CLC417AJE [NSC]

Dual Low-Power, Programmable Gain Buffer; 双路低功耗,可编程增益缓冲器
CLC417AJE
型号: CLC417AJE
厂家: National Semiconductor    National Semiconductor
描述:

Dual Low-Power, Programmable Gain Buffer
双路低功耗,可编程增益缓冲器

文件: 总8页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
September 1998  
N
CLC417  
Dual Low-Power, Programmable Gain Buffer  
Features  
General Description  
0.01%, 0.03° D , Dφ  
The CLC417 is a dual, low-cost, high-speed (120MHz) buffer which  
features user-programmable gains of +2, +1, and -1V/V. The  
CLC417’s high 60mA output current, coupled with its ultra-low  
39mW per channel power consumption makes it the ideal choice for  
demanding applications that are sensitive to both power and cost.  
G
High output current: 60mA  
High input impedance: 6MΩ  
+
Gains of 1, +2 with no external  
components  
Low power  
Very low input bias currents: 100nA  
Excellent gain accuracy: 0.1%  
High speed: 120MHz -3dB BW  
Low-cost  
Utilizing National’s proven architectures, this dual current feedback  
amplifier surpasses the performance of alternate solutions with a  
closed-loop design that produces new standards for buffers in gain  
accuracy, input impedance, and input bias currents. The CLC417’s  
internal feedback network provides an excellent gain accuracy of  
0.1%. High source impedance applications will benefit from the  
CLC417’s 6Minput impedance along with its exceptionally low  
100nA input bias current.  
Applications  
Desktop video systems  
Video distribution  
Flash A/D driver  
High-speed line driver  
High-source impedance applications  
Professional video processing  
High resolution monitors  
With exceptional gain flatness and low differential gain and phase  
errors, the CLC417 is very useful for professional video processing  
and distribution. A 120MHz -3dB bandwidth coupled with a 400V/µs  
slew rate also make the CLC417 a perfect choice in cost-sensitive  
applications such as video monitors, fax machines, copiers, and  
CATV systems. Back-terminated video applications will be  
enhanced by a gain of +2 configuration which requires no external  
gain components reducing costs and board space.  
Frequency Response (AV = +2V/V)  
Typical Application  
Differential Input/Differential Output Amplifier  
Pinout  
DIP & SOIC  
-5V  
Vin2  
0.1µF  
6.8µF  
OUT1  
-IN1  
+VCC  
OUT2  
-IN2  
250  
250  
250Ω  
250Ω  
-
CLC417  
Vout  
2
+
+IN1  
-VCC  
250Ω  
250Ω  
-
Vin1  
250Ω  
250Ω  
+
+IN2  
Vout  
1
6.8µF  
0.1µF  
+5V  
Vout1 – Vout2 = (Vin1 – Vin2) x 2  
© 1998 National Semiconductor Corporation  
Printed in the U.S.A.  
http://www.national.com  
(A = +2, Vcc = + 5V, RL = 100unless specified)  
CLC417 Electrical Characteristics  
V
PARAMETERS  
Ambient Temperature  
CONDITIONS  
CLC417AJ  
TYP  
+25˚C  
MIN/MAX RATINGS  
0 to 70˚C -40 to 85˚C  
UNITS  
NOTES  
+25˚C  
FREQUENCY DOMAIN RESPONSE  
-3dB bandwidth  
V
V
out < 1.0Vpp  
out < 5.0Vpp  
120  
52  
50  
85  
40  
15  
65  
36  
60  
35  
MHz  
MHz  
MHz  
1
±
0.1dB bandwidth  
Vout < 1.0Vpp  
gain flatness  
peaking  
V
out < 1.0Vpp  
DC to 200MHz  
<30MHz  
<20MHz  
4.43MHz, R =150Ω  
4.43MHz, R =150Ω  
0
0.05  
0.3  
0.01  
0.03  
0.5  
0.5  
0.6  
0.04  
0.08  
0.6  
0.65  
0.7  
0.04  
0.11  
0.8  
0.7  
0.7  
0.04  
0.12  
dB  
dB  
deg  
%
rolloff  
linear phase deviation  
differential gain  
differential phase  
L
L
deg  
TIME DOMAIN RESPONSE  
rise and fall time  
settling time to 0.05%  
overshoot  
2V step  
2V step  
2V step  
2V step  
1V step  
4.3  
22  
3
400  
700  
6.5  
30  
12  
7.2  
38  
12  
7.4  
41  
12  
ns  
ns  
%
V/µs  
V/µs  
slew rate  
Av = +2  
Av = -1  
300  
260  
250  
DISTORTION AND NOISE RESPONSE  
2nd harmonic distortion  
3rd harmonic distortion  
2nd harmonic distortion  
3rd harmonic distortion  
equivalent input noise  
voltage  
2Vpp, 1MHz  
-80  
-80  
-66  
-57  
dBc  
dBc  
dBc  
dBc  
2Vpp, 1MHz  
2Vpp, 10MHz  
2Vpp, 10MHz  
-55  
-50  
-50  
-47  
-47  
-46  
>1MHz  
>1MHz  
5
12  
3
6.3  
15  
3.8  
66  
6.6  
16  
4.0  
66  
6.7  
17  
4.2  
66  
nV/Hz  
pA/Hz  
pA/Hz  
dB  
inverting current  
non-inverting current  
crosstalk, input referred  
>1MHz  
2Vpp, 10MHz  
72  
STATIC DC PERFORMANCE  
input offset voltage  
average drift  
input bias current  
average drift  
input bias current  
1
30  
100  
3
5
900  
5
7
50  
1600  
8
8
50  
2800  
11  
mV  
µV/˚C  
nA  
nA/˚C  
µA  
A
A
A
non-inverting  
inverting  
1
6
8
average drift  
output offset voltage  
amplifier gain error  
17  
2.5  
0.1%  
40  
17.6  
1.5%  
45  
19.6  
1.5%  
nA/˚C  
mV  
V/V  
13.3  
A,2  
A
±
±1.5%  
±
±
internal resistors (Rf, Rg)  
power supply rejection ratio  
common-mode rejection ratio  
supply current per channel  
250Ω  
52  
50  
±
20%  
47  
45  
4.5  
DC  
DC  
RL= ∞  
47  
45  
4.6  
45  
43  
4.9  
dB  
dB  
mA  
3.9  
A
MISCELLANEOUS PERFORMANCE  
input resistance  
input capacitance  
non-inverting  
non-inverting  
6
1
±2.2  
+4.0,-3.4  
+3.5,-2.9  
60  
3
2
2.4  
2
±1.7  
+3.8,-3.2  
+2.9,-2.7  
38  
1
2
±1.5  
+3.7,-2.8  
+2.4,-1.7  
20  
MΩ  
pF  
V
V
V
common mode input range  
output voltage range  
output voltage range  
output current  
±1.8  
+3.9,-3.3  
+3.1,-2.8  
44  
RL= ∞  
RL= 100Ω  
mA  
output resistance, closed loop  
0.06  
0.2  
0.25  
0.4  
+
Recommended gain range 1, +2 V/V  
Transistor count = 110  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are  
determined from tested parameters.  
Absolute Maximum Ratings  
supply voltage  
out is short circuit protected to ground  
Notes  
1) At temps < 0°C, spec is guaranteed for RL = 500.  
2) Source impedance 1k.  
±7V  
I
A) J-level: spec is 100% tested at +25°C.  
common-mode input voltage  
maximum junction temperature  
storage temperature range  
lead temperature (soldering 10 sec)  
ESD rating (human body model)  
±
Vcc  
+175°C  
65 C to +150°C  
˚
+300°C  
2000V  
Ordering Information  
Package Thermal Resistance  
Model  
Temperature Range  
Description  
8-pin PDIP  
8-pin SOIC  
Package  
Plastic (AJP)  
Surface Mount (AJE)  
θJC  
θJA  
CLC417AJP  
CLC417AJE  
-40 C to +85 C  
°
°
80°C/W  
95°C/W  
95°C/W  
115°C/W  
-40 C to +85 C  
°
°
http://www.national.com  
2
(Vcc = ±5V, Av = +2, R = 100; unless specified)  
CLC417 Typical Performance Characteristics  
L
Frequency Response  
Frequency Response vs. CL  
Frequency Response vs. RL  
Av = 1  
Vout = 1Vpp  
Av = +2  
Vout = 1Vpp  
RL = 100 RL = 1k  
Av = -1  
Rs = 80.6  
CL = 10pf  
Av = 2  
RL = 50  
Rs = 30.1Ω  
CL = 100pf  
RL = 1k  
Av = 1  
0
0
Rs = 7.7Ω  
CL = 1000pf  
-90  
-90  
Av = -1  
RL = 50  
Av = 2  
-180  
-270  
-360  
-450  
-180  
-270  
-360  
-450  
RL = 100  
1
10  
100  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. Vout (Av = +1)  
Frequency Response vs. Vout (Av = -1)  
Frequency Response vs. Vout (Av = +2)  
Vo = 0.2Vpp  
Vo = 2Vpp  
Vo = 2Vpp  
Vo = 0.2Vpp  
Vo = 4Vpp  
Vo = 2Vpp  
Vo = 4Vpp  
Vo = 0.2Vpp  
Vo = 4Vpp  
1
10  
100  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency (MHz)  
Equivalent Input Noise  
Recommended Rs vs. Capacitive Load  
Maximum Output Voltage vs. RL  
100  
10  
1
100  
4
2
100  
80  
60  
40  
20  
0
Inverting Current = 12pA/Hz  
10  
1
0
Voltage = 5nV/Hz  
Non-Inverting Current = 3pA/Hz  
-2  
-4  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1000  
0
100  
200  
300  
400  
500  
600  
CL (pF)  
Frequency (Hz)  
Load ()  
2nd & 3rd Harmonic Distoration  
2nd Harmonic Distortion vs. Pout  
3rd Harmonic Distortion vs. Pout  
-40  
-50  
-40  
-50  
-60  
-70  
-80  
-90  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
Po  
50  
Po  
50Ω  
3rd, RL = 100Ω  
10MHz  
50Ω  
Vo = 2Vpp  
50Ω  
10MHz  
5MHz  
348Ω  
348Ω  
348Ω  
348Ω  
-60  
5MHz  
-70  
2nd, RL = 100Ω  
2nd, RL = 1kΩ  
-80  
1MHz  
1MHz  
-90  
500kHz  
3rd, RL = 1kΩ  
500kHz  
-100  
1
10  
-10  
-5  
0
5
10  
-10  
-5  
0
5
10  
Frequency (MHz)  
Output Power (dBm)  
Output Power (dBm)  
Large Signal Pulse Response  
Small Signal Pulse Response  
Differential Gain & Phase  
2
1
0.08  
0.06  
0.04  
0.02  
0
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.01  
0.05  
0
Av = +1  
Av = +2  
Phase Negative Sync  
0
Gain Negative  
Sync  
-0.02  
-0.04  
-0.06  
-0.08  
Phase  
Positive  
Sync  
-1  
-2  
Av = -1  
Gain Positive Sync  
Time (5ns/div)  
1
2
3
4
Time (5ns/div)  
Number of 150Loads  
3
http://www.national.com  
(Vcc = ±5V, Av = +2, R = 100; unless specified)  
CLC417 Typical Performance Characteristics  
L
Typical DC Errors vs. Temperature  
Power Derating Curves  
PSRR and CMRR  
6
5
4
3
2
1
60  
50  
40  
30  
20  
10  
1.0  
0.8  
1
PSRR  
CMRR  
IBN  
0
AJP  
AJE  
0.6  
0.4  
-1  
-2  
-3  
IBI  
0.2  
0
VIO  
-50  
0
50  
100  
0
20  
40  
60  
80 100 120 140 160 180  
10k  
100k  
1M  
10M  
100M  
Temperature (°C)  
Ambient Temperature (°C)  
Frequency (Hz)  
CLC417 OPERATION  
Description  
Non-Inverting Unity Gain Considerations  
The CLC417 is a dual current feedback buffer with the  
following features:  
Gains of +1V/V are obtained by removing all resistive  
and capacitive connections between the inverting  
pins and ground on the CLC417 amplifiers. Too much  
capacitive coupling between the inverting pin and ground  
may cause stability problems. Minimize this capacitive  
coupling by removing the ground plane near the  
input and output pins. The response labeled open in  
Figure 1 is the result of the inverting pin left open and all  
capacitive coupling removed. A flatter response can be  
Gains of +1, -1, and 2 are achievable without  
external resistors  
Differential gain and phase errors of 0.01%  
and 0.03° into a 150load  
Low, 3.9mA, supply current per amplifier  
The convenient 8-pin package and internal resistors  
make common applications, like that seen on the front  
page, easily feasible in a limited amount of space. The  
professional video quality differential gain and phase  
errors and low power capabilities of the CLC417 make  
this product a good choice for video applications.  
obtained by inserting  
a
resistor between the  
inverting and non-inverting pins as shown in Figure 2.  
The two remaining plots in Figure 1 illustrate a 300Ω  
resistor and a short connected between pins 2 and 3 of  
the CLC417.  
If gains other than +1, -1, or +2V/V are required, then the  
CLC416 can be used. The CLC416 is a dual current  
feedback amplifier with near identical performance, and  
allows for external feedback and gain resistors.  
Open  
R = 300Ω  
Short  
Closed Loop Gain Selection  
Gains of +1, +2, and -1V/V can be achieved by both of  
the CLC417’s amplifiers. Implement the gain selection  
by connecting the inverting (-IN) and non-inverting (+IN)  
pins as described in the table below.  
1
10  
100  
Input Connections  
+IN  
Gain  
Frequency (MHz)  
A
v
-IN  
Figure 1: Frequency Response vs.  
Unity Gain Configuration  
-1V/V  
+1V/V  
+2V/V  
ground  
input signal  
input signal  
input signal  
NC (open)  
ground  
Rout  
SMA  
Output1  
250  
50  
The gain accuracy of the CLC417 is excellent and  
stable over temperature. The internal feedback and gain  
250Ω  
-
+
R
setting resistors, R and R , are diffused silicon resistors.  
f
g
SMA  
Input1  
250Ω  
250Ω  
R and R have a process variation of ±20% and a  
-
f
g
temperature coefficient of ~ 2000ppm/°C. Although the  
absolute values of R and R change with processing and  
+
Rin  
50Ω  
f
g
NOTE: The same technique can also  
be applied to Channel B. Bypass  
capacitors not shown.  
temperature, their ratio (R /R ) remains constant. If an  
f
g
external resistor is used in series with R , gain accuracy  
g
over temperature will be impacted by temperature coeffi-  
cient differences between internal and external resistors.  
Figure 2: Optional Unity Gain Configuration  
http://www.national.com  
4
Channel Matching  
1. Determine the quiescent power  
Channel matching and crosstalk efficiency are largely  
dependent on board layout. The layout of National’s dual  
amplifier evaluation boards are optimized to produce  
maximum channel matching and isolation. Typical  
channel matching for the CLC417 is shown in Figure 3.  
P = (V - V ) I  
Q
CC  
EE  
CC  
2. Determine the RMS power at the output stage  
= (V - V ) (I ), where V and I  
load  
P
O
CC  
load  
load  
load  
are the RMS voltage and current across the  
external load.  
3. Determine the total RMS power  
P = P + P  
T
Q
O
Av = +2  
RL = 100Ω  
Channel B  
Vo = 2Vpp  
Add the total RMS powers for both channels to determine  
the power dissipated by the dual.  
Channel A  
Channel B  
0
The maximum power that the package can dissipate at a  
given temperature is illustrated in the Power Derating  
curves in the Typical Performance section. The power  
derating curve for any package can be derived by utiliz-  
ing the following equation:  
-90  
Channel A  
-180  
-270  
-360  
-450  
(175° − Tamb)  
P =  
1
10  
100  
Frequency (MHz)  
θ
JA  
where: T  
= Ambient temperature (°C)  
= Thermal resistance, from junction to  
ambient, for a given package (°C/W)  
amb  
Figure 3: Channel Matching  
θ
JA  
The CLC417’s channel-to-channel isolation is better than  
70dB for input frequencies of 4MHz. Input referred  
crosstalk vs. frequency is illustrated in Figure 4.  
Layout Considerations  
A proper printed circuit layout is essential for achieving  
high frequency performance. National provides  
evaluation boards for the CLC417 (CLC730038 - DIP,  
CLC730036 - SOIC) and suggests their use as a guide  
for high frequency layout and as an aid for device testing  
and characterization.  
-20  
-40  
-60  
-80  
Supply bypassing is required for best performance. The  
bypass capacitors provide a low impedance return  
current path at the supply pins. They also provide high  
frequency filtering on the power supply traces. Other  
layout factors play a major role in high frequency  
performance. The following are recommended as a basis  
for high frequency layout:  
-100  
-120  
1
10  
100  
Frequency (MHz)  
1. Include 6.8µF tantalum and 0.1µF ceramic  
Figure 4: Input Referred Crosstalk vs. Frequency  
capacitors on both supplies.  
Driving Cables and Capacitive Loads  
2. Place the 6.8µF capacitors within 0.75 inches  
When driving cables, double termination is used to  
prevent reflections. For capacitive load applications, a  
small series resistor at the output of the CLC417 will  
of the power pins.  
3. Place the 0.1µF capacitors less than 0.1  
inches from the power pins.  
improve stability.  
The R vs. Capacitive Load  
s
4. Remove the ground plane near the input  
and output pins to reduce parasitic  
capacitance.  
plot, in the Typical Performance section, gives the  
recommended series resistance value for optimum  
flatness at various capacitive loads.  
5. Minimize all trace lengths to reduce series  
inductances.  
Power Dissipation  
The power dissipation of an amplifier can be described in  
two conditions:  
Additional information is included in the evaluation board  
literature.  
Quiescent Power Dissipation -  
Special Evaluation Board Considerations  
To optimize off-isolation of the CLC417, cut the R trace  
on both the 730038 and 730036 evaluation boards. This  
cut minimizes capacitive feedthrough between the input  
P (No Load Condition)  
Total Power Dissipation -  
Q
f
P (with Load Condition)  
T
The following steps can be taken to determine the power  
consumption for each CLC417 amplifier:  
and output. Figure  
recommended to improve off-isolation.  
5
indicates the alterations  
5
http://www.national.com  
730036 Top  
Applications Circuits  
+Vcc  
OUT2  
GND  
Video Cable Driver  
The CLC417 was designed to produce exceptional video  
performance at all three closed-loop gains. A typical  
cable driving configuration is shown in Figure 6. In this  
example, the amplifier is configured with a gain of 2.  
+
C3  
ROUT2  
C4  
+
RG2  
IN2  
RF2  
-Vcc  
C1  
OUT1  
+5V  
C2  
ROUT1  
0.1µF  
6.8µF  
RIN2  
NOTE:  
The same  
technique can  
also be applied  
to Channel A.  
250  
Rout  
50Ω  
250Ω  
-
Video  
RIN1  
RF1  
Output  
+
RG1  
Coax  
J1  
Comlinear  
(970) 226-0500  
50Ω  
250Ω  
50Ω  
250Ω  
-
0Ω  
-5V  
6.8µF  
+
SMA  
Input  
IN1  
0.1µF  
Rin  
50Ω  
Cut traces here  
Figure 6: Typical Cable Driver  
Single to Differential Line Driver  
730038 Bottom  
The topology in Figure 7 accomplishes a single-ended to  
differential conversion with no external components.  
With this configuration, the value of Vin is limited to the  
common mode input range of the CLC417.  
+5V  
0.1µF  
6.8µF  
Vout1  
730038  
REV B  
250Ω  
Vout2  
250Ω  
-
+
250Ω  
250Ω  
-
-5V  
+
6.8µF  
0.1µF  
Vin  
AV1 = 1V/V  
AV2 = -1V/V  
Vout1 = Vin  
Vout2 = -Vin  
Cut traces here  
Figure 7: Single to Differential Line Driver  
Figure 5: Optional Evaluation Board Alterations  
SPICE Models  
SPICE models provide a means to evaluate amplifier  
designs. Free SPICE models are available for National’s  
monolithic amplifiers that:  
Support Berkeley SPICE 2G and its many  
derivatives  
Reproduce typical DC, AC, Transient, and  
Noise performance  
Support room temperature simulations  
The readme file that accompanies the diskette lists  
released models, and provides a list of modeled parame-  
ters. The application note OA-18, Simulation SPICE  
Models for National’s Op Amps, contains schematics and  
a reproduction of the readme file.  
http://www.national.com  
6
This page intentionally left blank.  
7
http://www.national.com  
Customer Design Applications Support  
National Semiconductor is committed to design excellence. For sales, literature and technical support, call the  
National Semiconductor Customer Response Group at 1-800-272-9959 or fax 1-800-737-7018.  
Life Support Policy  
National’s products are not authorized for use as critical components in life support devices or systems without the express written approval  
of the president of National Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or  
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax: (+49) 0-180-530 85 86  
E-mail: europe.support.nsc.com  
Deutsch Tel: (+49) 0-180-530 85 85  
English Tel: (+49) 0-180-532 78 32  
Francais Tel: (+49) 0-180-532 93 58  
Italiano Tel: (+49) 0-180-534 16 80  
13th Floor, Straight Block  
Ocean Centre, 5 Canton Road  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
N
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said  
circuitry and specifications.  
http://www.national.com  
8

相关型号:

CLC417AJP

Dual Low-Power, Programmable Gain Buffer
NSC

CLC418

Dual High-Speed, Low-Power Line Driver
NSC

CLC418AJ

Dual High-Speed, Low-Power Line Driver
NSC

CLC418AJE

IC DUAL OP-AMP, 11000 uV OFFSET-MAX, 125 MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8, Operational Amplifier
NSC

CLC418AJE

DUAL OP-AMP, 11000uV OFFSET-MAX, 125MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
TI

CLC418AJE-TR

DUAL OP-AMP, 11000uV OFFSET-MAX, 130MHz BAND WIDTH, PDSO8, SOIC-8
TI

CLC418AJE-TR13

DUAL OP-AMP, 11000uV OFFSET-MAX, 125MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
TI

CLC418AJP

DUAL OP-AMP, 11000uV OFFSET-MAX, 125MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8
TI

CLC418ALC

IC DUAL OP-AMP, 11000 uV OFFSET-MAX, 125 MHz BAND WIDTH, UUC, DIE, Operational Amplifier
TI

CLC420

High-Speed, Voltage Feedback Op Amp
NSC

CLC420A8B

IC OP-AMP, 2000 uV OFFSET-MAX, 300 MHz BAND WIDTH, CDIP8, CERDIP-8, Operational Amplifier
NSC

CLC420A8D

Operational Amplifier, 1 Func, 2000uV Offset-Max, BIPolar, CDIP8,
NSC