74F402 [NSC]

Serial Data Polynomial Generator/Checker; 串行数据多项式发生器/校验器
74F402
型号: 74F402
厂家: National Semiconductor    National Semiconductor
描述:

Serial Data Polynomial Generator/Checker
串行数据多项式发生器/校验器

文件: 总12页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 1995  
54F/74F402 Serial Data Polynomial  
Generator/Checker  
General Description  
Features  
Y
Y
Y
Y
Y
Y
Y
Y
Guaranteed 30 MHz data rate  
Six selectable polynomials  
Other polynomials available  
Separate preset and clear controls  
Expandable  
The ’F402 expandable Serial Data Polynomial generator/  
checker is an expandable version of the ’F401. It provides  
an advanced tool for the implementation of the most widely  
used error detection scheme in serial digital handling sys-  
tems. A 4-bit control input selects one-of-six generator poly-  
nomials. The list of polynomials includes CRC-16, CRC-  
Automatic right justification  
Error output open collector  
Typical applications:  
CCITT and Ethernet , as well as three other standard poly-  
É
th  
th  
nd  
nomials (56 order, 48 order, 32 order). Individual clear  
and preset inputs are provided for floppy disk and other  
applications. The Error output indicates whether or not a  
transmission error has occurred. The CWG Control input  
inhibits feedback during check word transmission. The  
Floppy and other disk storage systems  
Digital cassette and cartridge systems  
Data communication systems  
’F402 is compatible with FAST devices and with all TTL  
families.  
É
Package  
Number  
Commercial  
Military  
Package Description  
74F402PC  
N16E  
J16A  
W16A  
E20A  
16-Lead (0.300 Wide) Molded Dual-In-Line  
×
54F402DM (Note 1)  
54F402FM (Note 1)  
54F402LM (Note 1)  
16-Lead Ceramic Dual-In-Line  
16-Lead Cerpack  
20-Lead Ceramic Leadless Chip Carrier, Type C  
DMQB, FMQB and LMQB.  
e
Note 1: Military grade device with environmental and burn-in processing. Use suffix  
Logic Symbol  
Connection Diagrams  
Pin Assignment  
for DIP, SOIC and Flatpak  
Pin Assignment  
for LCC  
TL/F/9535–1  
TL/F/9535–2  
TL/F/9535–4  
TRI-STATEÉ is a registered trademark of National Semiconductor Corporation.  
EthernetÉ is a registered trademark of Xerox Corporation.  
C
1995 National Semiconductor Corporation  
TL/F/9535  
RRD-B30M105/Printed in U. S. A.  
Unit Loading/Fan Out  
54F/74F  
Pin Names  
Description  
U.L.  
Input I /I  
IH IL  
HIGH/LOW  
Output I /I  
OH OL  
b
20 mA/ 0.4 mA  
b
20 mA/ 0.4 mA  
S S  
0
Polynomial Select Inputs  
Check Word Generate Input  
Serial Data/Check Word  
Data Input  
1.0/0.67  
1.0/0.67  
3
CWG  
b
b
b
5.7 mA( 2 mA)/8 mA (4 mA)  
D/CW  
D
285(100)/13.3(6.7)  
1.0/0.67  
b
20 mA/ 0.4 mA  
ER  
RO  
CP  
Error Output  
*/26.7(13.3)  
285(100)/13.3(6.7)  
1.0/0.67  
*/16 mA (8 mA)  
b
Register Output  
Clock Pulse  
5.7 mA( 2 mA)/8 mA (4 mA)  
b
20 mA/ 0.4 mA  
b
20 mA/ 0.4 mA  
b
20 mA/ 0.4 mA  
b
20 mA/ 0.4 mA  
b
20 mA/ 0.4 mA  
SEI  
RFB  
MR  
P
Serial Expansion Input  
Register Feedback  
Master Reset  
1.0/0.67  
1.0/0.67  
1.0/0.67  
Preset  
1.0/0.67  
*Open Collector  
Functional Description  
The ’F402 Serial Data Polynomial Generator/Checker is an  
expandable 16-bit programmable device which operates on  
serial data streams and provides a means of detecting  
transmission errors. Cyclic encoding and decoding schemes  
for error detection are based on polynomial manipulation in  
modulo arithmetic. For encoding, the data stream (message  
polynomial) is divided by a selected polynomial. This divi-  
sion results in a remainder (or residue) which is appended to  
the message as check bits. For error checking, the bit  
stream containing both data and check bits is divided by the  
same selected polynomial. If there are no detectable errors,  
this division results in a zero remainder. Although it is possi-  
ble to choose many generating polynomials of a given de-  
gree, standards exist that specify a small number of useful  
polynomials. The ’F402 implements the polynomials listed in  
Table I by applying the appropriate logic levels to the select  
XOR gates. The Check Word Generate (CWG) must be held  
HIGH while the data is being entered. After the last data bit  
is entered, the CWG is brought LOW and the check bits are  
shifted out of the register(s) and appended to the data bits  
(no external gating is needed).  
To check an incoming message for errors, both the data  
and check bits are entered through the D Input with the  
CWG Input held HIGH. The Error Output becomes valid af-  
ter the last check bit has been entered into the ’F402 by a  
LOW-to-HIGH transition of CP, with the exception of the  
Ethernet polynomial (see Applications paragraph). If no de-  
tectable errors have occurred during the data transmission,  
the resultant internal register bits are all LOW and the Error  
Output (ER) is HIGH. If a detectable error has occurred, ER  
is LOW. ER remains valid until the next LOW-to-HIGH tran-  
sition of CP or until the device has been preset or reset.  
pins S , S , S and S .  
2
0
1
3
A HIGH on the Master Reset Input (MR) asynchronously  
clears the entire register. A LOW on the Preset Input (P)  
asynchronously sets the entire register with the exception  
of:  
The ’F402 consists of a 16-bit register, a Read Only Memory  
(ROM) and associated control circuitry as shown in the  
Block Diagram. The polynomial control code presented at  
inputs S , S , S and S is decoded by the ROM, selecting  
2
0
1
3
1 The Ethernet residue selection, in which the registers  
containing the non-zero residue are cleared;  
the desired polynomial or part of a polynomial by establish-  
ing shift mode operation on the register with Exclusive OR  
(XOR) gates at appropriate inputs. To generate the check  
bits, the data stream is entered via the Data Inputs (D), us-  
ing the LOW-to-HIGH transition of the Clock Input (CP). This  
data is gated with the most significant Register Output (RO)  
via the Register Feedback Input (RFB), and controls the  
2 The 56th order polynomial, in which the 8 least significant  
register bits of the least significant device are cleared;  
and,  
e
3 Register S 0, in which all bits are cleared.  
2
TABLE I  
Select Code  
Hex  
Polynomial  
Remarks  
S
3
S
S
S
0
2
1
e
0
0
L
L
L
L
0
S
32  
X
12  
X
26  
23  
10  
22  
8
16  
a
a
a
a
a
a
a
a
C
D
H
H
H
H
L
L
L
X
X
X
X
X
X
X
7
Ethernet  
11  
5
X
4
X
2
X
a
a
a
a
a
a
H
X
X
1
Polynomial  
32  
X
15  
X
31  
X
13  
X
27  
12  
26  
11  
25  
9
19  
16  
X
a
a
a
a
a
a
a
a
a
a
a
E
F
H
H
H
H
H
H
L
X
X
X
X
X
X
X
Ethernet  
Residue  
7
6
5
4
X
2
X
a
a
a
a
a
a a  
X 1  
H
X
X
X
16  
15  
2
5
a
a
a
a
a
7
L
H
L
H
H
H
H
X
X
X
X
X
X
1
1
CRC-16  
16  
12  
a
B
H
CRC-CCITT  
56  
39  
22  
5
55  
38  
19  
49  
37  
17  
45  
36  
16  
41  
X
31  
X
15  
X
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
3
2
4
8
L
L
L
L
H
H
L
H
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
56th  
14  
X
12  
X
11  
X
9
X
a
a
a
a
L
H
L
Order  
a
a
1
H
L
X
a
48  
23  
15  
36  
21  
13  
35  
8
a
a
a
a
a
a
5
9
1
L
H
L
H
L
L
L
L
L
H
H
H
X
X
X
X
X
X
X
48th  
Order  
2
a
a
X
X
X
1
32  
X
11  
X
23  
X
2
X
21  
a
a
a
a
6
L
H
L
H
H
L
L
32nd  
a
A
H
1
Order  
Block Diagram  
TL/F/9535–5  
3
TABLE II  
Select Code  
P
3
P
P
1
P
0
C
C
1
C
0
Polynomial  
2
2
e
0
0
0
0
0
0
1
0
0
S
C
D
1
1
1
1
1
1
1
1
1
1
0
0
1
1
Ethernet  
Polynomial  
E
F
0
0
0
0
0
0
0
0
0
0
0
1
0
0
Ethernet  
Residue  
7
1
1
1
1
1
1
1
1
1
1
0
0
0
0
CRC-16  
B
CRC-CCITT  
3
2
4
8
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
56th  
Order  
5
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
48th  
Order  
6
1
1
1
1
1
1
1
1
1
1
0
0
0
0
32nd  
A
Order  
Applications  
In addition to polynomial selection there are four other ca-  
pabilities provided for in the ’F402 ROM. The first is set or  
clear selectability. The sixteen internal registers have the  
capability to be either set or cleared when P is brought  
LOW. This set or clear capability is done in four groups of 4  
The ’F402 expandable CRC generator checker contains 6  
th nd  
popular CRC polynomials, 2-16 Order, 2-32 Order, 1-  
th  
th  
48 Order and 1-56 Order. The application diagram  
th  
shows the ’F402 connected for a 56 Order polynomial.  
Also shown are the input patterns for other polynomials.  
When the ’F402 is used with a gated clock, disabling the  
clock in a HIGH state will ensure no erroneous clocking  
occurs when the clock is re-enabled. Preset and Master Re-  
set are asynchronous inputs presetting the register to S or  
(see Table II, P P ). The second ROM capability (C ) is in  
0
0
3
determining the polarity of the check word. As is the case  
with the Ethernet polynomial the check word can be invert-  
ed when it is appended to the data stream or as is the case  
with the other polynomials, the residue is appended with no  
th  
clearing to 1s respectively (note Ethernet residue and 56  
Order select code 8, LSB, are exceptions to this).  
inversion. Thirdly, the ROM contains a bit (C ) which is used  
1
to select the RFB input instead of the SEI input to be fed  
into the LSB. This is used when the polynomial selected is  
actually a residue (least significant) stored in the ROM  
which indicates whether the selected location is a polynomi-  
al or a residue. If the latter, then it inhibits the RFB input.  
To generate a CRC, the pattern for the selected polynomial  
is applied to the S inputs, the register is preset or cleared as  
required, clock is enabled, CWG is set HIGH, data is applied  
to D input, output data is on D/CW. When the last data bit  
has been entered, CWG is set LOW and the register is  
clocked for n bits (where n is the order of the polynomial).  
The clock may now be stopped if desired (holding CWG  
LOW and clocking the register will output zeros from D/CW  
after the residue has been shifted out).  
As mentioned previously, upon a successful data transmis-  
sion, the CRC register has a zero residue. There is an ex-  
ception to this, however, with respect to the Ethernet poly-  
nomial. This polynomial, upon a successful data transmis-  
sion, has a non-zero residue in the CRC register (C7 04 DD  
To check a CRC, the pattern for the selected polynomial is  
applied to the S inputs, the register is preset or cleared as  
required, clock is enabled, CWG is set HIGH, the data  
stream including the CRC is applied to D input. When the  
last bit of the CRC has been entered, the ER output is  
7B) . In order to provide a no-error indication, two ROM  
16  
locations have been preloaded with the residue so that by  
selecting these locations and clocking the device one addi-  
tional time, after the last check bit has been entered, will  
result in zeroing the CRC register. In this manner a no-error  
indication is achieved.  
e
e
checked: HIGH error free data, LOW corrupt data. The  
clock may now be stopped if desired.  
th  
With the present mix of polynomials, the largest is 56 or-  
th  
der requiring four devices while the smallest is 16 order  
requiring just one device. In order to accommodate multi-  
th  
To implement polynomials of lower order than 56 , select  
the number of packages required for the order of polynomial  
and apply the pattern for the selected polynomial to the S  
inputs (0000 on S inputs disables the package from the  
feedback chain).  
th  
plexing between high order polynomials (X 16 order) and  
lower order polynomials, a location of all zeros is provided.  
This allows the user to choose a lower order polynomial  
even if the system is configured for a higher order one.  
4
Applications (Continued)  
TL/F/9535–6  
5
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales  
Office/Distributors for availability and specifications.  
Recommended Operating  
Conditions  
Free Air Ambient Temperature  
Military  
Commercial  
b
a
55 C to 125 C  
§
0 C to 70 C  
§
§
b
b
a
65 C to 150 C  
Storage Temperature  
§
§
§
§
§
a
§
a
55 C to 125 C  
Ambient Temperature under Bias  
§
Supply Voltage  
Military  
Commercial  
b
b
a
a a  
4.5V to 5.5V  
a a  
4.5V to 5.5V  
Junction Temperature under Bias  
Plastic  
55 C to 175 C  
§
§
a
55 C to 150 C  
V
Pin Potential to  
CC  
Ground Pin  
b
a
0.5V to 7.0V  
b
a
0.5V to 7.0V  
Input Voltage (Note 2)  
Input Current (Note 2)  
Voltage Applied to Output  
b
a
30 mA to 5.0 mA  
e
in HIGH State (with V  
Standard Output  
0V)  
CC  
b
0.5V to 5.5V  
0.5V to V  
CC  
b
a
TRI-STATE Output  
É
Current Applied to Output  
in LOW State (Max)  
twice the rated I (mA)  
OL  
Note 1: Absolute maximum ratings are values beyond which the device may  
be damaged or have its useful life impaired. Functional operation under  
these conditions is not implied.  
Note 2: Either voltage limit or current limit is sufficient to protect inputs.  
DC Electrical Characteristics  
54F/74F  
Symbol  
Parameter  
Units  
V
CC  
Conditions  
Min  
Typ  
Max  
V
V
V
V
Input HIGH Voltage  
2.0  
V
V
V
Recognized as a HIGH Signal  
Recognized as a LOW Signal  
IH  
Input LOW Voltage  
0.8  
IL  
b
e b  
18 mA  
Input Clamp Diode Voltage  
1.2  
Min  
Min  
I
IN  
CD  
OH  
e b  
e b  
e b  
Output HIGH  
Voltage  
54F 10% V  
2.4  
2.4  
2.7  
I
I
I
2 mA (RO, D/CW)  
5.7 mA (RO, D/CW)  
5.7 mA (RO, D/CW)  
CC  
OH  
OH  
OH  
74F 10% V  
74F 5% V  
V
V
CC  
CC  
e
e
e
e
V
OL  
Output LOW  
Voltage  
54F 10% V  
54F 10% V  
74F 10% V  
74F 10% V  
0.4  
I
I
I
I
4 mA (D/CW, RO)  
8 mA (ER)  
CC  
CC  
CC  
CC  
OL  
OL  
OL  
OL  
0.4  
0.5  
0.5  
Min  
16 mA (ER)  
8 mA (D/CW, RO)  
e
I
I
I
Input HIGH Current  
54F  
74F  
20.0  
5.0  
V
V
V
2.7V  
7.0V  
IH  
IN  
mA  
mA  
mA  
V
Max  
Max  
Max  
0.0  
e
Input HIGH Current  
Breakdown Test  
54F  
74F  
100  
7.0  
BVI  
IN  
e
V
CC  
Output HIGH  
54F  
74F  
250  
50  
CEX  
OUT  
Leakage Current  
e
All Other Pins Grounded  
V
Input Leakage  
Test  
I
ID  
1.9 mA  
ID  
74F  
74F  
4.75  
e
IOD  
I
Output Leakage  
Circuit Current  
V
150 mV  
OD  
3.75  
mA  
0.0  
All Other Pins Grounded  
b
e
0.5V  
I
I
I
Input LOW Current  
0.4  
mA  
mA  
Max  
Max  
V
V
V
IL  
IN  
b
b
e
0V (D/CW, RO)  
Output Short-Circuit Current  
20  
130  
OS  
OHC  
OUT  
OUT  
e
Open Collector, Output  
OFF Leakage Test  
V
CC  
(ER)  
250  
165  
mA  
Min  
I
Power Supply Current  
110  
mA  
Max  
CC  
6
AC Electrical Characteristics  
74F  
54F  
74F  
e a  
T
25 C  
§
5.0V  
A
e
50 pF  
e
T
, V  
CC  
e
Mil  
T
, V  
Com  
e
50 pF  
A
A CC  
e a  
Symbol  
Parameter  
V
Units  
CC  
C
C
L
L
e
C
50 pF  
L
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
f
Maximum Clock Frequency  
30  
45  
30  
30  
MHz  
ns  
max  
t
t
Propagation Delay  
CP to D/CW  
8.5  
15.0  
18.0  
19.0  
23.0  
7.5  
9.5  
26.5  
26.5  
7.5  
9.5  
21.0  
25.0  
PLH  
PHL  
10.5  
t
t
Propagation Delay  
CP to RO  
8.0  
8.0  
13.5  
14.0  
17.0  
18.0  
7.0  
7.0  
26.0  
22.5  
7.0  
7.0  
19.0  
20.0  
PLH  
PHL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
Propagation Delay  
CP to ER  
15.5  
8.5  
26.0  
14.5  
33.0  
18.5  
14.0  
7.5  
38.5  
23.5  
14.0  
7.5  
35.0  
20.5  
PLH  
PHL  
t
t
Propagation Delay  
P to D/CW  
11.0  
11.5  
18.5  
19.5  
23.5  
24.5  
10.0  
10.5  
31.0  
32.0  
10.0  
10.5  
25.5  
26.5  
PLH  
PHL  
t
Propagation Delay  
P to RO  
PLH  
9.5  
16.0  
17.0  
20.5  
21.5  
8.5  
9.0  
31.5  
26.0  
8.5  
9.0  
22.5  
23.5  
t
Propagation Delay  
P to ER  
PLH  
10.0  
t
t
Propagation Delay  
MR to D/CW  
10.5  
11.0  
18.0  
19.0  
23.0  
24.0  
9.5  
29.0  
28.5  
9.5  
25.5  
26.0  
PLH  
PHL  
10.0  
10.0  
t
Propagation Delay  
MR to RO  
PHL  
9.0  
15.5  
28.0  
19.5  
35.5  
8.0  
23.5  
39.0  
8.0  
21.5  
37.5  
t
Propagation Delay  
MR to ER  
PLH  
16.5  
14.5  
14.5  
t
t
Propagation Delay  
D to D/CW  
6.0  
7.5  
10.5  
12.0  
13.5  
16.0  
5.0  
6.5  
19.5  
20.0  
5.0  
6.5  
15.0  
18.0  
PLH  
PHL  
t
t
Propagation Delay  
CWG to D/CW  
6.5  
7.0  
11.0  
12.0  
14.0  
15.5  
5.5  
6.0  
21.5  
21.5  
5.5  
6.0  
15.5  
17.5  
PLH  
PHL  
t
t
Propagation Delay  
11.5  
9.5  
19.5  
16.0  
24.5  
20.0  
9.0  
8.5  
29.0  
25.0  
10.5  
8.5  
26.5  
22.0  
PLH  
PHL  
S
n
to D/CW  
7
AC Operating Requirements  
74F  
54F  
74F  
e a  
T
25 C  
§
5.0V  
A
e
e
Symbol  
Parameter  
T
, V  
CC  
Mil  
Max  
T
, V  
A CC  
Com  
Max  
Units  
A
e a  
V
CC  
Min  
Max  
Min  
Min  
t (H)  
s
Setup Time, HIGH or LOW  
SEI to CP  
4.5  
4.5  
6.0  
6.0  
5.0  
5.0  
t (L)  
s
ns  
ns  
ns  
ns  
t (H)  
h
Hold Time, HIGH or LOW  
SEI to CP  
0
0
1.0  
1.0  
0
0
t (L)  
h
t (H)  
s
Setup Time, HIGH or LOW  
RFB to CP  
11.0  
11.0  
14.0  
14.0  
12.5  
12.5  
t (L)  
s
t (H)  
h
Hold Time, HIGH or LOW  
RFB to CP  
0
0
0
0
0
0
t (L)  
h
t (H)  
s
Setup Time, HIGH or LOW  
13.5  
13.0  
16.0  
15.5  
15.0  
14.5  
t (L)  
s
S to CP  
1
t (H)  
h
Hold Time, HIGH or LOW  
S to CP  
1
0
0
0
0
0
0
t (L)  
h
t (H)  
s
Setup Time, HIGH or LOW  
D to CP  
9.0  
9.0  
11.5  
11.5  
10.0  
10.0  
t (L)  
s
t (H)  
h
Hold Time, HIGH or LOW  
D to CP  
0
0
0
0
0
0
t (L)  
h
t (H)  
s
Setup Time, HIGH or LOW  
CWG to CP  
7.0  
5.5  
9.0  
8.0  
8.0  
6.5  
t (L)  
s
ns  
ns  
t (H)  
h
Hold Time, HIGH or LOW  
CWG to CP  
0
0
0
0
0
0
t (L)  
h
t
t
(H)  
(L)  
Clock Pulse Width  
HIGH or LOW  
4.0  
4.0  
7.0  
5.0  
4.5  
4.5  
w
w
t
t
t
(H)  
(L)  
MR Pulse Width, HIGH  
P Pulse Width, LOW  
4.0  
4.0  
7.0  
5.0  
4.5  
4.5  
ns  
ns  
w
w
Recovery Time  
MR to CP  
rec  
3.0  
5.0  
4.0  
6.5  
3.5  
6.0  
ns  
t
Recovery Time  
P to CP  
rec  
8
Ordering Information  
The device number is used to form part of a simplified purchasing code where the package type and temperature range are  
defined as follows:  
74F 402  
P
C
Temperature Range Family  
e
e
54F Military  
Special Variations  
e
74F Commercial  
QB  
Military grade device with  
environmental and burn-in  
processing  
Device Type  
Temperature Range  
e
Package Code  
a
C
Commercial (0 C to 70 C)  
§
§
e
e
e
e
P
D
F
L
Plastic DIP  
Ceramic DIP  
Flatpak  
Leadless Chip Carrier (LCC)  
e
b a  
Military ( 55 C to 125 C)  
M
§
§
9
Physical Dimensions inches (millimeters)  
20-Lead Ceramic Leadless Chip Carrier (L)  
NS Package Number E20A  
16-Lead Ceramic Dual-In-Line Package (D)  
NS Package Number J16A  
10  
Physical Dimensions inches (millimeters) (Continued)  
16-Lead (0.300 Wide) Molded Plastic Dual-In-Line Package (P)  
×
NS Package Number N16E  
11  
Physical Dimensions inches (millimeters) (Continued)  
16-Lead Ceramic Flatpak (F)  
NS Package Number W16A  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance  
with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury  
to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
a
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax:  
(
49) 0-180-530 85 86  
@
13th Floor, Straight Block,  
Ocean Centre, 5 Canton Rd.  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
Email: cnjwge tevm2.nsc.com  
a
a
a
a
Deutsch Tel:  
English Tel:  
Fran3ais Tel:  
Italiano Tel:  
(
(
(
(
49) 0-180-530 85 85  
49) 0-180-532 78 32  
49) 0-180-532 93 58  
49) 0-180-534 16 80  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

74F402DC

IC F/FAST SERIES, 1-BIT CRC GENERATOR CKT, CDIP16, CERAMIC, DIP-16, Arithmetic Circuit
NSC

74F402DCQR

F/FAST SERIES, 1-BIT CRC GENERATOR CKT, CDIP16, CERAMIC, DIP-16
TI

74F402FC

F/FAST SERIES, 1-BIT CRC GENERATOR CKT, CDFP16, CERAMIC, FP-16
TI

74F402FCQR

F/FAST SERIES, 1-BIT CRC GENERATOR CKT, CDFP16, CERAMIC, FP-16
TI

74F402LC

F/FAST SERIES, 1-BIT CRC GENERATOR CKT, CQCC20, CERAMIC, LCC-20
TI

74F402PC

Serial Data Polynomial Generator/Checker
FAIRCHILD

74F402PC

Serial Data Polynomial Generator/Checker
NSC

74F402PCQR

IC F/FAST SERIES, 1-BIT CRC GENERATOR CKT, PDIP16, PLASTIC, DIP-16, Arithmetic Circuit
NSC

74F402PCQR

CRC Generator Circuit, F/FAST Series, 1-Bit, TTL, PDIP16, PLASTIC, DIP-16
ROCHESTER

74F402QC

F/FAST SERIES, 1-BIT CRC GENERATOR CKT, PQCC20, PLASTIC, CC-20
NSC

74F402SCQR

CRC Generator Circuit, F/FAST Series, 1-Bit, TTL, PDSO16, 0.150 INCH, SOIC-16
FAIRCHILD

74F402SCQR

F/FAST SERIES, 1-BIT CRC GENERATOR CKT, PDSO16, SOIC-16
TI