LM4120_05 [NSC]

Precision Micropower Low Dropout Voltage Reference; 精密微功耗低压差电压基准
LM4120_05
型号: LM4120_05
厂家: National Semiconductor    National Semiconductor
描述:

Precision Micropower Low Dropout Voltage Reference
精密微功耗低压差电压基准

文件: 总12页 (文件大小:721K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
March 2005  
LM4120  
Precision Micropower Low Dropout Voltage Reference  
General Description  
Features  
n Small SOT23-5 package  
n Low dropout voltage:  
n High output voltage accuracy:  
n Source and Sink current output:  
n Supply current:  
The LM4120 is a precision low power low dropout bandgap  
voltage reference with up to 5 mA output current source and  
sink capability.  
@
120 mV Typ 1 mA  
0.2%  
5 mA  
This series reference operates with input voltages as low as  
2V and up to 12V consuming 160 µA (Typ.) supply current. In  
power down mode, device current drops to less than 2 µA.  
160 µA Typ.  
50 ppm/˚C  
n Low Temperature Coefficient:  
n Enable pin  
n Fixed output voltages:  
and 5.0V  
n Industrial temperature Range:  
The LM4120 comes in two grades (A and Standard) and  
seven voltage options for greater flexibility. The best grade  
devices (A) have an initial accuracy of 0.2%, while the stan-  
dard have an initial accuracy of 0.5%, both with a tempco of  
50ppm/˚C guaranteed from −40˚C to +125˚C.  
1.8, 2.048, 2.5, 3.0, 3.3, 4.096  
−40˚C to +85˚C  
n (For extended temperature range, −40˚C to 125˚C,  
contact National Semiconductor)  
The very low dropout voltage, low supply current and power-  
down capability of the LM4120 makes this product an ideal  
choice for battery powered and portable applications.  
Applications  
The device performance is guaranteed over the industrial  
temperature range (−40˚C to +85˚C), while certain specs are  
guaranteed over the extended temperature range (−40˚C to  
+125˚C). Please contact National for full specifications over  
the extended temperature range. The LM4120 is available in  
a standard 5-pin SOT-23 package.  
n Portable, battery powered equipment  
n Instrumentation and process control  
n Automotive & Industrial  
n Test equipment  
n Data acquisition systems  
n Precision regulators  
n Battery chargers  
n Base stations  
n Communications  
n Medical equipment  
Functional Block Diagram  
Connection Diagram  
10104702  
Refer to the Ordering Information Table in this Data Sheet for Specific  
Part Number  
SOT23-5 Surface Mount Package  
10104701  
© 2005 National Semiconductor Corporation  
DS101047  
www.national.com  
Ordering Information  
Industrial Temperature Range (−40˚C to + 85˚C)  
LM4120 Supplied as  
1000 Units, Tape and  
Reel  
LM4120 Supplied as  
3000 Units, Tape and  
Reel  
Initial Output Voltage Accuracy at 25˚C  
And Temperature Coefficient  
Top  
Marking  
LM4120AIM5-1.8  
LM4120AIM5-2.0  
LM4120AIM5-2.5  
LM4120AIM5-3.0  
LM4120AIM5-3.3  
LM4120AIM5-4.1  
LM4120AIM5-5.0  
LM4120IM5-1.8  
LM4120IM5-2.0  
LM4120IM5-2.5  
LM4120IM5-3.0  
LM4120IM5-3.3  
LM4120IM5-4.1  
LM4120IM5-5.0  
LM4120AIM5X-1.8  
LM4120AIM5X-2.0  
LM4120AIM5X-2.5  
LM4120AIM5X-3.0  
LM4120AIM5X-3.3  
LM4120AIM5X-4.1  
LM4120AIM5X-5.0  
LM4120IM5X-1.8  
LM4120IM5X-2.0  
LM4120IM5X-2.5  
LM4120IM5X-3.0  
LM4120IM5X-3.3  
LM4120IM5X-4.1  
LM4120IM5X-5.0  
R21A  
R14A  
R08A  
R15A  
R16A  
R17A  
R18A  
R21B  
R14B  
R08B  
R15B  
R16B  
R17B  
R18B  
0.2%, 50 ppm/˚C max (A grade)  
0.5%, 50 ppm/˚C max  
SOT-23 Package Marking Information  
Only four fields of marking are possible on the SOT-23’s small surface. This  
table gives the meaning of the four fields.  
Field Information  
First Field:  
R = Reference  
Second and third Field:  
21 = 1.800V Voltage Option  
14 = 2.048V Voltage Option  
08 = 2.500V Voltage Option  
15 = 3.000V Voltage Option  
16 = 3.300V Voltage Option  
17 = 4.096V Voltage Option  
18 = 5.000V Voltage Option  
Fourth Field:  
A-B = Initial Reference Voltage Tolerance  
A = 0.2%  
B = 0.5%  
www.national.com  
2
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Lead Temperature:  
Soldering, (10 sec.)  
Vapor Phase (60 sec.)  
Infrared (15 sec.)  
+260˚C  
+215˚C  
+220˚C  
Maximum Voltage on input or  
enable pins  
−0.3V to 14V  
Indefinite  
Operating Range (Note 1)  
Storage Temperature  
Range  
Output Short-Circuit Duration  
Power Dissipation (TA = 25˚C) (Note 2):  
MA05B package − θJA  
Power Dissipation  
−65˚C to +150˚C  
−40˚C to +85˚C  
−40˚C to +125˚C  
280˚C/W  
350 mW  
Ambient Temperature  
Range  
ESD Susceptibility (Note 3)  
Human Body Model  
Junction Temperature  
Range  
2 kV  
Machine Model  
200V  
Electrical Characteristics  
LM4120-1.8V, 2.048V and 2.5V Unless otherwise specified VIN = 3.3V, ILOAD = 0, COUT = 0.01µF, TA  
Tj = 25˚C. Limits with standard typeface are for Tj = 25˚C, and limits in boldface type apply over the −40˚C TA +85˚C  
temperature range.  
=
Typ (Note Max (Note  
Symbol  
Parameter  
Conditions  
Min (Note 5)  
Units  
4)  
5)  
Output Voltage Initial  
Accuracy  
LM4120A-1.800  
LM4120A-2.048  
LM4120A-2.500  
LM4120-1.800  
LM4120-2.048  
LM4120-2.500  
Temperature  
0.2  
%
VOUT  
0.5  
50  
%
TCVOUT/˚C  
−40˚C TA +125˚C  
14  
0.0007  
0.03  
ppm/˚c  
Coefficient  
VOUT/VIN  
Line Regulation  
3.3V VIN 12V  
0.008  
0.01  
0.08  
0.17  
0.04  
0.1  
%/V  
0 mA ILOAD 1 mA  
1 mA ILOAD 5 mA  
0.01  
VOUT/ILOAD  
Load Regulation  
%/mA  
−1 mA ILOAD 0 mA  
−5 mA ILOAD −1 mA  
ILOAD = 0 mA  
0.04  
0.01  
45  
0.12  
65  
80  
Dropout Voltage  
(Note 6)  
ILOAD = +1 mA  
ILOAD = +5 mA  
120  
180  
150  
180  
210  
250  
VIN−VOUT  
mV  
VN  
IS  
Output Noise Voltage 0.1 Hz to 10 Hz  
20  
36  
µVPP  
µVPP  
µA  
(Note 8)  
10 Hz to 10 kHz  
Supply Current  
160  
250  
275  
1
ISS  
Power-down Supply  
Current  
Enable = 0.4V  
−40˚C TJ +85˚C  
Enable = 0.2V  
2
µA  
V
VH  
Logic High Input  
Voltage  
2.4  
2.4  
3
www.national.com  
Electrical Characteristics  
LM4120-1.8V, 2.048V and 2.5V Unless otherwise specified VIN = 3.3V, ILOAD = 0, COUT = 0.01µF, TA = Tj  
= 25˚C. Limits with standard typeface are for Tj = 25˚C, and limits in boldface type apply over the −40˚C TA +85˚C  
temperature range. (Continued)  
Typ (Note Max (Note  
Symbol  
Parameter  
Conditions  
Min (Note 5)  
Units  
4)  
5)  
VL  
IH  
IL  
Logic Low Input  
Voltage  
0.4  
V
0.2  
15  
Logic High Input  
Current  
7
µA  
µA  
Logic Low Input  
Current  
0.1  
15  
VIN = 3.3V, VOUT = 0  
6
6
30  
30  
ISC  
Short Circuit Current  
mA  
VIN = 12V, VOUT = 0  
17  
Hyst  
Thermal Hysteresis  
(Note 7)  
−40˚C TA 125˚C  
0.5  
100  
mV/V  
ppm  
@
1000 hrs. 25˚C  
VOUT  
Long Term Stability  
(Note 9)  
Electrical Characteristics  
LM4120-3.0V, 3.3V, 4.096V and 5.0V Unless otherwise specified VIN = VOUT + 1V, ILOAD = 0, COUT  
0.01µF, TA = Tj = 25˚C. Limits with standard typeface are for Tj = 25˚C, and limits in boldface type apply over the −40˚C ≤  
TA +85˚C temperature range.  
=
Typ (Note Max (Note  
Symbol  
Parameter  
Conditions  
Min (Note 5)  
Units  
4)  
5)  
Output Voltage Initial  
Accuracy  
LM4120A-3.000  
LM4120A-3.300  
LM4120A-4.096  
LM4120A-5.000  
LM4120-3.000  
LM4120-3.300  
LM4120-4.096  
LM4120-5.000  
Temperature  
0.2  
%
VOUT  
0.5  
50  
%
TCVOUT/˚C  
−40˚C TA +125˚C  
14  
0.0007  
0.03  
ppm/˚c  
%/V  
Coefficient  
VOUT/VIN  
Line Regulation  
(VOUT + 1V) VIN 12V  
0 mA ILOAD 1 mA  
1 mA ILOAD 5 mA  
0.008  
0.01  
0.08  
0.17  
0.04  
0.1  
0.01  
VOUT/ILOAD  
Load Regulation  
%/mA  
−1 mA ILOAD 0 mA  
−5 mA ILOAD −1 mA  
ILOAD = 0 mA  
0.04  
0.01  
45  
0.12  
65  
80  
Dropout Voltage  
(Note 6)  
ILOAD = +1 mA  
ILOAD = +5 mA  
120  
180  
150  
180  
210  
250  
VIN−VOUT  
mV  
www.national.com  
4
Electrical Characteristics  
LM4120-3.0V, 3.3V, 4.096V and 5.0V Unless otherwise specified VIN = VOUT + 1V, ILOAD = 0, COUT  
=
0.01µF, TA = Tj = 25˚C. Limits with standard typeface are for Tj = 25˚C, and limits in boldface type apply over the −40˚C TA  
+85˚C temperature range. (Continued)  
Typ (Note Max (Note  
Symbol  
Parameter  
Conditions  
Min (Note 5)  
Units  
4)  
20  
5)  
VN  
IS  
Output Noise Voltage 0.1 Hz to 10 Hz  
µVPP  
µVPP  
µA  
(Note 8)  
10 Hz to 10 kHz  
36  
Supply Current  
160  
250  
275  
1
ISS  
Power-down Supply  
Current  
Enable = 0.4V  
−40˚C TJ +85˚C  
Enable = 0.2V  
2
µA  
V
VH  
VL  
IH  
Logic High Input  
Voltage  
2.4  
0.4  
7
2.4  
Logic Low Input  
Voltage  
V
0.2  
15  
Logic High Input  
Current  
µA  
µA  
IL  
Logic Low Input  
Current  
0.1  
15  
VOUT = 0  
6
6
30  
30  
ISC  
Short Circuit Current  
mA  
VIN = 12V, VOUT = 0  
−40˚C TA 125˚C  
17  
Hyst  
Thermal Hysteresis  
(Note 7)  
0.5  
100  
mV/V  
ppm  
@
1000 hrs. 25˚C  
VOUT  
Long Term Stability  
(Note 9)  
Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see Electrical Characteristics. The  
guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed  
test conditions.  
Note 2: Without PCB copper enhancements. The maximum power dissipation must be de-rated at elevated temperatures and is limited by T  
(maximum  
JMAX  
junction temperature), θ (junction to ambient thermal resistance) and T (ambient temperature). The maximum power dissipation at any temperature is: PDiss  
J-A  
A
MAX  
= (T  
− T )/θ  
up to the value listed in the Absolute Maximum Ratings.  
JMAX  
A
J-A  
Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin. The machine model is a 200 pF capacitor discharged  
directly into each pin.  
Note 4: Typical numbers are at 25˚C and represent the most likely parametric norm.  
Note 5: Limits are 100% production tested at 25˚C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control  
(SQC) methods. The limits are used to calculate National’s Averaging Outgoing Quality Level (AOQL).  
Note 6: Dropout voltage is the differential voltage between V  
and V at which V  
changes 1% from V  
at V = 3.3V for 1.8V, 2.0V, 2.5V and V  
+
is  
OUT  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
1V for others.For 1.8V option, dropout voltage is not guaranteed over temperature. A parasitic diode exists between input and output pins; it will conduct if V  
pulled to a higher voltage than V  
.
IN  
Note 7: Thermal hysteresis is defined as the change in +25˚C output voltage before and after exposing the device to temperature extremes.  
Note 8: Output noise voltage is proportional to V . V for other voltage option is calculated using (V /1.8) * V . V (2.5V) = (36µV /1.8) * 2.5 = 46µV .  
PP  
OUT  
N
N(1.8V)  
OUT  
N
PP  
Note 9: Long term stability is change in V  
at 25˚C measured continuously during 1000 hrs.  
REF  
5
www.national.com  
LM4120 Typical Operating Characteristics  
Unless otherwise specified, VIN = 3.3V, VOUT = 2.5V,  
ILOAD = 0, COUT = 0.022µF, TA = 25˚C and VEN = VIN  
.
Long Term Drift  
Typical Temperature Drift  
10104712  
10104713  
Short Circuit Current vs Temperature  
Dropout Voltage vs Output Error  
10104714  
10104715  
Dropout Voltage vs Load Current  
Line Regulation  
10104733  
10104717  
www.national.com  
6
LM4120 Typical Operating Characteristics Unless otherwise specified, VIN = 3.3V, VOUT = 2.5V,  
ILOAD = 0, COUT = 0.022µF, TA = 25˚C and VEN = VIN. (Continued)  
Load Regulation  
GND Pin Current  
10104719  
10104718  
GND Pin Current at No Load  
vs Temperature  
GND Pin Current vs Load  
10104722  
10104721  
0.1Hz to 10Hz output Noise  
Output Impedance vs Frequency  
10104723  
10104724  
7
www.national.com  
LM4120 Typical Operating Characteristics Unless otherwise specified, VIN = 3.3V, VOUT = 2.5V,  
ILOAD = 0, COUT = 0.022µF, TA = 25˚C and VEN = VIN. (Continued)  
PSRR vs Frequency  
Start-Up Response  
Load Step Response  
Line Step Response  
10104726  
10104728  
10104730  
10104725  
Enable Response  
10104727  
Load Step Response  
10104729  
www.national.com  
8
LM4120 Typical Operating Characteristics Unless otherwise specified, VIN = 3.3V, VOUT = 2.5V,  
ILOAD = 0, COUT = 0.022µF, TA = 25˚C and VEN = VIN. (Continued)  
Thermal Hysteresis  
Enable Pin Current  
10104716  
10104731  
must be taken close to GND to turn the part off (see spec.  
table for thresholds). There is a minimum slew rate on this  
pin of about 0.003V/µS to prevent glitches on the output. All  
of these conditions can easily be met with ordinary CMOS or  
TTL logic. If the shutdown feature is not required, then this  
pin can safely be connected directly to the input supply.  
Floating this pin is not recommended.  
Pin Functions  
Output (Pin 5): Reference Output.  
Input (Pin 4):Positive Supply.  
Ground (Pin 2):Negative Supply or Ground Connection.  
Enable (Pin 3):Pulled to input for normal operation. Forcing  
this pin to ground will turn-off the output.  
REF (Pin 1):REF Pin. This pin should be left unconnected.  
Application Hints  
The standard application circuit for the LM4120 is shown in  
Figure 1. It is designed to be stable with ceramic output  
capacitors in the range of 0.022µF to 0.047µF. Note that  
0.022µF is the minimum required output capacitor. These  
capacitors typically have an ESR of about 0.1 to 0.5.  
Smaller ESR can be tolerated, however larger ESR can not.  
The output capacitor can be increased to improve load tran-  
sient response, up to about 1µF. However, values above  
0.047µF must be tantalum. With tantalum capacitors, in the  
1µF range, a small capacitor between the output and the  
reference pin is required. This capacitor will typically be in  
the 50pF range. Care must be taken when using output  
capacitors of 1µF or larger. These application must be thor-  
oughly tested over temperature, line and load.  
10104732  
FIGURE 1.  
INPUT CAPACITOR  
Noise on the power-supply input can effect the output noise,  
but can be reduced by using an optional bypass capacitor  
between the input pin and the ground.  
An input capacitor is typically not required. However, a 0.1µF  
ceramic can be used to help prevent line transients from  
entering the LM4120. Larger input capacitors should be  
tantalum or aluminium.  
PRINTED CIRCUIT BOARD LAYOUT CONSIDERATION  
The mechanical stress due to PC board mounting can cause  
the output voltage to shift from its initial value. References in  
SOT packages are generally less prone to assembly stress  
than devices in Small Outline (SOIC) package.  
The reference pin is sensitive to noise, and capacitive load-  
ing. Therefore, the PCB layout should isolate this pin as  
much as possible.  
To reduce the stress-related output voltage shifts, mount the  
reference on the low flex areas of the PC board such as near  
to the edge or the corner of the PC board.  
The enable pin is an analog input with very little hysteresis.  
About 6µA into this pin is required to turn the part on, and it  
9
www.national.com  
Typical Application Circuits  
Voltage Reference with Complimentary Output  
Voltage Reference with Negative Output  
10104706  
Precision High Current Low Droput Regulator  
10104703  
Precision High Current Low Dropout Regulator  
10104707  
Stacking Voltage References  
10104704  
Precision High Current  
Negative Voltage Regulator  
10104708  
Precision Voltage Reference  
with Force and Sense Output  
10104705  
10104709  
www.national.com  
10  
Typical Application Circuits  
Power Supply Splitter  
(Continued)  
Programmable Current Source  
10104720  
10104710  
Precision Regulator with Current Limiting Circuit  
10104711  
11  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves  
the right at any time without notice to change said circuitry and specifications.  
For the most current product information visit us at www.national.com.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain  
no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY