LM2672_01 [NSC]

SIMPLE SWITCHER㈢ Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features; 简单SWITCHER㈢电源转换器高效率1A降压型稳压器与特点
LM2672_01
型号: LM2672_01
厂家: National Semiconductor    National Semiconductor
描述:

SIMPLE SWITCHER㈢ Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features
简单SWITCHER㈢电源转换器高效率1A降压型稳压器与特点

转换器 稳压器
文件: 总25页 (文件大小:476K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
May 2001  
LM2672  
SIMPLE SWITCHER® Power Converter High Efficiency  
1A Step-Down Voltage Regulator with Features  
To simplify the LM2672 buck regulator design procedure,  
there exists computer design software, LM267X Made  
Simple version 6.0.  
General Description  
The LM2672 series of regulators are monolithic integrated  
circuits built with a LMDMOS process. These regulators  
provide all the active functions for a step-down (buck)  
switching regulator, capable of driving a 1A load current with  
excellent line and load regulation. These devices are avail-  
able in fixed output voltages of 3.3V, 5.0V, 12V, and an  
adjustable output version.  
Features  
n Efficiency up to 96%  
n Available in SO-8, 8-pin DIP and LLP packages  
n Computer Design Software LM267X Made Simple  
version 6.0  
Requiring a minimum number of external components, these  
regulators are simple to use and include patented internal  
frequency compensation (Patent Nos. 5,382,918 and  
5,514,947), fixed frequency oscillator, external shutdown,  
soft-start, and frequency synchronization.  
n Simple and easy to design with  
n Requires only 5 external components  
n Uses readily available standard inductors  
n 3.3V, 5.0V, 12V, and adjustable output versions  
n Adjustable version output voltage range: 1.21V to 37V  
The LM2672 series operates at a switching frequency of  
260 kHz, thus allowing smaller sized filter components than  
what would be needed with lower frequency switching regu-  
lators. Because of its very high efficiency ( 90%), the cop-  
per traces on the printed circuit board are the only heat  
sinking needed.  
±
n
1.5% max output voltage tolerance over line and load  
conditions  
n Guaranteed 1A output load current  
n 0.25DMOS Output Switch  
n Wide input voltage range: 8V to 40V  
n 260 kHz fixed frequency internal oscillator  
n TTL shutdown capability, low power standby mode  
n Soft-start and frequency synchronization  
n Thermal shutdown and current limit protection  
>
A family of standard inductors for use with the LM2672 are  
available from several different manufacturers. This feature  
greatly simplifies the design of switch-mode power supplies  
using these advanced ICs. Also included in the datasheet  
are selector guides for diodes and capacitors designed to  
work in switch-mode power supplies.  
Typical Applications  
±
Other features include a guaranteed 1.5% tolerance on  
output voltage within specified input voltages and output  
load conditions, and 10% on the oscillator frequency. Ex-  
>
n Simple High Efficiency ( 90%) Step-Down (Buck)  
±
Regulator  
ternal shutdown is included, featuring typically 50 µA  
stand-by current. The output switch includes current limiting,  
as well as thermal shutdown for full protection under fault  
conditions.  
n Efficient Pre-Regulator for Linear Regulators  
Typical Application (Fixed Output Voltage  
Versions)  
01293401  
SIMPLE SWITCHER® is a registered trademark of National Semiconductor Corporation.  
Windows® is a registered trademark of Microsoft Corporation.  
© 2001 National Semiconductor Corporation  
DS012934  
www.national.com  
Connection Diagrams  
16-Lead LLP Surface Mount Package  
8-Lead Package  
Top View  
Top View  
01293402  
SO-8/DIP Package  
See NSC Package Drawing Number MO8A/N08E  
01293441  
LLP Package  
See NSC Package Drawing Number LDA16A  
TABLE 1. Package Marking and Ordering Information  
Order Information Package Marking  
Output Voltage  
16 Lead LLP  
Supplied as:  
12  
12  
LM2672LD-12  
S0001B  
1000 Units on Tape and Reel  
4500 Units on Tape and Reel  
1000 Units on Tape and Reel  
4500 Units on Tape and Reel  
1000 Units on Tape and Reel  
4500 Units on Tape and Reel  
1000 Units on Tape and Reel  
4500 Units on Tape and Reel  
LM2672LDX-12  
LM2672LD-3.3  
LM2672LDX-3.3  
LM2672LD-5.0  
LM2672LDX-5.0  
LM2672LD-ADJ  
LM2672LDX-ADJ  
S0001B  
S0002B  
S0002B  
S0003B  
S0003B  
S0004B  
S0004B  
3.3  
3.3  
5.0  
5.0  
ADJ  
ADJ  
SO-8  
12  
12  
LM2672M-12  
LM2672MX-12  
LM2672M-3.3  
LM2672MX-3.3  
LM2672M-5.0  
LM2672MX-5.0  
LM2672M-ADJ  
LM2672MX-ADJ  
2672M-12  
2672M-12  
2672M-3.3  
2672M-3.3  
2672M-5.0  
2672M-5.0  
2672M-ADJ  
2672M-ADJ  
Shipped in Anti-Static Rails  
2500 Units on Tape and Reel  
Shipped in Anti-Static Rails  
2500 Units on Tape and Reel  
Shipped in Anti-Static Rails  
2500 Units on Tape and Reel  
Shipped in Anti-Static Rails  
2500 Units on Tape and Reel  
3.3  
3.3  
5.0  
5.0  
ADJ  
ADJ  
DIP  
12  
3.3  
LM2672N-12  
LM2672N-3.3  
LM2672N-5.0  
LM2672N-ADJ  
LM2672N-12  
LM2672N-3.3  
LM2672N-5.0  
LM2672N-ADJ  
Shipped in Anti-Static Rails  
Shipped in Anti-Static Rails  
Shipped in Anti-Static Rails  
Shipped in Anti-Static Rails  
5.0  
ADJ  
www.national.com  
2
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Lead Temperature  
M Package  
Vapor Phase (60s)  
+215˚C  
+220˚C  
+260˚C  
Infrared (15s)  
Supply Voltage  
45V  
−0.1V VSH 6V  
−1V  
N Package (Soldering, 10s)  
LLP Package (see AN-1187)  
Maximum Junction Temperature  
ON/OFF Pin Voltage  
Switch Voltage to Ground  
Boost Pin Voltage  
+150˚C  
VSW + 8V  
Feedback Pin Voltage  
ESD Susceptibility  
−0.3V VFB 14V  
Operating Ratings  
Supply Voltage  
6.5V to 40V  
Human Body Model (Note 2)  
Power Dissipation  
2 kV  
Internally Limited  
−65˚C to +150˚C  
Temperature Range  
−40˚C TJ +125˚C  
Storage Temperature Range  
Electrical Characteristics  
LM2672-3.3 Specifications with standard type face are for TJ = 25˚C, and those in bold type face apply over full  
Operating Temperature Range.  
Symbol  
Parameter  
Conditions  
Typical  
Min  
Max  
Units  
(Note 4)  
(Note 5)  
(Note 5)  
SYSTEM PARAMETERS Test Circuit Figure 2 (Note 3)  
VOUT  
VOUT  
η
Output Voltage  
Output Voltage  
Efficiency  
VIN = 8V to 40V, ILOAD = 20 mA to 1A  
VIN = 6.5V to 40V, ILOAD = 20 mA to 500 mA  
VIN = 12V, ILOAD = 1A  
3.3  
3.3  
86  
3.251/3.201  
3.251/3.201  
3.350/3.399  
3.350/3.399  
V
V
%
LM2672-5.0  
Symbol  
Parameter  
Conditions  
Typical  
Min  
Max  
Units  
(Note 4)  
(Note 5)  
(Note 5)  
SYSTEM PARAMETERS Test Circuit Figure 2 (Note 3)  
VOUT  
VOUT  
η
Output Voltage  
Output Voltage  
Efficiency  
VIN = 8V to 40V, ILOAD = 20 mA to 1A  
VIN = 6.5V to 40V, ILOAD = 20 mA to 500 mA  
VIN = 12V, ILOAD = 1A  
5.0  
5.0  
90  
4.925/4.850  
4.925/4.850  
5.075/5.150  
5.075/5.150  
V
V
%
LM2672-12  
Symbol  
Parameter  
Conditions  
Typical  
Min  
Max  
Units  
(Note 4)  
(Note 5)  
(Note 5)  
SYSTEM PARAMETERS Test Circuit Figure 2 (Note 3)  
VOUT  
Output Voltage  
Efficiency  
VIN = 15V to 40V, ILOAD = 20 mA to 1A  
VIN = 24V, ILOAD = 1A  
12  
94  
11.82/11.64  
12.18/12.36  
V
η
%
LM2672-ADJ  
Symbol  
Parameter  
Conditions  
Typ  
Min  
Max  
Units  
(Note 4)  
(Note 5)  
(Note 5)  
SYSTEM PARAMETERS Test Circuit Figure 3 (Note 3)  
VFB  
Feedback  
Voltage  
VIN = 8V to 40V, ILOAD = 20 mA to 1A  
1.210  
1.192/1.174  
1.228/1.246  
V
VOUT Programmed for 5V  
(see Circuit of Figure 3)  
3
www.national.com  
LM2672-ADJ (Continued)  
Symbol  
Parameter  
Conditions  
Typ  
Min  
Max  
Units  
(Note 4)  
(Note 5)  
(Note 5)  
VFB  
Feedback  
VIN = 6.5V to 40V, ILOAD = 20 mA to 500 mA  
1.210  
1.192/1.174  
1.228/1.246  
V
Voltage  
VOUT Programmed for 5V  
(see Circuit of Figure 3)  
VIN = 12V, ILOAD = 1A  
η
Efficiency  
90  
%
All Output Voltage Versions  
Specifications with standard type face are for TJ = 25˚C, and those in bold type face apply over full Operating Temperature  
Range. Unless otherwise specified, VIN = 12V for the 3.3V, 5V, and Adjustable versions and VIN = 24V for the 12V version,  
and ILOAD = 100 mA.  
Symbol  
Parameters  
Conditions  
Typ  
2.5  
2.5  
Min  
Max  
Units  
DEVICE PARAMETERS  
IQ  
Quiescent Current  
VFEEDBACK = 8V  
3.6  
mA  
For 3.3V, 5.0V, and ADJ Versions  
VFEEDBACK = 15V  
mA  
For 12V Versions  
ISTBY  
ICL  
Standby Quiescent Current  
Current Limit  
ON/OFF Pin = 0V  
50  
1.55  
1
100/150  
2.1/2.2  
25  
µA  
A
1.25/1.2  
IL  
Output Leakage Current  
VIN = 40V, ON/OFF Pin = 0V  
VSWITCH = 0V  
µA  
VSWITCH = −1V, ON/OFF Pin = 0V  
ISWITCH = 1A  
6
0.25  
260  
95  
15  
0.30/0.50  
275  
mA  
RDS(ON) Switch On-Resistance  
fO  
D
Oscillator Frequency  
Maximum Duty Cycle  
Minimum Duty Cycle  
Feedback Bias  
Measured at Switch Pin  
225  
kHz  
%
0
%
IBIAS  
VFEEDBACK = 1.3V  
ADJ Version Only  
85  
nA  
Current  
VS/D  
ON/OFF Pin  
1.4  
0.8  
7
2.0  
37  
V
Voltage Thesholds  
ON/OFF Pin Current  
Synchronization Frequency  
Synchronization Threshold  
Voltage  
IS/D  
ON/OFF Pin = 0V  
20  
µA  
FSYNC  
VSYNC  
VSYNC = 3.5V, 50% duty cycle  
400  
kHz  
1.4  
V
VSS  
ISS  
Soft-Start Voltage  
Soft-Start Current  
Thermal Resistance  
0.63  
4.5  
95  
0.53  
1.5  
0.73  
6.9  
V
µA  
θJA  
N Package, Junction to Ambient (Note 6)  
M Package, Junction to Ambient (Note 6)  
˚C/W  
105  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see  
the Electrical Characteristics.  
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin.  
Note 3: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator  
performance. When the LM2672 is used as shown in Figure 2 and Figure 3 test circuits, system performance will be as specified by the system parameters section  
of the Electrical Characteristics.  
Note 4: Typical numbers are at 25˚C and represent the most likely norm.  
Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100%  
production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used  
to calculate Average Outgoing Quality Level (AOQL).  
Note 6: Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will  
lower thermal resistance further. See Application Information section in the application note accompanying this datasheet and the thermal model in LM267X Made  
Simple version 6.0 software. The value θ  
for the LLP (LD) package is specifically dependent on PCB trace area, trace material, and the number of layers and  
J−A  
thermal vias. For improved thermal resistance and power dissipation for the LLP package, refer to Application Note AN-1187.  
www.national.com  
4
Typical Performance Characteristics  
Normalized  
Output Voltage  
Line Regulation  
Efficiency  
01293403  
01293405  
01293408  
01293411  
01293404  
Drain-to-Source  
Resistance  
Operating  
Quiescent Current  
Switch Current Limit  
01293407  
01293410  
01293413  
01293406  
Standby  
Quiescent Current  
ON/OFF Threshold  
Voltage  
ON/OFF Pin  
Current (Sourcing)  
01293409  
Feedback Pin  
Bias Current  
Switching Frequency  
Peak Switch Current  
01293412  
01293414  
5
www.national.com  
Typical Performance Characteristics (Continued)  
Dropout Voltage3.3V Option  
Dropout Voltage5.0V Option  
01293415  
01293416  
Block Diagram  
01293417  
* Patent Number 5,514,947  
Patent Number 5,382,918  
FIGURE 1.  
www.national.com  
6
Typical Performance  
Characteristics (Circuit of Figure 2)  
Continuous Mode Switching Waveforms  
VIN = 20V, VOUT = 5V, ILOAD = 1A  
Discontinuous Mode Switching Waveforms  
VIN = 20V, VOUT = 5V, ILOAD = 300 mA  
L = 47 µH, COUT = 68 µF, COUTESR = 50 mΩ  
L = 15 µH, COUT = 68 µF (2x), COUTESR = 25 mΩ  
01293418  
01293419  
Horizontal Time Base: 1 µs/div  
Horizontal Time Base: 1 µs/div  
A: V  
Pin Voltage, 10 V/div.  
A: V  
Pin Voltage, 10 V/div.  
SW  
SW  
B: Inductor Current, 0.5 A/div  
B: Inductor Current, 0.5 A/div  
C: Output Ripple Voltage, 20 mV/div AC-Coupled  
C: Output Ripple Voltage, 20 mV/div AC-Coupled  
Load Transient Response for Continuous Mode  
VIN = 20V, VOUT = 5V, ILOAD = 1A  
Load Transient Response for Discontinuous Mode  
VIN = 20V, VOUT = 5V,  
L = 47 µH, COUT = 68 µF, COUTESR = 50 mΩ  
L = 47 µH, COUT = 68 µF, COUTESR = 50 mΩ  
01293420  
01293421  
Horizontal Time Base: 50 µs/div  
Horizontal Time Base: 200 µs/div  
A: Output Voltage, 100 mV/div, AC-Coupled  
B: Load Current: 200 mA to 1A Load Pulse  
A: Output Voltage, 100 mV/div, AC-Coupled  
B: Load Current: 100 mA to 300 mA Load Pulse  
7
www.national.com  
Test Circuit and Layout Guidelines  
01293422  
C
C
- 22 µF, 50V Tantalum, Sprague “199D Series”  
IN  
- 47 µF, 25V Tantalum, Sprague “595D Series”  
OUT  
D1 - 3.3A, 50V Schottky Rectifier, IR 30WQ05F  
L1 - 68 µH Sumida #RCR110D-680L  
C
- 0.01 µF, 50V Ceramic  
B
FIGURE 2. Standard Test Circuits and Layout Guides  
Fixed Output Voltage Versions  
01293423  
C
C
- 22 µF, 50V Tantalum, Sprague “199D Series”  
IN  
- 47 µF, 25V Tantalum, Sprague “595D Series”  
OUT  
D1 - 3.3A, 50V Schottky Rectifier, IR 30WQ05F  
L1 - 68 µH Sumida #RCR110D-680L  
R1 - 1.5 k, 1%  
C
- 0.01 µF, 50V Ceramic  
B
For a 5V output, select R2 to be 4.75 k, 1%  
where V  
= 1.21V  
REF  
Use a 1% resistor for best stability.  
FIGURE 3. Standard Test Circuits and Layout Guides  
Adjustable Output Voltage Versions  
www.national.com  
8
LM2672 Series Buck Regulator Design Procedure (Fixed Output)  
PROCEDURE (Fixed Output Voltage Version)  
To simplify the buck regulator design procedure, National  
Semiconductor is making available computer design software to  
be used with the SIMPLE SWITCHER line of switching  
regulators. LM267X Made Simple version 6.0 is available on  
Windows® 3.1, NT, or 95 operating systems.  
EXAMPLE (Fixed Output Voltage Version)  
Given:  
Given:  
VOUT = 5V  
VOUT = Regulated Output Voltage (3.3V, 5V, or 12V)  
V
IN(max) = Maximum DC Input Voltage  
LOAD(max) = Maximum Load Current  
1. Inductor Selection (L1)  
VIN(max) = 12V  
I
ILOAD(max) = 1A  
1. Inductor Selection (L1)  
A. Select the correct inductor value selection guide from Figure A. Use the inductor selection guide for the 5V version shown in  
4 and Figure 5 or Figure 6 (output voltages of 3.3V, 5V, or 12V Figure 5.  
respectively). For all other voltages, see the design procedure  
for the adjustable version.  
B. From the inductor value selection guide, identify the  
inductance region intersected by the Maximum Input Voltage  
line and the Maximum Load Current line. Each region is  
identified by an inductance value and an inductor code (LXX).  
C. Select an appropriate inductor from the four manufacturer’s  
part numbers listed in Figure 8. Each manufacturer makes a  
different style of inductor to allow flexibility in meeting various  
design requirements. Listed below are some of the  
differentiating characteristics of each manufacturer’s inductors:  
Schott: ferrite EP core inductors; these have very low leakage  
magnetic fields to reduce electro-magnetic interference (EMI)  
and are the lowest power loss inductors  
B. From the inductor value selection guide shown in Figure 5,  
the inductance region intersected by the 12V horizontal line and  
the 1A vertical line is 33 µH, and the inductor code is L23.  
C. The inductance value required is 33 µH. From the table in  
Figure 8, go to the L23 line and choose an inductor part number  
from any of the four manufacturers shown. (In most instances,  
both through hole and surface mount inductors are available.)  
Renco: ferrite stick core inductors; benefits are typically lowest  
cost inductors and can withstand ET and transient peak  
currents above rated value. Be aware that these inductors have  
an external magnetic field which may generate more EMI than  
other types of inductors.  
Pulse: powered iron toroid core inductors; these can also be low  
cost and can withstand larger than normal ET and transient  
peak currents. Toroid inductors have low EMI.  
Coilcraft: ferrite drum core inductors; these are the smallest  
physical size inductors, available only as SMT components. Be  
aware that these inductors also generate EMIbut less than  
stick inductors.  
Complete specifications for these inductors are available from  
the respective manufacturers. A table listing the manufacturers’  
phone numbers is located in Figure 9.  
2. Output Capacitor Selection (COUT  
)
2. Output Capacitor Selection (COUT)  
A. Select an output capacitor from the output capacitor table in A. Use the 5.0V section in the output capacitor table in Figure  
Figure 10. Using the output voltage and the inductance value  
found in the inductor selection guide, step 1, locate the  
appropriate capacitor value and voltage rating.  
10. Choose a capacitor value and voltage rating from the line  
that contains the inductance value of 33 µH. The capacitance  
and voltage rating values corresponding to the 33 µH  
9
www.national.com  
LM2672 Series Buck Regulator Design Procedure (Fixed Output) (Continued)  
PROCEDURE (Fixed Output Voltage Version)  
The capacitor list contains through-hole electrolytic capacitors  
from four different capacitor manufacturers and surface mount  
EXAMPLE (Fixed Output Voltage Version)  
Surface Mount:  
68 µF/10V Sprague 594D Series.  
tantalum capacitors from two different capacitor manufacturers. 100 µF/10V AVX TPS Series.  
It is recommended that both the manufacturers and the  
manufacturer’s series that are listed in the table be used. A  
table listing the manufacturers’ phone numbers is located in  
Figure 11.  
Through Hole:  
68 µF/10V Sanyo OS-CON SA Series.  
220 µF/35V Sanyo MV-GX Series.  
220 µF/35V Nichicon PL Series.  
220 µF/35V Panasonic HFQ Series.  
3. Catch Diode Selection (D1)  
3. Catch Diode Selection (D1)  
A. In normal operation, the average current of the catch diode is A. Refer to the table shown in Figure 12. In this example, a 1A,  
the load current times the catch diode duty cycle, 1-D (D is the 20V Schottky diode will provide the best performance. If the  
switch duty cycle, which is approximately the output voltage  
divided by the input voltage). The largest value of the catch  
diode average current occurs at the maximum load current and  
maximum input voltage (minimum D). For normal operation, the  
catch diode current rating must be at least 1.3 times greater  
than its maximum average current. However, if the power supply  
design must withstand a continuous output short, the diode  
should have a current rating equal to the maximum current limit  
of the LM2672. The most stressful condition for this diode is a  
shorted output condition.  
circuit must withstand a continuous shorted output, a higher  
current Schottky diode is recommended.  
B. The reverse voltage rating of the diode should be at least  
1.25 times the maximum input voltage.  
C. Because of their fast switching speed and low forward  
voltage drop, Schottky diodes provide the best performance and  
efficiency. This Schottky diode must be located close to the  
LM2672 using short leads and short printed circuit traces.  
www.national.com  
10  
LM2672 Series Buck Regulator Design Procedure (Fixed Output) (Continued)  
PROCEDURE (Fixed Output Voltage Version)  
EXAMPLE (Fixed Output Voltage Version)  
4. Input Capacitor (CIN  
)
4. Input Capacitor (CIN  
)
A low ESR aluminum or tantalum bypass capacitor is needed  
between the input pin and ground to prevent large voltage  
The important parameters for the input capacitor are the input  
voltage rating and the RMS current rating. With a maximum  
transients from appearing at the input. This capacitor should be input voltage of 12V, an aluminum electrolytic capacitor with a  
located close to the IC using short leads. In addition, the RMS voltage rating greater than 15V (1.25 x VIN) would be needed.  
current rating of the input capacitor should be selected to be at The next higher capacitor voltage rating is 16V.  
1
least ⁄  
2
the DC load current. The capacitor manufacturer data  
The RMS current rating requirement for the input capacitor in a  
1
sheet must be checked to assure that this current rating is not  
exceeded. The curves shown in Figure 14 show typical RMS  
current ratings for several different aluminum electrolytic  
capacitor values. A parallel connection of two or more  
buck regulator is approximately ⁄  
2
the DC load current. In this  
example, with a 1A load, a capacitor with a RMS current rating  
of at least 500 mA is needed. The curves shown in Figure 14  
can be used to select an appropriate input capacitor. From the  
capacitors may be required to increase the total minimum RMS curves, locate the 16V line and note which capacitor values  
current rating to suit the application requirements. have RMS current ratings greater than 500 mA.  
For an aluminum electrolytic capacitor, the voltage rating should For a through hole design, a 330 µF/16V electrolytic capacitor  
be at least 1.25 times the maximum input voltage. Caution must (Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or  
be exercised if solid tantalum capacitors are used. The tantalum equivalent) would be adequate. Other types or other  
capacitor voltage rating should be twice the maximum input  
voltage. The tables in Figure 15 show the recommended  
application voltage for AVX TPS and Sprague 594D tantalum  
capacitors. It is also recommended that they be surge current  
manufacturers’ capacitors can be used provided the RMS ripple  
current ratings are adequate. Additionally, for a complete  
surface mount design, electrolytic capacitors such as the Sanyo  
CV-C or CV-BS and the Nichicon WF or UR and the NIC  
tested by the manufacturer. The TPS series available from AVX, Components NACZ series could be considered.  
and the 593D and 594D series from Sprague are all surge For surface mount designs, solid tantalum capacitors can be  
current tested. Another approach to minimize the surge current used, but caution must be exercised with regard to the capacitor  
stresses on the input capacitor is to add a small inductor in  
series with the input supply line.  
surge current rating and voltage rating. In this example,  
checking Figure 15, and the Sprague 594D series datasheet, a  
Use caution when using ceramic capacitors for input bypassing, Sprague 594D 15 µF, 25V capacitor is adequate.  
because it may cause severe ringing at the VIN pin.  
5. Boost Capacitor (CB)  
5. Boost Capacitor (CB)  
This capacitor develops the necessary voltage to turn the switch For this application, and all applications, use a 0.01 µF, 50V  
gate on fully. All applications should use a 0.01 µF, 50V ceramic ceramic capacitor.  
capacitor.  
6. Soft-Start Capacitor (CSS - optional)  
6. Soft-Start Capacitor (CSS - optional)  
This capacitor controls the rate at which the device starts up.  
The formula for the soft-start capacitor CSS is:  
For this application, selecting a start-up time of 10 ms and using  
the formula for CSS results in a value of:  
where:  
ISS = Soft-Start Current :4.5 µA typical.  
tSS = Soft-Start Time :Selected.  
VSSTH = Soft-Start Threshold Voltage :0.63V typical.  
VOUT = Output Voltage :Selected.  
VSCHOTTKY = Schottky Diode Voltage Drop :0.4V typical.  
VIN = Input Voltage :Selected.  
If this feature is not desired, leave this pin open.  
11  
www.national.com  
LM2672 Series Buck Regulator Design Procedure (Fixed Output) (Continued)  
PROCEDURE (Fixed Output Voltage Version)  
7. Frequency Synchronization (optional)  
EXAMPLE (Fixed Output Voltage Version)  
7. Frequency Synchronization (optional)  
For all applications, use a 1 kresistor and a 100 pF capacitor  
for the RC filter.  
The LM2672 (oscillator) can be synchronized to run with an  
external oscillator, using the sync pin (pin 3). By doing so, the  
LM2672 can be operated at higher frequencies than the  
standard frequency of 260 kHz. This allows for a reduction in  
the size of the inductor and output capacitor.  
As shown in the drawing below, a signal applied to a RC filter at  
the sync pin causes the device to synchronize to the frequency  
of that signal. For a signal with a peak-to-peak amplitude of 3V  
or greater, a 1 kresistor and a 100 pF capacitor are suitable  
values.  
www.national.com  
12  
INDUCTOR VALUE SELECTION GUIDES  
(For Continuous Mode Operation)  
01293429  
01293431  
FIGURE 4. LM2672-3.3  
FIGURE 6. LM2672-12  
01293430  
01293432  
FIGURE 5. LM2672-5.0  
FIGURE 7. LM2672-ADJ  
13  
www.national.com  
Schott  
Renco  
Through  
Hole  
Pulse Engineering  
Coilcraft  
Surface  
Mount  
Ind.  
Ref.  
Inductance Current  
Through  
Hole  
Surface  
Mount  
Surface  
Mount  
Through  
Hole  
Surface  
Mount  
(µH)  
(A)  
Desg.  
L4  
68  
47  
0.32  
0.37  
0.44  
0.52  
0.32  
0.39  
0.48  
0.58  
0.70  
0.83  
0.99  
0.55  
0.66  
0.82  
0.99  
1.17  
1.40  
1.70  
1.00  
1.20  
1.47  
1.78  
67143940 67144310 RL-1284-68-43 RL1500-68 PE-53804 PE-53804-S DO1608-683  
67148310 67148420 RL-1284-47-43 RL1500-47 PE-53805 PE-53805-S DO1608-473  
67148320 67148430 RL-1284-33-43 RL1500-33 PE-53806 PE-53806-S DO1608-333  
67148330 67148440 RL-1284-22-43 RL1500-22 PE-53807 PE-53807-S DO1608-223  
L5  
L6  
33  
L7  
22  
L9  
220  
150  
100  
68  
67143960 67144330  
67143970 67144340  
67143980 67144350  
67143990 67144360  
67144000 67144380  
RL-5470-3  
RL-5470-4  
RL-5470-5  
RL-5470-6  
RL-5470-7  
RL1500-220 PE-53809 PE-53809-S DO3308-224  
RL1500-150 PE-53810 PE-53810-S DO3308-154  
RL1500-100 PE-53811 PE-53811-S DO3308-104  
RL1500-68 PE-53812 PE-53812-S DO3308-683  
RL1500-47 PE-53813 PE-53813-S DO3308-473  
L10  
L11  
L12  
L13  
L14  
L15  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L27  
L28  
L29  
L30  
47  
33  
67148340 67148450 RL-1284-33-43 RL1500-33 PE-53814 PE-53814-S DO3308-333  
67148350 67148460 RL-1284-22-43 RL1500-22 PE-53815 PE-53815-S DO3308-223  
22  
220  
150  
100  
68  
67144040 67144420  
67144050 67144430  
67144060 67144440  
67144070 67144450  
67144080 67144460  
67144090 67144470  
RL-5471-2  
RL-5471-3  
RL-5471-4  
RL-5471-5  
RL-5471-6  
RL-5471-7  
RL1500-220 PE-53818 PE-53818-S DO3316-224  
RL1500-150 PE-53819 PE-53819-S DO3316-154  
RL1500-100 PE-53820 PE-53820-S DO3316-104  
RL1500-68 PE-53821 PE-53821-S DO3316-683  
47  
PE-53822 PE-53822-S DO3316-473  
PE-53823 PE-53823-S DO3316-333  
PE-53824 PE-53824-S DO3316-223  
PE-53827 PE-53827-S DO5022P-224  
PE-53828 PE-53828-S DO5022P-154  
PE-53829 PE-53829-S DO5022P-104  
PE-53830 PE-53830-S DO5022P-683  
33  
22  
67148370 67148480 RL-1283-22-43  
220  
150  
100  
68  
67144110 67144490  
67144120 67144500  
67144130 67144510  
67144140 67144520  
RL-5471-2  
RL-5471-3  
RL-5471-4  
RL-5471-5  
FIGURE 8. Inductor Manufacturers’ Part Numbers  
Coilcraft Inc.  
Phone (800) 322-2645  
FAX (708) 639-1469  
Phone +44 1236 730 595  
FAX +44 1236 730 627  
Phone (619) 674-8100  
FAX (619) 674-8262  
Phone +353 93 24 107  
FAX +353 93 24 459  
Phone (800) 645-5828  
FAX (516) 586-5562  
Phone (612) 475-1173  
FAX (612) 475-1786  
Coilcraft Inc., Europe  
Pulse Engineering Inc.  
Pulse Engineering Inc.,  
Europe  
Renco Electronics Inc.  
Schott Corp.  
FIGURE 9. Inductor Manufacturers’ Phone Numbers  
www.national.com  
14  
Output Capacitor  
Through Hole  
Sanyo OS-CON Sanyo MV-GX  
Surface Mount  
Sprague  
Output  
Voltage  
(V)  
Inductance  
(µH)  
AVX TPS  
Series  
(µF/V)  
100/10  
100/10  
100/10  
100/10  
100/10  
100/10  
100/10  
10010  
100/10  
100/10  
100/10  
100/10  
(2x) 68/20  
68/20  
Nichicon  
PL Series  
(µF/V)  
Panasonic  
HFQ Series  
(µF/V)  
594D Series  
(µF/V)  
120/6.3  
120/6.3  
68/10  
SA Series  
(µF/V)  
100/10  
68/10  
Series  
(µF/V)  
330/35  
220/35  
150/35  
120/35  
120/35  
120/35  
330/35  
220/35  
150/35  
120/35  
120/35  
120/35  
330/35  
220/35  
150/35  
120/35  
120/35  
120/35  
120/35  
22  
33  
330/35  
220/35  
150/35  
120/35  
120/35  
120/35  
330/35  
220/35  
150/35  
120/35  
120/35  
120/35  
330/35  
220/35  
150/35  
120/35  
120/35  
120/35  
120/35  
330/35  
220/35  
150/35  
120/35  
120/35  
120/35  
330/35  
220/35  
150/35  
120/35  
120/35  
120/35  
330/35  
220/35  
150/35  
120/35  
120/35  
120/35  
120/35  
47  
68/10  
3.3  
5.0  
68  
120/6.3  
120/6.3  
120/6.3  
100/16  
68/10  
100/10  
100/10  
100/10  
100/10  
68/10  
100  
150  
22  
33  
47  
68/10  
68/10  
68  
100/16  
100/16  
100/16  
120/20  
68/25  
100/10  
100/10  
100/10  
68/20  
100  
150  
22  
33  
68/20  
47  
47/20  
68/20  
47/20  
12  
68  
47/20  
68/20  
47/20  
100  
150  
220  
47/20  
68/20  
47/20  
47/20  
68/20  
47/20  
47/20  
68/20  
47/20  
FIGURE 10. Output Capacitor Table  
Nichicon Corp.  
Phone  
FAX  
(847) 843-7500  
(847) 843-2798  
(714) 373-7857  
(714) 373-7102  
(803) 448-9411  
(803) 448-1943  
(207) 324-4140  
(207) 324-7223  
(619) 661-6322  
(619) 661-1055  
Panasonic  
Phone  
FAX  
AVX Corp.  
Phone  
FAX  
Sprague/Vishay  
Sanyo Corp.  
Phone  
FAX  
Phone  
FAX  
FIGURE 11. Capacitor Manufacturers’ Phone Numbers  
15  
www.national.com  
1A Diodes  
3A Diodes  
VR  
Surface  
Through  
Hole  
Surface  
Through  
Hole  
Mount  
SK12  
Mount  
20V  
30V  
1N5817  
SR102  
1N5818  
11DQ03  
SR103  
1N5819  
11DQ04  
SR104  
SK32  
1N5820  
SR302  
1N5821  
31DQ03  
B120  
SK13  
SK33  
B130  
30WQ03F  
MBRS130  
SK14  
40V  
SK34  
1N5822  
MBR340  
31DQ04  
SR304  
B140  
30BQ040  
30WQ04F  
MBRS340  
MBRD340  
MBRS140  
10BQ040  
10MQ040  
15MQ040  
SK15  
50V  
MBR150  
11DQ05  
SR105  
SK35  
MBR350  
31DQ05  
SR305  
B150  
30WQ05F  
10BQ050  
FIGURE 12. Schottky Diode Selection Table  
International Rectifier Phone  
(310) 322-3331  
Corp.  
FAX  
(310) 322-3332  
(800) 521-6274  
(602) 244-6609  
(516) 847-3000  
Motorola, Inc.  
Phone  
FAX  
General Instruments  
Corp.  
Phone  
FAX  
(516) 847-3236  
(805) 446-4800  
(805) 446-4850  
Diodes, Inc.  
Phone  
FAX  
FIGURE 13. Diode Manufacturers’ Phone Numbers  
01293433  
FIGURE 14. RMS Current Ratings for Low ESR Electrolytic Capacitors (Typical)  
www.national.com  
16  
AVX TPS  
Recommended  
Application Voltage  
Voltage  
Rating  
+85˚C Rating  
3.3  
5
6.3  
10  
20  
25  
35  
10  
12  
15  
Sprague 594D  
Recommended  
Voltage  
Rating  
Application Voltage  
+85˚C Rating  
2.5  
3.3  
5
4
6.3  
10  
16  
20  
25  
35  
50  
8
12  
18  
24  
29  
FIGURE 15. Recommended Application Voltage for AVX TPS and  
Sprague 594D Tantalum Chip Capacitors Derated for 85˚C.  
LM2672 Series Buck Regulator  
Design Procedure (Adjustable  
Output)  
PROCEDURE (Adjustable Output Voltage Version)  
To simplify the buck regulator design procedure, National  
Semiconductor is making available computer design software to  
be used with the SIMPLE SWITCHER line of switching  
regulators. LM267X Made Simple version 6.0 is available on  
Windows 3.1, NT, or 95 operating systems.  
Given:  
EXAMPLE (Adjustable Output Voltage Version)  
Given:  
VOUT = 20V  
VOUT = Regulated Output Voltage  
VIN(max) = Maximum Input Voltage  
VIN(max) = 28V  
ILOAD(max) = Maximum Load Current  
ILOAD(max) = 1A  
F = Switching Frequency (Fixed at a nominal 260 kHz).  
1. Programming Output Voltage (Selecting R1 and R2, as  
shown in Figure 3)  
F = Switching Frequency (Fixed at a nominal 260 kHz).  
1. Programming Output Voltage (Selecting R1 and R2, as  
shown in Figure 3)  
Use the following formula to select the appropriate resistor  
values.  
Select R1 to be 1 k, 1%. Solve for R2.  
where VREF = 1.21V  
Select a value for R1 between 240and 1.5 k. The lower  
R2 = 1 k(16.53 − 1) = 15.53 k, closest 1% value is 15.4 k.  
resistor values minimize noise pickup in the sensitive feedback R2 = 15.4 k.  
pin. (For the lowest temperature coefficient and the best stability  
with time, use 1% metal film resistors.)  
17  
www.national.com  
LM2672 Series Buck Regulator Design Procedure (Adjustable Output)  
(Continued)  
PROCEDURE (Adjustable Output Voltage Version)  
2. Inductor Selection (L1)  
EXAMPLE (Adjustable Output Voltage Version)  
2. Inductor Selection (L1)  
A. Calculate the inductor Volt microsecond constant E T  
(V µs), from the following formula:  
A. Calculate the inductor Volt microsecond constant (E T),  
where VSAT=internal switch saturation voltage=0.25V and  
VD = diode forward voltage drop = 0.5V  
B. Use the E T value from the previous formula and match it  
with the E T number on the vertical axis of the Inductor Value  
Selection Guide shown in Figure 7.  
B. E T = 21.6 (V µs)  
C. ILOAD(max) = 1A  
C. On the horizontal axis, select the maximum load current.  
D. Identify the inductance region intersected by the E T value D. From the inductor value selection guide shown in Figure 7,  
and the Maximum Load Current value. Each region is identified the inductance region intersected by the 21.6 (V µs) horizontal  
by an inductance value and an inductor code (LXX).  
line and the 1A vertical line is 68 µH, and the inductor code is  
L30.  
E. Select an appropriate inductor from the four manufacturer’s  
E. From the table in Figure 8, locate line L30, and select an  
part numbers listed in Figure 8. For information on the different inductor part number from the list of manufacturers’ part  
types of inductors, see the inductor selection in the fixed output numbers.  
voltage design procedure.  
3. Output Capacitor SeIection (COUT  
A. Select an output capacitor from the capacitor code selection A. Use the appropriate row of the capacitor code selection  
guide in Figure 16. Using the inductance value found in the guide, in Figure 16. For this example, use the 15–20V row. The  
)
3. Output Capacitor SeIection (COUT)  
inductor selection guide, step 1, locate the appropriate capacitor capacitor code corresponding to an inductance of 68 µH is C20.  
code corresponding to the desired output voltage.  
B. Select an appropriate capacitor value and voltage rating,  
B. From the output capacitor selection table in Figure 17,  
using the capacitor code, from the output capacitor selection  
choose a capacitor value (and voltage rating) that intersects the  
table in Figure 17. There are two solid tantalum (surface mount) capacitor code(s) selected in section A, C20.  
capacitor manufacturers and four electrolytic (through hole)  
The capacitance and voltage rating values corresponding to the  
capacitor manufacturers to choose from. It is recommended that capacitor code C20 are the:  
both the manufacturers and the manufacturer’s series that are  
listed in the table be used. A table listing the manufacturers’  
phone numbers is located in Figure 11.  
Surface Mount:  
33 µF/25V Sprague 594D Series.  
33 µF/25V AVX TPS Series.  
Through Hole:  
33 µF/25V Sanyo OS-CON SC Series.  
120 µF/35V Sanyo MV-GX Series.  
120 µF/35V Nichicon PL Series.  
120 µF/35V Panasonic HFQ Series.  
Other manufacturers or other types of capacitors may also be  
used, provided the capacitor specifications (especially the 100  
kHz ESR) closely match the characteristics of the capacitors  
listed in the output capacitor table. Refer to the capacitor  
manufacturers’ data sheet for this information.  
www.national.com  
18  
LM2672 Series Buck Regulator Design Procedure (Adjustable Output)  
(Continued)  
PROCEDURE (Adjustable Output Voltage Version)  
4. Catch Diode Selection (D1)  
EXAMPLE (Adjustable Output Voltage Version)  
4. Catch Diode Selection (D1)  
A. In normal operation, the average current of the catch diode is A. Refer to the table shown in Figure 12. Schottky diodes  
the load current times the catch diode duty cycle, 1-D (D is the provide the best performance, and in this example a 1A, 40V  
switch duty cycle, which is approximately VOUT/VIN). The largest Schottky diode would be a good choice. If the circuit must  
value of the catch diode average current occurs at the maximum withstand a continuous shorted output, a higher current (at least  
input voltage (minimum D). For normal operation, the catch  
diode current rating must be at least 1.3 times greater than its  
maximum average current. However, if the power supply design  
must withstand a continuous output short, the diode should have  
a current rating greater than the maximum current limit of the  
LM2672. The most stressful condition for this diode is a shorted  
output condition.  
2.2A) Schottky diode is recommended.  
B. The reverse voltage rating of the diode should be at least  
1.25 times the maximum input voltage.  
C. Because of their fast switching speed and low forward  
voltage drop, Schottky diodes provide the best performance and  
efficiency. The Schottky diode must be located close to the  
LM2672 using short leads and short printed circuit traces.  
5. Input Capacitor (CIN  
)
5. Input Capacitor (CIN)  
A low ESR aluminum or tantalum bypass capacitor is needed  
between the input pin and ground to prevent large voltage  
The important parameters for the input capacitor are the input  
voltage rating and the RMS current rating. With a maximum  
transients from appearing at the input. This capacitor should be input voltage of 28V, an aluminum electrolytic capacitor with a  
located close to the IC using short leads. In addition, the RMS voltage rating of at least 35V (1.25 x VIN) would be needed.  
current rating of the input capacitor should be selected to be at The RMS current rating requirement for the input capacitor in a  
1
1
least ⁄  
2
the DC load current. The capacitor manufacturer data  
buck regulator is approximately ⁄ the DC load current. In this  
2
sheet must be checked to assure that this current rating is not  
exceeded. The curves shown in Figure 14 show typical RMS  
current ratings for several different aluminum electrolytic  
capacitor values. A parallel connection of two or more  
example, with a 1A load, a capacitor with a RMS current rating  
of at least 500 mA is needed. The curves shown in Figure 14  
can be used to select an appropriate input capacitor. From the  
curves, locate the 35V line and note which capacitor values  
capacitors may be required to increase the total minimum RMS have RMS current ratings greater than 500 mA.  
current rating to suit the application requirements. For a through hole design, a 330 µF/35V electrolytic capacitor  
For an aluminum electrolytic capacitor, the voltage rating should (Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or  
be at least 1.25 times the maximum input voltage. Caution must equivalent) would be adequate. Other types or other  
be exercised if solid tantalum capacitors are used. The tantalum manufacturers’ capacitors can be used provided the RMS ripple  
capacitor voltage rating should be twice the maximum input  
voltage. The tables in Figure 15 show the recommended  
application voltage for AVX TPS and Sprague 594D tantalum  
capacitors. It is also recommended that they be surge current  
current ratings are adequate. Additionally, for a complete  
surface mount design, electrolytic capacitors such as the Sanyo  
CV-C or CV-BS and the Nichicon WF or UR and the NIC  
Components NACZ series could be considered.  
tested by the manufacturer. The TPS series available from AVX, For surface mount designs, solid tantalum capacitors can be  
and the 593D and 594D series from Sprague are all surge used, but caution must be exercised with regard to the capacitor  
current tested. Another approach to minimize the surge current surge current rating and voltage rating. In this example,  
stresses on the input capacitor is to add a small inductor in  
series with the input supply line.  
checking Figure 15, and the Sprague 594D series datasheet, a  
Sprague 594D 15 µF, 50V capacitor is adequate.  
Use caution when using ceramic capacitors for input bypassing,  
because it may cause severe ringing at the VIN pin.  
6. Boost Capacitor (CB)  
6. Boost Capacitor (CB)  
This capacitor develops the necessary voltage to turn the switch For this application, and all applications, use a 0.01 µF, 50V  
gate on fully. All applications should use a 0.01 µF, 50V ceramic ceramic capacitor.  
capacitor.  
If the soft-start and frequency synchronization features are  
desired, look at steps 6 and 7 in the fixed output design  
procedure.  
19  
www.national.com  
LM2672 Series Buck Regulator Design Procedure (Adjustable Output)  
(Continued)  
Inductance (µH)  
Case  
Output  
Style (Note 7)  
Voltage (V)  
22  
33  
47  
68  
100  
C1  
150  
C2  
220  
C3  
SM and TH  
SM and TH  
SM and TH  
SM and TH  
SM and TH  
SM and TH  
SM and TH  
SM and TH  
SM and TH  
SM and TH  
TH  
1.21–2.50  
2.50–3.75  
3.75–5.0  
5.0–6.25  
6.25–7.5  
7.5–10.0  
10.0–12.5  
12.5–15.0  
15.0–20.0  
20.0–30.0  
30.0–37.0  
C1  
C2  
C3  
C3  
C4  
C5  
C6  
C6  
C6  
C4  
C7  
C6  
C6  
C6  
C6  
C8  
C4  
C7  
C6  
C6  
C6  
C6  
C9  
C10  
C11  
C16  
C19  
C22  
C24  
C11  
C12  
C17  
C20  
C22  
C24  
C12  
C12  
C17  
C20  
C22  
C25  
C13  
C13  
C17  
C20  
C22  
C25  
C13  
C13  
C17  
C20  
C22  
C25  
C13  
C13  
C17  
C20  
C22  
C25  
C14  
C15  
C18  
C21  
C23  
Note 7: SM - Surface Mount, TH - Through Hole  
FIGURE 16. Capacitor Code Selection Guide  
Output Capacitor  
Surface Mount  
Through Hole  
Sanyo MV-GX Nichicon  
Cap.  
Ref.  
Desg.  
#
Sprague  
AVX TPS  
Series  
(µF/V)  
Sanyo OS-CON  
SA Series  
(µF/V)  
Panasonic  
HFQ Series  
(µF/V)  
594D Series  
(µF/V)  
120/6.3  
120/6.3  
120/6.3  
68/10  
Series  
(µF/V)  
220/35  
150/35  
120/35  
220/35  
150/35  
120/35  
150/35  
330/35  
330/35  
220/35  
150/35  
120/35  
120/35  
220/35  
220/35  
150/35  
120/35  
220/35  
150/35  
120/35  
150/35  
120/35  
220/50  
150/50  
150/50  
PL Series  
(µF/V)  
220/35  
150/35  
120/35  
220/35  
150/35  
120/35  
150/35  
330/35  
330/35  
220/35  
150/35  
120/35  
120/35  
220/35  
220/35  
150/35  
120/35  
220/35  
150/35  
120/35  
150/35  
120/35  
100/50  
100/50  
82/50  
C1  
C2  
100/10  
100/10  
100/10  
100/10  
100/10  
100/10  
100/10  
100/10  
100/16  
100/16  
100/16  
100/16  
100/16  
100/16  
68/20  
100/10  
220/35  
150/35  
120/35  
220/35  
150/35  
120/35  
150/35  
330/35  
330/35  
220/35  
150/35  
120/35  
120/35  
220/35  
220/35  
150/35  
120/35  
220/35  
150/35  
120/35  
150/35  
120/35  
120/50  
120/50  
82/50  
100/10  
C3  
100/35  
C4  
68/10  
C5  
100/16  
100/16  
68/10  
100/10  
C6  
100/10  
C7  
68/10  
C8  
100/16  
100/16  
100/16  
100/16  
100/16  
100/16  
100/16  
47/20  
100/10  
C9  
100/16  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
68/16  
68/16  
68/16  
100/16  
100/16  
47/20  
47/20  
68/20  
47/20  
47/20  
68/20  
47/20  
68/25  
(2x) 33/25  
33/25  
47/25 (Note 8)  
33/25 (Note 8)  
33/25 (Note 8)  
(Note 9)  
(Note 9)  
(Note 9)  
(Note 9)  
(Note 9)  
33/25  
33/25  
33/25  
33/35  
(2x) 22/25  
22/35  
33/35  
(Note 9)  
(Note 9)  
(Note 9)  
(Note 9)  
(Note 9)  
(Note 9)  
Note 8: The SC series of Os-Con capacitors (others are SA series)  
Note 9: The voltage ratings of the surface mount tantalum chip and Os-Con capacitors are too low to work at these voltages.  
FIGURE 17. Output Capacitor Selection Table  
www.national.com  
20  
Application Information  
TYPICAL SURFACE MOUNT PC BOARD LAYOUT, FIXD OUTPUT (4X SIZE)  
01293439  
C
C
- 15 µF, 50V, Solid Tantalum Sprague, “594D series”  
IN  
- 68 µF, 16V, Solid Tantalum Sprague, “594D series”  
OUT  
D1 - 1A, 40V Schottky Rectifier, Surface Mount  
L1 - 33 µH, L23, Coilcraft DO3316  
C
- 0.01 µF, 50V, Ceramic  
B
TYPICAL SURFACE MOUNT PC BOARD LAYOUT, ADJUSTABLE OUTPUT (4X SIZE)  
01293440  
C
C
- 15 µF, 50V, Solid Tantalum Sprague, “594D series”  
IN  
- 33 µF, 25V, Solid Tantalum Sprague, “594D series”  
OUT  
D1 - 1A, 40V Schottky Rectifier, Surface Mount  
L1 - 68 µH, L30, Coilcraft DO3316  
C
- 0.01 µF, 50V, Ceramic  
B
R1 - 1k, 1%  
R2 - Use formula in Design Procedure  
FIGURE 18. PC Board Layout  
Layout is very important in switching regulator designs. Rap-  
idly switching currents associated with wiring inductance can  
generate voltage transients which can cause problems. For  
minimal inductance and ground loops, the wires indicated by  
heavy lines (in Figure 2 and Figure 3) should be wide  
printed circuit traces and should be kept as short as  
possible. For best results, external components should be  
located as close to the switcher IC as possible using ground  
plane construction or single point grounding.  
If open core inductors are used, special care must be  
taken as to the location and positioning of this type of induc-  
tor. Allowing the inductor flux to intersect sensitive feedback,  
IC ground path, and COUT wiring can cause problems.  
When using the adjustable version, special care must be  
taken as to the location of the feedback resistors and the  
associated wiring. Physically locate both resistors near the  
IC, and route the wiring away from the inductor, especially an  
open core type of inductor.  
21  
www.national.com  
well as mounting and soldering specifications, refer to Appli-  
cation Note AN-1187.  
Application Information (Continued)  
LLP Package Devices  
The LM2672 is offered in the 16 lead LLP surface mount  
package to allow for increased power dissipation compared  
to the SO-8 and DIP. For details on thermal performance as  
www.national.com  
22  
Physical Dimensions inches (millimeters)  
unless otherwise noted  
8-Lead (0.150" Wide) Molded Small Outline Package, JEDEC  
Order Number LM2672M-3.3, LM2672M-5.0,  
LM2672M-12 or LM2672M-ADJ  
NS Package Number M08A  
23  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
8-Lead (0.300" Wide) Molded Dual-In-Line Package  
Order Number LM2672N-3.3, LM2672N-5.0,  
LM2672N-12 or LM2672N-ADJ  
NS Package Number N08E  
www.national.com  
24  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
16-Lead LLP Surface Mount Package  
NS Package Number LDA16A  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and  
whose failure to perform when properly used in  
accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a  
significant injury to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform  
can be reasonably expected to cause the failure of  
the life support device or system, or to affect its  
safety or effectiveness.  
National Semiconductor  
Corporation  
Americas  
Tel: 1-800-272-9959  
Fax: 1-800-737-7018  
Email: support@nsc.com  
National Semiconductor  
Europe  
National Semiconductor  
Asia Pacific Customer  
Response Group  
Tel: 65-2544466  
Fax: 65-2504466  
National Semiconductor  
Japan Ltd.  
Tel: 81-3-5639-7560  
Fax: 81-3-5639-7507  
Fax: +49 (0) 180-530 85 86  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY