LM2595T-5.0/NOPB [NSC]

IC 2.6 A SWITCHING REGULATOR, 173 kHz SWITCHING FREQ-MAX, PZFM5, BENT STAGGERED, TO-220, 5 PIN, Switching Regulator or Controller;
LM2595T-5.0/NOPB
型号: LM2595T-5.0/NOPB
厂家: National Semiconductor    National Semiconductor
描述:

IC 2.6 A SWITCHING REGULATOR, 173 kHz SWITCHING FREQ-MAX, PZFM5, BENT STAGGERED, TO-220, 5 PIN, Switching Regulator or Controller

局域网 开关
文件: 总29页 (文件大小:934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
May 1999  
LM2595  
SIMPLE SWITCHER® Power Converter 150 kHz  
1A Step-Down Voltage Regulator  
General Description  
Features  
n 3.3V, 5V, 12V, and adjustable output versions  
The LM2595 series of regulators are monolithic integrated  
circuits that provide all the active functions for a step-down  
(buck) switching regulator, capable of driving a 1A load with  
excellent line and load regulation. These devices are avail-  
able in fixed output voltages of 3.3V, 5V, 12V, and an adjust-  
able output version.  
n Adjustable version output voltage range, 1.2V to 37V  
±
4% max over line and load conditions  
n Available in TO-220 and TO-263 (surface mount)  
packages  
n Guaranteed 1A output load current  
n Input voltage range up to 40V  
n Requires only 4 external components  
n Excellent line and load regulation specifications  
n 150 kHz fixed frequency internal oscillator  
n TTL shutdown capability  
n Low power standby mode, IQ typically 85 µA  
n High efficiency  
Requiring a minimum number of external components, these  
regulators are simple to use and include internal frequency  
compensation , and a fixed-frequency oscillator.  
The LM2595 series operates at a switching frequency of  
150 kHz thus allowing smaller sized filter components than  
what would be needed with lower frequency switching regu-  
lators. Available in a standard 5-lead TO-220 package with  
several different lead bend options, and a 5-lead TO-263  
surface mount package. Typically, for output voltages less  
than 12V, and ambient temperatures less than 50˚C, no heat  
sink is required.  
n Uses readily available standard inductors  
n Thermal shutdown and current limit protection  
Applications  
A standard series of inductors are available from several dif-  
ferent manufacturers optimized for use with the LM2595 se-  
ries. This feature greatly simplifies the design of  
switch-mode power supplies.  
n Simple high-efficiency step-down (buck) regulator  
n Efficient pre-regulator for linear regulators  
n On-card switching regulators  
±
Other features include a guaranteed 4% tolerance on out-  
n Positive to negative converter  
put voltage under specified input voltage and output load  
Note: Patent Number 5,382,918.  
±
conditions, and 15% on the oscillator frequency. External  
shutdown is included, featuring typically 85 µA stand-by cur-  
rent. Self protection features include a two stage frequency  
reducing current limit for the output switch and an over tem-  
perature shutdown for complete protection under fault condi-  
tions.  
Typical Application (Fixed Output Voltage Versions)  
DS012565-1  
SIMPLE SWITCHER® and Switchers Made Simple® are registered trademarks of National Semiconductor Corporation.  
© 1999 National Semiconductor Corporation  
DS012565  
www.national.com  
Connection Diagrams and Ordering Information  
Bent and Staggered Leads, Through Hole Package  
Surface Mount Package  
5-Lead TO-263 (S)  
5–Lead TO-220 (T)  
DS012565-2  
DS012565-3  
Order Number LM2595T-3.3, LM2595T-5.0,  
LM2595T-12 or LM2595T-ADJ  
Order Number LM2595S-3.3, LM2595S-5.0,  
LM2595S-12 or LM2595S-ADJ  
See NS Package Number T05D  
See NS Package Number TS5B  
16-Lead Ceramic Dual-in-Line Package (J)  
DS012565-57  
Order Number LM2595J-3.3-QML (5962-9687901QEA),  
LM2595J-5.0-QML (5962-9650301QEA),  
LM2595J-12-QML (5962-9650201QEA),  
or LM2595J-ADJ-QML (5962-9650401QEA)  
See NS Package Number J16A  
For specifications and information about Military-Aerospace products, please see the Mil-Aero web page at  
http://www.national.com/appinfo/milaero/index.html.  
www.national.com  
2
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Human Body Model (Note 2)  
Lead Temperature  
2 kV  
S Package  
Vapor Phase (60 sec.)  
Infrared (10 sec.)  
+215˚C  
+245˚C  
+260˚C  
+150˚C  
Maximum Supply Voltage  
ON /OFF Pin Input Voltage  
Feedback Pin Voltage  
Output Voltage to Ground  
(Steady State)  
45V  
−0.3 V +25V  
−0.3 V +25V  
T Package (Soldering, 10 sec.)  
Maximum Junction Temperature  
Operating Conditions  
Temperature Range  
Supply Voltage  
−1V  
Internally limited  
−65˚C to +150˚C  
Power Dissipation  
−40˚C TJ +125˚C  
Storage Temperature Range  
ESD Susceptibility  
4.5V to 40V  
LM2595-3.3  
Electrical Characteristics  
=
Specifications with standard type face are for TJ 25˚C, and those with boldface type apply over full Operating Tempera-  
ture Range.  
Symbol  
Parameter  
Conditions  
LM2595-3.3  
Limit  
Units  
(Limits)  
Typ  
(Note 3)  
(Note 4)  
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1  
VOUT  
Output Voltage  
4.75V VIN 40V, 0.1A ILOAD 1A  
3.3  
78  
V
3.168/3.135  
3.432/3.465  
V(min)  
V(max)  
%
= =  
VIN 12V, ILOAD 1A  
η
Efficiency  
LM2595-5.0  
Electrical Characteristics  
=
Specifications with standard type face are for TJ 25˚C, and those with boldface type apply over full Operating Tempera-  
ture Range.  
Symbol  
Parameter  
Conditions  
LM2595-5.0  
Limit  
Units  
(Limits)  
Typ  
(Note 3)  
(Note 4)  
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1  
VOUT  
Output Voltage  
7V VIN 40V, 0.1A ILOAD 1A  
5.0  
82  
V
4.800/4.750  
5.200/5.250  
V(min)  
V(max)  
%
= =  
VIN 12V, ILOAD 1A  
η
Efficiency  
LM2595-12  
Electrical Characteristics  
=
Specifications with standard type face are for TJ 25˚C, and those with boldface type apply over full Operating Tempera-  
ture Range.  
Symbol  
Parameter  
Conditions  
LM2595-12  
Units  
(Limits)  
Typ  
Limit  
(Note 3)  
(Note 4)  
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1  
VOUT  
Output Voltage  
15V VIN 40V, 0.1A ILOAD 1A  
12.0  
90  
V
11.52/11.40  
12.48/12.60  
V(min)  
V(max)  
%
= =  
VIN 25V, ILOAD 1A  
η
Efficiency  
3
www.national.com  
LM2595-ADJ  
Electrical Characteristics  
=
Specifications with standard type face are for TJ 25˚C, and those with boldface type apply over full Operating Tempera-  
ture Range.  
Symbol  
Parameter  
Conditions  
LM2595-ADJ  
Units  
(Limits)  
Typ  
Limit  
(Note 3)  
1.230  
(Note 4)  
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1  
VFB  
Feedback Voltage  
4.5V VIN 40V, 0.1A ILOAD 1A  
V
VOUT programmed for 3V. Circuit of Figure 1  
1.193/1.180  
1.267/1.280  
V(min)  
V(max)  
%
=
=
=
η
Efficiency  
VIN 12V, VOUT 3V, ILOAD 1A  
78  
All Output Voltage Versions  
Electrical Characteristics  
=
Specifications with standard type face are for TJ 25˚C, and those with boldface type apply over full Operating Tempera-  
=
=
ture Range. Unless otherwise specified, VIN 12V for the 3.3V, 5V, and Adjustable version and VIN 24V for the 12V ver-  
=
sion. ILOAD 200 mA.  
Symbol  
Parameter  
Conditions  
LM2595-XX  
Units  
(Limits)  
Typ  
Limit  
(Note 3)  
10  
(Note 4)  
DEVICE PARAMETERS  
=
Ib  
Feedback Bias Current  
Adjustable Version Only,VFB 1.3V  
nA  
nA (max)  
kHz  
50/100  
fO  
Oscillator Frequency  
Saturation Voltage  
(Note 6)  
150  
127/110  
173/173  
kHz(min)  
kHz(max)  
V
=
VSAT  
DC  
IOUT 1A (Notes 7, 8)  
1
1.2/1.3  
V(max)  
%
Max Duty Cycle (ON)  
Min Duty Cycle (OFF)  
Current Limit  
(Note 8)  
100  
0
(Note 9)  
ICL  
Peak Current (Notes 7, 8)  
1.5  
A
1.2/1.15  
2.4/2.6  
50  
A(min)  
A(max)  
µA(max)  
mA  
=
IL  
Output Leakage Current  
Quiescent Current  
Output 0V  
(Notes 7, 9) and (Note 10)  
=
Output −1V  
2
5
15  
10  
mA(max)  
mA  
IQ  
(Note 9)  
mA(max)  
µA  
=
ISTBY  
Standby Quiescent  
Current  
ON/OFF pin 5V (OFF)  
(Note 10)  
85  
200/250  
µA(max)  
˚C/W  
θJC  
θJA  
θJA  
θJA  
θJA  
Thermal Resistance  
TO-220 or TO-263 Package, Junction to Case  
TO-220 Package, Junction to Ambient (Note 11)  
TO-263 Package, Junction to Ambient (Note 12)  
TO-263 Package, Junction to Ambient (Note 13)  
TO-263 Package, Junction to Ambient (Note 14)  
2
50  
50  
30  
20  
˚C/W  
˚C/W  
˚C/W  
˚C/W  
ON/OFF CONTROL Test Circuit Figure 1  
ON /OFF Pin Logic Input  
1.3  
V
VIH  
VIL  
Threshold Voltage  
Low (Regulator ON)  
High (Regulator OFF)  
0.6  
2.0  
V(max)  
V(min)  
www.national.com  
4
All Output Voltage Versions  
Electrical Characteristics (Continued)  
=
Specifications with standard type face are for TJ 25˚C, and those with boldface type apply over full Operating Tempera-  
=
=
ture Range. Unless otherwise specified, VIN 12V for the 3.3V, 5V, and Adjustable version and VIN 24V for the 12V ver-  
=
sion. ILOAD 200 mA.  
Symbol  
Parameter  
Conditions  
LM2595-XX  
Units  
(Limits)  
Typ  
Limit  
(Note 3)  
5
(Note 4)  
ON/OFF CONTROL Test Circuit Figure 1  
=
IH  
ON/OFF Pin  
Input Current  
VLOGIC 2.5V (Regulator OFF)  
µA  
15  
5
µA(max)  
µA  
=
IL  
VLOGIC 0.5V (Regulator ON)  
0.02  
µA(max)  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is in-  
tended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.  
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5k resistor into each pin.  
Note 3: Typical numbers are at 25˚C and represent the most likely norm.  
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% produc-  
tion tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate  
Average Outgoing Quality Level (AOQL).  
Note 5: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator sys-  
tem performance. When the LM2595 is used as shown in the Figure 1 test circuit, system performance will be as shown in system parameters section of Electrical  
Characteristics.  
Note 6: The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current over-  
load.  
Note 7: No diode, inductor or capacitor connected to output pin.  
Note 8: Feedback pin removed from output and connected to 0V to force the output transistor switch ON.  
Note 9: Feedback pin removed from output and connected to 12V for the 3.3V, 5V, and the ADJ. version, and 15V for the 12V version, to force the output transistor  
switch OFF.  
=
40V.  
Note 10:  
V
IN  
Note 11: Junction to ambient thermal resistance (no external heat sink) for the TO-220 package mounted vertically, with the leads soldered to a printed circuit board  
2
with (1 oz.) copper area of approximately 1 in .  
2
Note 12: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single printed circuit board with 0.5 in of (1 oz.) copper area.  
2
Note 13: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with 2.5 in of (1 oz.) copper area.  
2
Note 14: Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with 3 in of (1 oz.) copper area on  
2
the LM2595S side of the board, and approximately 16 in of copper on the other side of the p-c board. See Application Information in this data sheet and the thermal  
model in Switchers Made Simple® version 4.3 software.  
Typical Performance Characteristics (Circuit of Figure 1)  
Normalized  
Output Voltage  
Line Regulation  
Efficiency  
DS012565-13  
DS012565-12  
DS012565-11  
5
www.national.com  
Typical Performance Characteristics (Circuit of Figure 1) (Continued)  
Switch Saturation  
Voltage  
Switch Current Limit  
Dropout Voltage  
DS012565-15  
DS012565-16  
DS012565-14  
Operating  
Quiescent Current  
Shutdown  
Quiescent Current  
Minimum Operating  
Supply Voltage  
DS012565-4  
DS012565-5  
DS012565-6  
ON /OFF Threshold  
Voltage  
ON /OFF Pin  
Current (Sinking)  
Switching Frequency  
DS012565-9  
DS012565-7  
DS012565-8  
www.national.com  
6
Typical Performance Characteristics (Circuit of Figure 1) (Continued)  
Feedback Pin  
Bias Current  
DS012565-10  
Continuous Mode Switching Waveforms  
Discontinuous Mode Switching Waveforms  
=
=
=
VIN 20V, VOUT 5V, ILOAD 1A  
=
=
=
VIN 20V, VOUT 5V, ILOAD 600 mA  
=
= =  
68 µH, COUT 120 µF, COUT ESR 100 mΩ  
L
=
= =  
22 µH, COUT 220 µF, COUT ESR 50 mΩ  
L
DS012565-17  
DS012565-18  
A: Output Pin Voltage, 10V/div.  
B: Inductor Current 0.5A/div.  
C: Output Ripple Voltage, 50 mV/div.  
A: Output Pin Voltage, 10V/div.  
B: Inductor Current 0.5A/div.  
C: Output Ripple Voltage, 50 mV/div.  
Horizontal Time Base: 2 µs/div.  
Horizontal Time Base: 2 µs/div.  
Load Transient Response for Continuous Mode  
Load Transient Response for Discontinuous Mode  
=
=
=
VIN 20V, VOUT 5V, ILOAD 250 mA to 750 mA  
=
=
=
VIN 20V, VOUT 5V, ILOAD 250 mA to 750 mA  
=
= =  
68 µH, COUT 120 µF, COUT ESR 100 mΩ  
L
=
= =  
22 µH, COUT 220 µF, COUT ESR 50 mΩ  
L
DS012565-19  
DS012565-20  
A: Output Voltage, 100 mV/div. (AC)  
B: 250 mA to 750 mA Load Pulse  
A: Output Voltage, 100 mV/div. (AC)  
B: 250 mA to 750 mA Load Pulse  
Horizontal Time Base: 100 µs/div.  
Horizontal Time Base: 200 µs/div.  
7
www.national.com  
Test Circuit and Layout Guidelines  
Fixed Output Voltage Versions  
DS012565-22  
C
C
— 120 µF, 50V, Aluminum Electrolytic Nichicon “PL Series”  
IN  
— 120 µF, 25V Aluminum Electrolytic, Nichicon “PL Series”  
OUT  
D1 — 3A, 40V Schottky Rectifier, 1N5822  
L1 — 100 µH, L29  
Adjustable Output Voltage Versions  
DS012565-23  
C
C
— 120 µF, 50V, Aluminum Electrolytic Nichicon “PL Series”  
IN  
— 120 µF, 25V Aluminum Electrolytic, Nichicon “PL Series”  
OUT  
D1 — 3A, 40V Schottky Rectifier, 1N5822  
L1 — 100 µH, L29  
R
C
— 1 k, 1%  
1
— See Application Information Section  
FF  
FIGURE 1. Standard Test Circuits and Layout Guides  
As in any switching regulator, layout is very important. Rap-  
idly switching currents associated with wiring inductance can  
generate voltage transients which can cause problems. For  
minimal inductance and ground loops, the wires indicated by  
heavy lines should be wide printed circuit traces and  
should be kept as short as possible. For best results, ex-  
ternal components should be located as close to the  
switcher lC as possible using ground plane construction or  
single point grounding.  
If open core inductors are used, special care must be  
taken as to the location and positioning of this type of induc-  
tor. Allowing the inductor flux to intersect sensitive feedback,  
lC groundpath and COUT wiring can cause problems.  
When using the adjustable version, special care must be  
taken as to the location of the feedback resistors and the as-  
sociated wiring. Physically locate both resistors near the IC,  
and route the wiring away from the inductor, especially an  
open core type of inductor. (See application section for more  
information.)  
www.national.com  
8
LM2595 Series Buck Regulator Design Procedure (Fixed Output)  
PROCEDURE (Fixed Output Voltage Version)  
EXAMPLE (Fixed Output Voltage Version)  
Given:  
Given:  
=
=
VOUT 5V  
VOUT Regulated Output Voltage (3.3V, 5V or 12V)  
=
=
VIN(max) 12V  
VIN(max) Maximum DC Input Voltage  
=
=
ILOAD(max) Maximum Load Current  
ILOAD(max) 1A  
1. Inductor Selection (L1)  
1. Inductor Selection (L1)  
A. Select the correct inductor value selection guide from Fig-  
ure 4 , Figure 5, or Figure 6. (Output voltages of 3.3V, 5V, or  
12V respectively.) For all other voltages, see the design pro-  
cedure for the adjustable version.  
A. Use the inductor selection guide for the 5V version shown  
in Figure 5.  
B. From the inductor value selection guide shown in Figure 5,  
the inductance region intersected by the 12V horizontal line  
and the 1A vertical line is 68 µH, and the inductor code is  
L30.  
B. From the inductor value selection guide, identify the induc-  
tance region intersected by the Maximum Input Voltage line  
and the Maximum Load Current line. Each region is identified  
by an inductance value and an inductor code (LXX).  
C. The inductance value required is 68 µH. From the table in  
Figure 8, go to the L30 line and choose an inductor part num-  
ber from any of the four manufacturers shown. (In most in-  
stance, both through hole and surface mount inductors are  
available.)  
C. Select an appropriate inductor from the four manufactur-  
er’s part numbers listed in Figure 8.  
2. Output Capacitor Selection (COUT  
)
2. Output Capacitor Selection (COUT)  
A. In the majority of applications, low ESR (Equivalent Series  
Resistance) electrolytic capacitors between 47 µF and 330  
µF and low ESR solid tantalum capacitors between 56 µF  
and 270 µF provide the best results. This capacitor should be  
located close to the IC using short capacitor leads and short  
copper traces. Do not use capacitors larger than 330 µF.  
A. See section on output capacitors in application infor-  
mation section.  
B. From the quick design component selection table shown  
in Figure 2, locate the 5V output voltage section. In the load  
current column, choose the load current line that is closest to  
the current needed in your application, for this example, use  
the 1A line. In the maximum input voltage column, select the  
line that covers the input voltage needed in your application,  
in this example, use the 15V line. Continuing on this line are  
recommended inductors and capacitors that will provide the  
best overall performance.  
For additional information, see section on output capaci-  
tors in application information section.  
B. To simplify the capacitor selection procedure, refer to the  
quick design component selection table shown in Figure 2.  
This table contains different input voltages, output voltages,  
and load currents, and lists various inductors and output ca-  
pacitors that will provide the best design solutions.  
