION ...................................................................................................................................... 71  
(16-1) Swap Function in Variable 16-grayscale Mode .............................................................................................72  
(16-2) Swap Function in Variable 8-grayscale Mode ...............................................................................................74  
(16-3) Swap Function in Fixed 8-grayscale Mode ...................................................................................................75  
(16-4) Swap Function in B&W Mode........................................................................................................................77  
(17) RELATION BETWEEN ROW ADDRESS AND COMMON DRIVER.......................................................... 78  
Ver.2004-05-12  
- 3 -  
NJU6825  
(17-1) SHIFT=0, Initial Display Line “0”, Duty Cycle Ratio “1/163..........................................................................79  
(17-2) SHIFT=1, Initial Display Line “0”, Duty Cycle Ratio “1/163..........................................................................80  
(17-3) SHIFT=0, Initial Display Line “0”, Duty Cycle Ratio “1/16” ............................................................................81  
(17-4) SHIFT=0, Initial Display Line “5”, Duty Cycle Ratio “1/163..........................................................................82  
(17-5) SHIFT=0, Initial Display Line “0”, Duty Cycle Ratio “1/162..........................................................................83  
(18) TYPICAL INSTRUCTION SEQUENCES.................................................................................................... 84  
(18-1) Initialization Sequence in Using Internal LCD Power Supply........................................................................84  
(18-2) Initialization Sequence in Using External LCD Power Supply.......................................................................85  
(18-3) Display Data Write Sequence........................................................................................................................86  
(18-4) Partial Display Sequence ..............................................................................................................................87  
(18-5) Power OFF Sequence...................................................................................................................................88  
ABSOLUTE MAXIMUM RATINGS............................................................................................................. 89  
RECOMMENDED OPERATING CONDITIONS......................................................................................... 89  
DC CHARACTERISTICS............................................................................................................................ 90  
OSCILLATION FREQUENCY AND FRAME FREQUENCY...................................................................... 91  
AC CHARACTERISTICS............................................................................................................................ 93  
(1) Write Operation (Parallel Interface / 80-series MPU)................................................................................... 93  
(2) Read Operation (Parallel Interface / 80-series MPU)................................................................................... 94  
(3) Write Operation (Parallel Interface / 68-series MPU)................................................................................... 95  
(4) Read Operation (Parallel Interface / 68-series MPU)................................................................................... 96  
(5) Write Operation (Serial Interface)................................................................................................................. 97  
(6) Display Control Timing.................................................................................................................................. 98  
(7) Input Clock Timing ........................................................................................................................................ 99  
(8) Reset Input Timing........................................................................................................................................ 99  
(9) Delay Time of Gate ....................................................................................................................................... 99  
INPUT/OUTPUT BLOCK DIAGRAMS..................................................................................................... 100  
MPU CONNECTIONS............................................................................................................................... 101  
Ver.2004-05-12  
- 4 -  
NJU6825  
BLOCK DIAGRAM  
VSSH  
VSS  
VSSA  
VDDA  
VDD  
Segment Driver  
Common Driver  
5
VLCD, V1 -V4  
Shift Register  
VREF  
Grayscale Control Circuit  
Data Latch Circuit  
Grayscale  
Palette  
(A/B/C)  
Voltage  
VBA  
VREG  
Converter  
VEE  
C1+/C1-  
C2+/C2-  
C3+/C3-  
Voltage  
Booster  
C4+/C4-  
Display Data RAM  
(DD RAM)  
128x162x(4+4+4)bits  
C5+/C5-  
C6+/C6-  
VOUT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
Column Address Decoder  
Column Address Counter  
Column Address Register  
FR  
RAM  
Interface  
Display  
Timing  
FLM  
CL  
Generator  
CLK  
OSC2  
OSC1  
D8  
Oscillator  
D7  
D6  
D5  
D4/SPOL  
D3/SMODE  
D2  
Instruction  
Decoder  
Register Read  
Control  
Bus Holder  
Internal bus  
N-line Control  
D1/SDA  
D0/SCL  
MPU Interface  
CSb RS  
RDb WRb P/S  
SEL68 RESb  
Ver.2004-05-12  
- 5 -  
NJU6825  
LCD POWER SUPPLY BLOCK DIAGRAM  
Voltage Converter  
LCD Bias Voltage Generator  
+
VBA  
Reference Voltage Generator  
+
VLCD  
-
-
Voltage Regulator  
VREG  
+
-
V1  
V2  
VREF  
+
+
-
-
EVR  
Gain  
+
-
V3  
V4  
Control  
1/2 VREG  
(1x-x)  
+
-
EVR Register  
Booster Level Register  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
Voltage Booster  
VEE  
VOUT  
Ver.2004-05-12  
- 6 -  
NJU6825  
TERMINAL DESCRIPTION 1  
No.  
Terminal  
VDD  
I/O  
Function  
30~32,  
Power  
Power Supply for Logic Circuits  
GND for Logic Circuits  
83-85  
50-52,  
VSS  
Power  
Power  
120-122  
143~145  
185~187  
VSSH  
GND for High Voltage Circuits  
VDDA is internally connected to VDD to fix SEL68 or P/S to “H” if necessary, and  
cannot be used as main power supply.  
58~60  
VDDA  
Power  
Power  
VDDA should be open if not used.  
VSSA is internally connected to VSS to fix SEL68 or P/S to “L” if necessary, and  
cannot be used as main GND.  
16~18,  
70~72  
VSSA  
VSSA should be open if not used.  
LCD Bias Voltages  
148-150,  
151-153,  
155-157,  
158-160,  
162-164  
VLCD  
V1  
When the internal LCD power supply is used, internal LCD bias voltages (VLCD  
and V1-V4) are activated by the “Power Control” instruction. Stabilizing capacitors  
V2  
Power  
are required between each bias voltage and VSS.  
V3  
When the external LCD power supply is used, LCD bias voltages are externally  
supplied on VLCD, V1, V2, V3 and V4 individually, with the following relation  
maintained: VSSH<V4<V3<V2<V1<VLCD  
V4  
190-192,  
194-196  
198-200,  
202-204  
206-208,  
210-212  
214-216,  
218-220  
222-224,  
226-228  
230-232,  
234-236  
174-176  
170-172  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
VBA  
VREF  
Power  
Power  
Power  
Power  
Power  
Power  
Capacitor Connection for Voltage Booster  
Capacitor Connection for Voltage Booster  
Capacitor Connection for Voltage Booster  
Capacitor Connection for Voltage Booster  
Capacitor Connection for Voltage Booster  
Capacitor Connection for Voltage Booster  
Power  
Power  
Reference-Voltage Generator Output  
Voltage Regulator Input  
Voltage Booster Input  
180-182  
VEE  
Power  
VEE is normally connected to VDD  
.
Voltage Booster Output  
242-244  
165-167  
39  
VOUT  
VREG  
Power  
Power  
I
Input if an external LCD power supply is used.  
Voltage Regulator Output  
Reset  
RESb  
Active “L”  
Ver.2004-05-12  
- 7 -  
NJU6825  
TERMINAL DESCRIPTION 2  
No.  
Terminal  
I/O  
Function  
1. Parallel Interface  
D7 to D0 : 8-bit Bi-directional Bus  
D0  
88  
I/O  
/SCL  
In the parallel interface mode (P/S=“H”), D7-D0 are connected to 8-bit  
bi-directional MPU bus.  
D1  
90  
94  
96  
I/O  
I/O  
I/O  
/SDA  
Serial Interface  
SDA : Serial Data  
SCL : Serial Clock  
D3  
SMODE : 3-/4-line Serial Mode Select  
SPOL : RS Polarity Select (3-line Serial Interface Mode)  
/SMODE  
In the 3 or 4-line serial interface mode (P/S=“L”), D0 is assigned to SCL, and D1  
to SDA.  
D4  
/SPOL  
In the 3-line serial interface mode, D4 is assigned to SPOL.  
Serial data on SDA is latched at the rising edge of SCL signal in order of D7,  
D6,… and D0, and then converted into 8-bit parallel data at the timing of the internal  
signal produced from the 8th SCL.  
D2  
D5  
D6  
D7  
92, 98,  
I/O  
I/O  
100,102  
SCL should be set to “L” right after data transmission or during non-access.  
D8  
D9  
8-bit Bi-directional Bus  
D10  
D11  
D12  
D13  
D14  
D15  
104,106,108,  
110,112,114,  
116,118  
In the 16-bit bus length mode, D15-D8 are assigned to upper 8-bit data bus.  
In the serial interface mode or the 8-bit parallel interface mode, D15-D8 should be  
fixed to “H” or “L”.  
Chip Select  
Active “L”  
43  
47  
CSb  
I
I
Register Select  
This signal interprets transferred data as display data or instruction.  
RS  
RS  
H
L
Data  
Instruction  
Display Data  
80-series MPU Interface (P/S=“H”, SEL68=“L”)  
Data Read (RDb) Signal  
Active “L”  
79  
75  
RDb (E)  
I
I
68-series MPU Interface (P/S=“H”, SEL68=“H”)  
Enable Signal  
Active “H”  
80-series MPU Interface (P/S=“H”, SEL68=“L”)  
Data Write (WRb) Signal  
Active “L”  
68-series MPU Interface (P/S=“H”, SEL68=“H”)  
Data Read or Write (R/W) Signal  
WRb (R/W)  
R/W  
H
L
Status  
Read  
Write  
Maker test terminal  
24  
55  
TEST1  
TEST2  
I
I
This terminal must be fixed to “L” in the user’s application.  
Maker test terminal  
This terminal must be fixed to “H” in the user’s application.  
Ver.2004-05-12  
- 8 -  
NJU6825  
TERMINAL DESCRIPTION 3  
No.  
Terminal  
I/O  
Function  
MPU Mode Select  
67  
SEL68  
I
SEL86  
MPU  
H
L
68-series  
80-series  
Parallel/Serial Interface Mode Select  
Chip  
Select  
CSb  
Display /  
Instruction  
RS  
Read  
Serial  
Clock  
-
P/S  
Data  
/Write  
63  
P/S  
I
H
L
D0 ~ D7  
RDb, WRb  
CSb  
RS  
SDA (D1)  
Write Only  
SCL (D0)  
In the serial interface mode (P/S=“L”), RDb, WRb, D2 and D5-D15 should be fixed  
to “H” or “L”,.  
Line Clock  
124  
127  
130  
133  
CL  
FLM  
FR  
O
O
O
O
CL is normally open.  
First Line Maker  
FLM is normally open.  
Frame Rate  
FR is normally open.  
Clock Output  
CLK  
CLK is normally open.  
OSC  
When the internal oscillator is used, fix OSC1 to “H” or “L” and leave OSC2 open.  
137,  
140  
OSC1  
OSC2  
I
To attain more accurate frequency, connect OSC1 and OSC2 with an external  
O
resistor.  
When the internal oscillator is not used, input external clock to OSC1 and leave  
OSC2 open.  
Segment Drivers  
REV Register  
Normal  
OFF  
0
1
ON  
1
0
Reverse  
SEGA0  
Segment drivers output the following voltage levels.  
B/W Mode (Example)  
~SEGA127  
SEGB0  
331-714  
O
~SEGB127  
FR Signal  
SEGC0  
Display Data  
~SEGC127  
Reverse Display OFF  
V2  
VLCD  
V2  
V3  
VSSH  
VSSH  
V3  
(Normal)  
Reverse Display ON  
Common Drivers  
VLCD  
Common drivers output the following voltage levels.  
311-330,  
260-308,  
246-257,  
715-734,  
737-785,  
2-13  
Data  
H
L
H
L
FR  
H
H
L
Output Levels  
COM0 ~  
COM161  
VSSH  
V1  
VLCD  
V4  
O
L
NOTE) DUMMY PADs: No. 14, 15, 20-23, 25-29, 33-38, 40-42, 44-46, 48, 49, 53, 54, 56, 57, 61, 62, 64-66, 68, 69, 73, 74,  
76-78, 80-82, 86, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 125, 126, 128, 129,  
131, 132, 134-136, 138, 139, 141, 142, 146, 147, 154, 161, 168, 169, 173, 177-179, 183, 184, 188, 189, 193, 197, 201,  
205, 209, 213, 217, 221, 225, 229, 233, 237-241, 245, 258, 259, 309, 310, 735, 736, and 786.  
Ver.2004-05-12  
- 9 -  
NJU6825  
FUNCTIONAL DESCRIPTION  
(1) MPU INTERFACE  
(1-1) Selection of Parallel/Serial Interface Mode  
The P/S selects a parallel or a serial interface mode, as shown in Table 1. In the serial interface mode, neither  
display data in the DDRAM nor instruction data in the registers can be read out.  
Table 1 Selection of Parallel/Serial Interface Mode  
P/S  
H
I/F Mode  
Parallel I/F  
Serial I/F  
CSb  
CSb  
CSb  
RS  
RS  
RS  
RDb  
RDb  
-
WRb  
WRb  
-
SEL68  
SEL68  
-
SDA  
SDA  
SCL  
SCL  
Data  
D7-D0 (D15-D0)  
-
L
NOTE) “ -” : Fix to “H” or “L”.  
(1-2) Selection of MPU Mode  
In the parallel interface mode, the SEL68 selects 68 or 80-series MPU mode, as shown in Table 2.  
Table 2 Selection of MPU Mode  
SEL68  
MPU Mode  
68-series MPU  
80-series MPU  
CSb  
CSb  
CSb  
RS  
RS  
RS  
RDb  
E
WRb  
R/W  
Data  
D7-D0 (D15-D0)  
D7-D0 (D15-D0)  
H
L
RDb  
WRb  
(1-3) Data Recognition  
In the parallel interface mode, the data from MPU is interpreted as display data or instruction according to the  
combination of the RS, RDb and WRb (R/W) signals, as shown in Table 3.  
Table 3 Data Recognition (Parallel Interface Mode)  
68-series  
80-series  
RS  
Function  
R/W  
H
RDb  
L
WRb  
H
H
L
H
L
Read Instruction  
L
H
Write Instruction  
Read Display Data  
Write Display Data  
H
L
H
H
L
L
L
(1-4) Selection of 3-/4-line Serial Interface Mode  
In the serial interface mode, the SMODE selects 3- or 4-line serial interface mode, as shown in Table 4.  
Table 4 Selection of 3-/4-line Serial Interface Mode  
SMODE  
Serial Interface Mode  
H
L
3-line  
4-line  
(1-5) 4-line Serial Interface Mode  
While the chip select is active (CSb=“L”), the SDA and SCL are enabled. While the chip select is inactive  
(CSb=“H”), the SDA and SCL are disabled, and the internal shift register and the internal counter are being initialized.  
8-bit serial data on the SDA is latched at the rising edge of the SCL signal in order of D7, D6,…, and D0, and converted  
into 8-bit parallel data at the timing of the internal signal produced from the 8th SCL signal. The data on the SDA is  
interpreted as display data or instruction according to the RS.  
Table 5 Data Recognition (4-line Serial Interface)  
RS  
H
Data Recognition  
Instruction  
L
Display Data  
Ver.2004-05-12  
- 10 -  
NJU6825  
Note that the SCL should be set to “L” right after data transmission or during non-access because the serial interface  
is susceptible to external noises which may cause malfunctions. For added safety, inactivate the chip-select (CSb=“H”)  
temporary whenever 8-bit data transmission is completed. Fig 1 illustrates the interface timing of the 4-line serial  
interface mode.  
CSb  
RS  
VALID  
D
0  
SDA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SCL  
1
2
3
4
5
6
7
8
Fig 1 4-line Serial Interface Timing  
(1-6) 3-line Serial Interface Mode  
While the chip select is active (CSb=“L”), the SDA and SCL are enabled. While the chip select is not active  
(CSb=“H”), the SDA and SCL are disabled, and the internal shift register and the internal counter are being initialized.  
9-bit serial data on the SDA is latched at the rising edge of the SCL signal in order of RS, D7, D6,…, and D0, and then  
converted into 9-bit parallel data at the timing of the internal signal produced from the 9th SCL signal. The data on the  
SDA is interpreted as display data or instruction according to the combination of the RS bit and the SPOL status, as  
follows.  
Table 6 Data Recognition (3-line Serial Interface)  
SPOL=L  
SPOL=H  
Data Recognition  
Instruction  
RS  
0
Data Recognition  
Display Data  
Instruction  
RS  
0
1
1
Display Data  
Note that the SCL should be set to “L” right after data transmission or during non-access because the serial interface  
is susceptible to external noises which may cause malfunctions. For added safety, inactivate the chip-select (CSb=“H”)  
temporary whenever 9-bit data transmission is completed. Fig 2 illustrates the interface timing of the 3-line serial  
interface mode.  
CSb  
SDA  
SCL  
RS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
2
3
4
5
6
7
8
9
Fig 2 3-line Serial Interface Timing  
Ver.2004-05-12  
- 11 -  
NJU6825  
(1-7) Accessing DDRAM  
While the chip select is active (CSb=“L”), the data from MPU can be written into the DDRAM or the instruction  
register. When the RS is “L”, the data is interpreted as display data which is stored in the DDRAM. The display data is  
latched at the rising edge of the WRb signal in the 80-series MPU mode, or at the falling edge of the E signal in the  
68-series MPU mode.  
Table 7 Data Recognition  
RS  
L
Data Recognition  
Display Data  
Instruction  
H
In the DDRAM read sequence, be sure to execute a dummy read right after setting an address or right after writing  
display data or instruction. The data from MPU is temporarily held in the internal bus-holder, then released on the  
internal data-bus, therefore a dummy data is read out by the 1st “Display Data Read” instruction. After that, the display  
data is read out from a specified address by the 2nd instruction. Note that the “Display Data Read” instruction cannot be  
used in the serial interface mode.  
Display Data Write Operation  
n
n+1  
n+2  
n+3  
n+4  
D0 to D15  
WRb  
Bus Holder  
WRb  
n
n+1  
n+2  
n+3  
n+4  
Display Data Read Operation  
WRb  
D0 to D7 (D0 to D15)  
n
n
n+1  
n+2  
Address Set  
n
Dummy  
Read  
Data Read  
n Address  
Data Read  
Data Read  
n+1 Address  
n+2 Address  
RDb  
Fig 3 Internal-signal Timing of Display Data Read/Write Operations  
NOTE) In 16-bit bus length mode, instruction is transmitted to/from instruction register in 16 bits, as well as display data.  
Ver.2004-05-12  
- 12 -  
NJU6825  
(1-8) Accessing Instruction Register  
Each instruction register has a specific address in between (0H) and (FH), and instruction data is read out from the  
register by the “Register Address” and ”Register Read” instructions. For more information, refer to “(14-23) Register  
Address” and “(14-24) Register Read”.  
WRb  
M
m
N
n
D0 to D7  
Register Address  
Register Read  
Register Address  
Register Read  
RDb  
Fig 4 Access Timing of Instruction Register  
(1-9) Selection of 8-/16-bit Bus Length (Parallel Interface Mode)  
Either 8- or 16-bit bus length is selected by the D0 (WLS) bit of the “Bus Length” instruction. In the 16-bit bus  
length mode, instruction as well as display data is transmitted to/from the instruction registers in 16 bits (D15 to D0).  
However, only lower 8 bits (D7 to D0) are valid for instruction register access. And only 12 bits are actually stored in the  
DDRAM, even though entire 16 bits (D15 to D0) are transmitted for DDRAM access. For more information, refer to  
“(4-4) Bit Assignment of Display Data”.  
Table 8 Selection of 8-/16-bit Bus Length Mode  
WLS  
L
Bus Length Mode  
8-bit Bus Length  
16-bit Bus Length  
H
(2) INITIAL DISPLAY LINE REGISTER  
The address data in the initial display line register specifies the row address, which corresponds to an initial COM  
and is normally positioned on top of a screen in full display. The initial COM is the start position of common scanning,  
which is specified by the “Initial COM” instruction.  
The row address, which is established in the initial display line register, is preset into the line counter whenever the  
FLM becomes “H”. At the rising edge of the CL signal, the line counter is counted-up, then 384-bit display data is  
latched into the data latch circuit. At the falling edge of the CL signal, the latch data is released to the grayscale control  
circuit to decide a grayscale level, then the segment drivers Ai, Bi and Ci (i=0 to 127) generate LCD waveforms.  
(3) COLUMN AND ROW ADDRESS COUNTERS  
The column and row address counters designate a column address and a row address respectively for DDRAM  
access, but they are completely independent from the line counter. The line counter provides a line address which is  
synchronized with display control timings such as the FLM and the CL.  
Ver.2004-05-12  
- 13 -  
NJU6825  
(4) DDRAM  
(4-1) DDRAM Address Range  
The DDRAM is capable of 162 bits for row address and 1,536 bits (12-bit  
x 128-segment) for column address. The  
range of the column address is varied depending on the settings as follows, and the row address is from (00H) to (A1H).  
Setting outside these ranges is not allowed, otherwise it may cause malfunctions. For DDRAM access, two data  
transmissions are needed for 1 RGB-pixel in the 8-bit bus length mode, and one transmission in the 16-bit bus length  
mode.  
8-bit Bus Length  
Column Address  
00H  
00H 7 bits  
01H  
5 bits  
--------------------------------------------------  
FEH  
7 bits  
FFH  
5 bits  
:
:
:
:
Row Address  
A1H 7 bits  
5 bits  
7 bits  
5 bits  
Column Address  
00H  
01H  
--------------------------------------------------  
FEH  
FFH  
ABS=”1”  
00H 4 bits  
8 bits  
4 bits  
8 bits  
:
:
Row Address  
:
:
A1H 4 bits  
8 bits  
4 bits  
8 bits  
Column Address  
HSW=”1”  
00H  
01H  
--------------------------------------------------  
BEH  
BFH  
00H 8 bits  
8 bits  
8 bits  
8 bits  
:
:
Row Address  
:
:
A1H 8 bits  
8 bits  
8 bits  
8 bits  
Column Address  
C256=”1”  
00H  
01H  
--------------------------------------------------  
7EH  
7FH  
00H 8 bits  
8 bits  
8 bits  
8 bits  
:
:
Row Address  
:
:
A1H 8 bits  
8 bits  
8 bits  
8 bits  
Fig 5 Range of Column Address in 8-bit Bus Length  
16-bit Bus Length  
Column Address  
00H  
12 bits  
--------------------------------------------------  
7FH  
12 bits  
00H  
:
:
Row Address  
:
:
A1H  
12 bits  
12 bits  
Fig 6 Range of Column Address in 16-bit Bus Length  
Ver.2004-05-12  
- 14 -  
NJU6825  
(4-2) Window Area for DDRAM Access  
In addition to the normal DDRAM access discussed previously, the window area access can be used. This area is set  
by the “Increment Control” instruction and the designation of the start point and the end point.  
By the “Increment Control”, auto-increment is set for column address and row address individually. Once this mode  
is set up, the column address, row address or both are automatically counted up , whenever the DDRAM is accessed.  
And, the start point is specified by the “Column Address” and “Row Address” instructions, and the end point by the  
“Window End Column Address” and ”Window End Row Address” instructions. For more information, refer to “(14-9)  
Increment Control”, “(14-25) Window End Column Address” and “(14-26)Window End Row Address”. The typical  
sequence of the window area setting is listed below.  
1. Set “1” at D3 (WIN), D1 (AYI) and D0 (AXI) of “Increment Control” instruction.  
2. Set start point by “Column Address” and “Row Address” instructions.  
3. Set end point by “Window End Column Address” and “Window End Row Address” instructions.  
4. Window area is set up, and DDRAM can be accessed.  
NOTE) The order of address setting is column address first, then row address.  
Column Address  
Start Point  
(AX, AY)  
Window Area  
End Point  
(EX, EY)  
Whole DDRAM Area  
Fig 7 Window Area  
NOTE1) The following relation should be maintained to avoid malfunctions.  
- AX (Window Start Column Address) < EX (Window End Column Address) < Maximum Column Address  
- AY (Window Start Row Address) < EY (Window End Row Address) < Maximum Row Address  
NOTE3) Auto-increment in the window area  
Start  
End  
Start  
End  
Ad d r e ss  
Ad d r e ss  
Address  
Address  
Column Address  
Row Address  
NOTE2) A read-modify-write operation is enabled by setting “1” at the D2 (AIM) of the “Increment Control” instruction. Refer to  
the description about “AIM” bit in “(14-9) Increment Control”.  
(4-3) Segment Direction  
The DDRAM access direction is controlled by the D0 (REF) bit of the “Display Control (2)” instruction. This  
function is used to reverse the segment direction for reducing the restrictions on the IC position of an LCD module.  
Ver.2004-05-12  
- 15 -  
NJU6825  
(4-4) Bit Assignment of Display Data  
(4-4-1) Bit Assignment Overview  
These maps is used for grasping general outlines of the variations in the bit assignment of display data.  
C256  
REF  
C256  
REF  
HSW  
ABS  
HSW  
ABS  
SWAP  
SWAP  
WLS  
Mode  
WLS  
Mode  
16bit  
8bit  
8 bit  
Ver.2004-05-12  
- 16 -  
NJU6825  
(4-4-2) Bit Assignment in Variable 16-grayscale Mode  
16-bit Bus Length (MON=0, PWM=0, C256=0, WLS=1)  
HSW  
*
*
ABS  
0
0
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
*
*
ABS  
0
0
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
HSW  
*
*
ABS  
1
1
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
ABS  
1
1
REF  
0
1
SWAP  
Column Address / Display Data / Segment Driver  
*
1
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
*
0
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
Ver.2004-05-12  
- 17 -  
NJU6825  
8-bit Bus Length  
(MON=0, PWM=0, C256=0, WLS=0)  
HSW  
0
0
ABS  
0
0
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
0
0
ABS  
0
0
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
SEGC0  
HSW  
0
0
ABS  
1
1
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
0
0
ABS  
1
1
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
Ver.2004-05-12  
- 18 -  
NJU6825  
HSW  
1
ABS  
*
REF  
0
SWAP  
0
Column Address / Display Data / Segment Driver  
X=01H  
X=00H  
X=BDH  
X=02H  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA1  
Palette B  
SEGB1  
Palette C  
SEGC1  
Column Address / Display Data / Segment Driver  
X=BEH  
X=BFH  
Palette A  
SEGA126  
Palette B  
SEGB126  
Palette C  
SEGC126  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
HSW  
1
ABS  
*
REF  
0
SWAP  
1
Column Address / Display Data / Segment Driver  
X=01H  
X=00H  
X=BDH  
X=02H  
X=BFH  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC1  
Palette B  
SEGB1  
Palette C  
SEGA1  
Column Address / Display Data / Segment Driver  
X=BEH  
Palette A  
SEGC126  
Palette B  
SEGB126  
Palette C  
SEGA126  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
HSW  
1
ABS  
*
REF  
1
SWAP  
0
Column Address / Display Data / Segment Driver  
X=BFH X=BDH  
X=BEH  
X=BEH  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC1  
Palette B  
SEGB1  
Palette C  
SEGA1  
Column Address / Display Data / Segment Driver  
X=02H X=00H  
X=01H  
X=01H  
Palette A  
SEGC126  
Palette B  
SEGB126  
Palette C  
SEGA126  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
HSW  
1
ABS  
*
REF  
1
SWAP  
1
Column Address / Display Data / Segment Driver  
X=BFH X=BDH  
X=BEH  
X=BEH  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA1  
Palette B  
SEGB1  
Palette C  
SEGC1  
Column Address / Display Data / Segment Driver  
X=02H X=00H  
X=01H  
X=01H  
Palette A  
SEGA126  
Palette B  
SEGB126  
Palette C  
SEGC126  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
Ver.2004-05-12  
- 19 -  
NJU6825  
(4-4-3) Bit Assignment in Variable 8-level Gradation Mode  
8-bit Bus Length  
(MON=0, PWM=0, C256=1, WLS=0)  
HSW  
*
*
ABS  
*
*
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
*
*
ABS  
*
*
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
Ver.2004-05-12  
- 20 -  
NJU6825  
(4-4-4) Bit Assignment in Fixed 8-level Gradation Mode  
16-bit Bus Length (MON=0, PWM=1, C256=0, WLS=1)  
HSW  
*
*
ABS  
0
0
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
*
*
ABS  
0
0
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
NOTE) The data indicated with a slash mark ( / ) is invalid.  
HSW  
*
*
ABS  
1
1
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
*
*
ABS  
1
1
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
NOTE) The data indicated with a slash mark ( / ) is invalid.  
Ver.2004-05-12  
- 21 -  
NJU6825  
8-bit Bus Length  
(MON=0, PWM=1, C256=0, WLS=0)  
HSW  
0
0
ABS  
0
0
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
0
0
ABS  
0
0
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
NOTE) The data indicated with a slash mark ( / ) is invalid.  
HSW  
0
0
ABS  
1
1
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
0
0
ABS  
1
1
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
NOTE) The data indicated with a slash mark ( / ) is invalid.  
Ver.2004-05-12  
- 22 -  
NJU6825  
HSW  
1
ABS  
*
REF  
0
SWAP  
0
Column Address / Display Data / Segment Driver  
X=01H  
X=00H  
X=BDH  
X=02H  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA1  
Palette B  
SEGB1  
Palette C  
SEGC1  
Column Address / Display Data / Segment Driver  
X=BEH  
X=BFH  
Palette A  
SEGA126  
Palette B  
SEGB126  
Palette C  
SEGC126  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
HSW  
1
ABS  
*
REF  
0
SWAP  
1
Column Address / Display Data / Segment Driver  
X=01H  
X=00H  
X=BDH  
X=02H  
X=BFH  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC1  
Palette B  
SEGB1  
Palette C  
SEGA1  
Column Address / Display Data / Segment Driver  
X=BEH  
Palette A  
SEGC126  
Palette B  
SEGB126  
Palette C  
SEGA126  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
HSW  
1
ABS  
*
REF  
1
SWAP  
0
Column Address / Display Data / Segment Driver  
X=BFH X=BDH  
X=BEH  
X=BEH  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC1  
Palette B  
SEGB1  
Palette C  
SEGA1  
Column Address / Display Data / Segment Driver  
X=02H X=00H  
X=01H  
X=01H  
Palette A  
SEGC126  
Palette B  
SEGB126  
Palette C  
SEGA126  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
HSW  
1
ABS  
*
REF  
1
SWAP  
1
Column Address / Display Data / Segment Driver  
X=BFH X=BDH  
X=BEH  
X=BEH  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA1  
Palette B  
SEGB1  
Palette C  
SEGC1  
Column Address / Display Data / Segment Driver  
X=02H X=00H  
X=01H  
X=01H  
Palette A  
SEGA126  
Palette B  
SEGB126  
Palette C  
SEGC126  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
Ver.2004-05-12  
- 23 -  
NJU6825  
8-bit Bus Length  
(MON=0, PWM=1, C256=1, WLS=0)  
HSW  
*
*
ABS  
*
*
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
*
*
ABS  
*
*
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
Ver.2004-05-12  
- 24 -  
NJU6825  
(4-4-5) Bit Assignment in B&W Mode  
16-bit Bus Length (MON=1, PWM=*, C256=0, WLS=1)  
HSW  
*
*
ABS  
0
0
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
*
*
ABS  
0
0
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
HSW  
*
*
ABS  
1
1
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
ABS  
1
1
REF  
0
1
SWAP  
Column Address / Display Data / Segment Driver  
*
1
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
*
0
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
NOTE) The data indicated with a slash mark ( / ) is invalid, and only MSB bits are effective.  
Ver.2004-05-12  
- 25 -  
NJU6825  
8-bit Bus Length  
(MON=1, PWM=*, C256=0, WLS=0)  
HSW  
0
0
ABS  
0
0
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
0
0
ABS  
0
0
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
SEGC0  
HSW  
ABS  
1
1
REF  
0
1
SWAP  
Column Address / Display Data / Segment Driver  
0
0
X=00H  
X=FEH  
X=01H  
X=FEH  
X=FFH  
X=01H  
←→  
0
1
X=FFH  
X=00H  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
0
0
ABS  
1
1
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=FEH  
X=01H  
X=FFH  
X=FEH  
X=00H  
X=FFH  
X=01H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
NOTE) The data indicated with a slash mark ( / ) is invalid, and only MSB bits are effective.  
Ver.2004-05-12  
- 26 -  
NJU6825  
HSW  
1
ABS  
*
REF  
0
SWAP  
0
Column Address / Display Data / Segment Driver  
X=01H  
X=00H  
X=BDH  
X=02H  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA1  
Palette B  
SEGB1  
Palette C  
SEGC1  
Column Address / Display Data / Segment Driver  
X=BEH  
X=BFH  
Palette A  
SEGA126  
Palette B  
SEGB126  
Palette C  
SEGC126  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
HSW  
1
ABS  
*
REF  
0
SWAP  
1
Column Address / Display Data / Segment Driver  
X=01H  
X=00H  
X=BDH  
X=02H  
X=BFH  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC1  
Palette B  
SEGB1  
Palette C  
SEGA1  
Column Address / Display Data / Segment Driver  
X=BEH  
Palette A  
SEGC126  
Palette B  
SEGB126  
Palette C  
SEGA126  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
HSW  
1
ABS  
*
REF  
1
SWAP  
0
Column Address / Display Data / Segment Driver  
X=BFH X=BDH  
X=BEH  
X=BEH  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC1  
Palette B  
SEGB1  
Palette C  
SEGA1  
Column Address / Display Data / Segment Driver  
X=02H X=00H  
X=01H  
X=01H  
Palette A  
SEGC126  
Palette B  
SEGB126  
Palette C  
SEGA126  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
HSW  
1
ABS  
*
REF  
1
SWAP  
1
Column Address / Display Data / Segment Driver  
X=BFH X=BDH  
X=BEH  
X=BEH  
Display Data in DDRAM  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA1  
Palette B  
SEGB1  
Palette C  
SEGC1  
Column Address / Display Data / Segment Driver  
X=02H X=00H  
X=01H  
X=01H  
Palette A  
SEGA126  
Palette B  
SEGB126  
Palette C  
SEGC126  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
NOTE) The data indicated with a slash mark ( / ) is invalid, and only MSB bits are effective.  
Ver.2004-05-12  
- 27 -  
NJU6825  
8-bit Bus Length  
(MON=1, PWM=*, C256=1, WLS=0)  
HSW  
*
*
ABS  
*
*
REF  
0
1
SWAP  
0
1
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGA0  
Palette B  
SEGB0  
Palette C  
SEGC0  
Palette A  
SEGA127  
Palette B  
SEGB127  
Palette C  
SEGC127  
←→  
←→  
HSW  
*
*
ABS  
*
*
REF  
0
1
SWAP  
1
0
Column Address / Display Data / Segment Driver  
X=00H  
X=7FH  
X=7FH  
X=00H  
←→  
←→  
Display Data in DDRAM  
←→  
Grayscale Palette  
Segment Driver  
Palette A  
SEGC0  
Palette B  
SEGB0  
Palette C  
SEGA0  
Palette A  
SEGC127  
Palette B  
SEGB127  
Palette C  
SEGA127  
←→  
←→  
NOTE) The data indicated with a slash mark ( / ) is invalid, and only MSB bits are effective.  
Ver.2004-05-12  
- 28 -  
NJU6825  
(4-5) Write Data and Read Data  
16-bit Bus Length  
ABS=0  
Write Data  
D15  
D14  
D14  
D13  
D13  
D12  
D12  
D11  
*
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
*
D5  
*
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
Read Data  
D15  
*
ABS=1  
Write Data  
Read Data  
D15  
D14  
*
D13  
*
D12  
*
D11  
D11  
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
*
D0  
8-bit Bus Length  
ABS=0, HSW=0, C256=0 (Column Address: 00H, 02H, …FCH, FEH)  
Write Data  
Read Data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
*
D2  
D1  
D0  
ABS=0, HSW=0, C256=0 (Column Address: 01H, 03H, …FDH, FFH)  
Write Data  
Read Data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
*
*
D4  
D3  
D2  
D1  
*
ABS=1, HSW=0, C256=0 (Column Address: 00H, 02H, …FCH, FEH)  
Write Data  
Read Data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
*
*
*
*
D3  
D2  
D1  
D0  
ABS=1, HSW=0, C256=0 (Column Address: 01H, 03H, …FDH, FFH)  
Write Data  
Read Data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ABS=0, HSW=1, C256=0 (Column Address: 00H, 01H, …BEH, BFH)  
Write Data  
Read Data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ABS=0, HSW=0, C256=1 (Column Address: 00H, 01H, …7EH, 7FH)  
Write Data  
Read Data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE) * : Invalid Data  
Ver.2004-05-12  
- 29 -  
NJU6825  
(5) GRAYSCALE CONTROL CIRCUIT  
(5-1) Display Mode Selection  
A display mode is selected by the combination of the D2 (MON) bit of the “Display Control (1)” instruction and the  
D3 (PWM) and D2 (C256) bits of the “Display Mode Control” instruction, as shown below.  
Table 11 Display Mode Selection  
C256  
Oscillation  
(NOTE2)  
MON  
PWM  
Display Mode  
Bus Length  
(NOTE1)  
0
1
0
1
0
1
Variable 16-grayscale Mode  
Variable 8-grayscale Mode  
4096 Colors  
256 Colors  
8-/16-bit  
(WLS=0/1)  
(WLS=0)  
(WLS=0/1)  
(WLS=0)  
0
1
*
fOSC1  
fOSC2  
fOSC3  
8-bit  
8-/16-bit  
8-bit  
0
1
Fixed 8-grayscale Mode  
256 Colors  
8-/16-bit  
8-bit  
(WLS=0/1)  
(WLS=0)  
B&W Mode  
Black & White  
NOTE1) In the variable grayscale mode, “C256” bit selects either 16-grayscale (4K colors) or 8-grayscale (256 colors). When  
C256=”0” (16-grayscale), all 12 bits are assigned to 1 RGB-pixel. When C256=”1” (8-grayscale), only 8 bits are  
assigned and the 8-bit bus length should be used. In the fixed 8-grayscale mode or the B&W mode, the “C256” bit is  
usually “1”. For more information how the display data is assigned, refer to “(4-4) Bit Assignment of Display Data”.  
NOTE2)Oscillation frequency is decided according to the display mode, and is fine-tuned by the “Frequency Control” Instruction.  
Refer to “(10) OSCILLATOR” and “OSCILLATION FREQUENCY AND FRAME FREQUENCY”.  
(5-1-1) Variable 16-grayscale Mode  
In this mode, each of the palettes Aj, Bj and Cj (j=0-15) is capable of selecting 16 from 32 grayscales (0/31-31/31)  
by setting palette data in the grayscale palette. Then, each of the segment drivers SEGAi, SEGBi and SEGCi (i=0 to 127)  
generates 16 grayscales to achieve 4,096 colors. Refer to Table 12-1 and Table 12-2.  
(5-1-2) Variable 8-grayscale Mode  
Each of the palettes Aj, Bj and Cj (j=0-15) is capable of selecting 8 from 32 grayscales (0/31-31/31). 2 segment  
drivers of 1 RGB-group (SEGAi, SEGBi and SEGCi (i=0 to 127)) generate 8 grayscales, and the other driver does 4  
grayscales to achieve 256 colors. Refer to Table 13-1 through Table 13-4. The 8-bit bus length is usually used in this  
mode.  
(5-1-3) Fixed 8-grayscale Mode  
The palette setting is not necessary, because the palettes Aj, Bj and Cj (j=0-15) are always fixed at 4 or 8 grayscales  
between 0/7 and 7/7. 2 segment drivers of 1 RGB-group (SEGAi, SEGBi and SEGCi (i=0 to 127)) are fixed at 8  
grayscales, and the other driver is 4 grayscales, then results in 256 colors. Refer to Table 14-1 and Table 14-2.  
(5-1-4) B&W Mode  
The palette setting is not necessary, where the only MSB bits of display data are valid. Refer to Table 15.  
Ver.2004-05-12  
- 30 -  
NJU6825  
(6) GRAYSCALE PALETTE  
(6-1) Grayscale Selection in Variable 16-grayscale Mode  
Table 12-1 Grayscale selection  
Table 12-2 Grayscale Palette  
( Palette Aj, Bj, and Cj )  
( Palette Aj, Bj, and Cj )  
Display Data  
Palette Name  
MSB----LSB  
Palette Data  
Palette Data  
MSB---LSB  
Grayscale  
Default Setting  
Grayscale  
Default Setting  
MSB---LSB  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
Palette A0/B0/C0  
Palette A1/B1/C1  
Palette A2/B2/C2  
Palette A3/B3/C3  
Palette A4/B4/C4  
Palette A5/B5/C5  
Palette A6/B6/C6  
Palette A7/B7/C7  
Palette A8/B8/C8  
Palette A9/B9/C9  
Palette A10/B10/C10  
Palette A11/B11/C11  
Palette A12/B12/C12  
Palette A13/B13/C13  
Palette A14/B14/C14  
Palette A15/B15/C15  
0
Palette A0/B0/C0  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Palette A8/B8/C8  
Palette A1/B1/C1  
Palette A2/B2/C2  
Palette A3/B3/C3  
Palette A4/B4/C4  
Palette A5/B5/C5  
Palette A6/B6/C6  
Palette A7/B7/C7  
Palette A9/B9/C9  
Palette A10/B10/C10  
Palette A11/B11/C11  
Palette A12/B12/C12  
Palette A13/B13/C13  
Palette A14/B14/C14  
Palette A15/B15/C15  
NOTE1) “MON=0”, “PWM=0”, “C256=0”  
NOTE2) Applied to palette Aj, Bj and Cj (j=0 to 15)  
Ver.2004-05-12  
- 31 -  
NJU6825  
(6-2) Grayscale Selection in Variable 8-grayscale Mode  
Table 13-1 Grayscale selection  
Table 13-2 Grayscale Palette  
( Palette Aj and Bj )  
( Palette Aj and Bj )  
Display Data  
Palette Name  
MSB----LSB  
Palette Data  
Palette Data  
MSB---LSB  
Grayscale  
Default Setting  
Grayscale  
Default Setting  
MSB---LSB  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
0
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
0 0 0 *  
0 0 1 *  
0 1 0 *  
0 1 1 *  
1 0 0 *  
1 0 1 *  
1 1 0 *  
1 1 1 *  
Palette A1/B1/C1  
Palette A3/B3/C3  
Palette A5/B5/C5  
Palette A7/B7/C7  
Palette A9/B9/C9  
Palette A11/B11/C11  
Palette A13/B13/C13  
Palette A15/B15/C15  
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Palette A1/B1/C1  
Palette A3/B3/C3  
Palette A5/B5/C5  
Palette A7/B7/C7  
Palette A9/B9/C9  
Palette A11/B11/C11  
Palette A13/B13/C13  
Palette A15/B15/C15  
NOTE1) “MON=0”, “PWM=0”, “C256=1”.  
NOTE2) Applied to palette Aj and Bj (j=0 to 15)  
NOTE3) Palette 0, 2, 4, 6, 8, 10, 12 and 14 are disabled.  
Table 13-3 Grayscale selection  
Table 13-4 Grayscale Palette  
( Palette Cj )  
( Palette Cj )  
Display Data  
Palette Name  
MSB----LSB  
Palette Data  
Palette Data  
MSB---LSB  
Grayscale  
Default Setting  
Grayscale  
Default Setting  
MSB---LSB  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
0
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
0 0 * *  
0 1 * *  
1 0 * *  
1 1 * *  
Palette A3/B3/C3  
Palette A7/B7/C7  
Palette A3/B3/C3  
Palette A7/B7/C7  
Palette A11/B11/C11  
Palette A15/B15/C15  
Palette A11/B11/C11  
Palette A15/B15/C15  
NOTE1) “MON=0”, “PWM=0”, “C256=1”  
NOTE2) Applied to palette Cj (j=0 to 15)  
NOTE3) Palette 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13 and 14 are disabled.  
Ver.2004-05-12  
- 32 -  
NJU6825  
(6-3) Grayscale Selection in Fixed 8-grayscale Mode  
Table 14-1 Grayscale Selection  
Table 14-2 Grayscale Palette  
( Palette Aj and Bj )  
( Palette Cj )  
Display Data  
Display Data  
Grayscale  
Grayscale  
0/7  
MSB- - - -LSB  
MSB- - - -LSB  
0 0 0 *  
0 0 1 *  
0 1 0 *  
0 1 1 *  
1 0 0 *  
1 0 1 *  
1 1 0 *  
1 1 1 *  
0/7  
1/7  
2/7  
3/7  
4/7  
5/7  
6/7  
7/7  
0 0 * *  
0 1 * *  
1 0 * *  
1 1 * *  
3/7  
5/7  
7/7  
NOTE1) “MON=0”, “PWM=1”, “C256=0 or 1”  
(6-4) Grayscale Selection in B&W Mode  
Table 15 Grayscale Selection  
Display Data  
Grayscale  
MSB- - - -LSB  
0 * * *  
1 * * *  
0
1
NOTE1) “MON=1”, “PWM=0 or 1” and “C256=0 or 1”  
Ver.2004-05-12  
- 33 -  
NJU6825  
(7) DISPLAY TIMING GENERATOR  
The display timing generator generates timing clocks such as the CL (Line Clock), FR (Frame Rate) and FLM (First  
Line Maker) by dividing an oscillation frequency. These clocks are used inside the LSI, and are activated by setting “1”  
at the D0 (SON) bit of the “Duty-1 /Display Clock ON/OFF” instruction.  
The CL is used for the line counter and the data latch circuit. At the rising edge of the CL signal, the line counter is  
counted up, then 384-bit display data is latched into the data latch circuit. At the falling edge of the CL signal, the latch  
data is released to the grayscale control circuit, then segment drivers Ai, Bi and Ci (i=0 to 127) produce LCD driving  
waveforms. The internal data-transmission timing between the DDRAM and segment drivers is completely independent  
of external data-transmission timing, so that MPU makes access to the LSI without concern for the LSI’s internal  
operation.  
The FR and FLM are generated by the CL. The FR toggles once every frame in the default status, and is  
programmed to toggle once every N lines. And the FLM is used to specify an initial display line, which is preset  
whenever the FLM becomes “H”.  
(8) DATA LATCH CIRCUIT  
The data latch circuit is used to temporarily store display data which is released to the grayscale control circuit. The  
display data in this circuit is updated in synchronization with the CL. The “All Pixels ON/OFF”, “Display ON/OFF” and  
“Reverse Display ON/OFF” instructions control the data in this circuit, but does not change the data in the DDRAM.  
(9) COMMON DRIVERS AND SEGMENT DRIVERS  
The LSI includes 162-common drivers and 384-segment drivers. The common drivers generate LCD driving  
waveforms formed on the VLCD, V1, V4 and VSSH levels. The segment drivers generate waveforms formed on the VLCD  
V2, V3 and VSSH levels.  
,
COM0  
163  
1
2
3
4
5
163  
1
2
3
4
5
163 1  
COM1  
CL  
SEG0  
SEG2  
SEG1  
FLM  
FR  
VLCD  
V1  
V2  
V3  
COM0  
V4  
VSSH  
VLCD  
V1  
V2  
V3  
V4  
VSSH  
COM1  
SEG0  
VLCD  
V1  
V2  
V3  
V4  
VSSH  
VLCD  
V1  
V2  
SEG1  
V3  
V4  
VSSH  
Fig 8 LCD Driving Waveforms (B&W Mode, Color Reverse OFF, 1/163 Duty)  
Ver.2004-05-12  
- 34 -  
NJU6825  
(10) OSCILLATOR  
The oscillator is equipped with a resistor and a capacitor, and generates internal clocks used for the display timing  
generator and the voltage booster. The internal resistor is enabled by setting “0” at the D1 (CKS) bit of the “Bus Length”  
instruction. For more accurate frequency, using an external resistor or external clock is recommended.  
When using the internal resistor, the resistance is controlled to optimize frame frequency for different LCD panels,  
by setting the D2-D0 (RF2-RF0) bits of the “Frequency Control” instruction. For more safety, make sure what is the best  
frequency in the particular application.  
(10-1) Using Internal Resistor (CKS=0)  
In this case, the OSC1 should be fixed at “H” or “L” and the OSC2 is open. The oscillation frequency is varied  
according to the display mode, as follows.  
Table 16 Oscillation Frequency vs. Display Mode  
Symbol  
fOSC1  
MON  
PWM  
Display Mode  
Variable 8-/16-grayscale Mode  
Fixed 8-grayscale Mode  
B&W Mode  
0
0
1
0
1
*
fOSC2  
fOSC3  
*: Don’t care  
(10-2) Using External Resistor (CKS=1)  
Be sure to connect the OSC1 and OSC2 with an external resistor. The frequency of the oscillator should be adjusted  
to the same value generated by the internal resistor.  
(10-3) Using External Clock (CKS=1)  
Input external clock to the OSC1 and leave the OSC2 open. The external clock with 50% duty is recommended. The  
frequency of the external clock should be the same value generated by the internal resistor.  
(11) LCD POWER SUPPLY  
The internal LCD power supply is organized into the voltage converter and the voltage booster. The voltage  
converter consists of the reference voltage generator, the voltage regulator with EVR and the LCD bias voltage generator.  
The configuration of the LCD power supply is arranged by setting the D3 (AMPON) and D1 (DCON) bits of the “Power  
Control” instruction. For this configuration, the internal LCD power supply can be partially used in combination with an  
external supply voltage, as shown in Table 17.  
Table 17 Configuration of LCD Power Supply  
DCON  
AMPON  
Voltage Booster  
Voltage Converter  
External Supply Voltage  
NOTE  
0
0
1
0
1
1
Inactive  
Inactive  
Active  
Inactive  
Active  
Active  
VOUT, VLCD, V1, V2, V3, V4  
1, 3, 4  
2, 3, 4  
-
VOUT  
NOTE1) No internal LCD power supply is used. The LCD bias voltages are externally supplied, and the C1+, C1-, C2+, C2-, C3+,  
C3-, C4+, C4-, C5+, C5-, C6+, C6-, VREF, VREG and VEE are open.  
NOTE2) Only the voltage converter is used. The VOUT is externally supplied, and the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+,  
C5-, C6+, C6-, and VEE are open. The reference voltage is supplied on the VREF  
.
NOTE3) The following relation among each LCD bias voltages must be maintained.  
VOUT VLCD V1 V2 V3 V4 VSSH  
NOTE4) If the internal LCD power supply doesn’t have enough capability to drive the particular LCD panel, use the external  
LCD power supply. Otherwise, it may affect display quality.  
Ver.2004-05-12  
- 35 -  
NJU6825  
(11-1) Voltage Booster  
The internal voltage booster generates up to 7xVEE voltage. The boost level is selected from 2x, 3x, 4x, 5x, 6xor7x  
by setting the D2-D0 (VU2-VU0) bits of the “Boost Level” instruction. The boost voltage VOUT must not exceed 18.0V,  
otherwise the voltage stress may cause a permanent damage to the LSI.  
VOUT=17.5V  
VOUT=9V  
VEE=2.5V  
VSSH=0V  
VEE=3V  
VSSH=0V  
3-time Boost  
7-time Boost  
Fig 9 Boost Voltage  
5-time Boost  
6-time Boost  
7-time Boost  
C1+  
C1-  
C1+  
C1-  
C1+  
C1-  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
C2+  
C2-  
C2+  
C2-  
C2+  
C2-  
C3+  
C3-  
C3+  
C3-  
C3+  
C3-  
C4+  
C4-  
C4+  
C4-  
C4+  
C4-  
C5+  
C5-  
C5+  
C5-  
C5+  
C5-  
C6+  
C6-  
C6+  
C6-  
C6+  
C6-  
+
+
+
VOUT  
VOUT  
VOUT  
4-time Boost  
3-time Boost  
2-time Boost  
C1+  
C1-  
C1+  
C1-  
C1+  
C1-  
+
+
+
+
+
C2+  
C2-  
C2+  
C2-  
C2+  
C2-  
C3+  
C3-  
C3+  
C3-  
C3+  
C3-  
C4+  
C4-  
C4+  
C4-  
C4+  
C4-  
C5+  
C5-  
C5+  
C5-  
C5+  
C5-  
C6+  
C6-  
C6+  
C6-  
C6+  
C6-  
VOUT  
VOUT  
VOUT  
+
+
Fig 10 External Capacitor Connection of Voltage Booster  
Ver.2004-05-12  
- 36 -  
NJU6825  
(11-2) Voltage Converter  
(11-2-1) Reference Voltage Generator  
The reference voltage generator produces the reference voltage (VBA=0.9xVEE). When using the internal LCD  
power supply, connect the VBA and the VREF, or supply 0.9xVEE or lower voltage on the VREF. When using an external  
LCD power supply, the VBA should be open.  
(11-2-2) Voltage Regulator  
The voltage regulator consists of an operational amplifier with gain control and EVR. The VREF voltage is  
multiplied to obtain the VREG voltage, and its multiple (boost level) is set by the D2-D0 (VU2-VU0) bits of the “Boost  
Level” instruction. The formula is shown below.  
VREG = VREF  
x
N
(N: Boost Level)  
(11-2-3) Electrical Variable Resistor (EVR)  
The EVR is used to fine-tune the VLCD voltage to optimize display contrast. The EVR value is controlled in 128  
steps by setting the D3-D0 (DV6-DV0) bits of the “EVR Control” instruction. The formula is shown below.  
VLCD = 0.5  
x
VREG + M (VREG - 0.5  
x
VREG) / 127  
(M: EVR Value)  
(11-2-4) LCD Bias Voltage Generator  
The LCD bias voltage generator consists of buffer amplifiers and bleeder resistors to generate the LCD bias  
voltages such as the VLCD, V1, V2, V3 and V4, and its bias ratio is selected from1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11 or 1/12.  
As shown in Fig 11, when using only the internal LCD power supply, the capacitors CA2 are connected to the VLCD  
V1, V2, V3 and V4 respectively.  
,
As shown in Fig 12, when using no internal LCD power supply, the LCD bias voltages are externally supplied on  
the VLCD, V1, V2, V3 and V4, and the internal LCD power supply should be turned off by setting “0” at the “DCON” and  
“AMPON” bits. And the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, C6+, C6-, VEE, VREF and VREG are open.  
Fig 13 and 14 show typical peripheral circuits when partially using the LCD power supply without the reference  
voltage generator.  
Fig 15 shows the circuit when partially using the LCD power supply without the voltage booster.  
Ver.2004-05-12  
- 37 -  
NJU6825  
(11-3) External Components for LCD Power Supply  
Using Only Internal LCD Power Supply (7x boost)  
Using Only External LCD Power Supply  
VDD  
VDD  
VDD  
VDD  
VEE  
CA1  
VEE  
CA1  
VBA  
VBA  
VREF  
VREF  
VREG  
CA3  
VREG  
CA3  
C1-  
C1-  
CA1  
C1+  
C1+  
C2-  
C2-  
CA1  
C2+  
C2+  
C3-  
C3-  
CA1  
C3+  
C3+  
C4-  
C4-  
CA1  
C4+  
C4+  
C5-  
C5-  
CA1  
C5+  
C5+  
C6-  
C-  
CA1  
C+  
C6+  
VOUT  
VOUT  
CA1  
CA1  
VLCD  
V1  
VLCD  
V1  
CA2  
CA2  
CA2  
CA2  
CA2  
VLCD  
External V1  
Power V2  
Circuit V3  
V4  
V2  
V2  
V3  
V3  
V4  
V4  
CA2 CA2 CA2 CA2  
Fig 11  
Fig 12  
Reference Values  
CA1  
CA2  
CA3  
1.0 to 4.7µF  
1.0 to 2.2µF  
0.1µF  
NOTE1) B grade capacitor is recommended for CA1-CA3. Make sure what is the best capacitor value in the particular  
application.  
NOTE2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4) reduces step-up  
efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. To minimize this  
impact, be sure to lay out the shortest wires and place capacitors as close to the LSI as possible.  
Ver.2004-05-12  
- 38 -  
NJU6825  
Using Internal LCD Power Supply  
Without Reference Voltage generator (2)  
Using Internal LCD Power Supply  
Without Reference Voltage generator (1)  
(7x boost)  
(7x boost)  
VDD  
VDD  
VDD  
VEE  
VDD  
VEE  
CA1  
CA1  
VBA  
VBA  
VREF  
VREG  
VREF  
VREG  
CA3  
CA3  
CA1  
CA1  
CA1  
CA1  
CA1  
CA1  
C1-  
C1-  
CA1  
C1+  
C2-  
C1+  
C2-  
CA1  
C2+  
C3-  
C2+  
C3-  
CA1  
C3+  
C4-  
C3+  
C4-  
CA1  
C4+  
C5-  
C4+  
C5-  
CA1  
C5+  
C6-  
C5+  
C6-  
CA1  
C6+  
VOUT  
C6+  
VOUT  
CA1  
CA1  
VLCD  
V1  
VLCD  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
V1  
CA2  
V2  
CA2  
CA2  
CA2  
V2  
V3  
V4  
V3  
V4  
Fig 13  
Fig 14  
Reference Values  
CA1  
CA2  
CA3  
1.0 to 4.7µF  
1.0 to 2.2µF  
0.1µF  
NOTE1) B grade capacitor is recommended for CA1-CA3. Make sure what is the best capacitor value in the particular  
application.  
NOTE2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4) reduces step-up  
efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. To minimize this  
impact, be sure to lay out the shortest wires and place capacitors as close to the LSI as possible.  
Ver.2004-05-12  
- 39 -  
NJU6825  
Using Internal LCD Power Supply  
Without Voltage Booster  
VDD  
VDD  
VEE  
CA1  
VBA  
VREF  
VREG  
CA3  
CA3  
C1-  
C1+  
C2-  
C2+  
C3-  
C3+  
C4-  
C4+  
C5-  
C5+  
C6-  
C6+  
VOUT  
External  
Power  
Circuit  
CA1  
VLCD  
V1  
CA2  
CA2  
CA2  
CA2  
CA2  
V2  
V3  
V4  
Fig 15  
Reference Values  
CA1  
CA2  
CA3  
1.0 to 4.7µF  
1.0 to 2.2µF  
0.1µF  
NOTE1) B grade capacitor is recommended for CA1-CA3. Make sure what is the best capacitor value in the particular  
application.  
NOTE2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4) reduces step-up  
efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. To minimize this  
impact, be sure to lay out the shortest wires and place capacitors as close to the LSI as possible.  
Ver.2004-05-12  
- 40 -  
NJU6825  
(11-4) Discharge Circuit  
The LSI incorporates two discharge circuits which are independently controlled for the VLCD and V1-V4 and for the  
V
OUT. The VLCD and V1-V4 are discharged by setting "1" at the D0 (DIS) bit of the "Discharge ON/OFF" instruction or  
the reset by the RESb. Be sure to turned off the internal or external LCD power supply when this instruction is executed,  
otherwise it may function as a current load and affect an operating current. Refer to “(14-22) Discharge ON/OFF”.  
(11-5) Power ON/OFF  
To protect the LSI from overcurrent, the following sequences must be maintained to turn on and off the power  
supply. In addition to the following discussions, refer to “(18) TYPICAL INSTRUCTION SEQUENCES”.  
(11-5-1) Power ON/OFF in Using Internal LCD Power Supply  
Power ON  
First “VDD and VEE ON”, next “Reset by RESb”, then “Internal LCD power supply ON”. Be sure to execute the  
“Display ON” instruction later than the completion of this power ON sequence. Otherwise, unexpected pixels may be  
turned on instantly.  
Power OFF  
First “Reset by RESb or “HALT” instruction”, next “VDD and VEE OFF”. If using different power sources for the  
VDD and the VEE individually, the VEE must be turned off after the reset or the “HALT”. After that, the VDD can be turned  
off, waiting until the LCD bias voltages (VLCD, V1, V2, V3 and V4) drop below the threshold level of LCD pixels.  
(11-5-2) Power ON/OFF in Using External LCD Power Supply  
Power ON  
First “VDD and VEE ON”, next “Reset by RESb”, then “External LCD power supply ON”. When using only external  
V
OUT, first “VDD ON”, next “Reset by RESb”, then “External VOUT ON”, as well.  
Power OFF  
First “Reset by RESb or “HALT” instruction” to isolate external LCD bias voltages, next “VDD OFF”. For more  
safety, placing a resistor in series on the VLCD line (or the VOUT line in using only the external VOUT) is recommended.  
That resistance is usually between 50and 100.  
Ver.2004-05-12  
- 41 -  
NJU6825  
(12) RESET FUNCTION  
The reset function initializes the LSI to the following default status by setting the RESb to “L”. Connecting the  
RESb with MPU’s reset is recommended so that the LSI and MPU is initialized at a time.  
Default Status  
1. Display Data in DDRAM  
2. Column Address  
3. Row Address  
4. Initial Display Line  
5. Display ON/OFF  
6. Reverse Display ON/OFF  
7. Duty Cycle Ratio  
8. N-line Inversion ON/OFF  
9. COM Scan Direction  
10. Increment Control  
11. REF  
12. Swap  
13. EVR Value  
14. Internal LCD Power Supply  
15. Display Mode  
16. LCD Bias Ratio  
17. Palette 0  
:Undefined  
:(00)H  
:(00)H  
:(0)H (1st line)  
:OFF  
:OFF (Normal)  
:1/163 Duty (DSE=0)  
:OFF  
:COM0 COM161  
:Auto-increment OFF (AIM, AXI, AYI)=(0, 0, 0)  
:REF=0 (Normal)  
:OFF (Normal)  
:(0, 0, 0, 0, 0, 0, 0)  
:OFF  
:Grayscale Mode  
:1/9 Bias  
:(0, 0, 0, 0, 0)  
18. Palette 1  
:(0, 0, 0, 1, 1)  
19. Palette 2  
:(0, 0, 1, 0, 1)  
20. Palette 3  
:(0, 0, 1, 1, 1)  
21. Palette 4  
:(0, 1, 0, 0, 1)  
22. Palette 5  
:(0, 1, 0, 1, 1)  
23. Palette 6  
:(0, 1, 1, 0, 1)  
24. Palette 7  
:(0, 1, 1, 1, 1)  
25. Palette 8  
:(1, 0, 0, 0, 1)  
26. Palette 9  
:(1, 0, 0, 1, 1)  
27. Palette 10  
:(1, 0, 1, 0, 1)  
28. Palette 11  
:(1, 0, 1, 1, 1)  
29. Palette 12  
:(1, 1, 0, 0, 1)  
30. Palette 13  
:(1, 1, 0, 1, 1)  
31. Palette 14  
:(1, 1, 1, 0, 1)  
32. Palette 15  
:(1, 1, 1, 1, 1)  
33. Display Mode Control  
34. Bus Length  
35. Discharge ON/OFF  
:Variable 16-grayscale Mode (4,096 Colors)  
:8-bit Bus Length  
:OFF (DIS)=(0)  
Ver.2004-05-12  
- 42 -  
NJU6825  
(13) INSTRUCTION TABLES  
(13-1) Instruction Table and Register Address  
The LSI incorporates 6 instruction tables as shown in Fig 16, and each instruction table has a specific address in  
between “0” and “5”. And each instruction register has a specific address in between (0H) and (FH), and instruction is  
read out from the register by the “Register Address” and “Register Read” instructions.  
Fig 17 shows part of the instruction sequence, where the instruction table should be specified prior to other  
instructions. However, when some instructions of the same table are sequentially executed, the table selection may be  
omitted. In addition, the “Display Data Write”, “Display Data Read” and “Register Read” instructions can be performed  
in any table.  
Table “0”  
Table “1”  
Table “2”  
Table “3”  
Table “4”  
Table “5”  
(RE2,RE1,RE0)=(0,0,0) (RE2,RE1,RE0)=(0,0,1) (RE2,RE1,RE0)=(0,1,0) (RE2,RE1,RE0)=(0,1,1) (RE2,RE1,RE0)=(1,0,0) (RE2,RE1,RE0)=(1,0,1)  
Instruction (0H)  
Instruction (0H)  
Instruction (0H)  
Instruction (0H)  
Instruction (0H)  
Instruction (0H)  
Instruction (FH)  
Instruction (FH)  
Instruction (FH)  
Instruction (FH)  
Instruction (FH)  
Instruction (FH)  
NOTE) Address (FH) is assigned to “Instruction Table Select” in any table.  
Fig 16 Instruction Table Overview  
Optional Status  
[RE2:RE0]=[0,0,0]  
Instruction Table “0” Select  
Instruction 1  
Instructions in Table “0”  
Instruction 2  
Instruction 3  
[RE2:RE0]=[1,0,0]  
Instruction Table “4” Select  
Instruction 4  
Instructions in Table “4”  
Instruction 5  
[RE2:RE0]=[1,0,1]  
Instruction in Table “5”  
Instruction Table “5” Select  
Instruction 6  
Optional Status  
Fig 17 Outline of Instruction Sequence  
Ver.2004-05-12  
- 43 -  
NJU6825  
(13-2) Instruction Table 0 (RE2, RE1, RE0)=(0, 0, 0)  
Code (80 Series MPU I/F)  
Code  
D4 D3  
Instructions/  
Functions  
Writing Display Data  
Register Address [NH]  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
D6  
D5  
D2  
D1  
D0  
1
2
Display Data Write  
Display Data Read  
0
0
0
0
1
0
0
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
Write Data  
Read Data  
Reading Display Data  
Column Address  
Setting Column Address  
for start point  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AX3 AX2 AX1 AX0  
AX7 AX6 AX5 AX4  
AY3 AY2 AY1 AY0  
AY7 AY6 AY5 AY4  
(Lower) [0H]  
3
4
5
6
Column Address  
Row Address  
Row Address  
Setting Column Address  
for start point  
(Upper) [1H]  
(Lower) [2H]  
(Upper) [3H]  
Setting Row Address  
for start point  
Setting Row Address  
for start point  
Initial Display Line  
(Lower) [4H]  
Setting Row Address  
for Initial COM  
LA3  
LA7  
N3  
LA2 LA1 LA0  
LA6 LA5 LA4  
Initial Display Line  
(Upper) [5H]  
Setting Row Address  
for Initial COM  
N-line Inversion  
Setting the Number of  
N-line Inversion  
N2  
N6  
N1  
N5  
N0  
N4  
(Lower) [6H]  
(Upper) [7H]  
N-line Inversion  
Setting the Number of  
N-line Inversion  
N7  
SHIFT  
: Common Scan Direction  
Display Control (1)  
Display Control (2)  
Increment Control  
Power Control  
ALL ON/ MON  
: Grayscale/B/W Mode  
7
8
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
SHIFT MON  
[8H]  
[9H]  
[AH]  
[BH]  
ON OFF ALLON : All Pixels ON/OFF  
ON/OFF : Display ON/OFF  
REV  
: Reverse Display ON/OFF  
NLIN  
SWAP  
REF  
: N-line Inversion ON/OFF  
: SWAP ON/OFF  
REV NLIN SWAP REF  
: Segment Direction  
WIN  
AIM  
AYI  
: Window Area ON/OFF  
: Read-Modify-Write ON/OFF  
: Row Increment  
9
WIN AIM  
AYI  
AXI  
AXI  
: Column Increment  
AMPON : Voltage Converter ON/OFF  
AMP  
HALT  
ON  
DC  
ON  
HALT  
DCON  
ACL  
: Power Save ON/OFF  
: Voltage Booster ON/OFF  
: Reset  
10  
ACL  
Duty Cycle Ratio  
Boost Level  
11  
12  
13  
14  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
DS3 DS2 DS1 DS0 Setting LCD Duty Cycle Ratio  
[CH]  
[DH]  
[EH]  
[FH]  
*
*
VU2 VU1 VU0 VU2-0  
: Setting Boost Level  
LCD Bias Ratio  
Instruction Table Select  
0
0
0
B2  
B1  
B0 Setting LCD Bias Ratio  
0/1  
0/1  
0/1  
TST0 RE2 RE1 RE0 Setting Instruction Table  
NOTE1) * : Don’t care.  
NOTE2) [NH] (N=0-F) : Register Address  
NOTE3) Any nonexistent instruction code is prohibited.  
NOTE4) Dual instructions except for “EVR Control” are already effective when either upper byte or lower byte is set.  
NOTE5) “EVR Control” instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower  
byte.  
Ver.2004-05-12  
- 44 -  
NJU6825  
(13-3) Instruction Table 1 (RE2, RE1, RE0)=(0, 0, 1)  
Code (80 series MPU I/F)  
Code  
Instructions/  
Functions  
Register Address [NH]  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
Palette A0/A8  
Setting Palette Data :  
PA03/ PA02/ PA01/ PA00/  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
PA83 PA82  
PA81 PA80  
(Lower) [0H]  
A0(PS=0) /A8(PS=1)  
Palette A0/A8  
Palette A1/A9  
Palette A1/A9  
Palette A2/A10  
Palette A2/A10  
Palette A3/A11  
Palette A3/A11  
Palette A4/A12  
Palette A4/A12  
Palette A5/A13  
Palette A5/A13  
Palette A6/A14  
Palette A6/A14  
Setting Palette Data :  
A0(PS=0) /A8(PS=1)  
PA04/  
*
*
*
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
PA84  
(Upper) [1H]  
(Lower) [2H]  
(Upper) [3H]  
(Lower) [4H]  
(Upper) [5H]  
(Lower) [6H]  
(Upper) [7H]  
(Lower) [8H]  
(Upper) [9H]  
(Lower) [AH]  
(Upper) [BH]  
(Lower) [CH]  
(Upper) [DH]  
Setting Palette Data :  
A1(PS=0) /A9(PS=1)  
PA13/ PA12/ PA11/ PA10/  
0
0
1
PA93 PA92  
PA91 PA90  
Setting Palette Data :  
A1(PS=0) /A9(PS=1)  
PA14/  
*
*
*
0
0
1
PA94  
Setting Palette Data :  
A2(PS=0) /A10(PS=1)  
PA23/ PA22/ PA21/ PA20/  
PA103 PA102 PA101 PA100  
0
0
1
Setting Palette Data :  
A2(PS=0) /A10(PS=1)  
PA24/  
*
*
*
0
0
1
PA104  
Setting Palette Data :  
A3(PS=0) /A11(PS=1)  
PA33/ PA32/P PA31/ PA30/  
PA113 A112 PA111 PA110  
0
0
1
15  
Setting Palette Data :  
A3(PS=0) /A11(PS=1)  
PA34/  
*
*
*
0
0
1
PA114  
Setting Palette Data :  
A4(PS=0) /A12(PS=1)  
PA43/ PA42/P PA41/ PA40/  
PA123 A122 PA121 PA120  
0
0
1
Setting Palette Data :  
A4(PS=0) /A12(PS=1)  
PA44/  
*
*
*
0
0
1
PA124  
Setting Palette Data :  
A5(PS=0) /A13(PS=1)  
PA53/ PA52/P PA51/ PA50/  
PA133 A132 PA131 PA130  
0
0
1
Setting Palette Data :  
A5(PS=0) /A13(PS=1)  
PA54/  
*
*
*
0
0
1
PA134  
Setting Palette Data :  
A6(PS=0) /A14(PS=1)  
PA63/ PA62/P PA61/ PA60/  
PA143 A142 PA141 PA140  
0
0
1
Setting Palette Data :  
A6(PS=0) /A14(PS=1)  
PA64/  
*
*
*
0
0
1
PA144  
Instruction Table Select  
TST0  
RE2  
RE1  
RE0  
14  
0/1  
0/1  
0/1  
Setting Instruction Table  
[FH]  
NOTE1) * : Don’t care.  
NOTE2) [NH] (N=0-F) : Register Address  
NOTE3) Any nonexistent instruction code is prohibited.  
NOTE4) Dual instructions except for “EVR Control” are already effective when either upper byte or lower byte is set.  
NOTE5) “EVR Control” instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower  
byte.  
Ver.2004-05-12  
- 45 -  
NJU6825  
(13-4) Instruction Table 2 (RE2, RE1, RE0)=(0, 1, 0)  
Code (80 series MPU I/F)  
Code  
D3  
Instructions/  
Functions  
Register Address [NH]  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D2  
D1  
D0  
Palette A7/A15  
Setting Palette Data :  
A7(PS=0) /A15(PS=1)  
PA73/ PA72/P PA71/ PA70/  
PA153 A152 PA151 PA150  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
(Lower) [0H]  
Palette A7/A15  
Palette B0/B8  
Palette B0/B8  
Palette B1/B9  
Palette B1/B9  
Palette B2/B10  
Palette B2/B10  
Palette B3/B11  
Palette B3/B11  
Palette B4/B12  
Palette B4/B12  
Palette B5/B13  
Palette B5/B13  
Setting Palette Data :  
A7(PS=0) /A15(PS=1)  
PA74/  
*
*
*
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
PA154  
(Upper) [1H]  
(Lower) [2H]  
(Upper) [3H]  
(Lower) [4H]  
(Upper) [5H]  
(Lower) [6H]  
(Upper) [7H]  
(Lower) [8H]  
(Upper) [9H]  
(Lower) [AH]  
(Upper) [BH]  
(Lower) [CH]  
(Upper) [DH]  
Setting Palette Data :  
B0(PS=0) /B8(PS=1)  
PB03/ PB02/ PB01/ PB00/  
PB83 PB82 PB81 PB80  
0
1
0
Setting Palette Data :  
B0(PS=0) /B8(PS=1)  
PB04/  
*
*
*
0
1
0
PG84  
Setting Palette Data :  
B1(PS=0) /B9(PS=1)  
PB13/ PB12/ PB11/ PB10/  
PB93 PB92 PB91 PB90  
0
1
0
Setting Palette Data :  
B1(PS=0) /B9(PS=1)  
PB14/  
*
*
*
0
1
0
PB94  
Setting Palette Data :  
B2(PS=0) /B10(PS=1)  
PB23/ PB22/ PB21/ PB20/  
PB103 PB102 PB101 PB100  
0
1
0
15  
Setting Palette Data :  
B2(PS=0) /B10(PS=1)  
PB24/  
*
*
*
0
1
0
PB104  
Setting Palette Data :  
B3(PS=0) /B11(PS=1)  
PB33/ PB32/ PB31/ PB30/  
PB113 PB112 PB111 PB110  
0
1
0
Setting Palette Data :  
B3(PS=0) /B11(PS=1)  
PB34/  
*
*
*
0
1
0
PB114  
Setting Palette Data :  
B4(PS=0) /B12(PS=1)  
PB43/ PB42/ PB41/ PB40/  
PB123 PB122 PB121 PB120  
0
1
0
Setting Palette Data :  
B4(PS=0) /B12(PS=1)  
PB44/  
*
*
*
0
1
0
PB124  
Setting Palette Data :  
B5(PS=0) /B13(PS=1)  
PB53/ PB52/ PB51/ PB50/  
PB133 PB132 PB131 PB130  
0
1
0
Setting Palette Data :  
B5(PS=0) /B13(PS=1)  
PB54/  
*
*
*
0
1
0
PB134  
Instruction Table Select  
TST0  
RE2  
RE1  
RE0  
14  
0/1  
0/1  
0/1  
Setting Instruction Tablet  
[FH]  
NOTE1) * : Don’t care.  
NOTE2) [NH] (N=0-F) : Register Address  
NOTE3) Any nonexistent instruction code is prohibited.  
NOTE4) Dual instructions except for “EVR Control” are already effective when either upper byte or lower byte is set.  
NOTE5) “EVR Control” instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower  
byte.  
Ver.2004-05-12  
- 46 -  
NJU6825  
(13-5) Instruction Table 3 (RE2, RE1, RE0)=(0, 1, 1)  
Code (80 series MPU I/F)  
Code  
D3  
Instructions/  
Functions  
Register Address [NH]  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D2  
D1  
D0  
Palette B6/B14  
Setting Palette Data :  
B6(PS=0) /B14(PS=1)  
PB63/ PB62/ PB61/ PB60/  
PB143 PB142 PB141 PB140  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
(Lower) [0H]  
Palette B6/B14  
Palette B7/B15  
Palette B7/B15  
Palette C0/C8  
Palette C0/C8  
Palette C1/C9  
Palette C1/C9  
Palette C2/C10  
Palette C2/C10  
Palette C3/C11  
Palette C3/C11  
Palette C4/C12  
Setting Palette Data :  
B6(PS=0) /B14(PS=1)  
PB64/  
*
*
*
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
PB144  
(Upper) [1H]  
(Lower) [2H]  
(Upper) [3H]  
(Lower) [4H]  
(Upper) [5H]  
(Lower) [6H]  
(Upper) [7H]  
(Lower) [8H]  
(Upper) [9H]  
(Lower) [AH]  
(Upper) [BH]  
Setting Palette Data :  
B7(PS=0) /B15(PS=1)  
PB73/ PB72/ PB71/ PB70/  
PB153 PB152 PB151 PB150  
0
1
1
Setting Palette Data :  
B7(PS=0) /B15(PS=1)  
PB74/  
*
*
*
0
1
1
PB154  
Setting Palette Data :  
C0(PS=0) /C8(PS=1)  
PC03/ PC02/ PC01/ PC00/  
PC83 PC82 PC81 PC80  
0
1
1
Setting Palette Data :  
C0(PS=0) /C8(PS=1)  
PC04/  
*
*
*
0
1
1
PC84  
Setting Palette Data :  
C1(PS=0) /C9(PS=1)  
PC13/ PC12/ PC11/ PC10/  
PC93 PC92 PC91 PC90  
0
1
1
15  
Setting Palette Data :  
C1(PS=0) /C9(PS=1)  
PC14/  
*
*
*
0
1
1
PC94  
Setting Palette Data :  
C2(PS=0) /C10(PS=1)  
PC23/ PC22/ PC21/ PC20/  
PC103 PC102 PC101 PC100  
0
1
1
Setting Palette Data :  
C2(PS=0) /C10(PS=1)  
PC24/  
*
*
*
0
1
1
PC104  
Setting Palette Data :  
C3(PS=0) /C11(PS=1)  
PC33P PC32/ PC31/ PC30/  
C113 PC112 PC111 PC110  
0
1
1
Setting Palette Data :  
C3(PS=0) /C11(PS=1)  
PC34/  
*
*
*
0
1
1
PC114  
Setting Palette Data :  
C4(PS=0) /C12(PS=1)  
PC43/ PC42/ PC41/ PC40/  
PC123 PC122 PC121 PC120  
0
1
1
(Lower) [CH]  
Palette C4/C12  
(Upper) [DH]  
Setting Palette Data :  
C4(PS=0) /C12(PS=1)  
PC44/  
*
*
*
0
1
1
PC124  
Instruction Table Select  
TST0  
RE2  
RE1  
RE0  
14  
0/1  
0/1  
0/1  
Setting Instruction Table  
[FH]  
NOTE1) * : Don’t care.  
NOTE2) [NH] (N=0-F) : Register Address  
NOTE3) Any nonexistent instruction code is prohibited.  
NOTE4) Dual instructions except for “EVR Control” are already effective when either upper byte or lower byte is set.  
NOTE5) “EVR Control” instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower  
byte.  
Ver.2004-05-12  
- 47 -  
NJU6825  
(13-6) Instruction Table 4 (RE2, RE1, RE0)=(1, 0, 0)  
Code (80 series MPU I/F)  
Code  
D3  
Instructions/  
Functions  
Register Address [NH]  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D2  
D1  
D0  
Palette C5/C13  
Setting Palette Data :  
C5(PS=0) /C13(PS=1)  
PC53/ PC52/ PC51/ PC50/  
PC133 PC132 PC131 PC130  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(Lower) [0H]  
Palette C5/C13  
Palette C6/C14  
Palette C6/C14  
Palette C7/C15  
Palette C7/C15  
Initial COM  
Setting Palette Data :  
C5(PS=0) /C13(PS=1)  
PC54/  
*
*
*
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
PC134  
(Upper) [1H]  
(Lower) [2H]  
(Upper) [3H]  
(Lower) [4H]  
(Upper) [5H]  
[6H]  
Setting Palette Data :  
C6(PS=0) /C14(PS=1)  
PC63/P PC62/ PC61/ PC60/  
C143 PC142 PC141 PC140  
15  
Setting Palette Data :  
C6(PS=0) /C14(PS=1)  
PC64/  
*
*
*
PC144  
Setting Palette Data :  
C7(PS=0) /C15(PS=1)  
PC73/ PC72/ PC71/ PC70/  
PC153 PC152 PC151 PC150  
Setting Palette Data :  
C7(PS=0) /C15(PS=1)  
PC74/  
*
SC3  
*
*
SC2  
*
*
PC154  
SC1  
DSE  
SC0  
16  
17  
18  
Setting start COM for scanning  
Duty-1 /Display Clock ON/OFF  
[7H]  
SON : Display Clock ON/OFF  
DSE : Duty-1 ON/OFF  
SON  
PWM  
:
Variable/Fixed Grayscale Mode  
Display Mode Control  
[8H]  
PWM C256 FDC1 FDC2  
C256 : 256-color Mode ON/OFF.  
FDC : Boost clock  
HSW : High Speed Writing  
ABS : Bit Assignment  
CKS : Oscillator Set  
Bus Length  
[9H]  
HSW  
ABS CKS  
WLS  
19  
20  
0
1
1
0
1
0
0
1
0
0
1
WLS : 8-/16-bit Bus Length  
EVR Control  
DV3  
DV2  
DV6  
RF2  
*
DV1  
DV5  
RF1  
*
DV0  
DV4  
RF0  
DIS  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
1
0
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
1
0
1
0
0
1
1
0
0
Setting EVR Value (Lower Bit)  
Setting EVR Value (Upper Bit)  
Adjusting Oscillation Frequency  
Discharge ON/OFF  
(Lower) [AH]  
EVR Control  
*
*
*
(Upper) [BH]  
Frequency Control  
[DH]  
21  
22  
23  
1
0
0
Discharge ON/OFF  
[EH]  
1
0
0
Register Address  
[CH]  
Setting  
Register Address  
Read Data  
1
0
0
Register Address  
24 Register Read  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
Reading Instruction  
Instruction Table Select  
14  
TST0  
RE2  
RE1  
RE0  
1
1
1
1
Setting Instruction Table Select  
[FH]  
NOTE1) * : Don’t care.  
NOTE2) [NH] (N=0-F) : Register Address  
NOTE3) Any nonexistent instruction code is prohibited.  
NOTE4) Dual instructions except for “EVR Control” are already effective when either upper byte or lower byte is set.  
NOTE5) “EVR Control” instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower  
byte.  
Ver.2004-05-12  
- 48 -  
NJU6825  
(13-7) Instruction Table 5 (RE2, RE1, RE0)=(1, 0, 1)  
Code (80 series MPU I/F)  
Code  
D4 D3  
Instructions/  
Functions  
Register Address [NH]  
CSb RS RDb WRb RE2 RE1 RE0 D7  
D6  
0
D5  
0
D2  
D1  
D0  
Window End Column Address  
Setting Column Address  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
EX3 EX2 EX1 EX0  
EX7 EX6 EX5 EX4  
EY3 EY2 EY1 EY0  
EY7 EY6 EY5 EY4  
LS3 LS2 LS1 LS0  
LS7 LS6 LS5 LS4  
LE3 LE2 LE1 LE0  
LE7 LE6 LE5 LE4  
(Lower) [0H]  
for end point  
25  
26  
27  
Window End Column Address  
(Upper) [1H]  
Setting Column Address  
for end point  
0
0
0
1
1
1
1
0
0
0
1
0
1
1
0
0
1
1
0
0
1
1
Window End Row Address  
(Lower) [2H]  
Setting Row Address  
for end point  
1
0
1
Window End Row Address  
(Upper) [3H]  
Setting Row Address  
for end point  
1
0
1
Initial Line-reverse Address  
(Lower) [4H]  
Setting Start Line  
1
0
1
for Line-reverse Display  
Initial Line-reverse Address  
(Upper) [5H]  
Setting Start Line  
1
0
1
for Line-reverse Display  
Last Line-reverse Address  
(Lower) [6H]  
Setting End Line  
1
0
1
for Line-reverse Display  
28  
29  
Last Line-reverse Address  
(Upper) [7H]  
Setting End Line  
1
0
1
for Line-reverse Display  
Line Reverse ON/OFF  
BT  
: Blink Set  
1
0
1
*
*
*
*
BT LREV  
[8H]  
LREV : Line-reverse ON/OFF  
Upper/Lower  
30 Palette Select  
0
1
0
1
*
PS PS : Upper/Lower Palette Register  
[9H]  
[AH]  
PWM Control  
31  
PWM PWM PWM PWM  
0
0
1
0
1
Setting PWM Mode  
S
A
B
C
Instruction Table Select  
14  
0/1  
0/1  
0/1  
TST0 RE2 RE1 RE0 Setting Instruction Table  
[FH]  
NOTE1) * : Don’t care.  
NOTE2) [NH] (N=0-F) : Register Address  
NOTE3) Any nonexistent instruction code is prohibited.  
NOTE4) Dual instructions except for “EVR Control” are already effective when either upper byte or lower byte is set.  
NOTE5) “EVR Control” instruction is finally effective when both upper and lower bytes are set. Send upper byte first, next lower  
byte.  
Ver.2004-05-12  
- 49 -  
NJU6825  
(14) INSTRUCTION DESCRIPTIONS  
This chapter provides detailed descriptions about each instruction. These descriptions are written with the  
assumption that 80-series MPU is used. When using 68-series MPU, the polarities of the E and R/W signals differ from  
those of the RDb and WRb signals.  
(14-1) Display Data Write  
The “Display Data Write” instruction writes display data on a specified DDRAM address.  
CSb  
0
RS  
0
RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
Display Data  
(14-2) Display Data Read  
The “Display Data Read” instruction reads out display data from a specified DDRAM address. One dummy read is  
necessary right after DDRAM address setting.  
CSb  
0
RS  
0
RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
Display Data  
(14-3) Column Address  
The “Column Address” instruction specifies the column address of the start point. The setting order is lower byte  
first, then upper byte.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
AX3  
AX2  
AX1 AX0  
(Default: AX3-AX0=0H / Register Address: 0H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
0
0
0
AX7  
AX6  
AX5 AX4  
(Default: AX7-AX4=0H / Register Address: 1H)  
(14-4) Row Address  
The “Row Address” instruction specifies the row address of the start point. Available setting range is from (00H) to  
(A1H), and outside this range is not allowed. The setting order is lower byte first, then upper byte.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
AY3  
AY2  
AY1 AY0  
(Default: AY3-AY0=0H / Register Address: 2H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
D2  
D1  
D0  
1
0
0
0
0
AY7  
AY6  
AY5 AY4  
(Default: AY7-AY4=0H / Register Address: 3H)  
(14-5) Initial Display Line  
This instruction sets the row address, which corresponds to an initial COM and is normally positioned on top of a  
screen in full display. For more information, refer to “(14-16) Initial COM”. The setting order is lower byte first, then  
upper byte.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
LA3  
LA2  
LA1  
LA0  
(Default: LA3-LA0=0H / Register Address: 4H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
0
0
0
LA7  
LA6  
LA5  
LA4  
(Default: LA7-LA4=0H / Register Address: 5H)  
Ver.2004-05-12  
- 50 -  
NJU6825  
Table 18 Initial Display Line Address  
LA7  
0
0
LA6  
0
0
LA5  
0
0
LA4  
0
0
LA3  
0
0
LA2  
0
0
LA1  
0
0
LA0  
0
1
Row Address  
0
1
:
:
1
0
1
0
0
0
0
1
161  
(14-6) N-line Inversion  
The number of N line is selected in between “2” and “162”. When the N-line inversion is enabled by setting “1” at  
the D2 (NLIN) bit of the “Display Control (2)” instruction, the FR toggles once every N lines. When the N-line inversion  
is disabled by setting “0” at this bit, the FR toggles by the frame.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
N3  
N2  
N1  
N0  
(Default: N3-N0=0H / Register Address: 6H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
D2  
D1  
D0  
1
0
0
0
0
N7  
N6  
N5  
N4  
(Default: N7-N4=0H / Register Address: 7H)  
Table 19 N-line Inversion  
N7  
0
N6  
0
N5  
0
N4  
0
N3  
0
N2  
0
N1  
N0  
0
N Line  
0
0
Inhibited  
0
0
0
0
0
0
1
2
:
:
:
:
:
:
1
0
1
0
0
0
0
1
162  
NOTE1) N Line=(N Value)+1  
N-line inversion OFF  
1st line  
3rd line  
162nd line  
1st line  
2nd line  
163rd line  
CL  
FLM  
FR  
N-line inversion ON  
N-line Inversion  
1st line  
3rd line  
N line  
2nd line  
2nd line  
1st line  
CL  
FR  
Fig 18 N-line Inversion Timing (1/163 Duty)  
Ver.2004-05-12  
- 51 -  
NJU6825  
(14-7) Display Control (1)  
The “Display Control (1)” instruction controls display conditions.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
ALL  
ON  
1
0
0
0
0
SHIFT MON  
ON /OFF  
(Default: [SHIFT,MON,ALLON,ON/OFF]=0H / Register Address: 8H)  
D0 (ON/OFF)  
ON/OFF=0 : Display OFF (All COM/SEG fixed at VSSH level)  
ON/OFF=1 : Display ON  
D1 (ALLON)  
This bit forcibly turns on all pixels regardless of display data. This bit has a priority over the “REV” bit of the  
“Display Control (2)” instruction.  
ALLON=0  
ALLON=1  
: Normal  
: All pixels ON  
D2 (MON)  
MON=0  
MON=1  
: Grayscale Mode (Variable 16-grayscale, Variable 8-grayscale or Fixed 8-grayscale Mode)  
: B&W Mode  
D3 (SHIFT)  
SHIFT=0  
SHIFT=1  
: COM0 COM161  
: COM0 COM161  
Ver.2004-05-12  
- 52 -  
NJU6825  
(14-8) Display Control (2)  
The “Display Control (2)” instruction controls display conditions.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
0
0
0
REV NLIN SWAP REF  
(Default: [REV,NLIN,SWAP,REF]=0H / Register Address: 9H)  
D0 (REF)  
This bit controls the DDRAM access direction which reverses the segment direction for reducing the restrictions on  
the IC position of an LCD module. For more information, refer to “(16) SWAP FUNCTION”.  
D1 (SWAP)  
This bit swaps palettes Aj and palettes Cj (j=0-15). This function reduces the restrictions on the IC position of an  
LCD module. Refer to “(16) SWAP FUNCTION”.  
SWAP=0  
SWAP=1  
: SWAP OFF  
: SWAP ON  
D2 (NLIN)  
This bit enables the N-line inversion.  
NLIN=0  
NLIN=1  
: N-line Inversion OFF  
: N-line Inversion ON  
(FR toggles by the frame.)  
(FR toggles once every N lines.)  
D3 (REV)  
This bit enables the reverse display function that reverses the polarities of all display data without changing the  
DDRAM.  
REV=0  
REV=1  
: Reverse Display OFF  
: Reverse Display ON  
(Normal)  
Table 20 Reverse Display ON/OFF  
REV  
Display  
DDRAM Data Display Data  
0
1
0
1
0
1
1
0
0
Normal  
1
Reverse  
Ver.2004-05-12  
- 53 -  
NJU6825  
(14-9) Increment Control  
The “AIM”, “AYI” and “AXI” bits set an auto-increment operation to the column address and row address  
individually. Once this mode is set up, the column address, row address or both are automatically counted up, whenever  
the DDRAM is accessed. The “WIN” bits enables/disables the window area access.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
WIN  
AIM  
AYI  
AXI  
(Default: [WIN,AIM,AYI,AXI]=0H / Register Address: AH)  
D2 (AIM)  
Table 21 Read-modify-write ON/OFF  
AIM  
0
1
Increment Mode  
Read-modify-write OFF  
Read-modify-write ON  
NOTE  
1
2
NOTE1) Increment in writing and reading display data  
NOTE2) Increment in writing display data only  
D1, D0 (AYI, AXI)  
Table 22 Column/Row Increment  
AYI  
0
AXI  
0
Column/Row Increment  
NOTE  
Non Increment  
1
2
3
4
0
1
Column Address Increment  
Row Address Increment  
Column & Row Addresses Increment  
1
1
0
1
NOTE1) Non increment. The “AIM” bit is disabled.  
NOTE2) Increment operation of column address. The “AIM” bit is enabled.  
00H  
NOTE3) Row address increment. The “AIM” bit is enabled.  
00H MAX  
NOTE4) Column & row addresses increment. The “AIM” bit is enabled.  
00H MAX 00H  
Column Address  
MAX  
MAX  
Row Address  
D3 (WIN)  
The window access should be enabled (WIN=1) in combination with the auto-increment operation (AXI=1, AYI=1).  
The typical sequence of the window area setting is discussed in “(4-2) Window Area for DDRAM Access”.  
WIN=0  
WIN=1  
: Window Area Access OFF (Normal DDRAM Access)  
: Window Area Access ON  
Start  
End  
Start  
End  
Ad d r es s  
Ad d r es s  
Ad d r es s  
Address  
Column Address  
Row Address  
Ver.2004-05-12  
- 54 -  
NJU6825  
(14-10) Power Control  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
D2  
D1  
DCON  
D0  
ACL  
0
1
1
0
0
0
0
AMPON HALT  
(Default: [AMPON,HALT,DCON,ACL]=0H / Register Address: BH)  
D0 (ACL)  
This bit initializes the internal LCD power supply.  
ACL=0  
ACL=1  
: Initialization OFF (Normal)  
: Initialization ON  
NOTE) During the initialization, “1” is read out as the status of the “ACL” bit by the “Register Read” instruction. After the  
initialization, it is “0”. As the CLK triggers the initialization, the “wait time” at least equivalent to 2 cycles of the CLK is  
required for the next instruction.  
D1 (DCON)  
The “DCON” bit activates the voltage booster.  
DCON=0  
DCON=1  
: Voltage Booster OFF  
: Voltage Booster ON  
D2 (HALT)  
The “HALT” bit enables the power save mode. During the power save, operating current is down to the stand-by  
level. The internal state of the LSI in the power save mode is listed below.  
HALT=0  
HALT=1  
: Power Save OFF (Normal)  
: Power Save ON  
Internal State in Power Save Mode (HALT=”1”)  
- Internal oscillator and internal LCD power supply are halted.  
- All segment and common drivers are fixed at VSSH level.  
- External clock to the OSC1 cannot be accepted.  
- Display data in the DDRAM is being maintained.  
- Data in the instruction registers are being maintained.  
- VLCD, V1, V2, V3 and V4 are in high impedance.  
NOTE) In the power save ON sequence, execute the “Display OFF” prior to the “Power Save ON”. In the power save OFF  
sequence, execute the “Power save OFF” prior to the “Display ON”. If the “Power Save ON/OFF” instruction is  
executed during the “Display ON”, unexpected pixels may be turned on instantly.  
D3 (AMPON)  
The “AMPON” bit activates the voltage converter which includes the reference voltage generator, the voltage  
regulator and the LCD bias generator.  
AMPON=0 : Voltage Converter OFF  
AMPON=1 : Voltage Converter ON  
Ver.2004-05-12  
- 55 -  
NJU6825  
(14-11) Duty Cycle Ratio  
The “Duty Cycle Ratio” instruction selects LCD duty cycle ratio, and is used to carry out the partial display in  
combination with other instructions such as the “Boost Level”, the “LCD Bias Ratio” and the “EVR Control”.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
DS3 DS2 DS1 DS0  
(Default: DS3-DS0=0H / Register Address: CH)  
Table 23 Duty Cycle Ratio  
Duty Cycle Ratio  
# of Commons  
DS3  
DS2  
DS1  
DS0  
DSE=0  
DES=1  
1/162  
1/160  
1/144  
1/132  
1/128  
1/112  
1/96  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1/163  
1/161  
1/145  
1/133  
1/129  
1/113  
1/97  
162 commons  
160 commons  
144 commons  
132 commons  
128 commons  
112 commons  
96 commons  
80 commons  
72 commons  
64 commons  
56 commons  
48 commons  
40 commons  
32 commons  
24 commons  
16 commons  
1/81  
1/80  
1/73  
1/72  
1/65  
1/64  
1/57  
1/56  
1/49  
1/48  
1/41  
1/40  
1/33  
1/32  
1/25  
1/24  
1/17  
1/16  
NOTE) Duty cycle ratio is subtracted by 1 (Duty-1) from the original duty cycle ratio by setting “1” at the D1 (DSE) bit of the  
“Duty-1 ON/OFF” instruction. Refer to “(14-17) Duty-1 /Display Clock ON/OFF”.  
(14-12) Boost Level  
The “Boost Level” selects the multiple of the voltage booster.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
1
0
0
0
0
VU2 VU1 VU0  
(Default:VU2-VU0=0H / Register Address: DH)  
D2, D1, D0 (VU2, VU1, VU0)  
Table 24 Boost Level  
VU2  
0
VU1  
0
VU0  
0
Boost Level  
1 time (No boost)  
2 times  
0
0
1
0
1
0
3 times  
0
1
1
4 times  
1
0
0
5 times  
1
0
1
6 times  
1
1
0
7 times  
1
1
1
Inhibited  
.
Ver.2004-05-12  
- 56 -  
NJU6825  
(14-13) LCD Bias Ratio  
The “LCD bias ratio” selects LCD bias ratio.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
D1  
D0  
1
0
0
0
0
B2  
B1  
B0  
(Default: B2-B0=0H / Register Address: EH)  
Table 25 LCD Bias Ratio  
B2  
0
B1  
0
B0  
0
LCD Bias Ratio  
1/9  
1/8  
0
0
1
0
1
0
1/7  
0
1
1
1/6  
1
0
0
1/5  
1
0
1
1/10  
1/11  
1/12  
1
1
0
1
1
1
(14-14) Instruction Table Select  
This instruction specifies an instruction table, and should be executed prior to other instructions.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
1
D6  
1
D5  
1
D4  
1
D3  
D2  
D1  
D0  
1
0
TST0 RE2 RE1 RE0  
(Default: TST0, RE2-RE0=0H / Register Address: FH)  
Table 26 Instruction Table Select  
RE2  
0
RE1  
0
RE0  
0
Instructions  
Instruction Table (0)  
Instruction Table (1)  
Instruction Table (2)  
Instruction Table (3)  
Instruction Table (4)  
Instruction Table (5)  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
NOTE) “TST0” bit must be “0”. This is used for maker tests only.  
Ver.2004-05-12  
- 57 -  
NJU6825  
(14-15) Palette A / B / C  
Palette A0 (PS=0) / Palette A8 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA03/ PA02/ PA01/ PA00/  
PA83 PA82 PA81 PA80  
1
0
0
0
1
(Register Address: 0H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA04/  
1
0
0
0
1
PA84  
(Register Address: 1H)  
Palette A1 (PS=0) / Palette A9 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA13/ PA12/ PA11/ PA10/  
1
0
0
0
1
PA93 PA92 PA91 PA90  
(Register Address: 2H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA14/  
1
0
0
0
1
PA94  
(Register Address: 3H)  
Palette A2 (PS=0) / Palette A10 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA23/ PA22/ PA21/ PA20/  
1
0
0
0
1
PA103 PA102 PA101 PA100  
(Register Address: 4H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA24/  
1
0
0
0
1
PA104  
(Register Address: 5H)  
Palette A3 (PS=0) / Palette A11 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA33/ PA32/ PA31/ PA30/  
1
0
0
0
1
PA113 PA112 PA111 PA110  
(Register Address: 6H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA34/  
1
0
0
0
1
PA114  
(Register Address: 7H)  
Palette A4 (PS=0) / Palette A12 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA43/ PA42/ PA41/ PA40/  
1
0
0
0
1
PA123 PA122 PA121 PA120  
(Register Address: 8H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA44/  
1
0
0
0
1
PA124  
(Register Address: 9H)  
NOTE) Refer to the tables in “(6) GRAYSCALE PALETTE” for default setting.  
Ver.2004-05-12  
- 58 -  
NJU6825  
Palette A5 (PS=0) / Palette A13 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA53/ PA52/ PA51/ PA50/  
1
0
0
0
1
PA133 PA132 PA131 PA130  
(Register Address: AH)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA54/  
1
0
0
0
1
PA134  
(Register Address: BH)  
Palette A6 (PS=0) / Palette A14 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA63/ PA62/ PA61/ PA60/  
1
0
0
0
1
PA143 PA142 PA141 PA140  
(Register Address: CH)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA64/  
1
0
0
0
1
PA144  
(Register Address: DH)  
Palette A7 (PS=0) / Palette A15 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA73/ PA72/ PA71/ PA70/  
1
0
0
1
0
PA153 PA152 PA151 PA150  
(Register Address: 0H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA74/  
1
0
0
1
0
PA154  
(Register Address: 1H)  
NOTE) Refer to the tables in “(6) GRAYSCALE PALETTE” for default setting.  
Ver.2004-05-12  
- 59 -  
NJU6825  
Palette B0 (PS=0) / Palette B8 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB03/ PB02/ PB01/ PB00/  
1
0
0
1
0
PB83 PB82 PB81 PB80  
(Register Address: 2H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB04/  
1
0
0
1
0
PB84  
(Register Address: 3H)  
Palette B1 (PS=0) / Palette B9 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB13/ PB12/ PB11/ PB10/  
1
0
0
1
0
PB93 PB92 PB91 PB90  
(Register Address: 4H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB14/  
1
0
0
1
0
PB94  
(Register Address: 5H)  
Palette B2 (PS=0) / Palette B10 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB23/ PB22/ PB21/ PB20/  
1
0
0
1
0
PB103 PB102 PB101 PB100  
(Register Address: 6H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB24/  
1
0
0
1
0
PB104  
(Register Address: 7H)  
Palette B3 (PS=0) / Palette B11 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB33/ PB32/ PB31/ PB30/  
1
0
0
1
0
PB113 PB112 PB111 PB110  
(Register Address: 8H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB34/  
1
0
0
1
0
PB114  
(Register Address: 9H)  
Palette B4 (PS=0) / Palette B12 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB43/ PB42/ PB41/ PB40/  
1
0
0
1
0
PB123 PB122 PB121 PB120  
(Register Address: AH)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB44/  
1
0
0
1
0
PB124  
(Register Address: BH)  
NOTE) Refer to the tables in “(6) GRAYSCALE PALETTE” for default setting.  
Ver.2004-05-12  
- 60 -  
NJU6825  
Palette B5 (PS=0) / Palette B13 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB53/ PB52/ PB51/ PB50/  
1
0
0
1
0
PB133 PB132 PB131 PB130  
(Register Address: CH)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB54/  
1
0
0
1
0
PB134  
(Register Address: DH)  
Palette B6 (PS=0) / Palette B14 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB63/ PB62/ PB61/ PB60/  
1
0
0
1
1
PB143 PB142 PB141 PB140  
(Register Address: 0H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB64/  
1
0
0
1
1
PB144  
(Register Address: 1H)  
Palette B7 (PS=0) / Palette B15 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB73/ PB72/ PB71/ PB70/  
1
0
0
1
1
PB153 PB152 PB151 PB150  
(Register Address: 2H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB74/  
1
0
0
1
1
PB154  
(Register Address: 3H)  
NOTE) Refer to the tables in “(6) GRAYSCALE PALETTE” for default setting.  
Ver.2004-05-12  
- 61 -  
NJU6825  
Palette C0 (PS=0) / Palette C8 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC03/ PC02/ PC01/ PC00/  
1
0
0
1
1
PC83 PC82 PC81 PC80  
(Register Address: 4H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC04/  
1
0
0
1
1
PC84  
(Register Address: 5H)  
Palette C1 (PS=0) / Palette C9 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC13/ PC12/ PC11/ PC10/  
1
0
0
1
1
PC93 PC92 PC91 PC90  
(Register Address: 6H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC14/  
1
0
0
1
1
PC94  
(Register Address: 7H)  
Palette C2 (PS=0) / Palette C10 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC23/ PC22/ PC21/ PC20/  
1
0
0
1
1
PC103 PC102 PC101 PC100  
(Register Address: 8H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC24/  
1
0
0
1
1
PC104  
(Register Address: 9H)  
Palette C3 (PS=0) / Palette C11 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC33/ PC32/ PC31/ PC30/  
1
0
0
1
1
PC113 PC112 PC111 PC110  
(Register Address: AH)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC34/  
1
0
0
1
1
PC114  
(Register Address: BH)  
Palette C4 (PS=0) / Palette C12 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC43/ PC42/ PC41/ PC40/  
1
0
0
1
1
PC123 PC122 PC121 PC120  
(Register Address: CH)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC44/  
1
0
0
1
1
PC124  
(Register Address: DH)  
NOTE) Refer to the tables in “(6) GRAYSCALE PALETTE” for default setting.  
Ver.2004-05-12  
- 62 -  
NJU6825  
Palette C5 (PS=0) / Palette C13 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC53/ PC52/ PC51/ PC50/  
1
0
1
0
0
PC133 PC132 PC131 PC130  
(Register Address: 0H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC54/  
1
0
1
0
0
PC134  
(Register Address: 1H)  
Palette C6 (PS=0) / Palette C14 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC63/ PC62/ PC61/ PC60/  
1
0
1
0
0
PC143 PC142 PB141 PB140  
(Register Address: 2H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC64/  
1
0
1
0
0
PC144  
(Register Address: 3H)  
Palette C7 (PS=0) / Palette C15 (PS=1)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC73/ PC72/ PC71/ PC70/  
1
0
1
0
0
PC153 PC152 PC151 PC150  
(Register Address: 4H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC74/  
1
0
1
0
0
PC154  
(Register Address: 5H)  
NOTE) Refer to the tables in “(6) GRAYSCALE PALETTE” for default setting.  
Ver.2004-05-12  
- 63 -  
NJU6825  
(14-16) Initial COM  
The “Initial COM” instruction specifies the common driver for a scan start common.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
SC3 SC2 SC1 SC0  
(Default: SC3-SC0=0H / Register Address: 6H)  
Table 27 Initial COM  
SC3  
0
SC2  
0
SC1  
0
SC0  
0
Initial COM (SHIFT=0)  
COM0  
Initial COM (SHIFT=1)  
COM161  
COM160  
COM152  
COM146  
COM144  
COM136  
COM128  
COM120  
COM112  
COM104  
COM96  
0
0
0
1
COM1  
0
0
1
0
COM9  
0
0
1
1
COM14  
0
1
0
0
COM17  
0
1
0
1
COM25  
0
1
1
0
COM33  
0
1
1
1
COM41  
1
0
0
0
COM49  
1
0
0
1
COM57  
1
0
1
0
COM65  
1
0
1
1
COM73  
COM88  
1
1
0
0
COM122  
COM130  
COM138  
COM146  
COM39  
1
1
0
1
COM31  
1
1
1
0
COM23  
1
1
1
1
COM15  
(14-17) Duty-1 /Display Clock ON/OFF  
This instruction controls ON (Duty-1) /OFF (Duty-0) and Display Clock ON/OFF.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
D0  
1
0
1
0
0
DSE SON  
(Default: SON,DSE=0H / Register Address: 7H)  
D0 (SON)  
SON=0  
SON=1  
: CL, FLM, FR, and CLK are fixed at “L” level.  
: CL, FLM, FR, and CLK are enabled.  
D1 (DSE)  
The duty cycle ratio is subtracted by 1 (Duty-1) from the original duty cycle ratio by setting “1” at the “DSE” bit.  
DSE=0  
DSE=1  
: OFF  
: ON  
(Duty-0)  
(Duty-1)  
NOTE) For the last common timing at “DSE=0”, all common drivers generate non-selective waveforms, and segment drivers  
generate the same waveforms as for the previous common timing. For instance, in 1/163 duty cycle, the segment  
waveforms for 163rd common timing are the same as for 162nd common timing (last line).  
(14-18) Display Mode Control  
The “Display Mode Control” instruction sets up display modes such as the variable or fixed grayscale mode and the  
variable 8- or 16-grayscale mode. The D2 (MON) bit of the “Display Control (1)” is used in combination. Refer to “(5)  
GRAY SCALE CONTROL CIRCUIT” and “(14-7) Display Control (1).”  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
PWM C256 FDC1 FDC2  
(Default: PWM,C256=0H / Register Address: 8H)  
D3 (PWM)  
PWM=0  
PWM=1  
: Variable grayscale Mode (Variable 8-/16-grayscale Mode)  
: Fixed 8-grayscale Mode  
Ver.2004-05-12  
- 64 -  
NJU6825  
D2 (C256)  
C256=0  
: Variable 16-grayscale Mode at “PWM=0” (4096 colors)  
: Variable 8-grayscale Mode at “PWM=0” (256 colors)  
C256=1  
D1(FDC1), D0(FDC2)  
These bits are used to select clock multiply for voltage booster.  
FDC1  
FDC2  
Boost Clock  
0
0
1
1
0
1
0
1
×1  
×2  
×4  
×1/2  
(14-19) Bus Length  
This instruction selects 8- or 16-bit bus length, and sets oscillator configuration, ABS mode ON/OFF and high  
speed writing ON/OFF as well.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
1
0
0
HSW ABS CKS WLS  
(Default: HSW,ABS,CKS,WLS=0H / Register Address: 9H)  
D0 (WLS)  
WLS=0: 8-bit Bus Length  
WLS=1: 16-bit Bus Length  
D1 (CKS)  
CKS =0: Internal Oscillator using an internal resistor  
CKS =1: External Clock, or Internal Oscillator using an external resistor  
NOTE) Refer to “(10) OSCILLATOR”.  
D2 (ABS)  
ABS=0: ABS Mode OFF (Normal)  
ABS=1: ABS Mode ON  
D3 (HSW)  
HSW=0: High Speed Writing OFF (Normal)  
HSW=1: High Speed Writing ON  
(14-20) EVR Control  
The “EVR Control” instruction adjusts VLCD to optimize display contrast. This instruction is finally effective when  
both upper and lower bytes are transmitted in order to prevent high VLCD. The setting order is upper byte first, then lower  
byte. Refer to “(11-2-3) Electrical Variable Resistor (EVR)”.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
DV3  
DV2  
DV1  
DV0  
(Default: DV3-DV0=0H / Register Address: AH)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
0
DV6  
DV5  
DV4  
(Default: DV6-DV4=0H / Register Address: BH)  
Table 28 EVR Control  
DV6  
0
DV5  
0
DV4  
0
DV3  
DV2  
0
DV1  
0
DV0  
0
VLCD  
0
0
:
Low  
0
0
0
0
0
1
:
:
:
:
1
1
1
1
1
1
1
High  
Ver.2004-05-12  
- 65 -  
NJU6825  
Formula of VLCD  
VLCD [V] = 0.5x VREG + M (VREG – 0.5x VREG) / 127  
V
V
BA = VEE x 0.9  
REG = VREF x N  
VBA  
VREF  
VREG  
N
: Output of the reference voltage generator  
: Input of the voltage regulator  
: Output of the voltage regulator  
: Boost level  
M
: EVR Value  
(14-21) Frequency Control  
The “Frequency Control” instruction adjusts the frame frequency.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
0
Rf2  
Rf1  
Rf0  
(Default: DV3-DV0=0H / Register Address: DH)  
Table 29 Frequency Control  
Rf 2  
0
Rf 1  
0
Rf 0  
0
Feedback Resistor Value  
Reference Value  
0.8 x Reference Value  
0.9 x Reference Value  
1.1 x Reference Value  
1.2 x Reference Value  
Inhibited  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
Inhibited  
1
1
1
Inhibited  
(14-22) Discharge ON/OFF  
Discharge circuit is used to discharge out of the stabilizing capacitors placed on the VLCD, V1, V2, V3,V4 and VOUT  
Refer to “(11-4) Discharge Circuit”  
.
.
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
*
D1  
*
D0  
1
0
1
0
0
DIS  
(Default: DIS2,DIS1=0H / Register Address: EH)  
D0 (DIS)  
DIS=0  
: Discharge OFF  
: Discharge ON  
DIS=1  
(Discharge from VLCD, V1, V2, V3 and V4)  
NOTE) Resistance is 100Ktypical.  
Ver.2004-05-12  
- 66 -  
NJU6825  
(14-23) Register Address  
The “Register Address” instruction specifies a register address.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
RA3 RA2 RA1 RA0  
(Default: RA3-RA0=BH / Register Address: CH)  
(14-24) Register Read  
The “Register Read” instruction reads out instruction data from the register which address is specified by the  
“Register Address” instruction.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
*
D6  
*
D5  
*
D4  
*
D3  
D2  
D1  
D0  
0
1
Internal register data  
(14-25) Window End Column Address  
The “Window End Column Address” instruction specifies the column address of the end point. Refer to “(4-2)  
Window Area for DDRAM Access”. The setting order is lower byte first, then upper byte.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
EX3 EX2 EX1 EX0  
(Default: EX3-EX0=0H / Register Address: 0H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
1
0
1
EX7 EX6 EX5 EX4  
(Default: EX7-EX4=0H / Register Address: 1H)  
(14-26) Window End Row Address  
The “Window End Row Address” instruction specifies the row address of the end point. Refer to “(4-2) Window  
Area for DDRAM Access”. The setting order is lower byte first, then upper byte.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
EY3 EY2 EY1 EY0  
(Default: EY3-EY0=0H / Register Address: 2H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
D2  
D1  
D0  
1
0
1
0
1
EY7 EY6 EY5 EY4  
(Default: EY7-EY4=0H / Register Address: 3H)  
(14-27) Initial Line-reverse Address  
The “Initial Line-reverse Address” instruction specifies the start line of the line-reverse display area. The setting  
order is lower byte first, then upper byte.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
LS3  
LS2  
LS1  
LS0  
(Default: LS3-LS0=0H / Register Address: 4H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
1
0
1
LS7  
LS6  
LS5  
LS4  
(Default: LS7-LS4=0H / Register Address: 5H)  
Ver.2004-05-12  
- 67 -  
NJU6825  
(14-28) Last Line-reverse Address  
The “Last Line-reverse Address” instruction specifies the end line of the line-reverse display area. The setting order  
is lower byte first, then upper byte.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
LE3  
LE2  
LE1  
LE0  
(Default: LE3-LE0=0H / Register Address: 6H)  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
D2  
D1  
D0  
1
0
1
0
1
LE7  
LE6  
LE5  
LE4  
(Default: LE7-LE4=0H / Register Address: 7H)  
(14-29) Line Reverse ON/OFF  
The “Line Reverse ON/OFF” instruction enables the line-reverse display, and blink function as well. Note that the  
line reverse display cannot be used for entire display area. In this case, use the reverse display function by the D3 (REV)  
bit of the “Display Control (2)” instruction.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
*
D2  
*
D1  
D0  
1
0
1
0
1
BT LREV  
(Default: BT,LREV=0H / Register Address: 8H)  
D0 (LREV)  
LREV =0  
LREV =1  
: Line Reverse OFF (Normal)  
: Line Reverse ON  
D1 (BT)  
BT =0  
BT =1  
: No Blink  
: Blink once every 32 frames  
NJRC  
NJRC  
STN COLOR  
STN COLOR  
Initial Line-reverse Address  
Last Line-reverse Address  
LCD DRIVER  
LCD DRIVER  
LOW POWER  
LOW POWER  
Blink / 32 Frames  
HIGH PERFORMANCE  
HIGH PERFORMANCE  
Fig 19 On-screen Image in Using Line-reverse Display and Blink Function  
Ver.2004-05-12  
- 68 -  
NJU6825  
(14-30) Upper/Lower Palette Select  
The “Upper/Lower Palette Select” instruction selects either upper or lower palette register.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
1
0
1
0
1
PS  
(Default: PS=0 / Register Address: 9H)  
D0 (PS)  
PS=0  
PS=1  
: Lower Palettes (PA00, PA01, PA02, PA03, …, PC74)  
: Upper Palettes (PA80, PA81, PA82, PA83, …, PC154)  
(14-31) PWM Control  
The “PWM control” instruction selects PWM type, as shown in Fig 20.  
CSb  
0
RS  
1
RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PWM PWM PWM PWM  
1
0
1
0
1
S
A
B
C
(Default: PWMS,PWMA,PWMB,PWMC=0H / Register Address: AH)  
D3 (PWMS)  
PWMS=0  
PWMS=1  
: Type 1  
: Type 2  
D2 (PWMA), D1 (PWMB), D0 (PWMC)  
PWMZ=0 (Z=A, B and C): Type 1-O  
PWMZ=1 (Z=A, B and C): Type 1-E  
PWM Type 1 (PWMS=0)  
Odd Line  
Even Line  
CL  
VLCD  
V2  
Type-0  
Type-E  
SEG  
VLCD  
V2  
PWM Type 2 (PWMS=1)  
CL  
VLCD  
SEG  
V2  
Fig 20 PWM Control  
Ver.2004-05-12  
- 69 -  
NJU6825  
(15) PARTIAL DISPLAY FUNCTION  
The partial display function activates specified area on an LCD screen, or equivalently, common drivers are simply  
scanning this specified area. This function allows LCD modules to work in a minimum duty cycle ratio to minimize  
power consumption. The partial display function is carried out by the combination of the “Duty Cycle Ratio”, “LCD Bias  
Ratio”, “Boost Level” and “EVR Control” instructions. For more information, refer to “(14-11) Duty Cycle Ratio”,  
“(14-12) Boost Level”, “(14-13) LCD Bias Ratio” and “(14-20) EVR Control”. Typical setting sequence is shown in  
“(18-4) Partial Display Sequence”.  
NJRC  
LCD DRIVER  
Low Power and  
Low Voltage  
LCD DRIVER  
Normal  
Partial Display  
Fig 21 On-screen Image in Using Partial Display Function  
Ver.2004-05-12  
- 70 -  
NJU6825  
(16) SWAP FUNCTION  
The swap function switches the palettes Aj and the palettes Cj (j=0-15), and is controlled by the D1 (SWAP) bit of  
the “Display Control (2)” instruction. This function reduces the restrictions on the IC position of an LCD module. Fig 22  
“Overview of Swap Function” illustrates general outlines of internal operations, and (16-1-1) through (16-1-4) show  
each configuration on a mode-by-mode basis.  
(SWAP, REF)=(0,0)  
- Default state  
(SWAP, REF)=(0,1)  
- Swapping Palette A and Palette C  
- Reversing Column Address  
LCD Panel  
LCD Panel  
1RGB  
1RGB  
1RGB  
1RGB  
Segment  
Driver  
Segment  
Driver  
(00H)  
(7FH)  
(7FH)  
(00H)  
Grayscale  
Control  
Circuits  
Grayscale  
Control  
Circuits  
A
B
C
Selected Palette  
A
B
C
A
B
C
Selected Palette  
A
B
C
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
LSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
Data  
Data  
Data  
Data  
(7FH)  
(00H)  
(00H)  
(7FH)  
Display Data  
in DDRAM  
Display Data  
in DDRAM  
LSB  
LSB  
Data  
Data  
Data  
Data  
Display Data  
from MPU  
Display Data  
from MPU  
Data  
Data  
Data  
Data  
(00H)  
(7FH)  
(00H)  
(7FH)  
(SWAP, REF)=(1,0)  
(SWAP, REF)=(1,1)  
- Reversing Column Address  
- Swapping Palette A and Palette C  
LCD Panel  
LCD Panel  
1RGB  
1RGB  
1RGB  
1RGB  
Segment  
Driver  
Segment  
Driver  
(7FH)  
(00H)  
(00H)  
(7FH)  
Grayscale  
Control  
Circuits  
Grayscale  
Control  
Circuits  
A
B
C
Selected Palette  
A
B
C
A
B
C
Selected Palette  
A
B
C
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
Data  
Data  
Data  
Data  
(00H)  
(7FH)  
(7FH)  
(00H)  
Display Data  
in DDRAM  
Display Data  
in DDRAM  
Data  
Data  
Data  
Data  
Display Data  
from MPU  
Display Data  
from MPU  
Data  
Data  
Data  
Data  
(00H)  
(7FH)  
(00H)  
(7FH)  
Fig 22 Overview of SWAP Function  
Ver.2004-05-12  
- 71 -  
NJU6825  
(16-1) Swap Function in Variable 16-grayscale Mode  
16-bit Bus Length  
(REF, SWAP)=(0,0) or (1,1)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
0/31 (Default)  
7/31 (Default)  
31/31 (Default)  
Grayscale Level  
Grayscale Palette  
Palette A0  
Palette B3  
Palette C15  
0
0
0
1
1
1
0
0
0
1
1
1
Display Data  
in Grayscale Control Circuit  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D15  
D11  
D14  
D10  
D13  
D9  
D12  
D8  
D10  
D7  
D9  
D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
ABS=1  
(REF, SWAP)=(0,1) or (1,0)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
7/31 (Default)  
0/31 (Default)  
31/31 (Default)  
Grayscale Level  
Grayscale Palette  
Palette C15  
Palette B3  
Palette A0  
1
1
0
0
1
1
1
1
0
0
0
0
Display Data  
in Grayscale Control Circuit  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
|
|
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D15  
D11  
D14  
D10  
D13  
D9  
D12  
D8  
D10  
D7  
D9  
D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
ABS=1  
NOTE1) Without a special note on the left, the setting bit such as the ABS, HSW, and C256 are regarded as “0”.  
Ver.2004-05-12  
- 72 -  
NJU6825  
8-bit Bus Length  
(REF, SWAP)=(0,0) or (1,1)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
0/31 (Default)  
7/31 (Default)  
31/31 (Default)  
Grayscale Level  
Palette A0  
Palette B3  
Palette C15  
Grayscale Palette  
0
0
0
1
1
1
0
0
0
1
1
1
Display Data  
in Grayscale Control Circuit  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D7  
D3  
D7  
D6  
D2  
D6  
D5  
D1  
D5  
D4  
D0  
D4  
D2  
D7  
D3  
D1  
D6  
D2  
D0  
D5  
D1  
D7  
D4  
D0  
D4  
D3  
D7  
D3  
D2  
D6  
D2  
D1  
D5  
D1  
D0  
D4  
ABS=1  
HSW=1  
(REF, SWAP)=(0,1) or (1,0)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
7/31 (Default)  
0/31 (Default)  
31/31 (Default)  
Grayscale Level  
Palette C15  
Palette B3  
Palette A0  
Grayscale Palette  
1
1
0
0
1
1
1
1
0
0
0
0
Display Data  
in Grayscale Control Circuit  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
|
|
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D7  
D3  
D7  
D6  
D2  
D6  
D5  
D1  
D5  
D4  
D0  
D4  
D2  
D7  
D3  
D1  
D6  
D2  
D0  
D5  
D1  
D7  
D4  
D0  
D4  
D3  
D7  
D3  
D2  
D6  
D2  
D1  
D5  
D1  
D0  
D4  
ABS=1  
HSW=1  
NOTE1) Without a special note on the left, the setting bit such as the ABS, HSW, and C256 are regarded as “0”.  
Ver.2004-05-12  
- 73 -  
NJU6825  
(16-2) Swap Function in Variable 8-grayscale Mode  
8-bit Bus Length  
(REF, SWAP)=(0,0) or (1,1)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
3/31 (Default)  
7/31 (Default)  
31/31 (Default)  
Grayscale Level  
Grayscale Palette  
Palette A0  
Palette B3  
Palette C15  
0
*
0
*
1
*
0
0
0
1
1
*
Display Data  
in Grayscale Control Circuit  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
0
0
0
1
1
*
*
0
*
*
0
*
*
1
*
*
Display Data  
from MPU to LSI  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(REF, SWAP)=(0,1) or (1,0)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
7/31 (Default)  
3/31 (Default)  
31/31 (Default)  
Grayscale Level  
Grayscale Palette  
Palette C15  
Palette B3  
Palette A0  
1
*
0
*
*
*
1
1
0
0
0
0
Display Data  
in Grayscale Control Circuit  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
|
|
0
0
0
*
*
0
0
1
*
*
1
1
*
*
*
*
Display Data  
from MPU to LSI  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE1) Without a special note on the left, the setting bit such as the ABS, HSW, and C256 are regarded as “0”.  
Ver.2004-05-12  
- 74 -  
NJU6825  
(16-3) Swap Function in Fixed 8-grayscale Mode  
16-bit Bus Length  
(REF, SWAP)=(0,0) or (1,1)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
0/7  
1/7  
7/7  
Grayscale Level  
-
-
-
0
0
0
1
1
1
0
0
0
1
1
1
Display Data  
in Grayscale Control Circuit  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D15  
D11  
D14  
D10  
D13  
D9  
D12  
D8  
D10  
D7  
D9  
D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
ABS=1  
(REF, SWAP)=(0,1) or (1,0)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
7/7  
1/7  
0/7  
Grayscale Level  
-
-
-
1
1
0
0
1
1
1
1
0
0
0
0
Display Data  
in Grayscale Control Circuit  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
|
|
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D15  
D11  
D14  
D10  
D13  
D9  
D12  
D8  
D10  
D7  
D9  
D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
ABS=1  
NOTE1) Without a special note on the left, the setting bit such as the ABS, HSW, and C256 are regarded as “0”.  
NOTE2) The data indicated with a slash mark ( / ) is invalid.  
Ver.2004-05-12  
- 75 -  
NJU6825  
8-bit Bus Length  
(REF, SWAP)=(0,0) or (1,1)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
0/7  
1/7  
7/7  
Grayscale Level  
-
-
-
0
0
0
1
1
1
0
0
0
1
1
1
Display Data  
in Grayscale Control Circuit  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D7  
D3  
D7  
D7  
D6  
D2  
D6  
D6  
D5  
D1  
D5  
D5  
D4  
D0  
D4  
*
D2  
D7  
D3  
D4  
D1  
D6  
D2  
D3  
D0  
D5  
D1  
D2  
D7  
D4  
D0  
*
D4  
D3  
D7  
D1  
D3  
D2  
D6  
D0  
D2  
D1  
D5  
*
D1  
D0  
D4  
*
ABS=1  
HSW=1  
C256=1  
(REF, SWAP)=(0,1) or (1,0)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
7/7  
1/7  
0/7  
Grayscale Level  
-
-
-
1
1
0
0
1
1
1
1
0
0
0
0
Display Data  
in Grayscale Control Circuit  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
|
|
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D7  
D3  
D7  
D7  
D6  
D2  
D6  
D6  
D5  
D1  
D5  
D5  
D4  
D0  
D4  
*
D2  
D7  
D3  
D4  
D1  
D6  
D2  
D3  
D0  
D5  
D1  
D2  
D7  
D4  
D0  
*
D4  
D3  
D7  
D1  
D3  
D2  
D6  
D0  
D2  
D1  
D5  
*
D1  
D0  
D4  
*
ABS=1  
HSW=1  
C256=1  
NOTE1) Without a special note on the left, the setting bit such as the ABS, HSW, and C256 are regarded as “0”.  
NOTE2) The data indicated with a slash mark ( / ) is invalid.  
Ver.2004-05-12  
- 76 -  
NJU6825  
(16-4) Swap Function in B&W Mode  
16-bit Bus Length  
(REF, SWAP)=(0,0) or (1,1)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
0/1 (OFF)  
0/1 (OFF)  
1/1 (ON)  
Grayscale Level  
-
-
-
0
0
0
1
1
1
0
0
0
1
1
1
Display Data  
in Grayscale Control Circuit  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D15  
D11  
D14  
D10  
D13  
D9  
D12  
D8  
D10  
D7  
D9  
D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
ABS=1  
(REF, SWAP)=(0,1) or (1,0)  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
1/1 (ON)  
0/1 (OFF)  
0/1 (OFF)  
Grayscale Level  
-
-
-
1
1
0
0
1
1
1
1
0
0
0
0
Display Data  
in Grayscale Control Circuit  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
|
|
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D15  
D11  
D14  
D10  
D13  
D9  
D12  
D8  
D10  
D7  
D9  
D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
ABS=1  
NOTE1) Without a special note on the left, the setting bit such as the ABS, HSW, and C256 are regarded as “0”.  
NOTE2) The data indicated with a slash mark ( / ) is invalid.  
Ver.2004-05-12  
- 77 -  
NJU6825  
8-bit Bus Length  
SWAP=0  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
0/1 (OFF)  
0/1 (OFF)  
1/1 (ON)  
Grayscale Level  
-
-
-
0
0
0
1
1
1
0
0
0
1
1
1
Display Data  
in Grayscale Control Circuit  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D7  
D3  
D7  
D7  
D6  
D2  
D6  
D6  
D5  
D1  
D5  
D5  
D4  
D0  
D4  
*
D2  
D7  
D3  
D4  
D1  
D6  
D2  
D3  
D0  
D5  
D1  
D2  
D7  
D4  
D0  
*
D4  
D3  
D7  
D1  
D3  
D2  
D6  
D0  
D2  
D1  
D5  
*
D1  
D0  
D4  
*
ABS=1  
HSW=1  
C256=1  
SWAP=1  
SEGAi  
SEGBi  
SEGCi  
(i=0-127)  
1/1 (ON)  
0/1 (OFF)  
0/1 (OFF)  
Grayscale Level  
-
-
-
1
1
0
0
1
1
1
1
0
0
0
0
Display Data  
in Grayscale Control Circuit  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
|
|
0
0
0
0
0
0
1
1
1
1
1
1
Display Data  
from MPU to LSI  
D7  
D3  
D7  
D7  
D6  
D2  
D6  
D6  
D5  
D1  
D5  
D5  
D4  
D0  
D4  
*
D2  
D7  
D3  
D4  
D1  
D6  
D2  
D3  
D0  
D5  
D1  
D2  
D7  
D4  
D0  
*
D4  
D3  
D7  
D1  
D3  
D2  
D6  
D0  
D2  
D1  
D5  
*
D1  
D0  
D4  
*
ABS=1  
HSW=1  
C256=1  
NOTE1) Without a special note on the left, the setting bit such as the ABS, HSW, and C256 are regarded as “0”.  
NOTE2) The data indicated with a slash mark ( / ) is invalid.  
(17) RELATION BETWEEN ROW ADDRESS AND COMMON DRIVER  
The relation between row address and common driver is changed by the D3 (SHIFT) bit of the “Display Control  
(1)” and the “Duty Cycle Ratio”, “Initial Display Line” and “Initial COM” instructions.  
When the “Initial Display Line” is set to (LA7:LA0=00H: Address “0”), the row address corresponding to an initial  
COM is “0”. However, if the “Initial Display Line” is other than “0”, the row address is shifted from “0” by just that  
address. For instance, when the initial display line address is (LA7:LA0=05H: Address “5”) and the initial COM is  
(SC3:SC0=1H), the row address on the initial COM is “5” and the initial COM is “COM1”.  
(17-1) through (17-5) illustrate the examples of the relation between row address and common driver.  
Ver.2004-05-12  
- 78 -  
NJU6825  
(17-1) SHIFT=0, Initial Display Line “0”, Duty Cycle Ratio “1/163”  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
1
0=”0000”, LA7….LA0=”00000000”(Initial display line 0) DSE=”0”  
SC3  
SC2  
SC1  
SC0  
0000  
0
0001  
0010  
153  
0011  
148  
0100  
145  
0101  
137  
0110  
129  
0111  
121  
1000  
113  
1001  
105  
1010  
97  
1011  
89  
1100  
40  
1101  
32  
1110  
24  
1111  
16  
COM0  
161  
0
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
161  
0
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
:
161  
0
161  
0
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
:
161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
COM120  
COM121  
COM122  
:
161  
0
COM128  
COM129  
COM130  
:
161  
0
COM136  
COM137  
COM138  
COM139  
COM140  
COM141  
COM142  
COM143  
COM144  
COM145  
COM146  
COM147  
COM148  
COM149  
COM150  
COM151  
COM152  
COM153  
COM154  
COM155  
COM156  
COM157  
COM158  
COM159  
COM160  
COM161  
161  
0
161  
0
161  
161  
160  
161  
152  
161  
147  
161  
144  
161  
136  
161  
128  
161  
120  
161  
112  
161  
104  
161  
96  
161  
88  
161  
39  
161  
31  
161  
23  
161  
15  
161  
(163rd COM period) *2  
Fig 23 Relation between Row address and Common Driver (1)  
NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address  
NOTE2) Segment waveforms for 163rd COM timing are the same as for 162nd COM timing (Row address “A1H”).  
Ver.2004-05-12  
- 79 -  
NJU6825  
(17-2) SHIFT=1, Initial Display Line “0”, Duty Cycle Ratio “1/163”  
SHIFT=”1”(Common backward scan), DS3, 2  
,
,
1
0=”0000”, LA7….LA0=”00000000”(Initial display line 0) DSE=”0”  
SC3  
SC2  
SC1  
SC0  
0000  
161  
0001  
160  
0010  
152  
0011  
146  
0100  
144  
0101  
136  
0110  
128  
0111  
120  
1000  
112  
1001  
104  
1010  
96  
1011  
88  
1100  
39  
1101  
31  
1110  
23  
1111  
15  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
:
0
161  
0
161  
COM31  
COM32  
:
COM39  
COM40  
:
0
161  
0
161  
COM88  
COM89  
COM90  
COM91  
COM92  
COM93  
COM94  
COM95  
COM96  
COM97  
COM98  
COM99  
COM100  
COM101  
COM102  
COM103  
COM104  
COM105  
COM106  
COM107  
COM108  
COM109  
COM110  
COM111  
COM112  
COM113  
COM114  
COM115  
COM116  
COM117  
COM118  
COM119  
COM120  
COM121  
COM122  
COM123  
COM124  
COM125  
COM126  
COM127  
COM128  
COM129  
COM130  
COM131  
COM132  
COM133  
COM134  
COM135  
COM136  
COM137  
COM138  
COM139  
COM140  
COM141  
COM142  
COM143  
COM144  
COM145  
COM146  
COM147  
COM148  
COM149  
COM150  
COM151  
COM152  
COM153  
COM154  
COM155  
COM156  
COM157  
COM158  
COM159  
COM160  
COM161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
0
161  
161  
153  
161  
147  
161  
145  
161  
137  
161  
129  
161  
121  
161  
113  
161  
105  
161  
97  
161  
89  
161  
40  
161  
32  
161  
24  
161  
16  
161  
(163rd COM period) *2  
161  
Fig 24 Relation between Row address and Common Driver (2)  
NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address  
NOTE2) Segment waveforms for 163rd COM timing are the same as for 162nd COM timing (Row address “A1H”).  
- 80 -  
Ver.2004-05-12  
NJU6825  
(17-3) SHIFT=0, Initial Display Line “0”, Duty Cycle Ratio “1/16”  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
1
0=”1111”, LA7….LA0=”00000000”(Initial display line 0) DSE=”1”  
SC3  
SC2  
SC1  
SC0  
0000  
0
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
COM0  
COM1  
COM2  
:
0
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
:
0
0
15  
15  
0
15  
0
15  
15  
0
15  
0
15  
0
15  
0
15  
0
15  
0
15  
COM88  
:
15  
COM121  
COM122  
:
0
COM130  
COM131  
COM132  
COM133  
COM134  
COM135  
COM136  
COM137  
COM138  
:
0
15  
0
COM145  
COM146  
:
COM153  
:
COM160  
COM161  
15  
0
15  
15  
Fig 25 Relation between Row address and Common Driver (3)  
NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address  
Ver.2004-05-12  
- 81 -  
NJU6825  
(17-4) SHIFT=0, Initial Display Line “5”, Duty Cycle Ratio “1/163”  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
1
0=”0000”, LA7….LA0=”00000101”(Initial display line 5) DSE=”0”  
SC3  
SC2  
SC1  
SC0  
0000  
5
0001  
0010  
158  
0011  
153  
0100  
150  
0101  
142  
0110  
134  
0111  
126  
1000  
118  
1001  
110  
1010  
102  
1011  
94  
1100  
45  
1101  
37  
1110  
29  
1111  
21  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
:
4
5
161  
0
161  
0
5
161  
0
5
5
161  
0
5
161  
0
COM33  
COM34  
COM35  
COM36  
:
5
161  
0
COM41  
COM42  
COM43  
COM44  
:
5
161  
0
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
:
5
161  
0
5
1161  
0
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
:
5
161  
0
5
COM116  
COM117  
:
161  
0
5
COM122  
COM123  
COM124  
COM125  
COM126  
COM127  
COM128  
COM129  
COM130  
COM131  
COM132  
COM133  
COM134  
COM135  
COM136  
COM137  
COM138  
COM139  
COM140  
COM141  
COM142  
COM143  
COM144  
COM145  
COM146  
:
161  
0
5
161  
0
5
161  
0
5
COM156  
COM157  
COM158  
COM159  
COM160  
COM161  
161  
0
161  
0
4
4
3
4
157  
4
152  
4
149  
4
141  
4
133  
4
125  
4
117  
4
109  
4
101  
4
93  
4
44  
4
36  
4
28  
4
20  
4
(163rd COM period) *1  
Fig 26 Relation between Row address and Common Driver (4)  
NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address  
Ver.2004-05-12  
- 82 -  
NJU6825  
(17-5) SHIFT=0, Initial Display Line “0”, Duty Cycle Ratio “1/162”  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
1
0=”0000”, LA7….LA0=”00000000”(Initial display line 0) DSE=”1”  
SC3  
SC2  
SC1  
SC0  
0000  
0
0001  
0010  
153  
0011  
148  
0100  
145  
0101  
137  
0110  
129  
0111  
121  
1000  
113  
1001  
105  
1010  
97  
1011  
89  
1100  
40  
1101  
32  
1110  
24  
1111  
16  
COM0  
161  
0
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
161  
0
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
:
161  
0
161  
0
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
:
161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
161  
0
COM120  
COM121  
COM122  
:
161  
0
COM128  
COM129  
COM130  
:
161  
0
COM136  
COM137  
COM138  
COM139  
COM140  
COM141  
COM142  
COM143  
COM144  
COM145  
COM146  
COM147  
COM148  
COM149  
COM150  
COM151  
COM152  
COM153  
COM154  
COM155  
COM156  
COM157  
COM158  
COM159  
COM160  
COM161  
161  
0
161  
0
161  
160  
152  
147  
144  
136  
128  
120  
112  
104  
96  
88  
39  
31  
23  
15  
Fig 27 Relation between Row address and Common Driver (5)  
NOTE1) DS: Duty Cycle Ratio / SC: Initial COM / LA: Initial Display Line Address  
Ver.2004-05-12  
- 83 -  
NJU6825  
(18) TYPICAL INSTRUCTION SEQUENCES  
(18-1) Initialization Sequence in Using Internal LCD Power Supply  
Power ON (VDD, VEE) with RESb "L"  
WAIT (NOTE2)  
(NOTE1)  
RESET  
WAIT (NOTE3)  
-------------- Instruction Code --------------  
D7 D6 D5 D4 D3 D2 D1 D0  
--------- Setting (Example) ---------  
Display Setting  
INSTRUCTION TABLE SELECT  
1
1
0
0
1
1
1
1
1
1
1
0
1
0
1
1
1
0
1
0
0
1
1
0
0
1
0
*
0
0
1
0
1
1
0
0
1
0
0
*
0
1
0
0
0
*
- Instruction Table Select (0,0,0)  
- 1/65 Duty  
Duty Cycle Ratio  
N-line Inversion (Lower)  
N-line Inversion (Upper)  
INSTRUCTION TABLE SELECT  
Display Mode Control  
- N=7  
0
1
- Instruction Table Select (1,0,0)  
- Fixed 8-grayscale Mode  
- 256-color Mode ON  
Power Setting  
EVR Control (Upper)  
1
1
1
1
1
1
0
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
0
1
*
1
0
0
*
1
1
0
1
0
0
0
1
0
0
1
1
1
1
0
0
0
0
- M=95  
EVR Control (Lower)  
INSTRUCTION TABLE SELECT  
Boost Level  
- Instruction Table Select (0,0,0)  
- 5-times Booster  
LCD Bias Ratio  
- 1/7 Bias  
Power Control  
WAIT (NOTE4)  
Power Control  
0
- Voltage Booster ON  
1
0
1
1
1
0
1
0
- Voltage Converter ON  
WAIT (NOTE5)  
END  
NOTE1) If different power sources are applied to the VDD and the VEE, turn on the VDD first.  
NOTE2) Wait until the VDD and VEE are stabilized.  
NOTE3) Wait 10 [us] or more.  
NOTE4) Wait until the VOUT is stabilized.  
NOTE5) Wait until the VLCD and V1-V4 are stabilized.  
Ver.2004-05-12  
- 84 -  
NJU6825  
(18-2) Initialization Sequence in Using External LCD Power Supply  
Power ON (VDD) with RESb "L"  
WAIT (NOTE1)  
RESET  
WAIT (NOTE2)  
External LCD Power Supply ON  
WAIT (NOTE3)  
-------------- Instruction Code -------------- --------- Setting (Example) ---------  
D7 D6 D5 D4 D3 D2 D1 D0  
Display Setting  
INSTRUCTION TABLE SELECT  
1
1
0
0
1
1
1
1
1
1
1
0
1
0
1
1
1
0
1
0
0
1
1
0
0
1
0
*
0
0
1
0
1
1
0
0
1
0
0
*
0
1
0
0
0
*
- Instruction Table Select (0,0,0)  
Duty Cycle Ratio  
N-line Inversion (Lower)  
N-line Inversion (Upper)  
INSTRUCTION TABLE SELECT  
- 1/65 Duty  
- N=7  
0
1
- Instruction Table Select (1,0,0)  
Display Mode Control  
END  
- Fixed 8-grayscale Mode  
- 256-color Mode ON  
NOTE1) Wait until the VDD is stabilized.  
NOTE2) Wait 10 [us] or more.  
NOTE3) Wait until the external LCD power supply (VOUT, VLCD, V1-V4) are stabilized.  
Ver.2004-05-12  
- 85 -  
NJU6825  
(18-3) Display Data Write Sequence  
Optional Status  
-------------- Instruction Code -------------- --------- Setting (Example) ---------  
D7 D6 D5 D4 D3 D2 D1 D0  
INSTRUCTION TABLE SELECT  
Initial Display Line (Lower)  
Initial Display Line (Upper)  
Increment Control  
1
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
1
0
0
1
1
1
0
0
1
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0
1
0
1
0
0
*
0
0
0
1
0
0
0
0
1
1
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
- Instruction Table Select (0,0,0)  
-Initial Display Line (00)H  
- Window Area Access ON  
- Read-modify-write ON  
- Column & Row Increment  
1
0
0
0
0
0
0
0
0
0
0
1
Column Address (Lower)  
Column Address (Upper)  
Row Address (Lower)  
-
Window Start Column Address (00)H  
- Window Start Row Address (00)H  
- Instruction Table Select (1,0,1)  
-Window End Column Address (04)H  
Row Address (Upper)  
INSTRUCTION TABLE SELECT  
Window End Column Address (Lower)  
Window End Column Address (Upper)  
Window End Row Address (Lower)  
Window End Row Address (Upper)  
Display Data Write  
- Window End Row Address (04)H  
- Writing Display Data on the DDRAM  
for Checker Flag in B&W Mode (Example)  
00H  
04H  
X →  
:
00H  
Y
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Repeating All “0” and All “1” Alternately  
04H  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
Display Data Write  
INSTRUCTION TABLE SELECT  
- Instruction Table Select (0,0,0)  
- Display ON  
Display Control (1)  
END  
Ver.2004-05-12  
- 86 -  
NJU6825  
(18-4) Partial Display Sequence  
Optional Status  
-------------- Instruction Code -------------- --------- Setting (Example) ---------  
D7 D6 D5 D4 D3 D2 D1 D0  
INSTRUCTION TABLE SELECT  
Display Control (1)  
1
1
1
1
1
0
0
0
1
0
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
- Instruction Table Select (0,0,0)  
- Display OFF  
Power Control  
- Voltage Converter OFF  
- Voltage Booster OFF  
Power Control  
WAIT (NOTE1)  
Display Setting  
Duty Cycle Ratio  
1
0
0
1
0
1
1
1
1
1
0
0
0
1
1
0
0
1
1
0
1
0
*
1
0
0
1
0
0
0
0
0
0
1
0
0
0
0
- 1/33 Duty  
Initial Display Line (Lower)  
Initial Display Line (Upper)  
INSTRUCTION TABLE SELECT  
Initial COM  
- Initial Display Line (00)H  
0
0
- Instruction Table Select (1,0,0)  
- Initial COM: COM0  
Power Setting  
EVR Control (Upper)  
1
1
1
1
1
1
0
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
0
1
*
1
0
*
0
1
0
0
1
0
1
0
0
1
0
1
1
0
0
0
0
0
- M=60  
EVR Control (Lower)  
INSTRUCTION TABLE SELECT  
Boost Level  
- Instruction Table Select (0,0,0)  
- 3-times Booster  
LCD Bias Ratio  
*
- 1/5 Bias  
Power Control  
WAIT (NOTE2)  
Power Control  
WAIT (NOTE3)  
Display Control (1)  
END  
0
- Voltage Booster ON  
1
1
0
0
1
0
1
0
1
0
0
0
1
0
0
1
- Voltage Converter ON  
- Display ON  
NOTE1) Wait until the voltage booster is completely turned off. Make sure what is the wait time in the particular application.  
NOTE2) Wait until the VOUT is stabilized.  
NOTE3) Wait until the VLCD and V1-V4 are stabilized.  
Ver.2004-05-12  
- 87 -  
NJU6825  
(18-5) Power OFF Sequence  
Optional Status  
-------------- Instruction Code -------------- --------- Setting (Example) ---------  
D7 D6 D5 D4 D3 D2 D1 D0  
INSTRUCTION TABLE SELECT  
Display Control (1)  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
0
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
0
0
0
*
0
0
0
0
1
1
*
0
0
1
0
0
0
1
0
0
0
0
0
0
1
- Instruction Table Select (0,0,0)  
- Display OFF  
Power Control  
- Voltage Converter OFF  
- Voltage Booster OFF  
- Power Save ON  
Power Control  
Power Control  
INSTRUCTION TABLE SELECT  
- Instruction Table Select (1,0,0)  
- Discharge ON  
Discharge ON/OFF  
WAIT (NOTE)  
Power OFF (VDD-VSS, VEE-VSSH  
)
END  
NOTE) Wait until the Discharge is completed.  
Ver.2004-05-12  
- 88 -  
NJU6825  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Supply Voltage (1)  
Supply Voltage (2)  
Supply Voltage (3)  
Supply Voltage (4)  
Supply Voltage (5)  
Supply Voltage (6)  
Input Voltage  
SYMBOL  
VDD  
CONDITION  
TERMINAL  
VDD  
RATING  
-0.3 to +4.0  
UNIT  
V
VEE  
VEE  
-0.3 to +4.0  
V
VSS=0V  
VOUT  
VOUT  
-0.3 to +19.0  
-0.3 to +19.0  
-0.3 to +19.0  
-0.3 to VLCD + 0.3  
-0.3 to VDD + 0.3  
-45 to +100  
V
VREG  
VREG  
V
Ta = +25°C  
VLCD  
VLCD  
V
V1, V2, V3, V4  
VI  
V1, V2, V3, V4  
*1  
V
V
Storage Temperature  
Tstg  
TCP  
°C  
NOTE1) D0 to D15, CSb, RS, RDb, WRb, OSC1, RESb, TEST1, and TEST2  
NOTE2) To stabilize the LSI operation, place decoupling capacitors between VDD and VSS and between VEE and VSSH  
.
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
Supply Voltage  
SYMBOL  
VDD1  
TERMINAL  
VDD  
MIN  
1.7  
2.4  
2.4  
5
TYP  
MAX  
3.3  
UNIT NOTE  
V
V
1
2
3
4
VDD2  
3.3  
VEE  
VEE  
VLCD  
VOUT  
VREG  
VREF  
3.3  
V
VLCD  
18.0  
18.0  
OUT × 0.9  
3.3  
V
VOUT  
VREG  
VREF  
V
Operating Voltage  
V
V
2.1  
-30  
V
5
Operating Temperature  
Topr  
85  
°C  
NOTE1) Applied to the condition when the reference voltage generator is not used.  
NOTE2) Applied to the condition when the reference voltage generator is used.  
NOTE3) Applied to the condition when the voltage booster is used.  
NOTE4) The following relation among the LCD bias voltages must be maintained.  
VSSH<V4<V3<V2<V1<VLCD<VOUT  
NOTE5) Relation: VREF<VEE must be maintained.  
Ver.2004-05-12  
- 89 -  
NJU6825  
DC CHARACTERISTICS  
VSS = 0V, VDD = +1.7 to +3.3V, Ta = -30 to +85°C  
SYM  
PARAMETER  
BOL  
CONDITION  
MIN  
TYP  
MAX  
UNIT NOTE  
VIH  
VIL  
VOH1  
VOL1  
VOH2  
VOL2  
ILI  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
High level output voltage  
Low level output voltage  
Input leakage current  
0.8 VDD  
0
VDD  
V
V
*1  
*1  
*2  
*2  
*3  
*3  
*4  
*5  
0.2VDD  
IOH = -0.4mA  
VDD - 0.4  
V
IOL = 0.4mA  
0.4  
V
IOH = -0.1mA  
IOL = 0.1mA  
VI = VSS or VDD  
VI = VSS or VDD  
VDD - 0.4  
V
0.4  
10  
10  
2
4
15  
948  
214  
31  
V
-10  
-10  
µA  
µA  
ILO  
Output leakage current  
VLCD = 10V  
VLCD = 6V  
VDD = 3V  
1
2
RON1  
Driver ON-resistance  
*6  
|VON| = 0.5V  
kΩ  
µA  
ISTB  
*7  
CSb=VDD, Ta=25°C  
Stand-by current  
fOSC1  
fOSC2  
fOSC3  
fr1  
fr2  
fr3  
659  
149  
21  
804  
181  
25.9  
750  
185  
27.2  
*8  
*9  
*10  
VDD = 3V  
Ta = 25°C  
Internal oscillation  
Frequency  
kHz  
Rf=10kΩ  
Rf=51kΩ  
Rf=390kΩ  
External oscillation  
Frequency  
kHz  
V
*11  
*12  
N-time booster (N=2 to 7)  
Voltage converter  
output voltage  
(N x VEE  
)
VOUT  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
IDD8  
VBA  
x 0.95  
RL = 500k(VOUT - VSS  
)
VDD = 2.5V, 7-time booster  
Whole ON pattern  
Supply current (1)  
Supply current (2)  
Supply current (3)  
Supply current (4)  
Supply current (5)  
Supply current (6)  
Supply current (7)  
Supply current (8)  
VBA Operating voltage  
870  
1060  
760  
1300  
1590  
1140  
1400  
780  
VDD = 2.5V, 7-time booster  
Checker pattern  
VDD = 3V, 6-time booster  
Whole ON pattern  
VDD = 3V, 6-time booster  
Checker pattern  
930  
*13  
µA  
VDD = 3V, 5-time booster  
Whole ON pattern  
520  
VDD = 3V, 5-time booster  
Checker pattern  
650  
980  
VDD = 3V, 4-time booster  
Whole ON pattern  
360  
540  
VDD = 3V, 4-time booster  
Checker pattern  
450  
680  
(0.9 VEE  
)
(0.9 VEE  
)
VEE = 2.4 to 3.3V  
0.9 VEE  
V
V
*14  
*15  
x 0.98  
x 1.02  
VEE = 2.4 to 3.3V  
(VREF x N)  
x 0.97  
(VREF x N)  
x 1.03  
VREG  
(VREF x N)  
VREG Operating voltage  
VREF = 0.9 x VEE  
N-time booster (N=2 to 7)  
V2  
V3  
VD12  
VD34  
VD24  
-100  
-100  
-30  
-30  
-30  
0
0
0
0
0
+100  
+100  
+30  
+30  
+30  
Output Voltage  
mV  
*16  
Ver.2004-05-12  
- 90 -  
NJU6825  
OSCILLATION FREQUENCY AND FRAME FREQUENCY  
Display duty cycle ratio (1/D) <DSE=0>  
1/163 to 1/97 1/81 to 1/57 1/49 to 1/33  
PARAMETER SYMBOL  
NOTE  
Display mode  
1/25 to 1/17  
Variable 8-/16-level  
Grayscale Mode  
fOSC / (62xD) fOSC / (62xDx2) fOSC / (62xDx4) fOSC / (62xDx8)  
Internal clock  
External clock  
fOSC  
Fixed 8-level Grayscale Mode fOSC / (14xD) fOSC / (14xDx2) fOSC / (14xDx4) fOSC / (14xDx8)  
B&W Mode  
fOSC / (2xD)  
fCK / (62xD)  
fCK / (14xD)  
fCK / (2xD)  
fOSC / (2xDx2)  
fCK / (62xDx2)  
fCK / (14xDx2)  
fCK / (2xDx2)  
fOSC / (2xDx4) fOSC / (2xDx8)  
fCK / (62xDx4) fCK / (62xDx8)  
fCK / (14xDx4) fCK / (14xDx8)  
FLM  
Variable 8-/16-level  
Grayscale Mode  
fCK  
Fixed 8-level Grayscale Mode  
B&W Mode  
fCK / (2xDx4)  
fCK / (2xDx8)  
Ver.2004-05-12  
- 91 -  
NJU6825  
NOTE1) D0-D15, CSb, RS, RDb, WRb, P/S, SEL68 and RESb  
NOTE2) D0-D15  
NOTE3) CL, FLM, FR and CLK  
NOTE4) CSb, RS, SEL68, RDb, WRb, P/S, RESb and OSC1  
NOTE5) D0-D15 in high impedance  
NOTE6) SEGA0-SEGA127, SEGB0-SEGB127, SEGC0-SEGC127 and COM0-COM161  
This parameter defines the resistance between each COM/SEG and each LCD bias (VLCD, V1, V2, V3 and V4).  
- 0.5V Difference / 1/9 LCD Bias  
NOTE7) VDD  
Oscillator is halted.  
- CSb=1 (Disabled) / No-load on COM/SEG  
NOTE8) CLK  
This parameter defines the oscillation frequency by using the internal resistor, in the Variable grayscale mode.  
- (Rf2, Rf1, Rf0)=(0,0,0)  
NOTE9) CLK  
This parameter defines the oscillation frequency by using the internal resistor, in the 8-level fixed grayscale mode.  
- (Rf2, Rf1, Rf0)=(0,0,0)  
NOTE10) CLK  
This parameter defines the oscillation frequency by using the internal resistor, in the B&W mode.  
- (Rf2, Rf1, Rf0)=(0,0,0)  
NOTE11) OSC2  
- VDD=3V / Ta=25°C  
NOTE12) VOUT  
This parameter is applied to the condition that the internal LCD power supply and the internal oscillator are used.  
- VEE=2.4V to 3.3V / EVR= (1,1,1,1,1,1,1) / 1/5 to 1/12 LCD Bias / 1/163 Duty Cycle / No-load on COM/SEG /  
RL=500kbetween VOUT and VSSH / CA1=CA2=1.0uF / CA3=0.1uF / DCON=”1” / AMPON=”1”  
NOTE13) VSS  
This parameter is applied to the condition that the internal LCD power supply and the internal oscillator are used.  
- EVR= (1,1,1,1,1,1,1) / All Pixels ON or Checker Flag Display / No-load on COM/SEG / No-access from MPU /  
VDD=VEE / VREF=0.9VEE / CA1=CA2=1.0uF / CA3=0.1uF / DCON=”1” / AMPON=”1” / NLIN=”0” / 1/163 Duty cycle /  
Ta=25°C  
NOTE14) VBA  
- VBA=VREF / Boost Level (N)=”1”,/ DCON=”0” / VOUT=13.5V  
NOTE15) VREG  
- VEE=2.4V to 3.3V / VREF=0.9VEE / VOUT=18V / 1/5 to 1/12 LCD bias ratio / 1/163 duty cycle / EVR=(1,1,1,1,1,1,1)  
/ Checker flag display / No-load on COM/SEG / Boost Level (N)=”2” to “7” / CA1=CA2=1.0uF / CA3=0.1uF /  
DCON=”0” / AMPON=”1” / NLIN=”0”  
NOTE16) VLCD, V1, V2, V3 and V4  
- VEE=3.0V / VREF=0.9VEE / VOUT=15V/ 1/5 to 1/12 LCD Bias / EVR= (1,1,1,1,1,1,1) / Display OFF / No-load on  
COM/SEG / Boost Level (N)=”5” / CA1=CA2=1.0uF / CA3=0.1uF / DCON=”0” / AMPON=”1”  
VLCD  
V1  
VD12: (1)-(2)  
VD34: (3)-(4)  
VD24: (2)-(4)  
(1)  
(2)  
V2  
V3  
(3)  
(4)  
V4  
VSSH  
Ver.2004-05-12  
- 92 -  
NJU6825  
AC CHARACTERISTICS  
(1) Write Operation (Parallel Interface / 80-series MPU)  
tAS8  
tAH8  
CSb  
RS  
WRb  
tWRLW8  
tWRHW8  
tDS8  
tDH8  
D0 to D15  
tCYC8  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
CONDITION  
CONDITION  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
MAX.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLW8  
tWRHW8  
140  
60  
60  
ns  
ns  
ns  
WRb  
Data setup time  
Data hold time  
tDS8  
tDH8  
30  
10  
ns  
ns  
D0 to D15  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
MIN.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLW8  
tWRHW8  
160  
70  
70  
ns  
ns  
ns  
WRb  
Data setup time  
Data hold time  
tDS8  
tDH8  
40  
10  
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
MIN.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLW8  
tWRHW8  
240  
110  
110  
ns  
ns  
ns  
WRb  
Data setup time  
Data hold time  
tDS8  
tDH8  
70  
15  
ns  
ns  
D0 to D15  
NOTE) Each timing is specified based on 20% and 80% of VDD  
.
Ver.2004-05-12  
- 93 -  
NJU6825  
(2) Read Operation (Parallel Interface / 80-series MPU)  
tAH8  
tAS8  
CSb  
RS  
tWRLR8  
RDb  
tWRHR8  
tRDH8  
D0 to D15  
tRDD8  
tCYC8  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
80  
ns  
ns  
ns  
RDb  
Read Data delay time  
Read Data hold time  
tRDD8  
tRDH8  
60  
ns  
ns  
CL=15pF  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
80  
ns  
ns  
ns  
RDb  
Read Data delay time  
Read Data hold time  
tRDD8  
tRDH8  
60  
ns  
ns  
CL=15pF  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLR8  
tWRHR8  
250  
120  
120  
ns  
ns  
ns  
RDb  
Read Data delay time  
Read Data hold time  
tRDD8  
tRDH8  
110  
ns  
ns  
CL=15pF  
D0 to D15  
0
NOTE) Each timing is specified based on 20% and 80% of VDD  
.
Ver.2004-05-12  
- 94 -  
NJU6825  
(3) Write Operation (Parallel Interface / 68-series MPU)  
tAS6  
tAH6  
CSb  
RS  
R/W  
(WRb)  
tELW6  
t
EHW6  
E
(RDb)  
tDS6  
tDH6  
D0 to D15  
tCYC6  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELW6  
tEHW6  
140  
60  
60  
ns  
ns  
ns  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
40  
10  
ns  
ns  
D0 to D15  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELW6  
tEHW6  
160  
70  
70  
ns  
ns  
ns  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
50  
10  
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
CONDITION  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELW6  
tEHW6  
240  
110  
110  
ns  
ns  
ns  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
70  
15  
ns  
ns  
D0 to D15  
NOTE) Each timing is specified based on 20% and 80% of VDD  
.
Ver.2004-05-12  
- 95 -  
NJU6825  
(4) Read Operation (Parallel Interface / 68-series MPU)  
tAS6  
tAH6  
CSb  
RS  
R/W  
(WRb)  
tELR6  
tEHR6  
E
(RDb)  
tRDH6  
D0 to D15  
tRDD6  
tCYC6  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
Address setup time  
System cycle time  
tCYC6  
tELR6  
tEHR6  
180  
80  
ns  
ns  
ns  
E
Enable ”L” level pulse width  
Enable ”H” level pulse width  
80  
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
70  
CL=15pF  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
System cycle time  
tCYC6  
tELR6  
tEHR6  
180  
80  
ns  
ns  
ns  
E
Enable ”L” level pulse width  
Enable ”H” level pulse width  
80  
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
70  
CL=15pF  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CSb  
RS  
250  
120  
120  
System cycle time  
tCYC6  
tELR6  
tEHR6  
ns  
ns  
ns  
E
Enable ”L” level pulse width  
Enable ”H” level pulse width  
110  
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
CL=15pF  
D0 to D15  
0
NOTE) Each timing is specified based on 20% and 80% of VDD  
.
Ver.2004-05-12  
- 96 -  
NJU6825  
(5) Write Operation (Serial Interface)  
tCSH  
tCSS  
CSb  
RS  
tASS  
tAHS  
tSLW  
tSHW  
SCL  
tCYCS  
tDSS  
tDHS  
SDA  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
50  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
20  
ns  
CSb  
tCSH  
20  
ns  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
50  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
20  
ns  
CSb  
tCSH  
20  
ns  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
80  
35  
35  
35  
35  
35  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
35  
ns  
CSb  
tCSH  
35  
ns  
NOTE) Each timing is specified based on 20% and 80% of VDD  
.
Ver.2004-05-12  
- 97 -  
NJU6825  
(6) Display Control Timing  
CLK  
tDCL  
CL  
tDFLM  
tDFLM  
FLM  
tFR  
FR  
Output timing  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
FLM delay time  
FR delay time  
CL delay time  
tDFLM  
0
0
0
500  
500  
200  
ns  
ns  
ns  
FLM  
FR  
CL  
CL=15pF  
tFR  
tDCL  
Output timing  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
FLM delay time  
FR delay time  
CL delay time  
tDFLM  
0
0
0
1000  
1000  
200  
ns  
ns  
ns  
FLM  
FR  
CL  
CL=15pF  
tFR  
tDCL  
NOTE) Each timing is specified based on 20% and 80% of VDD  
.
Ver.2004-05-12  
- 98 -  
NJU6825  
(7) Input Clock Timing  
OSC1  
tCKLW  
tCKHW  
(VDD=1.7 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
OSC1 “H” level pulse width (1)  
OSC1 “L” level pulse width (1)  
OSC1 “H” level pulse width (2)  
OSC1 “L” level pulse width (2)  
OSC1 “H” level pulse width (3)  
OSC1 “L” level pulse width (3)  
tCKHW1  
tCKLW1  
tCKHW2  
tCKLW2  
tCKHW3  
tCKLW3  
0.555  
0.555  
2.46  
2.46  
16.9  
16.9  
0.800  
0.800  
3.54  
3.54  
24.4  
24.4  
OSC1  
µs  
µs  
µs  
µs  
µs  
µs  
(NOTE2)  
OSC1  
(NOTE3)  
OSC1  
(NOTE4)  
NOTE1) Each timing is specified based on 20% and 80% of VDD  
.
NOTE2) Applied to Variable 8-/16-level grayscale mode (MON=”0”,PWM=”0”)  
NOTE3) Applied to fixed 8-level grayscale mode (MON=”0”,PWM=”1”)  
NOTE4) Applied to B&W mode (MON=”1”)  
(8) Reset Input Timing  
tRW  
RESb  
tR  
Internal circuit  
During reset  
End of reset  
status  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
CONDITION  
MIN.  
MAX.  
UNIT  
Terminal  
Reset time  
tR  
1.0  
µs  
µs  
RESb “L” level pulse width  
tRW  
10.0  
RESb  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
Terminal  
Reset time  
tR  
1.5  
µs  
µs  
RESb “L” level pulse width  
tRW  
10.0  
RESb  
NOTE) Each timing is specified based on 20% and 80% of VDD  
.
(9) Delay Time of Gate  
PARAMETER  
Delay time of gate  
SYMBOL  
Ta=+25°C, VSS=0V, VDD=3.0V  
MIN  
TYP  
10  
MAX  
UNIT  
ns  
Ver.2004-05-12  
- 99 -  
NJU6825  
INPUT/OUTPUT BLOCK DIAGRAMS  
Output Block Diagram  
Terminals : FLM, CL, FR, CLK  
VDD  
Input Block Diagram  
Terminals CSb, RS, RDb, WRb, SEL68, P/S, RESb  
VDD  
Output control signal  
Output signal  
Input signal  
O
I
VSS(0V)  
VSS(0V  
Input/Output Block Diagram  
Terminals : D0 - D15  
VDD  
Input signal  
I/O  
VSS(0V)  
VSS(0V)  
Input control signal  
VDD  
Output control signal  
Output signal  
VSS(0V)  
COM/SEG Driver Block Diagram  
Terminals : SEGA0/B0/C0 – SEGA127/B127/C127, COM0 – COM161  
VLCD  
VLCD  
VLCD  
V1/V2  
Output control  
signal 1  
Output control signal 2  
Output control signal 4  
O
Output control  
signal 3  
VSSH(0V)  
VSSH(0V)  
VSSH(0V)  
V3/V4  
Ver.2004-05-12  
- 100 -  
NJU6825  
MPU CONNECTIONS  
Parallel Interface / 80-series MPU  
1.7V - 3.3V  
(NJU6825)  
VCC  
VDD  
A0  
RS  
A1-A7  
Decoder  
8
7
(80-MPU)  
CSb  
D0 -D7  
IORQb  
D0 -D7  
RDb  
RDb  
WRb  
WRb  
RESb  
RESb  
GND  
VSS  
RESET  
Parallel Interface / 68-series MPU  
1.7V - 3.3V  
(NJU6825)  
VCC  
VDD  
A0  
RS  
A1-A15  
15  
Decoder  
8
CSb  
(68-MPU)  
VMA  
D0 -D7  
D0 -D7  
E
RDb(E)  
R/W  
WRb (R/W)  
RESb  
RESb  
VSS  
GND  
RESET  
Serial Interface  
1.7V - 3.3V  
(NJU6825)  
VCC  
VDD  
RS  
A0  
A1-A7  
Decoder  
RESET  
7
CSb  
(MPU)  
PORT1  
PORT2  
RESb  
SDA  
SCL  
RESb  
VSS  
GND  
Ver.2004-05-12  
- 101 -  
NJU6825  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
Ver.2004-05-12  
- 102 -  

相关型号:

NJU6854

132COMMON x 132RGB LCD DRIVER FOR 65,536 - COLOR STN DISPLAY
NJRC

NJU6854CJ

暂无描述
NJRC

NJU7001

LOW VOLTAGE C-MOS OPERATIONAL AMPLIFIER
NJRC

NJU7001/02/04

Low Voltage C-MOS Operational Amplifier
NJRC

NJU7001D

LOW VOLTAGE C-MOS OPERATIONAL AMPLIFIER
NJRC

NJU7001M

LOW VOLTAGE C-MOS OPERATIONAL AMPLIFIER
NJRC

NJU7001M(T2)

Operational Amplifier, 1 Func, 10000uV Offset-Max, CMOS, PDSO8, DMP-8
NJRC

NJU7001M(TE2)

Operational Amplifier, 1 Func, 10000uV Offset-Max, CMOS, PDSO8, DMP-8
NJRC

NJU7001M(TE3)

Operational Amplifier, 1 Func, 10000uV Offset-Max, CMOS, PDSO8, DMP-8
NJRC

NJU7001M(TE4)

Operational Amplifier, 1 Func, 10000uV Offset-Max, CMOS, PDSO8, DMP-8
NJRC

NJU7001M-(T1)

OP-AMP, 10000uV OFFSET-MAX, 0.1MHz BAND WIDTH, PDSO8, 0.250 INCH, PLASTIC, DMP-8
NJRC

NJU7001M-(TE2)

OP-AMP, 10000uV OFFSET-MAX, 0.1MHz BAND WIDTH, PDSO8, 0.250 INCH, PLASTIC, DMP-8
NJRC