DAC1022LCJ [NSC]

IC PARALLEL, 8 BITS INPUT LOADING, 0.5 us SETTLING TIME, 10-BIT DAC, CDIP16, CERAMIC, DIP-16, Digital to Analog Converter;
DAC1022LCJ
型号: DAC1022LCJ
厂家: National Semiconductor    National Semiconductor
描述:

IC PARALLEL, 8 BITS INPUT LOADING, 0.5 us SETTLING TIME, 10-BIT DAC, CDIP16, CERAMIC, DIP-16, Digital to Analog Converter

转换器
文件: 总14页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
May 1996  
DAC1020/DAC1021/DAC1022  
10-Bit Binary Multiplying D/A Converter  
DAC1220/DAC1222  
12-Bit Binary Multiplying D/A Converter  
General Description  
The DAC1020 and the DAC1220 are, respectively, 10 and  
12-bit binary multiplying digital-to-analog converters. A de-  
posited thin film R-2R resistor ladder divides the reference  
current and provides the circuit with excellent temperature  
(note 1 of electrical characteristics). The DAC1020,  
DAC1021 and DAC1022 are direct replacements for the 10-  
bit resolution AD7520 and AD7530 and equivalent to the  
AD7533 family. The DAC1220 and DAC1222 are direct re-  
placements for the 12-bit resolution AD7521 and AD7531  
family.  
tracking characteristics (0.0002%/ C linearity error temper-  
§
ature coefficient maximum). The circuit uses CMOS current  
switches and drive circuitry to achieve low power consump-  
tion (30 mW max) and low output leakages (200 nA max).  
The digital inputs are compatible with DTL/TTL logic levels  
as well as full CMOS logic level swings. This part, combined  
with an external amplifier and voltage reference, can be  
used as a standard D/A converter; however, it is also very  
attractive for multiplying applications (such as digitally con-  
trolled gain blocks) since its linearity error is essentially in-  
dependent of the voltage reference. All inputs are protected  
from damage due to static discharge by diode clamps to Va  
and ground.  
Features  
Y
Linearity specified with zero and full-scale adjust only  
Y
Non-linearity guaranteed over temperature  
Y
Integrated thin film on CMOS structure  
Y
10-bit or 12-bit resolution  
@
Low power dissipation 10 mW 15V typ  
Y
Y
Y
Y
Y
Y
s
s
25V  
b
Accepts variable or fixed reference 25V  
V
REF  
4-quadrant multiplying capability  
Interfaces directly with DTL, TTL and CMOS  
This part is available with 10-bit (0.05%), 9-bit (0.10%), and  
8-bit (0.20%) non-linearity guaranteed over temperature  
Fast settling timeÐ500 ns typ  
@
Low feedthrough errorÐ(/2 LSB 100 kHz typ  
Eq
TL/H/5689–1  
10-BIT D/A CONVERTERS  
0 C to 70 C  
Ordering Information  
Temperature Range  
b
40 C to 85 C  
§
§
§
DAC1020LIV  
§
0.05%  
0.10%  
0.20%  
DAC1020LCN  
AD7520LN,AD7530LN  
AD7520KN,AD7530KN  
AD7520JN,AD7530JN  
DAC1020LCV  
Non-  
Linearity  
DAC1021LCN  
DAC1022LCN  
Package Outline  
N16A  
12-BIT D/A CONVERTERS  
V20A  
b
a
40 C to 85 C  
Temperature Range  
0 C to 70 C  
§
§
AD7521LN,AD7531LN  
§
§
0.05%  
0.20%  
DAC1220LCN  
DAC1222LCN  
DAC1220LCJ  
AD7521LD,AD7531LD  
AD7521JD,AD7531JD  
J18A  
Non-  
Linearity  
AD7521JN,AD7531JN  
DAC1222LCJ  
Package Outline  
N18A  
Note. Devices may be ordered by either part number.  
C
1996 National Semiconductor Corporation  
TL/H/5689  
RRD-B30M96/Printed in U. S. A.  
http://www.national.com  
Absolute Maximum Ratings (Note 5)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales  
Office/Distributors for availability and specifications.  
Operating Ratings  
Min  
Max  
Units  
Temperature (T  
)
A
DAC1020LIV, DAC1220LCJ,  
DAC1222LCJ  
Va to Gnd  
17V  
25V  
40  
85  
C
b
a
§
DAC1020LCN, DAC1020LCV,  
DAC1021LCN  
g
V
to Gnd  
REF  
a
a
a
Va to Gnd  
0
70  
70  
70  
C
§
§
§
Digital Input Voltage Range  
DAC1022LCN, DAC1220LCN  
DAC1222LCN  
0
0
C
a
b
DC Voltage at Pin 1 or Pin 2 (Note 3)  
Storage Temperature Range  
100 mV to V  
C
b
a
65 C to 150 C  
§
§
Lead Temperature (Soldering, 10 sec.)  
Dual-In-Line Package (plastic)  
Dual-In-Line Package (ceramic)  
260 C  
§
300 C  
§
800V  
ESD Susceptibility (Note 4)  
Electrical Characteristics (Va 15V, V  
10.000V, T  
25 C unless otherwise specified)  
§
e
e
e
REF  
A
DAC1020, DAC1021,  
DAC1022  
DAC1220, DAC1222  
Parameter  
Conditions  
Units  
Min  
Typ  
Max  
Min  
Typ  
Max  
Resolution  
10  
12  
Bits  
k
k
T
MAX  
Linearity Error  
T
MIN  
T
A
,
k
k
b
a
10V  
V
REF  
10V,  
(Note 1) End Point Adjustment Only  
(See Linearity Error in Definition of Terms)  
DAC1020, DAC1220  
10-Bit Parts  
9-Bit Parts  
8-Bit Parts  
0.05  
0.10  
0.20  
0.05  
0.10  
0.20  
% FSR  
% FSR  
% FSR  
DAC1021  
DAC1022, DAC1222  
s
s
b
(Notes 1 and 2)  
a
a
,
Linearity Error Tempco  
10V  
V
REF  
10V,  
0.0002  
0.0002 % FS/ C  
§
s
s
b
(Notes 1 and 2)  
Full-Scale Error  
10V  
V
REF  
10V,  
0.3  
1.0  
0.3  
1.0  
% FS  
k
k
Full-Scale Error Tempco  
Output Leakage Current  
T
T
T
T
0.001  
0.001 % FS/ C  
§
MIN  
(Note 2)  
A
MAX  
s
s
T
MIN  
T
A
MAX  
I
I
All Digital Inputs Low  
All Digital Inputs High  
200  
200  
200  
200  
nA  
nA  
OUT 1  
OUT 2  
Power Supply Sensitivity  
All Digital Inputs High,  
a
0.005  
15  
0.005  
15  
% FS/V  
s
s
16V, (Note 2),  
14V  
V
(Figure 2)  
V
REF  
Input Resistance  
10  
20  
10  
20  
kX  
e
100X from 0 to 99. 95%  
Full-Scale Current Settling  
Time  
R
L
FS  
All Digital Inputs Switched  
Simultaneously  
500  
500  
ns  
V
REF  
Feedthrough  
All Digital Inputs Low,  
e
10  
10  
mVp-p  
@
20 Vp-p 100 kHz  
V
REF  
J Package (Note 4)  
N Package  
6
2
9
5
6
2
9
5
mVp-p  
mVp-p  
Output Capacitance  
I
All Digital Inputs Low  
All Digital Inputs High  
All Digital Inputs Low  
All Digital Inputs High  
40  
200  
200  
40  
40  
200  
200  
40  
pF  
pF  
pF  
pF  
OUT 1  
I
OUT 2  
http://www.national.com  
2
Electrical Characteristics (Va 15V, V  
10.000V, T  
25 C unless otherwise specified) (Continued)  
§
e
e
e
A
REF  
DAC1020, DAC1021,  
DAC1022  
DAC1220, DAC1222  
Parameter  
Conditions  
Units  
Min  
Typ  
Max  
Min  
Typ  
Max  
Digital Input  
(Figure 1)  
k
k
k
k
Low Threshold  
High Threshold  
T
T
T
T
T
T
0.8  
0.8  
V
V
MIN  
A
MAX  
2.4  
2.4  
MIN  
A
MAX  
s
s
Digital Input Current  
T
MIN  
T
A
T
MAX  
Digital Input High  
Digital Input Low  
1
100  
1
100  
b
200  
mA  
mA  
b
b
b
50  
0.2  
0.6  
200  
50  
0.2  
0.6  
Supply Current  
All Digital Inputs High  
All Digital Inputs Low  
1.6  
2
1.6  
2
mA  
mA  
Operating Power Supply  
Range  
(Figures 1 and 2)  
5
15  
5
15  
V
e
e
g
g
Note 1: V  
10V and V  
REF  
1V. A linearity error temperature coefficient of 0.0002% FS for a 45 C rise only guarantees 0.009% maximum change in  
§
REF  
linearity error. For instance, if the linearity error at 25 C is 0.045% FS it could increase to 0.054% at 70 C and the DAC will be no longer a 10-bit part. Note,  
§
§
however, that the linearity error is specified over the device full temperature range which is a more stringent specification since it includes the linearity error  
temperature coefficient.  
Note 2: Using internal feedback resistor as shown in Figure 3.  
e
Note 3: Both I  
OUT 1  
0.005% linearity error will be introduced.  
and I  
must go to ground or the virtual ground of an operational amplifier. If V  
10V, every millivolt offset between I  
or I  
,
OUT 2  
OUT 2  
REF  
OUT 1  
Note 4: Human body model, 100 pF discharged through a 1.5 kX resistor.  
Note 5: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating  
the device beyond its specified operating conditions.  
Note 6: The maximum power dissipation must be derated at elevated temperatures and is dictated by T  
b
T
, i , and the ambient temepature, T . The maximum  
JMAX JA  
)/i or the number given in the Absolute Maximum Ratings, whichever is lower. For this  
A JA  
A
e
allowable power dissipation at any temperature is P  
(T  
D
JMAX  
e
120 C/W, for the N16 this number is 125 C/W, and for the V20 this number is 95 C/W.  
device, T  
JMAX  
125 C, and the typical junction-to-ambient thermal resistance of the J18 package when board mounted is 85 C/W. For the N18 package, i is  
§
§
JA  
§
§
§
Typical Performance Characteristics  
TL/H/5689–2  
FIGURE 1. Digital Input Threshold vs  
Ambient Temperature  
FIGURE 2. Gain Error Variation vs Va  
3
http://www.national.com  
Typical Applications  
The following applications are also valid for 12-bit systems  
using the DAC1220 and 2 additional digital inputs.  
Operational Amplifier V Adjust (Figure 3)  
OS  
Connect all digital inputs, A1A10, to ground and adjust the  
g
1
is less than 10V, a finer  
potentiometer to bring the op amp V  
pin to within  
OUT  
Operational Amplifier Bias Current (Figure 3)  
mV from ground potential. If V  
REF  
adjustment is required. It is helpful to increase the reso-  
The op amp bias current, I , flows through the 15k internal  
b
feedback resistor. BI-FET op amps have low I and, there-  
V
OS  
b
lution of the V  
adjust procedure by connecting a 1 kX  
OS  
resistor between the inverting input of the op amp to  
ground. After V has been adjusted, remove the 1 kX.  
c
strongly recommended for the DAC1020 applications.  
fore, the 15k  
I error they introduce is negligible; they are  
b
OS  
V
OS  
Considerations  
Full-Scale Adjust (Figure 4)  
The output impedance, R , of the DAC is modulated by  
OUT  
the digital input code which causes a modulation of the op-  
Switch high all the digital inputs, A1A10, and measure the  
op amp output voltage. Use a 500X potentiometer, as  
erational amplifier output offset. It is therefore recommend-  
E
c
shown, to bring  
1023/1024.  
V
to a voltage equal to V  
REF  
ll OUTll  
ed to adjust the op amp V . R  
OS OUT  
is 15k if more than 4  
E
digital inputs are high; R  
is high, and R  
is 45k if a single digital input  
approaches infinity if all inputs are low.  
OUT  
OUT  
SELECTING AND COMPENSATING THE OPERATIONAL AMPLIFIER  
Circuit Settling  
Circuit Small  
Signal BW  
Op Amp Family  
C
F
R
i
P
V
W
Time, t  
s
LF357  
LF356  
LF351  
LM741  
10 pF  
22 pF  
24 pF  
0
2.4k  
%
%
25k  
25k  
10k  
10k  
Va  
Va  
Vb  
Vb  
1.5 ms  
3 ms  
1M  
0.5M  
4 ms  
0.5M  
%
40 ms  
200 kHz  
TL/H/5689–3  
A1  
A2  
4
A3  
8
A10  
e b  
s
a
a
a
# # #  
V
V
REF  
OUT  
2
1024  
#
J
s
b
10V  
V
REF  
10V  
1023  
1024  
s
s
b
0
V
V
REF  
OUT  
e
where A  
1 if the A digital input is high  
N
N
e
A
N
0 if the A digital input is low  
N
FIGURE 3. Basic Connection: Unipolar or 2-Quadrant Multiplying  
Configuration (Digital Attenuator)  
http://www.national.com  
4
Typical Applications (Continued)  
FIGURGain)  
A1  
2
A2  
4
A3  
8
A10  
TL/H/5689–4  
e b  
a
a
a
# # #  
V
V
V
OUT 1  
OUT2  
REF  
1024  
#
J
A1  
2
A2  
4
A3  
8
A10  
B1  
2
B2  
4
B3  
8
B10  
e
a
a
a
c
a
a
a
# # #  
V
REF  
# # #  
1024  
1024  
#
J #  
J
where V  
can be an AC signal  
REF  
FIGURE 6. Precision Analog-to-Digital Multiplier  
5
http://www.national.com  
Typical Applications (Continued)  
COMPLEMENTARY OFFSET BINARY  
(BIPOLAR) OPERATION  
DIGITAL INPUT  
V
OUT  
a
c
0
0
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
0
1
1
V
REF  
1022/1024  
V
REF  
c
V
2/1024  
REF  
0
b
b
c
2/1024  
V
REF  
V
(1022/1024)  
REF  
Note that:  
V
1023  
1024  
REF  
a
e
c
I
#
I
OUT 2  
OUT 1  
R
# J  
LADDER  
By doubling the output range we get half the  
resolution  
#
#
TL/H/5689–5  
A1  
2
A2  
4
A10  
1
e b  
a
a
a
b
V
V
REF  
# # #  
OUT  
The 10M resistor, adds a 1 LSB ‘‘thump’’, to  
allow full offset binary operation where the out-  
put reaches zero for the half-scale code. If  
symmetrical output excursions are required,  
omit the 10M resistor.  
1024 1024  
#
J
e
e
a
where: AN  
AN  
1 if A input is high  
N
b
1 if A input is low  
N
FIGURE 7. Bipolar 4-Quadrant Multiplying Configuration  
Operational Amplifiers V Adjust (Figure 7)  
OS  
Gain Adjust (Full-Scale Adjust)  
a) Switch all the digital inputs high; adjust the V potenti-  
OS  
ometer of op amp B to bring its output to a value equal  
Assuming that the external 10k resistors are matched to  
better than 0.1%, the gain adjust of the circuit is the same  
with the one previously discussed.  
b
to (V  
/1024) (V).  
REF  
b) Switch the MSB high and the remaining digital inputs  
low. Adjust the V potentiometer of op amp A, to bring  
OS  
its output value to within a 1 mV from ground potential.  
k
mentioned in the previous application.  
For V  
REF  
10V, a finer adjust is necessary, as already  
TL/H/5689–6  
b
R2  
R1  
A
V
TRUE OFFSET BINARY OPERATION  
b
e
a
b
e
e
R4  
R3  
(2A  
1) R,  
,
#
#
V
b
b
A
1
V
DIGITAL INPUT  
V
OUT  
V
OUT(PEAK)  
b
e
e
20k  
R1 R2  
ll  
R; A  
, R  
V
V
c
REF  
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
V
REF  
1022/1024  
0
b
10V: A  
V
j
e
e
5V  
g
Example: V  
2V, V  
(swing)  
REF  
OUT  
e
e
e
e
0.2R then R2 0.25R,  
Then R4  
9R, R1  
0.8 R2. If R1  
b
V
REF  
e
R3  
0.64R  
e
t
1.8 ms  
s
FIGURE 9. Bipolar Configuration with  
Increased Output Swing  
use LM336 for a voltage reference  
FIGURE 8. Bipolar Configuration with a Single Op Amp  
http://www.national.com  
6
Typical Applications (Continued)  
FIGier)  
TL/H/5689–7  
A1  
2
A2  
4
A10  
1024  
A10  
a
a
a
a
a
a
. . .  
. . .  
b
1023  
N
e
e
s
V
V
REF  
or V  
V
OUT  
OUT  
REF  
A1  
2
A2  
4
N
#
J
1024  
%
s
e
where: 0  
N
1023  
e
e
N
N
.
0 for A  
all zeros  
N
e
e
1 for A10  
1, A1A9  
0
.
.
e
e
all 1’s  
N
1023 for A  
N
FIGURE 11. Digitally controlled Amplifier-Attenuator  
7
http://www.national.com  
Typical Applications (Continued)  
TL/H/5689–8  
f
CLK  
j
e
Output frequency  
; f  
2 kHz  
b
10V peak  
#
MAX  
512  
e
Output voltage range  
0V  
#
#
#
#
k
THD  
0.2%  
Excellent amplitude and frequency stability with temperature  
Low pass filter shown has a 1 kHz corner (for output frequencies below 10 Hz,  
filter corner should be reduced)  
Any periodic function can be implemented by modifying the contents of the look  
up table ROM  
#
#
No start up problems  
FIGURE 12. Precision Low Frequency Sine Wave Oscillator Using Sine Look-Up ROM  
http://www.national.com  
8
Typical Applications (Continued)  
MM74C00 Ð N
MM74C32 Ð O
MM74C74 Ð D
MM74C193 Ð
TL/H/5689–9  
Binary up/down counter digitally ‘‘ramps’’ the DAC  
output  
#
Can stop counting at any desired 10-bit input code  
Senses up or down count overflow and automatically  
reverses direction of count  
#
#
FIGURE 13. A Useful Digital Input Code Generator for DAC Attenuator or Amplifier Circuits  
9
http://www.national.com  
Definition of Terms  
Resolution: Resolution is defined as the reciprocal of the  
number of discrete steps in the D/A output. It is directly  
related to the number of switches or bits within the D/A. For  
Power Supply Sensitivity: Power supply sensitivity is a  
measure of the effect of power supply changes on the D/A  
full-scale output.  
10  
example, the DAC1020 has 2 or 1024 steps while the  
12  
DAC1220 has 2 or 4096 steps. Therefore, the DAC1020  
Settling Time: Full-scale settling time requires a zero to full-  
scale or full-scale to zero output change. Settling time is the  
time required from a code transition until the D/A output  
has 10-bit resolution, while the DAC1220 has 12-bit resolu-  
tion.  
g
reaches within (/2 LSB of final output value.  
Full-Scale Error: Full-scale error is a measure of the output  
error between an ideal D/A and the actual device output.  
Linearity Error: Linearity error is the maximum deviation  
from a straight line passing through the endpoints of the  
D/A transfer characteristic. It is measured after calibrating  
b
Ideally, for the DAC1020 full-scale is V  
V
1 LSB. For  
REF  
operation,  
e
10.0000VÐ9.8 mV 9.9902V. Full-scale error is ad-  
10V  
and  
unipolar  
V
for zero (see V  
OS  
adjust in typical applications) and full-  
REF  
FULL-SCA-  
e
e
justable to zero as shown in Figure 5.  
scale. Linearity error is a design parameter intrinsic to the  
device and cannot be externally adjusted.  
LE  
TL/H/568910  
a
(a) End point test after zero and full-scale adjust.  
b1  
b2  
(b) By shifting the full-scale calibration on of the DAC of  
Figure (b1) we could pass the ‘‘best straight line’’ (b2)  
The DAC has 1 LSB linearity error.  
g
test and meet the (/2 linearity error specification.  
Note. (a), (b1) and (b2) above illustrate the difference between ‘‘end point’’ National’s linearity test (a) and ‘‘best straight line’’ test. Note that both devices in (a) and  
g
(b2) meet the (/2 LSB linearity error specification but the end point test is a more ‘‘real life’’ way of characterizing the DAC.  
Connection Diagrams  
DAC102X  
Dual-In-Line Package  
DAC1020  
PLCC Package  
DAC122X  
Dual-In-Line Package  
TL/H/568912  
TL/H/568913  
TL/H/568911  
http://www.national.com  
10  
11  
http://www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
Cavity Dual-In-Line Package (J)  
Order Number DAC1220LCJ or DAC1222LCJ  
NS Package Number J18A  
Molded Dual-In-Line Package (N)  
Order Number DAC1020LCN, DAC1021LCN or DAC1022LCN  
NS Package Number N16A  
http://www.national.com  
12  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
Molded Dual-In-Line Package (N)  
Order Number DAC1220LCN, DAC1221LCN or DAC1222LCN  
NS Package Number N18A  
13  
http://www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
Molded Plastic Leaded Chip Carrier (V)  
Order Number DAC1020LCV or DAC1020LIV  
NS Package Number V20A  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance  
with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury  
to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
a
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax: 49 (0) 180-530 85 86  
13th Floor, Straight Block,  
Ocean Centre, 5 Canton Rd.  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2308  
Fax: 81-043-299-2408  
@
Email: europe.support nsc.com  
a
Deutsch Tel: 49 (0) 180-530 85 85  
a
English Tel: 49 (0) 180-532 78 32  
a
Fran3ais Tel: 49 (0) 180-532 93 58  
a
Italiano Tel: 49 (0) 180-534 16 80  
http://www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

DAC1022LCJ/A+

10-Bit Digital-to-Analog Converter
ETC

DAC1022LCN

10-Bit, 12-Bit Binary Multiplying D/A Converter
NSC

DAC1022LCN/A+

10-Bit Digital-to-Analog Converter
ETC

DAC1022LJ

IC PARALLEL, 8 BITS INPUT LOADING, 0.5 us SETTLING TIME, 10-BIT DAC, CDIP16, CERAMIC, DIP-16, Digital to Analog Converter
NSC

DAC102S085

10-Bit Micro Power DUAL Digital-to-Analog Converter with Rail-to-Rail Output
NSC

DAC102S085

DAC102S085 10-Bit Micro Power DUAL Digital-to-Analog Converter with Rail-to-Rail
TI

DAC102S085CIMM

10-Bit Micro Power DUAL Digital-to-Analog Converter with Rail-to-Rail Output
NSC

DAC102S085CIMM

DAC102S085 10-Bit Micro Power DUAL Digital-to-Analog Converter with Rail-to-Rail
TI

DAC102S085CIMM/NOPB

具有轨到轨输出的 10 位微功耗双路数模转换器 | DGS | 10 | -40 to 105
TI

DAC102S085CIMMX

10-Bit Micro Power DUAL Digital-to-Analog Converter with Rail-to-Rail Output
NSC

DAC102S085CIMMX

DAC102S085 10-Bit Micro Power DUAL Digital-to-Analog Converter with Rail-to-Rail
TI

DAC102S085CIMMX/NOPB

具有轨到轨输出的 10 位微功耗双路数模转换器 | DGS | 10 | -40 to 105
TI