The capacitor list contains both through hole electrolytic and  
surface mount tantalum capacitors from four different capaci-  
tor manufacturers. It is recommended that both the manufac-  
turers and the manufacturer’s series that are listed in the  
table be used.  
C. The capacitor voltage rating for electrolytic capacitors  
should be at least 1.5 times greater than the output voltage,  
and often much higher voltage ratings are needed to satisfy  
the low ESR requirements for low output ripple voltage.  
In this example aluminum electrolytic capacitors from several  
different manufacturers are available with the range of ESR  
numbers needed.  
D. For computer aided design software, see Switchers  
Made Simple® version 4.2 or later.  
220 µF 25V Panasonic HFQ Series  
220 µF 25V Nichicon PL Series  
C. For a 5V output, a capacitor voltage rating at least 7.5V or  
more is needed. But, in this example, even a low ESR,  
switching grade, 220 µF 10V aluminum electrolytic capacitor  
would exhibit approximately 225 mof ESR (see the curve  
in Figure 14 for the ESR vs voltage rating). This amount of  
ESR would result in relatively high output ripple voltage. To  
reduce the ripple to 1% of the output voltage, or less, a ca-  
pacitor with a higher voltage rating (lower ESR) should be se-  
lected. A 16V or 25V capacitor will reduce the ripple voltage  
by approximately half.  
Procedure continued on next page.  
Example continued on next page.  
9
www.national.com  
LM2595 Series Buck Regulator Design Procedure (Fixed Output) (Continued)  
PROCEDURE (Fixed Output Voltage Version)  
3. Catch Diode Selection (D1)  
EXAMPLE (Fixed Output Voltage Version)  
3. Catch Diode Selection (D1)  
A. The catch diode current rating must be at least 1.3 times  
greater than the maximum load current. Also, if the power  
supply design must withstand a continuous output short, the  
diode should have a current rating equal to the maximum  
current limit of the LM2595. The most stressful condition for  
this diode is an overload or shorted output condition.  
A. Refer to the table shown in Figure 11 In this example, a  
3A, 20V, 1N5820 Schottky diode will provide the best perfor-  
mance, and will not be overstressed even for a shorted out-  
put.  
B. The reverse voltage rating of the diode should be at least  
1.25 times the maximum input voltage.  
C. This diode must be fast (short reverse recovery time) and  
must be located close to the LM2595 using short leads and  
short printed circuit traces. Because of their fast switching  
speed and low forward voltage drop, Schottky diodes provide  
the best performance and efficiency, and should be the first  
choice, especially in low output voltage applications.  
Ultra-fast recovery, or High-Efficiency rectifiers also provide  
good results. Ultra-fast recovery diodes typically have re-  
verse recovery times of 50 ns or less. Rectifiers such as the  
1N5400 series are much too slow and should not be used.  
4. Input Capacitor (CIN  
)
4. Input Capacitor (CIN)  
A low ESR aluminum or tantalum bypass capacitor is needed  
between the input pin and ground pin to prevent large volt-  
age transients from appearing at the input. This capacitor  
should be located close to the IC using short leads. In addi-  
The important parameters for the Input capacitor are the in-  
put voltage rating and the RMS current rating. With a nominal  
input voltage of 12V, an aluminum electrolytic capacitor with  
a voltage rating greater than 18V (1.5 x VIN) would be  
needed. The next higher capacitor voltage rating is 25V.  
tion, the RMS current rating of the input capacitor should be  
1
selected to be at least  
2 the DC load current. The capacitor  
The RMS current rating requirement for the input capacitor in  
manufacturers data sheet must be checked to assure that  
this current rating is not exceeded. The curve shown in Fig-  
ure 13 shows typical RMS current ratings for several different  
aluminum electrolytic capacitor values.  
1
a buck regulator is approximately  
2 the DC load current. In  
this example, with a 1A load, a capacitor with a RMS current  
rating of at least 500 mA is needed. The curves shown in Fig-  
ure 13 can be used to select an appropriate input capacitor.  
From the curves, locate the 25V line and note which capaci-  
tor values have RMS current ratings greater than 500 mA. Ei-  
ther a 180 µF or 220 µF, 25V capacitor could be used.  
For an aluminum electrolytic, the capacitor voltage rating  
should be approximately 1.5 times the maximum input volt-  
age. Caution must be exercised if solid tantalum capacitors  
are used (see Application Information on input capacitor).  
The tantalum capacitor voltage rating should be 2 times the  
maximum input voltage and it is recommended that they be  
surge current tested by the manufacturer.  
For a through hole design, a 220 µF/25V electrolytic capaci-  
tor (Panasonic HFQ series or Nichicon PL series or equiva-  
lent) would be adequate. other types or other manufacturers  
capacitors can be used provided the RMS ripple current rat-  
ings are adequate.  
Use caution when using ceramic capacitors for input bypass-  
ing, because it may cause severe ringing at the VIN pin.  
For surface mount designs, solid tantalum capacitors can be  
used, but caution must be exercised with regard to the ca-  
pacitor surge current rating (see Application Information on  
input capacitors in this data sheet). The TPS series available  
from AVX, and the 593D series from Sprague are both surge  
current tested.  
For additional information, see section on input capaci-  
tors in Application Information section.  
www.national.com  
10  
LM2595 Series Buck Regulator Design Procedure (Fixed Output) (Continued)  
Conditions  
Inductor  
Output Capacitor  
Through Hole Electrolytic Surface Mount Tantalum  
Output  
Load  
Max Input Inductance Inductor  
Panasonic  
HFQ Series  
(µF/V)  
Nichicon  
AVX TPS  
Series  
(µF/V)  
220/10  
220/10  
220/10  
220/10  
220/10  
100/16  
100/16  
220/10  
220/10  
220/10  
100/16  
220/10  
100/16  
68/20  
Sprague  
595D Series  
(µF/V)  
Voltage Current  
Voltage  
(V)  
5
(µH)  
(#)  
PL Series  
(µF/V)  
330/16  
270/25  
220/35  
220/35  
220/16  
150/25  
82/35  
(V)  
(A)  
22  
33  
L24  
L23  
L31  
L30  
L13  
L21  
L20  
L28  
L31  
L30  
L29  
L21  
L19  
L19  
L31  
L30  
L36  
L35  
L21  
L19  
L26  
330/16  
270/25  
220/25  
180/35  
220/25  
150/35  
150/35  
330/16  
220/25  
180/35  
180/35  
180/16  
120/25  
100/25  
220/25  
180/35  
82/25  
330/10  
270/10  
220/10  
180/10  
220/10  
150/16  
100/20  
270/10  
220/10  
150/16  
120/16  
150/16  
100/20  
68/25  
7
1
10  
40  
6
47  
3.3  
68  
47  
0.5  
1
10  
40  
8
68  
100  
33  
330/16  
220/25  
180/35  
120/35  
180/16  
1200/25  
100/25  
220/25  
120/25  
82/25  
10  
15  
40  
9
47  
68  
5
100  
68  
0.5  
1
20  
40  
15  
18  
30  
40  
15  
20  
40  
150  
150  
47  
68/20  
120/20  
120/20  
100/20  
68/25  
68  
68/20  
150  
220  
68  
68/20  
12  
82/25  
82/25  
68/20  
180/25  
82/25  
180/25  
82/25  
68/20  
120/20  
100/20  
68/25  
0.5  
150  
330  
68/20  
56/25  
56/25  
68/20  
FIGURE 2. LM2595 Fixed Voltage Quick Design Component Selection Table  
LM2595 Series Buck Regulator Design Procedure (Adjustable Output)  
PROCEDURE (Adjustable Output Voltage Version)  
EXAMPLE (Adjustable Output Voltage Version)  
Given:  
Given:  
=
=
VOUT 20V  
VOUT Regulated Output Voltage  
=
=
VIN(max) 28V  
VIN(max) Maximum Input Voltage  
=
=
ILOAD(max) 1A  
ILOAD(max) Maximum Load Current  
=
=
Switching Frequency (Fixed at a nominal 150 kHz).  
F
Switching Frequency (Fixed at a nominal 150 kHz).  
F
1. Programming Output Voltage (Selecting R1 and R2, as  
1. Programming Output Voltage (Selecting R1 and R2, as  
shown in Figure 1)  
shown in Figure 1)  
Use the following formula to select the appropriate resistor  
values.  
Select R1 to be 1 k, 1%. Solve for R2.  
=
=
R2 1k (16.26 − 1) 15.26k, closest 1% value is 15.4 k.  
Select a value for R1 between 240and 1.5 k. The lower  
resistor values minimize noise pickup in the sensitive feed-  
back pin. (For the lowest temperature coefficient and the best  
stability with time, use 1% metal film resistors.)  
=
R2 15.4 k.  
Procedure continued on next page.  
Example continued on next page.  
11  
www.national.com  
LM2595 Series Buck Regulator Design Procedure (Adjustable Output)  
(Continued)  
PROCEDURE (Adjustable Output Voltage Version)  
2. Inductor Selection (L1)  
EXAMPLE (Adjustable Output Voltage Version)  
2. Inductor Selection (L1)  
A. Calculate the inductor Volt microsecond constant E T  
A. Calculate the inductor Volt microsecond constant  
(V µs), from the following formula:  
(E T),  
=
=
where VSAT internal switch saturation voltage 1V  
=
=
and VD diode forward voltage drop 0.5V  
=
34.8 (V µs)  
B. Use the E T value from the previous formula and match  
it with the E T number on the vertical axis of the Inductor  
Value Selection Guide shown in Figure 7.  
B. E  
T
=
C. ILOAD(max) 1A  
D. From the inductor value selection guide shown in Figure 7,  
the inductance region intersected by the 35 (V µs) horizon-  
tal line and the 1A vertical line is 100 µH, and the inductor  
code is L29.  
C. on the horizontal axis, select the maximum load current.  
D. Identify the inductance region intersected by the E T  
value and the Maximum Load Current value. Each region is  
identified by an inductance value and an inductor code  
(LXX).  
E. From the table in Figure 8, locate line L29, and select an  
inductor part number from the list of manufacturers part num-  
bers.  
E. Select an appropriate inductor from the four manufactur-  
er’s part numbers listed in Figure 8.  
3. Output Capacitor Selection (COUT  
)
3. Output Capacitor SeIection (COUT)  
A. In the majority of applications, low ESR electrolytic or solid  
tantalum capacitors between 47 µF and 330 µF provide the  
best results. This capacitor should be located close to the IC  
using short capacitor leads and short copper traces. Do not  
use capacitors larger than 330 µF. For additional informa-  
tion, see section on output capacitors in application in-  
formation section.  
A. See section on COUT in Application Information section.  
B. From the quick design table shown in Figure 3, locate the  
output voltage column. From that column, locate the output  
voltage closest to the output voltage in your application. In  
this example, select the 24V line. Under the output capacitor  
section, select a capacitor from the list of through hole elec-  
trolytic or surface mount tantalum types from four different  
capacitor manufacturers. It is recommended that both the  
manufacturers and the manufacturers series that are listed in  
the table be used.  
B. To simplify the capacitor selection procedure, refer to the  
quick design table shown in Figure 3. This table contains dif-  
ferent output voltages, and lists various output capacitors  
that will provide the best design solutions.  
In this example, through hole aluminum electrolytic capaci-  
tors from several different manufacturers are available.  
C. The capacitor voltage rating should be at least 1.5 times  
greater than the output voltage, and often much higher volt-  
age ratings are needed to satisfy the low ESR requirements  
needed for low output ripple voltage.  
82 µF, 35V Panasonic HFQ Series  
82 µF, 35V Nichicon PL Series  
C. For a 20V output, a capacitor rating of at least 30V or  
more is needed. In this example, either a 35V or 50V capaci-  
tor would work. A 35V rating was chosen, although a 50V rat-  
ing could also be used if a lower output ripple voltage is  
needed.  
Other manufacturers or other types of capacitors may also  
be used, provided the capacitor specifications (especially the  
100 kHz ESR) closely match the types listed in the table. Re-  
fer to the capacitor manufacturers data sheet for this informa-  
tion.  
4. Feedforward Capacitor (CFF) (See Figure 1)  
4. Feedforward Capacitor (CFF)  
For output voltages greater than approximately 10V, an ad-  
ditional capacitor is required. The compensation capacitor is  
typically between 50 pF and 10 nF, and is wired in parallel  
with the output voltage setting resistor, R2. It provides addi-  
tional stability for high output voltages, low input-output volt-  
ages, and/or very low ESR output capacitors, such as solid  
tantalum capacitors.  
The table shown in Figure 3 contains feed forward capacitor  
values for various output voltages. In this example, a 1 nF  
capacitor is needed.  
This capacitor type can be ceramic, plastic, silver mica, etc.  
(Because of the unstable characteristics of ceramic capaci-  
tors made with Z5U material, they are not recommended.)  
www.national.com  
12  
LM2595 Series Buck Regulator Design Procedure (Adjustable Output)  
(Continued)  
PROCEDURE (Adjustable Output Voltage Version)  
Procedure continued on next page.  
EXAMPLE (Adjustable Output Voltage Version)  
Example continued on next page.  
5. Catch Diode Selection (D1)  
5. Catch Diode Selection (D1)  
A. The catch diode current rating must be at least 1.3 times  
greater than the maximum load current. Also, if the power  
supply design must withstand a continuous output short, the  
diode should have a current rating equal to the maximum  
current limit of the LM2595. The most stressful condition for  
this diode is an overload or shorted output condition.  
A. Refer to the table shown in Figure 11 Schottky diodes pro-  
vide the best performance, and in this example a 3A, 40V,  
1N5822 Schottky diode would be a good choice. The 3A di-  
ode rating is more than adequate and will not be over-  
stressed even for a shorted output.  
B. The reverse voltage rating of the diode should be at least  
1.25 times the maximum input voltage.  
C. This diode must be fast (short reverse recovery time) and  
must be located close to the LM2595 using short leads and  
short printed circuit traces. Because of their fast switching  
speed and low forward voltage drop, Schottky diodes provide  
the best performance and efficiency, and should be the first  
choice, especially in low output voltage applications.  
Ultra-fast recovery, or High-Efficiency rectifiers are also a  
good choice, but some types with an abrupt turn-off charac-  
teristic may cause instability or EMl problems. Ultra-fast re-  
covery diodes typically have reverse recovery times of 50 ns  
or less. Rectifiers such as the 1N4001 series are much too  
slow and should not be used.  
6. Input Capacitor (CIN  
)
6. Input Capacitor (CIN)  
A low ESR aluminum or tantalum bypass capacitor is needed  
between the input pin and ground to prevent large voltage  
transients from appearing at the input. In addition, the RMS  
current rating of the input capacitor should be selected to be  
The important parameters for the Input capacitor are the in-  
put voltage rating and the RMS current rating. With a nominal  
input voltage of 28V, an aluminum electrolytic aluminum elec-  
trolytic capacitor with a voltage rating greater than 42V (1.5 x  
at least 1  
2  
the DC load current. The capacitor manufacturers  
VIN) would be needed. Since the the next higher capacitor  
data sheet must be checked to assure that this current rating  
is not exceeded. The curve shown in Figure 13 shows typical  
RMS current ratings for several different aluminum electro-  
lytic capacitor values.  
voltage rating is 50V, a 50V capacitor should be used. The  
capacitor voltage rating of (1.5 x VIN) is a conservative guide-  
line, and can be modified somewhat if desired.  
The RMS current rating requirement for the input capacitor of  
1
This capacitor should be located close to the IC using short  
leads and the voltage rating should be approximately 1.5  
times the maximum input voltage.  
a buck regulator is approximately  
2 the DC load current. In  
this example, with a 1A load, a capacitor with a RMS current  
rating of at least 500 mA is needed.  
If solid tantalum input capacitors are used, it is recomended  
that they be surge current tested by the manufacturer.  
The curves shown in Figure 13 can be used to select an ap-  
propriate input capacitor. From the curves, locate the 50V  
line and note which capacitor values have RMS current rat-  
ings greater than 500 mA. Either a 100 µF or 120 µF, 50V ca-  
pacitor could be used.  
se caution when using a high dielectric constant ceramic ca-  
pacitor for input bypassing, because it may cause severe  
ringing at the VIN pin.  
For a through hole design, a 120 µF/50V electrolytic capaci-  
tor (Panasonic HFQ series or Nichicon PL series or equiva-  
lent) would be adequate. Other types or other manufacturers  
capacitors can be used provided the RMS ripple current rat-  
ings are adequate.  
For additional information, see section on input capaci-  
tors in application information section.  
For surface mount designs, solid tantalum capacitors can be  
used, but caution must be exercised with regard to the ca-  
pacitor surge current rting (see Application Information or in-  
put capacitors in this data sheet). The TPS series available  
from AVX, and the 593D series from Sprague are both surge  
current tested.  
To further simplify the buck regulator design procedure, Na-  
tional Semiconductor is making available computer design  
software to be used with the Simple Switcher line ot switch-  
ing regulators. Switchers Made Simple (version 4.2 or later)  
is available on a 31⁄  
" diskette for IBM compatible computers.  
2
13  
www.national.com  
LM2595 Series Buck Regulator Design Procedure (Adjustable Output)  
(Continued)  
Output  
Voltage  
(V)  
Through Hole Electrolytic Output Capacitor  
Surface Mount Tantalum Output Capacitor  
Panasonic  
HFQ Series  
(µF/V)  
Nichicon PL  
Series  
(µF/V)  
Feedforward  
Capacitor  
AVX TPS  
Series  
(µF/V)  
330/6.3  
220/10  
220/10  
100/16  
68/20  
Sprague  
595D Series  
(µF/V)  
Feedforward  
Capacitor  
1.2  
4
330/50  
220/25  
220/25  
180/25  
120/25  
120/25  
82/35  
330/50  
220/25  
220/25  
180/25  
120/25  
120/25  
82/35  
0
330/6.3  
220/10  
0
4.7 nF  
3.3 nF  
1.5 nF  
1.5 nF  
1.5 nF  
1 nF  
4.7 nF  
3.3 nF  
1.5 nF  
1.5 nF  
1.5 nF  
220 pF  
220 pF  
6
220/10  
9
180/16  
1 2  
1 5  
2 4  
2 8  
120/20  
68/20  
100/20  
33/25  
33/35  
82/50  
82/50  
1 nF  
10/35  
33/35  
FIGURE 3. Output Capacitor and Feedforward Capacitor Selection Table  
LM2595 Series Buck Regulator Design Procedure  
INDUCTOR VALUE SELECTION GUIDES (For Continuous Mode Operation)  
DS012565-24  
DS012565-26  
FIGURE 4. LM2595-3.3  
FIGURE 6. LM2595-12  
DS012565-27  
DS012565-25  
FIGURE 7. LM2595-ADJ  
FIGURE 5. LM2595-5.0  
www.national.com  
14  
LM2595 Series Buck Regulator Design Procedure (Continued)  
Inductance  
(µH)  
Current  
(A)  
Renco  
Through Hole  
Pulse Engineering  
Coilcraft  
Surface  
Mount  
Through  
Surface  
Mount  
Surface Mount  
Hole  
L4  
68  
47  
0.32  
0.37  
0.44  
0.32  
0.39  
0.48  
0.58  
0.70  
0.83  
0.99  
1.24  
0.42  
0.55  
0.66  
0.82  
0.99  
1.17  
1.40  
1.70  
0.80  
1.00  
1.20  
1.47  
1.78  
2.15  
RL-1284-68-43  
RL-1284-47-43  
RL-1284-33-43  
RL-5470-3  
RL1500-68  
RL1500-47  
RL1500-33  
RL1500-220  
RL1500-150  
RL1500-100  
RL1500-68  
RL1500-47  
RL1500-33  
RL1500-22  
RL1500-15  
RL1500-330  
RL1500-220  
RL1500-150  
RL1500-100  
RL1500-68  
PE-53804  
PE-53805  
PE-53806  
PE-53809  
PE-53810  
PE-53811  
PE-53812  
PE-53813  
PE-53814  
PE-53815  
PE-53816  
PE-53817  
PE-53818  
PE-53819  
PE-53820  
PE-53821  
PE-53822  
PE-53823  
PE-53824  
PE-53826  
PE-53827  
PE-53828  
PE-53829  
PE-53830  
PE-53935  
PE-53804-S  
PE-53805-S  
PE-53806-S  
PE-53809-S  
PE-53810-S  
PE-53811-S  
PE-53812-S  
PE-53813-S  
PE-53814-S  
PE-53815-S  
PE-53816-S  
PE-53817-S  
PE-53818-S  
PE-53819-S  
PE-53820-S  
PE-53821-S  
PE-53822-S  
PE-53823-S  
PE-53824-S  
PE-53826-S  
PE-53827-S  
PE-53828-S  
PE-53829-S  
PE-53830-S  
PE-53935-S  
DO1608-68  
DO1608-473  
DO1608-333  
DO3308-224  
DO3308-154  
DO3308-104  
DO3308-683  
DO3308-473  
DO3308-333  
DO3308-223  
DO3308-153  
DO3316-334  
DO3316-224  
DO3316-154  
DO3316-104  
DO3316-683  
DO3316-473  
DO3316-333  
DO3316-223  
DO5022P-334  
DO5022P-224  
DO5022P-154  
DO5022P-104  
DO5022P-683  
L5  
L6  
33  
L9  
220  
150  
100  
68  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L26  
L27  
L28  
L29  
L30  
L35  
RL-5470-4  
RL-5470-5  
RL-5470-6  
47  
RL-5470-7  
33  
RL-1284-33-43  
RL-1284-22-43  
RL-1284-15-43  
RL-5471-1  
22  
15  
330  
220  
150  
100  
68  
RL-5471-2  
RL-5471-3  
RL-5471-4  
RL-5471-5  
47  
RL-5471-6  
33  
RL-5471-7  
22  
RL-1283-22-43  
RL-5471-1  
330  
220  
150  
100  
68  
RL-5471-2  
RL-5471-3  
RL-5471-4  
RL-5471-5  
47  
RL-5473-1  
FIGURE 8. Inductor Manufacturers Part Numbers  
Coilcraft Inc.  
Phone (800) 322-2645  
FAX (708) 639-1469  
Phone +11 1236 730 595  
FAX +44 1236 730 627  
Phone (619) 674-8100  
FAX (619) 674-8262  
Phone +353 93 24 107  
FAX +353 93 24 459  
Phone (800) 645-5828  
FAX (516) 586-5562  
Coilcraft Inc., Europe  
Pulse Engineering Inc.  
Pulse Engineering Inc.,  
Europe  
Renco Electronics Inc.  
FIGURE 9. Inductor Manufacturers Phone Numbers  
15  
www.national.com  
LM2595 Series Buck Regulator Design Procedure (Continued)  
Nichicon Corp.  
Panasonic  
Phone  
FAX  
(708) 843-7500  
(708) 843-2798  
(714) 373-7857  
(714) 373-7102  
(803) 448-9411  
(803) 448-1943  
(207) 324-4140  
(207) 324-7223  
Phone  
FAX  
AVX Corp.  
Phone  
FAX  
Sprague/Vishay  
Phone  
FAX  
FIGURE 10. Capacitor Manufacturers Phone Numbers  
VR  
1A Diodes  
3A Diodes  
Surface Mount  
Through Hole  
Surface Mount  
Through Hole  
Schottky  
Ultra Fast  
Schottky  
Ultra Fast  
Schottky  
Ultra Fast  
Schottky  
Ultra Fast  
Recovery  
Recovery  
Recovery  
Recovery  
SK12  
All of  
these  
diodes  
are  
rated to  
at least  
50V.  
1N5817  
SR102  
All of  
these  
diodes  
are  
rated to  
at least  
50V.  
All of  
these  
diodes  
are  
rated to  
at least  
50V.  
1N5820  
SR302  
All of  
these  
diodes  
are  
rated to  
at least  
50V.  
20V  
30V  
40V  
SK32  
MBR320  
1N5821  
MBR330  
31DQ03  
1N5822  
SR304  
SK13  
1N5818  
SR103  
MBRS130  
SK33  
11DQ03  
SK14  
MBRS140  
10BQ040  
10MQ040  
MBRS160  
10BQ050  
10MQ060  
1N5819  
SR104  
SK34  
MBRS340  
30WQ04  
SK35  
MBR340  
31DQ04  
SR305  
MURS120  
10BF10  
11DQ04  
SR105  
MUR120  
MURS320  
30WF10  
MUR320  
30WF10  
50V  
or  
MBR150  
11DQ05  
MBR360  
30WQ05  
MBR350  
31DQ05  
More  
FIGURE 11. Diode Selection Table  
www.national.com  
16  
Block Diagram  
DS012565-21  
FIGURE 12.  
current rating rather than its capacitance or voltage ratings,  
although the capacitance value and voltage rating are di-  
rectly related to the RMS current rating.  
Application Information  
PIN FUNCTIONS  
The RMS current rating of a capacitor could be viewed as a  
capacitor’s power rating. The RMS current flowing through  
the capacitors internal ESR produces power which causes  
the internal temperature of the capacitor to rise. The RMS  
current rating of a capacitor is determined by the amount of  
current required to raise the internal temperature approxi-  
mately 10˚C above an ambient temperature of 105˚C. The  
ability of the capacitor to dissipate this heat to the surround-  
ing air will determine the amount of current the capacitor can  
safely sustain. Capacitors that are physically large and have  
a large surface area will typically have higher RMS current  
ratings. For a given capacitor value, a higher voltage electro-  
lytic capacitor will be physically larger than a lower voltage  
capacitor, and thus be able to dissipate more heat to the sur-  
rounding air, and therefore will have a higher RMS current  
rating.  
+VIN — This is the positive input supply for the IC switching  
regulator. A suitable input bypass capacitor must be present  
at this pin to minimize voltage transients and to supply the  
switching currents needed by the regulator.  
Ground — Circuit ground.  
Output — Internal switch. The voltage at this pin switches  
between (+VIN − VSAT) and approximately −0.5V, with a duty  
cycle of approximately VOUT/VIN. To minimize coupling to  
sensitive circuitry, the PC board copper area connected to  
this pin should be kept to a minimum.  
Feedback — Senses the regulated output voltage to com-  
plete the feedback loop.  
ON/OFF — Allows the switching regulator circuit to be shut  
down using logic level signals thus dropping the total input  
supply current to approximately 85 µA. Pulling this pin below  
a threshold voltage of approximately 1.3V turns the regulator  
on, and pulling this pin above 1.3V (up to a maximum of 25V)  
shuts the regulator down. If this shutdown feature is not  
needed, the ON/OFF pin can be wired to the ground pin or it  
can be left open, in either case the regulator will be in the ON  
condition.  
The consequences of operating an electrolytic capacitor  
above the RMS current rating is a shortened operating life.  
The higher temperature speeds up the evaporation of the ca-  
pacitor’s electrolyte, resulting in eventual failure.  
Selecting an input capacitor requires consulting the manu-  
facturers data sheet for maximum allowable RMS ripple cur-  
rent. For a maximum ambient temperature of 40˚C, a gen-  
eral guideline would be to select a capacitor with a ripple  
current rating of approximately 50% of the DC load current.  
For ambient temperatures up to 70˚C, a current rating of  
75% of the DC load current would be a good choice for a  
conservative design. The capacitor voltage rating must be at  
least 1.25 times greater than the maximum input voltage,  
and often a much higher voltage capacitor is needed to sat-  
isfy the RMS current requirements.  
EXTERNAL COMPONENTS  
INPUT CAPACITOR  
CIN — A low ESR aluminum or tantalum bypass capacitor is  
needed between the input pin and ground pin. It must be lo-  
cated near the regulator using short leads. This capacitor  
prevents large voltage transients from appearing at the in-  
put, and provides the instantaneous current needed each  
time the switch turns on.  
A graph shown in Figure 13 shows the relationship between  
an electrolytic capacitor value, its voltage rating, and the  
RMS current it is rated for. These curves were obtained from  
the Nichicon “PL” series of low ESR, high reliability electro-  
The important parameters for the Input capacitor are the  
voltage rating and the RMS current rating. Because of the  
relatively high RMS currents flowing in a buck regulator’s in-  
put capacitor, this capacitor should be chosen for its RMS  
17  
www.national.com  
allowable output ripple voltage, typically 1% to 2% of the out-  
put voltage. But if the selected capacitor’s ESR is extremely  
low, there is a possibility of an unstable feedback loop, re-  
sulting in an oscillation at the output. Using the capacitors  
listed in the tables, or similar types, will provide design solu-  
tions under all conditions.  
Application Information (Continued)  
lytic capacitors designed for switching regulator applications.  
Other capacitor manufacturers offer similar types of capaci-  
tors, but always check the capacitor data sheet.  
“Standard” electrolytic capacitors typically have much higher  
ESR numbers, lower RMS current ratings and typically have  
a shorter operating lifetime.  
If very low output ripple voltage (less than 15 mV) is re-  
quired, refer to the section on Output Voltage Ripple and  
Transients for a post ripple filter.  
Because of their small size and excellent performance, sur-  
face mount solid tantalum capacitors are often used for input  
bypassing, but several precautions must be observed. A  
small percentage of solid tantalum capacitors can short if the  
inrush current rating is exceeded. This can happen at turn on  
when the input voltage is suddenly applied, and of course,  
higher input voltages produce higher inrush currents. Sev-  
eral capacitor manufacturers do a 100% surge current test-  
ing on their products to minimize this potential problem. If  
high turn on currents are expected, it may be necessary to  
limit this current by adding either some resistance or induc-  
tance before the tantalum capacitor, or select a higher volt-  
age capacitor. As with aluminum electrolytic capacitors, the  
RMS ripple current rating must be sized to the load current.  
An aluminum electrolytic capacitor’s ESR value is related to  
the capacitance value and its voltage rating. In most cases,  
higher voltage electrolytic capacitors have lower ESR values  
(see  
Figure 14). Often, capacitors with much higher voltage  
ratings may be needed to provide the low ESR values re-  
quired for low output ripple voltage.  
The output capacitor for many different switcher designs of-  
ten can be satisfied with only three or four different capacitor  
values and several different voltage ratings. See the quick  
design component selection tables in Figure 2 and Figure 3  
for typical capacitor values, voltage ratings, and manufactur-  
ers capacitor types.  
Electrolytic capacitors are not recommended for tempera-  
tures below −25˚C. The ESR rises dramatically at cold tem-  
FEEDFORWARD CAPACITOR  
@
peratures and typically rises 3X  
−25˚C and as much as  
(Adjustable Output Voltage Version)  
10X at −40˚C. See curve shown in Figure 15.  
C
FF -A Feedforward Capacitor CFF, shown across R2 in Fig-  
Solid tantalum capacitors have a much better ESR spec for  
cold temperatures and are recommended for temperatures  
below −25˚C.  
ure 1 is used when the output voltage is greater than 10V or  
when COUT has a very low ESR. This capacitor adds lead  
compensation to the feedback loop and increases the phase  
margin for better loop stability. For CFF selection, see the de-  
sign procedure section.  
DS012565-29  
FIGURE 14. Capacitor ESR vs Capacitor Voltage Rating  
(Typical Low ESR Electrolytic Capacitor)  
CATCH DIODE  
DS012565-28  
Buck regulators require a diode to provide a return path for  
the inductor current when the switch turns off. This must be  
a fast diode and must be located close to the LM2595 using  
short leads and short printed circuit traces.  
FIGURE 13. RMS Current Ratings for Low ESR  
Electrolytic Capacitors (Typical)  
OUTPUT CAPACITOR  
Because of their very fast switching speed and low forward  
voltage drop, Schottky diodes provide the best performance,  
especially in low output voltage applications (5V and lower).  
Ultra-fast recovery, or High-Efficiency rectifiers are also a  
good choice, but some types with an abrupt turnoff charac-  
teristic may cause instability or EMI problems. Ultra-fast re-  
covery diodes typically have reverse recovery times of 50 ns  
or less. Rectifiers such as the 1N5400 series are much too  
slow and should not be used.  
COUT — An output capacitor is required to filter the output  
and provide regulator loop stability. Low impedance or low  
ESR Electrolytic or solid tantalum capacitors designed for  
switching regulator applications must be used. When select-  
ing an output capacitor, the important capacitor parameters  
are; the 100 kHz Equivalent Series Resistance (ESR), the  
RMS ripple current rating, voltage rating, and capacitance  
value. For the output capacitor, the ESR value is the most  
important parameter.  
The output capacitor requires an ESR value that has an up-  
per and lower limit. For low output ripple voltage, a low ESR  
value is needed. This value is determined by the maximum  
www.national.com  
18  
Application Information (Continued)  
DS012565-31  
FIGURE 16. (IIND) Peak-to-Peak  
Inductor Ripple Current (as a Percentage  
of the Load Current) vs Load Current  
DS012565-30  
FIGURE 15. Capacitor ESR Change vs Temperature  
INDUCTOR SELECTION  
By allowing the percentage of inductor ripple current to in-  
crease for low load currents, the inductor value and size can  
be kept relatively low.  
All switching regulators have two basic modes of operation;  
continuous and discontinuous. The difference between the  
two types relates to the inductor current, whether it is flowing  
continuously, or if it drops to zero for a period of time in the  
normal switching cycle. Each mode has distinctively different  
operating characteristics, which can affect the regulators  
performance and requirements. Most switcher designs will  
operate in the discontinuous mode when the load current is  
low.  
When operating in the continuous mode, the inductor current  
waveform ranges from a triangular to a sawtooth type of  
waveform (depending on the input voltage), with the average  
value of this current waveform equal to the DC output load  
current.  
Inductors are available in different styles such as pot core,  
toroid, E-core, bobbin core, etc., as well as different core ma-  
terials, such as ferrites and powdered iron. The least expen-  
sive, the bobbin, rod or stick core, consists of wire wound on  
a ferrite bobbin. This type of construction makes for an inex-  
pensive inductor, but since the magnetic flux is not com-  
pletely contained within the core, it generates more  
Electro-Magnetic Interference (EMl). This magnetic flux can  
induce voltages into nearby printed circuit traces, thus caus-  
ing problems with both the switching regulator operation and  
nearby sensitive circuitry, and can give incorrect scope read-  
ings because of induced voltages in the scope probe. Also  
see section on Open Core Inductors.  
The LM2595 (or any of the Simple Switcher family) can be  
used for both continuous or discontinuous modes of opera-  
tion.  
In many cases the preferred mode of operation is the con-  
tinuous mode. It offers greater output power, lower peak  
switch, inductor and diode currents, and can have lower out-  
put ripple voltage. But it does require larger inductor values  
to keep the inductor current flowing continuously, especially  
at low output load currents and/or high input voltages.  
To simplify the inductor selection process, an inductor selec-  
tion guide (nomograph) was designed (see Figure 4 through  
Figure 7). This guide assumes that the regulator is operating  
in the continuous mode, and selects an inductor that will al-  
low a peak-to-peak inductor ripple current to be a certain  
percentage of the maximum design load current. This  
peak-to-peak inductor ripple current percentage is not fixed,  
but is allowed to change as different design load currents are  
selected. (See Figure 16.)  
When multiple switching regulators are located on the same  
PC board, open core magnetics can cause interference be-  
tween two or more of the regulator circuits, especially at high  
currents. A toroid or E-core inductor (closed magnetic struc-  
ture) should be used in these situations.  
The inductors listed in the selection chart include ferrite  
E-core construction for Schott, ferrite bobbin core for Renco  
and Coilcraft, and powdered iron toroid for Pulse Engineer-  
ing.  
Exceeding an inductor’s maximum current rating may cause  
the inductor to overheat because of the copper wire losses,  
or the core may saturate. If the inductor begins to saturate,  
the inductance decreases rapidly and the inductor begins to  
look mainly resistive (the DC resistance of the winding). This  
can cause the switch current to rise very rapidly and force  
the switch into a cycle-by-cycle current limit, thus reducing  
the DC output load current. This can also result in overheat-  
ing of the inductor and/or the LM2595. Different inductor  
types have different saturation characteristics, and this  
should be kept in mind when selecting an inductor.  
The inductor manufacturer’s data sheets include current and  
energy limits to avoid inductor saturation.  
19  
www.national.com  
ing in oscillation problems. If very low output ripple voltage is  
needed (less than 20 mV), a post ripple filter is recom-  
mended. (See Figure 1.) The inductance required is typically  
between 1 µH and 5 µH, with low DC resistance, to maintain  
good load regulation. A low ESR output filter capacitor is also  
required to assure good dynamic load response and ripple  
reduction. The ESR of this capacitor may be as low as de-  
sired, because it is out of the regulator feedback loop. The  
photo shown in Figure 17 shows a typical output ripple volt-  
age, with and without a post ripple filter.  
Application Information (Continued)  
DISCONTINUOUS MODE OPERATION  
The selection guide chooses inductor values suitable for  
continuous mode operation, but for low current applications  
and/or high input voltages, a discontinuous mode design  
may be a better choice. It would use an inductor that would  
be physically smaller, and would need only one half to one  
third the inductance value needed for a continuous mode de-  
sign. The peak switch and inductor currents will be higher in  
a
discontinuous design, but at these low load currents  
When observing output ripple with a scope, it is essential  
that a short, low inductance scope probe ground connection  
be used. Most scope probe manufacturers provide a special  
probe terminator which is soldered onto the regulator board,  
preferable at the output capacitor. This provides a very short  
scope ground thus eliminating the problems associated with  
the 3 inch ground lead normally provided with the probe, and  
provides a much cleaner and more accurate picture of the  
ripple voltage waveform.  
(400 mA and below), the maximum switch current will still be  
less than the switch current limit.  
Discontinuous operation can have voltage waveforms that  
are considerable different than a continuous design. The out-  
put pin (switch) waveform can have some damped sinusoi-  
dal ringing present. (See Typical Performance Characteris-  
tics photo titled Discontinuous Mode Switching Waveforms)  
This ringing is normal for discontinuous operation, and is not  
caused by feedback loop instabilities. In discontinuous op-  
eration, there is a period of time where neither the switch or  
the diode are conducting, and the inductor current has  
dropped to zero. During this time, a small amount of energy  
can circulate between the inductor and the switch/diode  
parasitic capacitance causing this characteristic ringing. Nor-  
mally this ringing is not a problem, unless the amplitude be-  
comes great enough to exceed the input voltage, and even  
then, there is very little energy present to cause damage.  
The voltage spikes are caused by the fast switching action of  
the output switch and the diode, and the parasitic inductance  
of the output filter capacitor, and its associated wiring. To  
minimize these voltage spikes, the output capacitor should  
be designed for switching regulator applications, and the  
lead lengths must be kept very short. Wiring inductance,  
stray capacitance, as well as the scope probe used to evalu-  
ate these transients, all contribute to the amplitude of these  
spikes.  
Different inductor types and/or core materials produce differ-  
ent amounts of this characteristic ringing. Ferrite core induc-  
tors have very little core loss and therefore produce the most  
ringing. The higher core loss of powdered iron inductors pro-  
duce less ringing. If desired, a series RC could be placed in  
parallel with the inductor to dampen the ringing. The com-  
puter aided design software Switchers Made Simple (ver-  
sion 4.3) will provide all component values for continuous  
and discontinuous modes of operation.  
When a switching regulator is operating in the continuous  
mode, the inductor current waveform ranges from a triangu-  
lar to a sawtooth type of waveform (depending on the input  
voltage). For  
a given input and output voltage, the  
peak-to-peak amplitude of this inductor current waveform re-  
mains constant. As the load current increases or decreases,  
the entire sawtooth current waveform also rises and falls.  
The average value (or the center) of this current waveform is  
equal to the DC load current.  
If the load current drops to a low enough level, the bottom of  
the sawtooth current waveform will reach zero, and the  
switcher will smoothly change from a continuous to a discon-  
tinuous mode of operation. Most switcher designs (irregard-  
less how large the inductor value is) will be forced to run dis-  
continuous if the output is lightly loaded. This is a perfectly  
acceptable mode of operation.  
DS012565-32  
FIGURE 17. Post Ripple Filter Waveform  
OUTPUT VOLTAGE RIPPLE AND TRANSIENTS  
The output voltage of a switching power supply operating in  
the continuous mode will contain a sawtooth ripple voltage at  
the switcher frequency, and may also contain short voltage  
spikes at the peaks of the sawtooth waveform.  
DS012565-33  
The output ripple voltage is a function of the inductor saw-  
tooth ripple current and the ESR of the output capacitor. A  
typical output ripple voltage can range from approximately  
0.5% to 3% of the output voltage. To obtain low ripple volt-  
age, the ESR of the output capacitor must be low, however,  
caution must be exercised when using extremely low ESR  
capacitors because they can affect the loop stability, result-  
FIGURE 18. Peak-to-Peak Inductor  
Ripple Current vs Load Current  
In a switching regulator design, knowing the value of the  
peak-to-peak inductor ripple current (IIND) can be useful for  
determining a number of other circuit parameters. Param-  
www.national.com  
20  
OPEN CORE INDUCTORS  
Application Information (Continued)  
Another possible source of increased output ripple voltage or  
unstable operation is from an open core inductor. Ferrite  
bobbin or stick inductors have magnetic lines of flux flowing  
through the air from one end of the bobbin to the other end.  
These magnetic lines of flux will induce a voltage into any  
wire or PC board copper trace that comes within the induc-  
tor’s magnetic field. The strength of the magnetic field, the  
orientation and location of the PC copper trace to the mag-  
netic field, and the distance between the copper trace and  
the inductor, determine the amount of voltage generated in  
the copper trace. Another way of looking at this inductive  
coupling is to consider the PC board copper trace as one  
turn of a transformer (secondary) with the inductor winding  
as the primary. Many millivolts can be generated in a copper  
trace located near an open core inductor which can cause  
stability problems or high output ripple voltage problems.  
eters such as, peak inductor or peak switch current, mini-  
mum load current before the circuit becomes discontinuous,  
output ripple voltage and output capacitor ESR can all be  
calculated from the peak-to-peak IIND. When the inductor  
nomographs shown in Figure 4 through Figure 7 are used to  
select an inductor value, the peak-to-peak inductor ripple  
current can immediately be determined. The curve shown in  
Figure 18 shows the range of (IIND) that can be expected  
for different load currents. The curve also shows how the  
peak-to-peak inductor ripple current (IIND) changes as you  
go from the lower border to the upper border (for a given load  
current) within an inductance region. The upper border rep-  
resents a higher input voltage, while the lower border repre-  
sents a lower input voltage (see Inductor Selection Guides).  
These curves are only correct for continuous mode opera-  
tion, and only if the inductor selection guides are used to se-  
lect the inductor value  
If unstable operation is seen, and an open core inductor is  
used, it’s possible that the location of the inductor with re-  
spect to other PC traces may be the problem. To determine  
if this is the problem, temporarily raise the inductor away  
from the board by several inches and then check circuit op-  
eration. If the circuit now operates correctly, then the mag-  
netic flux from the open core inductor is causing the problem.  
Substituting a closed core inductor such as a torroid or  
E-core will correct the problem, or re-arranging the PC layout  
may be necessary. Magnetic flux cutting the IC device  
ground trace, feedback trace, or the positive or negative  
traces of the output capacitor should be minimized.  
Consider the following example:  
=
VOUT 5V, maximum load current of 800 mA  
=
VIN 12V, nominal, varying between 10V and 14V.  
The selection guide in Figure 5 shows that the vertical line  
for a 0.8A load current, and the horizontal line for the 12V in-  
put voltage intersect approximately midway between the up-  
per and lower borders of the 68 µH inductance region. A 68  
µH inductor will allow a peak-to-peak inductor current (IIND  
)
to flow that will be a percentage of the maximum load cur-  
rent. Referring to Figure 18, follow the 0.8A line approxi-  
mately midway into the inductance region, and read the  
peak-to-peak inductor ripple current (IIND) on the left hand  
axis (approximately 300 mA p-p).  
Sometimes, locating a trace directly beneath a bobbin induc-  
tor will provide good results, provided it is exactly in the cen-  
ter of the inductor (because the induced voltages cancel  
themselves out), but if it is off center one direction or the  
other, then problems could arise. If flux problems are  
present, even the direction of the inductor winding can make  
a difference in some circuits.  
As the input voltage increases to 14V, it approaches the up-  
per border of the inductance region, and the inductor ripple  
current increases. Referring to the curve in Figure 18, it can  
be seen that for a load current of 0.8A, the peak-to-peak in-  
ductor ripple current (IIND) is 300 mA with 12V in, and can  
range from 340 mA at the upper border (14V in) to 225 mA at  
the lower border (10V in).  
This discussion on open core inductors is not to frighten the  
user, but to alert the user on what kind of problems to watch  
out for when using them. Open core bobbin or “stick” induc-  
tors are an inexpensive, simple way of making a compact ef-  
ficient inductor, and they are used by the millions in many dif-  
ferent applications.  
Once the IIND value is known, the following formulas can be  
used to calculate additional information about the switching  
regulator circuit.  
1. Peak Inductor or peak switch current  
THERMAL CONSIDERATIONS  
The LM2595 is available in two packages, a 5-pin TO-220  
(T) and a 5-pin surface mount TO-263 (S).  
The TO-220 package can be used without a heat sink for  
ambient temperatures up to approximately 50˚C (depending  
on the output voltage and load current). The curves in Figure  
19 show the LM2595T junction temperature rises above am-  
bient temperature for different input and output voltages. The  
data tor these curves was taken with the LM2595T (TO-220  
package) operating as a switching regutator in an ambient  
temperature of 25˚C (still air). These temperature rise num-  
bers are all approximate and there are many factors that can  
affect these temperatures. Higher ambient temperatures re-  
quire some heat sinking, either to the PC board or a small  
external heat sink.  
2. Minimum load current before the circuit becomes dis-  
continuous  
=
3. Output Ripple Voltage (IIND)x(ESR of COUT  
)
=
=
0.30Ax0.1648 mV p-p  
4. ESR of COUT  
The TO-263 surface mount package tab is designed to be  
soldered to the copper on a printed circuit board. The copper  
and the board are the heat sink for this package and the  
other heat producing components, such as the catch diode  
and inductor. The PC board copper area that the package is  
soldered to should be at least 0.4 in2, and ideally should  
have 2 or more square inches of 2 oz. (0.0028 in) copper.  
Additional copper area improves the thermal characteristics,  
21  
www.national.com  
Application Information (Continued)  
but with copper areas greater than approximately 3 in2, only  
small improvements in heat dissipation are realized. If fur-  
ther thermal improvements are needed, double sided or mul-  
tilayer PC-board with large copper areas are recommended.  
The curves shown in Figure 20 show the LM2595S (TO-263  
package) junction temperature rise above ambient tempera-  
ture with a 1A load for various input and output voltages. This  
data was taken with the circuit operating as a buck switching  
regulator with all components mounted on a PC board to  
simulate the junction temperature under actual operating  
conditions. This curve can be used for a quick check for the  
approximate junction temperature for various conditions, but  
be aware that there are many factors that can affect the junc-  
tion temperature.  
For the best thermal performance, wide copper traces and  
generous amounts of printed circuit board copper should be  
used in the board layout. (One exception to this is the output  
(switch) pin, which should not have large areas of copper.)  
Large areas of copper provide the best transfer of heat  
(lower thermal resistance) to the surrounding air, and moving  
air lowers the thermal resistance even further.  
DS012565-34  
Circuit Data for Temperature Rise Curve  
TO-220 Package (T)  
Capacitors  
Through hole electrolytic  
Inductor  
Diode  
Through hole, Schott, 68 µH  
Through hole, 3A 40V, Schottky  
Package thermal resistance and junction temperature rise  
numbers are all approximate, and there are many factors  
that will affect these numbers. Some of these factors include  
board size, shape, thickness, position, location, and even  
board temperature. Other factors are, trace width, total  
printed circuit copper area, copper thickness, single- or  
double-sided, multilayer board and the amount of solder on  
the board. The effectiveness of the PC board to dissipate  
heat also depends on the size, quantity and spacing of other  
components on the board, as well as whether the surround-  
ing air is still or moving. Furthermore, some of these compo-  
nents such as the catch diode will add heat to the PC board  
and the heat can vary as the input voltage changes. For the  
inductor, depending on the physical size, type of core mate-  
rial and the DC resistance, it could either act as a heat sink  
taking heat away from the board, or it could add heat to the  
board.  
PC board  
3 square inches single sided 2 oz. copper  
(0.0028")  
FIGURE 19. Junction Temperature Rise, TO-220  
DS012565-35  
Circuit Data for Temperature Rise Curve  
TO-263 Package (S)  
Capacitors  
Surface mount tantalum, molded “D” size  
Surface mount, Schott, 68 µH  
Inductor  
Diode  
Surface mount, 3A 40V, Schottky  
PC board  
3 square inches single sided 2 oz. copper  
(0.0028")  
FIGURE 20. Junction Temperature Rise, TO-263  
www.national.com  
22  
is needed, the circuit in Figure 24 has a turn ON voltage  
which is different than the turn OFF voltage. The amount of  
hysteresis is approximately equal to the value of the output  
voltage. If zener voltages greater than 25V are used, an ad-  
ditional 47 kresistor is needed from the ON /OFF pin to the  
ground pin to stay within the 25V maximum limit of the ON  
/OFF pin.  
Application Information (Continued)  
INVERTING REGULATOR  
The circuit in Figure 25 converts a positive input voltage to a  
negative output voltage with a common ground. The circuit  
operates by bootstrapping the regulator’s ground pin to the  
negative output voltage, then grounding the feedback pin,  
the regulator senses the inverted output voltage and regu-  
lates it.  
DS012565-36  
FIGURE 21. Delayed Startup  
DS012565-37  
DS012565-46  
FIGURE 22. Undervoltage Lockout  
for Buck Regulator  
This circuit has an ON/OFF threshold of approximately 13V.  
FIGURE 23. Undervoltage Lockout  
for Inverting Regulator  
DELAYED STARTUP  
The circuit in Figure 21 uses the the ON /OFF pin to provide  
a time delay between the time the input voltage is applied  
and the time the output voltage comes up (only the circuitry  
pertaining to the delayed start up is shown). As the input volt-  
age rises, the charging of capacitor C1 pulls the ON /OFF pin  
high, keeping the regulator off. Once the input voltage  
reaches its final value and the capacitor stops charging, and  
resistor R2 pulls the ON /OFF pin low, thus allowing the cir-  
cuit to start switching. Resistor R1 is included to limit the  
maximum voltage applied to the ON /OFF pin (maximum of  
25V), reduces power supply noise sensitivity, and also limits  
the capacitor, C1, discharge current. When high input ripple  
voltage exists, avoid long delay time, because this ripple can  
be coupled into the ON /OFF pin and cause problems.  
This example uses the LM2595-5.0 to generate a −5V out-  
put, but other output voltages are possible by selecting other  
output voltage versions, including the adjustable version.  
Since this regulator topology can produce an output voltage  
that is either greater than or less than the input voltage, the  
maximum output current greatly depends on both the input  
and output voltage. The curve shown in Figure 26 provides a  
guide as to the amount of output load current possible for the  
different input and output voltage conditions.  
The maximum voltage appearing across the regulator is the  
absolute sum of the input and output voltage, and this must  
be limited to a maximum of 40V. For example, when convert-  
ing +20V to −12V, the regulator would see 32V between the  
input pin and ground pin. The LM2595 has a maximum input  
voltage spec of 40V.  
This delayed startup feature is useful in situations where the  
input power source is limited in the amount of current it can  
deliver. It allows the input voltage to rise to a higher voltage  
before the regulator starts operating. Buck regulators require  
less input current at higher input voltages.  
Additional diodes are required in this regulator configuration.  
Diode D1 is used to isolate input voltage ripple or noise from  
coupling through the CIN capacitor to the output, under light  
or no load conditions. Also, this diode isolation changes the  
topology to closley resemble a buck configuration thus pro-  
viding good closed loop stability. A Schottky diode is recom-  
mended for low input voltages, (because of its lower voltage  
drop) but for higher input voltages, a fast recovery diode  
could be used.  
UNDERVOLTAGE LOCKOUT  
Some applications require the regulator to remain off until  
the input voltage reaches a predetermined voltage. An und-  
ervoltage lockout feature applied to a buck regulator is  
shown in Figure 22, while Figure 23 and Figure 24 applies  
the same feature to an inverting circuit. The circuit in Figure  
23 features a constant threshold voltage for turn on and turn  
off (zener voltage plus approximately one volt). If hysteresis  
Without diode D3, when the input voltage is first applied, the  
charging current of CIN can pull the output positive by sev-  
eral volts for a short period of time. Adding D3 prevents the  
output from going positive by more than a diode voltage.  
23  
www.national.com  
Application Information (Continued)  
DS012565-39  
This circuit has hysteresis  
=
=
Regulator starts switching at V  
13V  
8V  
IN  
Regulator stops switching at V  
IN  
FIGURE 24. Undervoltage Lockout with Hysteresis for Inverting Regulator  
DS012565-40  
C
:
220 µF/25V Tant. Sprague 595D  
120 µF/50V Elec. Panasonic HFQ  
22 µF/20V Tant. Sprague 595D  
120 µF/25V Elec. Panasonic HFQ  
IN  
C
OUT  
:
FIGURE 25. Inverting −5V Regulator with Delayed Startup  
This type of inverting regulator can require relatively large  
amounts of input current when starting up, even with light  
loads. Input currents as high as the LM2595 current limit (ap-  
prox 1.5A) are needed for at least 2 ms or more, until the out-  
put reaches its nominal output voltage. The actual time de-  
pends on the output voltage and the size of the output  
capacitor. Input power sources that are current limited or  
sources that can not deliver these currents without getting  
loaded down, may not work correctly. Because of the rela-  
tively high startup currents required by the inverting topology,  
the delayed startup feature (C1, R1 and R2) shown in Figure  
25 is recommended. By delaying the regulator startup, the  
input capacitor is allowed to charge up to a higher voltage  
before the switcher begins operating. A portion of the high in-  
put current needed for startup is now supplied by the input  
capacitor (CIN). For severe start up conditions, the input ca-  
pacitor can be made much larger than normal.  
DS012565-41  
FIGURE 26. Inverting Regulator Typical Load Current  
INVERTING REGULATOR SHUTDOWN METHODS  
Because of differences in the operation of the inverting regu-  
lator, the standard design procedure is not used to select the  
inductor value. In the majority of designs, a 68 µH, 1.5A in-  
ductor is the best choice. Capacitor selection can also be  
narrowed down to just a few values. Using the values shown  
in Figure 25 will provide good results in the majority of invert-  
ing designs.  
To use the ON /OFF pin in a standard buck configuration is  
@
simple, pull it below 1.3V ( 25˚C, referenced to ground) to  
turn regulator ON, pull it above 1.3V to shut the regulator  
OFF. With the inverting configuration, some level shifting is  
required, because the ground pin of the regulator is no  
longer at ground, but is now setting at the negative output  
voltage level. Two different shutdown methods for inverting  
regulators are shown in Figure 27 and Figure 28.  
www.national.com  
24  
Application Information (Continued)  
DS012565-42  
FIGURE 27. Inverting Regulator Ground Referenced Shutdown  
DS012565-43  
FIGURE 28. Inverting Regulator Ground Referenced Shutdown using Opto Device  
25  
www.national.com  
Application Information (Continued)  
TYPICAL THROUGH HOLE PC BOARD LAYOUT, FIXED OUTPUT (1X SIZE)  
DS012565-44  
C
C
- 150 µF, 50V, Aluminium Electrolytic Nichicon, “PL series”  
IN  
- 120 µF, 25V Aluminium Electrolytic Nichicon, “PL series”  
OUT  
D1 - 3A, 40V Schottky Rectifier, 1N5822  
L1 - 68 µH, L30, Schott, Through hole  
TYPICAL THROUGH HOLE PC BOARD LAYOUT, ADJUSTABLE OUTPUT (1X SIZE)  
DS012565-45  
C
C
- 150 µF, 50V, Aluminium Electrolytic Nichicon, “PL series”  
IN  
- 120 µF, 25V Aluminium Electrolytic Nichicon, “PL series”  
OUT  
D1 - 3A, 40V Schottky Rectifier, 1N5822  
L1 - 68 µH, L30, Schott, Through hole  
R1 - 1 k, 1%  
R2 - Use formula in Design Procedure  
C
FF  
- See Figure 3  
FIGURE 29. PC Board Layout  
www.national.com  
26  
Physical Dimensions inches (millimeters) unless otherwise noted  
5-Lead TO-220 (T)  
Order Number LM2595T-3.3, LM2595T-5.0,  
LM2595T-12 or LM2595T-ADJ  
NS Package Number T05D  
27  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
5-Lead TO-263 Surface Mount Package (S)  
Order Number LM2595S-3.3, LM2595S-5.0,  
LM2595S-12 or LM2595S-ADJ  
NS Package Number TS5B  
www.national.com  
28  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
16-Lead Ceramic Dual-in-Line Package (J)  
Order Number LM2595J-3.3-QML (5962-9687901QEA),  
LM2595J-5.0-QML (5962-9650301QEA),  
LM2595J-12-QML (5962-9650201QEA),  
or LM2595J-ADJ-QML (5962-9650401QEA)  
NS Package Number J16A  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and  
whose failure to perform when properly used in  
accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a  
significant injury to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform  
can be reasonably expected to cause the failure of  
the life support device or system, or to affect its  
safety or effectiveness.  
National Semiconductor  
Corporation  
Americas  
Tel: 1-800-272-9959  
Fax: 1-800-737-7018  
Email: support@nsc.com  
National Semiconductor  
Europe  
National Semiconductor  
Asia Pacific Customer  
Response Group  
Tel: 65-2544466  
Fax: 65-2504466  
National Semiconductor  
Japan Ltd.  
Tel: 81-3-5639-7560  
Fax: 81-3-5639-7507  
Fax: +49 (0) 1 80-530 85 86  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 1 80-530 85 85  
English Tel: +49 (0) 1 80-532 78 32  
Français Tel: +49 (0) 1 80-532 93 58  
Italiano Tel: +49 (0) 1 80-534 16 80  
Email: sea.support@nsc.com  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY