LMP90077 [NSC]

Sensor AFE System: Multi-Channel, Low-Power 16-Bit; 传感器模拟前端系统:多通道,低功耗16位
LMP90077
型号: LMP90077
厂家: National Semiconductor    National Semiconductor
描述:

Sensor AFE System: Multi-Channel, Low-Power 16-Bit
传感器模拟前端系统:多通道,低功耗16位

传感器
文件: 总62页 (文件大小:1686K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 30, 2011  
LMP90080/LMP90079/  
LMP90078/LMP90077  
Sensor AFE System: Multi-Channel, Low-Power 16-Bit  
Sensor AFE with True Continuous Background Calibration  
Low-Noise programmable gain (1x - 128x)  
1.0 General Description  
Continuous background open/short and out of range  
The LMP90080/LMP90079/LMP90078/LMP90077 are highly  
sensor diagnostics  
integrated, multi-channel, low-power 16-bit Sensor AFEs.  
The devices feature a precision, 16-bit Sigma Delta Analog-  
8 output data rates (ODR) with single-cycle settling  
2 matched excitation current sources from 100 µA to  
1000 µA (LMP90080/LMP90078)  
4-DIFF / 7-SE inputs (LMP90080/LMP90079)  
2-DIFF / 4-SE inputs (LMP90078/LMP90077)  
7 General Purpose Input/Output pins  
to-Digital Converter (ADC) with a low-noise programmable  
gain amplifier and a fully differential high impedance analog  
input multiplexer. A true continuous background calibration  
feature allows calibration at all gains and output data rates  
without interrupting the signal path. The background calibra-  
tion feature essentially eliminates gain and offset errors  
across temperature and time, providing measurement accu-  
racy without sacrificing speed and power consumption.  
Chopper-stabilized buffer for low offset  
SPI 4/3-wire with CRC data link error detection  
50 Hz to 60 Hz line rejection at ODR 13.42 SPS  
Independent gain and ODR selection per channel  
Supported by Webench Sensor AFE Designer  
Automatic Channel Sequencer  
Another feature of the LMP90080/LMP90079/LMP90078/  
LMP90077 is continuous background sensor diagnostics, al-  
lowing the detection of open and short circuit conditions and  
out-of-range signals, without requiring user intervention, re-  
sulting in enhanced system reliability.  
Two sets of independent external reference voltage pins allow  
multiple ratiometric measurements. In addition, two matched  
programmable current sources are available in the  
LMP90080/LMP90078 to excite external sensors such as re-  
sistive temperature detectors and bridge sensors. Further-  
more, seven GPIO pins are provided for interfacing to external  
LEDs and switches to simplify control across an isolation bar-  
rier.  
3.0 Key Specifications  
■ꢀENOB/NFR  
■ꢀOffset Error (typ)  
■ꢀGain Error (typ)  
■ꢀTotal Noise  
■ꢀIntegral Non-Linearity (INL max)  
Up to 16/16 bits  
8.4 nV  
7 ppm  
< 10 µV-rms  
±1LSB  
Collectively, these features make the LMP90080/LMP90079/  
LMP90078/LMP90077 complete analog front-ends for low-  
power, precision sensor applications such as temperature,  
pressure, strain gauge, and industrial process control. The  
LMP90080/LMP90079/LMP90078/LMP90077 are guaran-  
teed over the extended temperature range of -40°C to +125°  
C and are available in a 28-pin TSSOP package.  
■ꢀOutput Data Rates (ODR)  
■ꢀAnalog Voltage, VA  
■ꢀOperating Temp Range  
■ꢀPackage  
1.6775 SPS - 214.65 SPS  
+2.85V to +5.5V  
-40°C to 125°C  
28-Pin TSSOP  
2.0 Features  
4.0 Applications  
16-Bit Low-Power Sigma Delta ADC  
Temperature and Pressure Transmitters  
True Continuous Background Calibration at all gains  
Strain Gauge Interface  
In-Place System Calibration using Expected Value  
Industrial Process Control  
programming  
5.0 Typical Application  
30169774  
TRI-STATE® is a registered trademark of National Semiconductor Corporation.  
© 2011 National Semiconductor Corporation  
301697  
www.national.com  
6.0 Block Diagram  
30169775  
FIGURE 1. Block Diagram  
• True Continuous Background Calibration  
bridge sensors. The LMP90080/LMP90079’s multiplexer sup-  
ports 4 differential channels while the LMP90078/LMP90077  
supports 2. Each effective input voltage that is digitized is VIN  
= VINx – VINy, where x and y are any input. In addition, the  
input multiplexer of the LMP90080/LMP90079 also supports  
7 single-ended channels (LMP90078/LMP90077 supports 4),  
where the common ground is any one of the inputs.  
The LMP90080/LMP90079/LMP90078/LMP90077 feature a  
16 bit ΣΔ core with continuous background calibration to com-  
pensate for gain and offset errors in the ADC, virtually elimi-  
nating any drift with time and temperature. The calibration is  
performed in the background without user or ADC input in-  
terruption, making it unique in the industry and eliminating  
down time associated with field calibration required with other  
solutions. Having this continuous calibration improves perfor-  
mance over the entire life span of the end product.  
• Programmable Gain Amplifiers (FGA & PGA)  
The LMP90080/LMP90079/LMP90078/LMP90077 contain  
an internal 16x fixed gain amplifier (FGA) and a 1x, 2x, 4x, or  
8x programmable gain amplifier (PGA). This allows accurate  
gain settings of 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x through  
configuration of internal registers. Having an internal amplifier  
eliminates the need for external amplifiers that are costly,  
space consuming, and difficult to calibrate.  
• Continuous Background Sensor Diagnostics  
Sensor diagnostics are also performed in the background,  
without interfering with signal path performance, allowing the  
detection of sensor shorts, opens, and out-of-range signals,  
which vastly improves system reliability. In addition, the fully  
flexible input multiplexer described below allows any input pin  
to be connected to any ADC input channel providing addi-  
tional sensor path diagnostic capability.  
• Excitation Current Sources (IB1 & IB2) - LMP90080/  
LMP90078  
Two matched internal excitation currents, IB1 and IB2, can be  
used for sourcing currents to a variety of sensors. The current  
range is from 100 µA to 1000 µA in steps of 100 µA.  
• Flexible Input MUX Channels  
The flexible input MUX allows interfacing to a wide range of  
sensors such as thermocouples, RTDs, thermistors, and  
www.national.com  
2
Table of Contents  
1.0 General Description ......................................................................................................................... 1  
2.0 Features ........................................................................................................................................ 1  
3.0 Key Specifications ........................................................................................................................... 1  
4.0 Applications .................................................................................................................................... 1  
5.0 Typical Application ........................................................................................................................... 1  
6.0 Block Diagram ................................................................................................................................ 2  
7.0 Ordering Information ........................................................................................................................ 5  
8.0 Connection Diagram ........................................................................................................................ 5  
9.0 Pin Descriptions .............................................................................................................................. 6  
10.0 Absolute Maximum Ratings ............................................................................................................. 7  
11.0 Operating Ratings .......................................................................................................................... 7  
12.0 Electrical Characteristics ................................................................................................................ 7  
13.0 Timing Diagrams ......................................................................................................................... 12  
14.0 Specific Definitions ...................................................................................................................... 15  
15.0 Typical Performance Characteristics .............................................................................................. 16  
16.0 Functional Description .................................................................................................................. 21  
16.1 SIGNAL PATH ..................................................................................................................... 21  
16.1.1 Reference Input (VREF) .............................................................................................. 21  
16.1.2 Flexible Input MUX (VIN) ............................................................................................. 21  
16.1.3 Selectable Gains (FGA & PGA) .................................................................................... 22  
16.1.4 Buffer (BUFF) ............................................................................................................ 22  
16.1.5 Internal/External CLK Selection .................................................................................... 22  
16.1.6 Programmable ODRs .................................................................................................. 22  
16.1.7 Digital Filter ............................................................................................................... 24  
16.1.8 GPIO (D0–D6) ........................................................................................................... 27  
16.2 CALIBRATION ..................................................................................................................... 27  
16.2.1 Background Calibration ............................................................................................... 27  
16.2.2 System Calibration ...................................................................................................... 28  
FIGURE 15. Post-calibration Scaling Data-Flow Diagram ................................................... 29  
16.3 CHANNELS SCAN MODE ..................................................................................................... 29  
16.4 SENSOR INTERFACE .......................................................................................................... 30  
16.4.1 IB1 & IB2 - Excitation Currents (LMP90080/LMP90078) ................................................... 30  
16.4.2 Burnout Currents ........................................................................................................ 30  
16.4.3 Sensor Diagnostic Flags .............................................................................................. 30  
16.5 SERIAL DIGITAL INTERFACE ............................................................................................... 32  
16.5.1 Register Address (ADDR) ............................................................................................ 32  
16.5.2 Register Read/Write Protocol ....................................................................................... 32  
16.5.3 Streaming .................................................................................................................. 32  
16.5.4 CSB - Chip Select Bar ................................................................................................. 33  
16.5.5 SPI Reset .................................................................................................................. 33  
16.5.6 DRDYB - Data Ready Bar ............................................................................................ 33  
16.5.7 Data Only Read Transaction ........................................................................................ 36  
16.5.8 Cyclic Redundancy Check (CRC) ................................................................................. 37  
16.6 POWER MANAGEMENT ...................................................................................................... 38  
16.7 RESET and RESTART .......................................................................................................... 38  
17.0 Applications Information ............................................................................................................... 39  
17.1 QUICK START ..................................................................................................................... 39  
17.2 CONNECTING THE SUPPLIES ............................................................................................. 39  
17.2.1 VA and VIO ............................................................................................................... 39  
17.2.2 VREF ........................................................................................................................ 39  
17.3 ADC_DOUT CALCULATION .................................................................................................. 39  
17.4 REGISTER READ/WRITE EXAMPLES ................................................................................... 40  
17.4.1 Writing to Register Examples ....................................................................................... 40  
17.4.2 Reading from Register Example ................................................................................... 41  
17.5 STREAMING EXAMPLES ..................................................................................................... 42  
17.5.1 Normal Streaming Example ......................................................................................... 42  
17.5.2 Controlled Streaming Example ..................................................................................... 43  
17.6 EXAMPLE APPLICATIONS ................................................................................................... 45  
17.6.1 3–Wire RTD ............................................................................................................... 45  
17.6.2 Thermocouple and IC Analog Temperature .................................................................... 47  
18.0 Registers .................................................................................................................................... 48  
18.1 REGISTER MAP .................................................................................................................. 48  
18.2 POWER AND RESET REGISTERS ........................................................................................ 49  
18.3 ADC REGISTERS ................................................................................................................ 51  
3
www.national.com  
18.4 CHANNEL CONFIGURATION REGISTERS ............................................................................ 52  
18.5 CALIBRATION REGISTERS .................................................................................................. 56  
18.6 SENSOR DIAGNOSTIC REGISTERS ..................................................................................... 57  
18.7 SPI REGISTERS .................................................................................................................. 58  
18.8 GPIO REGISTERS ............................................................................................................... 60  
19.0 Physical Dimensions .................................................................................................................... 61  
List of Figures  
FIGURE 1. Block Diagram ......................................................................................................................... 2  
FIGURE 2. Timing Diagram ...................................................................................................................... 12  
FIGURE 3. Simplified VIN Circuitry .............................................................................................................. 21  
FIGURE 4. CLK Register Settings ............................................................................................................... 22  
FIGURE 5. Digital Filter Response, 1.6775 SPS and 3.355 SPS .......................................................................... 24  
FIGURE 6. Digital Filter Response, 6.71 SPS and 13.42 SPS .............................................................................. 24  
FIGURE 7. Digital Filter Response at 13.42 SPS ............................................................................................. 25  
FIGURE 8. Digital Filter Response, 26.83125 SPS and 53.6625 SPS .................................................................... 25  
FIGURE 9. Digital Filter Response 107.325 SPS and 214.65 SPS ........................................................................ 26  
FIGURE 10. Digital Filter Response for a 3.5717MHz versus 3.6864 MHz XTAL ...................................................... 26  
FIGURE 11. GPIO Register Settings ............................................................................................................ 27  
FIGURE 12. Types of Calibration ................................................................................................................ 27  
FIGURE 13. BgcalMode2 Register Settings ................................................................................................... 28  
FIGURE 14. System Calibration Data-Flow Diagram ......................................................................................... 28  
FIGURE 15. Post-calibration Scaling Data-Flow Diagram ................................................................................... 29  
FIGURE 16. Burnout Currents .................................................................................................................... 30  
FIGURE 17. Burnout Currents Injection for ScanMode3 ..................................................................................... 30  
FIGURE 18. Sensor Diagnostic Flags Diagram ............................................................................................... 31  
FIGURE 19. Register Read/Write Protocol ..................................................................................................... 32  
FIGURE 20. DRDYB Behavior .................................................................................................................... 33  
FIGURE 21. DRDYB Behavior for an Incomplete ADC_DOUT Reading .................................................................. 33  
FIGURE 22. DrdybCase1 Connection Diagram ............................................................................................... 34  
FIGURE 23. Timing Protocol for DrdybCase1 ................................................................................................. 34  
FIGURE 24. Timing Protocol for DrdybCase2 ................................................................................................. 35  
FIGURE 25. DrdybCase3 Connection Diagram ............................................................................................... 36  
FIGURE 26. Timing Protocol for DrdybCase3 ................................................................................................. 36  
FIGURE 27. Timing Protocol for Reading SPI_CRC_DAT .................................................................................. 37  
FIGURE 28. Timing Protocol for Reading SPI_CRC_DAT beyond normal DRDYB deassertion at every 1/ODR seconds ...... 37  
FIGURE 29. Active, Power-Down, Stand-by State Diagram ................................................................................ 38  
FIGURE 30. ADC_DOUT vs. VIN of a 16-Bit Resolution (VREF = 5.5V, Gain = 1). .................................................... 39  
FIGURE 31. Register-Write Example 1 ......................................................................................................... 40  
FIGURE 32. Register-Write Example 2 ......................................................................................................... 40  
FIGURE 33. Register-Read Example ........................................................................................................... 41  
FIGURE 34. Normal Streaming Example ....................................................................................................... 42  
FIGURE 35. Setting up SPI_STREAMCN ...................................................................................................... 43  
FIGURE 36. Controlled Streaming Example ................................................................................................... 44  
FIGURE 37. Topology #1: 3-wire RTD Using 2 Current Sources ........................................................................... 45  
FIGURE 38. Topology #2: 3-wire RTD Using 1 Current Source ............................................................................ 46  
FIGURE 39. Thermocouple with CJC ........................................................................................................... 47  
List of Tables  
TABLE 1. ENOB (Noise Free Resolution) vs. Sampling Rate and Gain at VA = VIO = VREF = 3V ................................. 11  
TABLE 2. RMS Noise (µV) vs. Sampling Rate and Gain at VA = VIO = VREF = 3V .................................................... 11  
TABLE 3. ENOB (Noise Free Resolution) vs. Sampling Rate and Gain at VA = VIO = VREF = 5V .................................. 11  
TABLE 4. RMS Noise (µV) vs. Sampling Rate and Gain at VA = VIO = VREF = 5V .................................................... 11  
TABLE 5. Data First Mode Transactions ........................................................................................................ 36  
www.national.com  
4
7.0 Ordering Information  
Product  
LMP90080  
LMP90079  
LMP90078  
LMP90077  
Channel Configuration  
4 Differential / 7 Single-Ended  
4 Differential / 7 Single-Ended  
2 Differential / 4 Single-Ended  
2 Differential / 4 Single-Ended  
Current Sources  
Yes  
No  
Yes  
No  
Order Code  
Temperature Range  
Description  
LMP90080MH/NOPB  
LMP90080MHE/NOPB  
LMP90080MHX/NOPB  
LMP90079MH/NOPB  
LMP90079MHE/NOPB  
LMP90079MHX/NOPB  
LMP90078MH/NOPB  
LMP90078MHE/NOPB  
LMP90078MHX/NOPB  
LMP90077MH/NOPB  
LMP90077MHE/NOPB  
LMP90077MHX/NOPB  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
28-Lead TSSOP Package, Rail of 48  
28-Lead TSSOP Package, Reel of 250  
28-Lead TSSOP Package, Reel of 2500  
28-Lead TSSOP Package, Rail of 48  
28-Lead TSSOP Package, Reel of 250  
28-Lead TSSOP Package, Reel of 2500  
28-Lead TSSOP Package, Rail of 48  
28-Lead TSSOP Package, Reel of 250  
28-Lead TSSOP Package, Reel of 2500  
28-Lead TSSOP Package, Rail of 48  
28-Lead TSSOP Package, Reel of 250  
28-Lead TSSOP Package, Reel of 2500  
8.0 Connection Diagram  
30169776  
See Pin Descriptions for specific information regarding options LMP90079, LMP90078, and LMP90077.  
5
www.national.com  
9.0 Pin Descriptions  
Pin #  
1
Pin Name  
Type  
Function  
Analog power supply pin  
VA  
Analog Supply  
Analog Input  
2 - 4  
VIN0 - VIN2  
Analog input pins  
5 - 7  
(LMP90080,  
LMP90079)  
VIN3 - VIN5  
VIN3 - VIN5  
Analog Input  
No Connect  
Analog input pins  
5 - 7  
(LMP90078,  
LMP90077)  
No connect: must be left unconnected  
8
9
VREFP1  
VREFN1  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Positive reference input  
Negative reference input  
10  
11  
VIN6 / VREFP2  
VIN7 / VREFN2  
Analog input pin or VREFP2 input  
Analog input pin or VREFN2 input  
12 - 13  
(LMP90080,  
LMP90078)  
IB2 & IB1  
IB2 & IB1  
Analog output  
No Connect  
Excitation current sources for external RTDs  
12 - 13  
(LMP90080,  
LMP90078)  
No connect: must be left unconnected  
External crystal oscillator connection  
14  
XOUT  
Analog output  
Analog input  
External crystal oscillator connection or external  
clock input  
15  
XIN / CLK  
16  
17  
GND  
CSB  
Ground  
Digital Input  
Digital Input  
Digital Input  
Digital Output  
Digital IO  
Power supply ground  
Chip select bar  
18  
SCLK  
Serial clock  
19  
SDI  
Serial data input  
20  
SDO / DRDYB  
D0 - D5  
D6 / DRDYB  
VIO  
Serial data output and data ready bar  
General purpose input/output (GPIO) pins  
General purpose input/output pin or data ready bar  
Digtal input/output supply pin  
21 - 26  
27  
Digital IO  
28  
Digital Supply  
www.national.com  
6
Machine Models (MM)  
Charged Device Model (CDM)  
200V  
1250V  
10.0 Absolute Maximum Ratings (Note  
1, Note 2)  
Junction Temperature (TJMAX  
Storage Temperature Range  
For soldering specifications:  
see product folder at www.national.com and  
www.national.com/ms/MS/MS-SOLDERING.pdf  
)
+150°C  
–65°C to +150°C  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Analog Supply Voltage, VA  
Digital I/O Supply Voltage, VIO  
Reference Voltage, VREF  
-0.3V to 6.0V  
-0.3V to 6.0V  
-0.3V to VA+0.3V  
-0.3V to VA+0.3V  
11.0 Operating Ratings  
Voltage on Any Analog Input Pin to  
Analog Supply Voltage, VA  
Digital I/O Supply Voltage, VIO  
Full Scale Input Range, VIN  
Reference Voltage, VREF  
+2.85V to 5.5V  
GND (Note 3)  
+2.7V to 5.5V  
±VREF / PGA  
+0.5V to VA  
Voltage on Any Digital Input PIN to  
-0.3V to VIO+0.3V  
GND (Note 3)  
Voltage on SDO (Note 3)  
-0.3V to VIO + 0.3V  
TMIN = –40°C  
TMAX = +125°C  
Temperature Range for Electrical  
Characteristics  
Input Current at Any Pin (Note 3)  
Output Current Source or Sink by SDO  
5mA  
3mA  
Operating Temperature Range  
Total Package Input and Output  
Current  
ESD Susceptibility  
–40°C TA +125°C  
20mA  
Junction to Ambient Thermal  
Resistance (θJA) (Note 4)  
41°C/W  
Human Body Model (HBM)  
2500V  
12.0 Electrical Characteristics  
Unless otherwise noted, the key for the condition is (VA = VIO = VREF) / ODR (SPS) / buffer / calibration / gain . Boldface limits  
apply for TMIN TA TMAX; the typical values apply for TA = +25°C.  
Symbol Parameter  
Conditions  
Min  
Typ  
16  
Max  
Units  
Bits  
n
Resolution  
Effective Number 3V / all / ON / OFF / all. Shorted input.  
of Bits and Noise  
Table 1  
Bits  
ENOB /  
NFR  
5V / all / ON / OFF / all. Shorted input.  
Free Resolution  
Table 3  
Bits  
ODR  
Output Data Rates  
1.6675  
Table 1  
Table 1  
± 0.5  
214.6  
128  
+1  
SPS  
Gain  
FGA × PGA  
1
3V / 214.65 / ON / ON / 1  
-1  
LSB  
LSB  
µV  
Integral Non-  
Linearity  
INL  
3V & 5V / 214.65 / ON / ON / 16  
3V / all / ON / ON / all. Shorted input.  
5V / all / ON / OFF / all. Shorted input.  
± 1  
Table 2  
Table 4  
Total Noise  
Offset Error  
µV  
Below Noise  
Floor (rms)  
3V & 5V / all / ON or OFF / ON / all  
µV  
3V / 214.65 / ON / ON / 1  
3V / 214.65 / ON / ON / 128  
5V / 214.65 / ON / ON / 1  
5V / 214.65 / ON / ON / 128  
1.22  
0.00838  
1.79  
9.52  
0.70  
8.25  
0.63  
µV  
µV  
µV  
µV  
OE  
0.0112  
3V & 5V / 214.65 / ON or OFF / OFF /  
1-8  
100  
nV/°C  
3V & 5V / 214.65 / ON / ON / 1-8  
3V & 5V / 214.65 / ON / OFF / 16  
3V & 5V / 214.65 / ON / ON / 16  
3V & 5V / 214.65 / ON / OFF / 128  
3V & 5V / 214.65 / ON / ON / 128  
3
25  
nV/°C  
nV/°C  
nV/°C  
nV/°C  
nV/°C  
Offset Drift Over  
Temp (Note 5)  
0.4  
6
0.125  
nV /  
1000 hours  
5V / 214.65 / ON / OFF / 1, TA = 150°C  
5V / 214.65 / ON / ON / 1, TA = 150°C  
2360  
100  
Offset Drift over  
Time (Note 5)  
nV /  
1000 hours  
7
www.national.com  
Symbol Parameter  
Conditions  
Min  
-80  
Typ  
7
Max  
80  
Units  
ppm  
ppm  
ppm  
ppm  
3V & 5V / 214.65 / ON / ON / 1  
3V & 5V / 13.42 / ON / ON / 16  
3V & 5V / 13.42 / ON / ON / 64  
3V & 5V / 13.42 / ON / ON / 128  
50  
GE  
Gain Error  
50  
100  
Gain Drift over  
Temp (Note 5)  
3V & 5V / 214.65 / ON / ON / all  
0.5  
5.9  
1.6  
ppm/°C  
ppm / 1000  
hours  
5V / 214.65 / ON / OFF / 1, TA = 150°C  
5V / 214.65 / ON / ON / 1, TA = 150°C  
Gain Drift over  
Time (Note 5)  
ppm / 1000  
hours  
CONVERTER'S CHARACTERISTIC  
DC, 3V / 214.65 / ON / ON / 1  
70  
90  
117  
120  
117  
dB  
dB  
dB  
Input Common  
CMRR Mode Rejection  
Ratio  
DC, 5V / 214.65 / OFF / OFF / 1  
50/60 Hz, 5V / 214.65 / OFF / OFF / 1  
Reference  
Common Mode  
Rejection  
VREF = 2.5V  
101  
dB  
DC, 3V / 214.65 / ON / ON / 1  
DC, 5V / 214.65 / ON / ON / 1  
75  
115  
112  
dB  
dB  
Power Supply  
PSRR  
Rejection Ratio  
Normal Mode  
NMRR Rejection Ratio  
(Note 5)  
47 Hz to 63 Hz, 5V / 13.42 / OFF / OFF /  
1
78  
dB  
3V / 214.65 / OFF / OFF / 1  
5V / 214.65 / OFF / OFF / 1  
95  
95  
136  
143  
dB  
dB  
Cross-talk  
POWER SUPPLY CHARACTERISTICS  
Analog Supply  
Voltage  
VA  
2.85  
2.7  
3.0  
3.3  
5.5  
5.5  
V
V
Digital Supply  
Voltage  
VIO  
3V / 13.42 / OFF / OFF / 1, ext. CLK  
400  
464  
600  
690  
1547  
1760  
826  
941  
3
500  
555  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
5V / 13.42 / OFF / OFF / 1, ext. CLK  
3V / 13.42 / ON / OFF / 64, ext. CLK  
5V / 13.42 / ON / OFF / 64, ext. CLK  
3V / 214.65 / ON / OFF / 64, int. CLK  
5V / 214.65 / ON / OFF / 64, int. CLK  
3V / 214.65 / OFF / OFF / 1, int. CLK  
5V / 214.65 / OFF / OFF / 1, int. CLK  
Standby, 3V , int. CLK  
700  
800  
1700  
2000  
1000  
1100  
10  
Analog Supply  
Current  
IVA  
Standby, 3V , ext. CLK  
257  
5
Standby, 5V, int. CLK  
15  
Standby, 3V, ext. CLK  
300  
2.6  
Power-down, 3V, int/ext CLK  
Power-down, 5V, int/ext CLK  
5
9
4.6  
www.national.com  
8
Symbol Parameter  
REFERENCE INPUT  
Conditions  
Min  
Typ  
Max  
Units  
VREFP Positive Reference  
VREFN + 0.5  
GND  
VA  
V
V
Negative  
VREFN  
VREFP - 0.5  
Reference  
Differential  
VREF  
VREF = VREFP - VREFN  
3V / 13.42 / OFF / OFF / 1  
0.5  
VA  
V
MOhm  
µA  
Reference  
Reference  
ZREF  
10  
±2  
6
Impedance  
3V / 13.42 / ON or OFF / ON or OFF /  
all  
IREF  
Reference Input  
Capacitance of the  
Positive Reference  
CREFP  
(Note 5), gain = 1  
pF  
Capacitance of the  
CREFN Negative  
Reference  
(Note 5), gain = 1  
6
1
pF  
nA  
Reference  
ILREF  
Power-down  
Leakage Current  
ANALOG INPUT  
Gain = 1-8, buffer ON  
Gain = 16 - 128, buffer ON  
Gain = 1-8, buffer OFF  
Gain = 1-8, buffer ON  
Gain = 16 - 128, buffer ON  
Gain = 1-8, buffer OFF  
VIN = VINP - VINN  
GND + 0.1  
GND + 0.4  
GND  
VA - 0.1  
VA - 1.5  
VA  
V
V
V
V
V
V
VINP  
VINN  
Positive Input  
GND + 0.1  
GND + 0.4  
GND  
VA - 0.1  
VA - 1.5  
VA  
Negative Input  
VIN  
ZIN  
Differential Input  
±VREF / PGA  
15.4  
Differential Input  
Impedance  
ODR = 13.42 SPS  
MOhm  
pF  
Capacitance of the 5V / 214.65 / OFF / OFF / 1  
Positive Input  
CINP  
CINN  
IIN  
4
4
Capacitance of the 5V / 214.65 / OFF / OFF / 1  
Negative Input  
pF  
3V & 5V / 13.42 / ON / OFF / 1-8  
500  
100  
pA  
pA  
Input Leakage  
Current  
3V & 5V / 13.42 / ON / OFF / 16 - 128  
DIGITAL INPUT CHARACTERISTICS at VA = VIO = VREF = 3.0V  
Logical "1" Input  
Voltage  
VIH  
0.7 x VIO  
V
V
Logical "0" Input  
Voltage  
VIL  
0.3 x VIO  
+10  
Digital Input  
IIL  
-10  
µA  
V
Leakage Current  
Digital Input  
VHYST  
0.1 x VIO  
Hysteresis  
DIGITAL OUTPUT CHARACTERISTICS at VA = VIO = VREF = 3.0V  
Logical "1" Output Source 300 µA  
Voltage  
VOH  
2.6  
-10  
V
V
Logical "0" Output Sink 300 µA  
Voltage  
VOL  
0.4  
10  
TRI-  
IOZH,  
STATE®Leakage  
IOZL  
µA  
pF  
Current  
TRI-STATE  
Capacitance  
COUT  
(Note 5)  
5
9
www.national.com  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Units  
EXCITATION CURRENT SOURCES CHARACTERISTICS (LMP90080/LMP90078 only)  
0, 100, 200,  
300, 400, 500,  
600, 700, 800,  
900, 1000  
Excitation Current  
Source Output  
IB1, IB2  
µA  
VA = VREF = 3V  
VA = VREF = 5V  
VA = 3.0V & 5.0V,  
-7  
2.5  
0.2  
7
%
%
IB1/IB2 Tolerance  
IB1/IB2 Output  
-3.5  
3.5  
VA - 0.8  
0.07  
V
Compliance Range IB1/IB2 = 100 µA to 1000 µA  
VA = 5.0V,  
IB1/IB2 Regulation  
% / V  
IB1/IB2 = 100 µA to 1000 µA  
VA = 3.0V  
IB1/IB2 Drift  
95  
60  
ppm/°C  
ppm/°C  
IBTC  
VA = 5.0V  
3V & 5V / 214.65 / OFF / OFF / 1,  
IB1/IB2 = 100 µA  
0.34  
0.22  
0.2  
1.53  
1
%
%
3V & 5V / 214.65 / OFF / OFF / 1,  
IB1/IB2 = 200 µA  
3V & 5V / 214.65 / OFF / OFF / 1,  
IB1/IB2 = 300 µA  
0.85  
0.8  
%
3V & 5V / 214.65 / OFF / OFF / 1,  
IB1/IB2 = 400 µA  
0.15  
0.14  
0.13  
0.075  
0.085  
0.11  
0.11  
2
%
3V & 5V / 214.65 / OFF / OFF / 1,  
0.7  
%
IB1/IB2 = 500 µA  
IB1/IB2 Matching  
IBMT  
3V & 5V / 214.65 / OFF / OFF / 1,  
0.7  
%
IB1/IB2 = 600 µA  
3V & 5V / 214.65 / OFF / OFF / 1,  
IB1/IB2 = 700 µA  
0.65  
0.6  
%
3V & 5V / 214.65 / OFF / OFF / 1,  
IB1/IB2 = 800 µA  
%
3V & 5V / 214.65 / OFF / OFF / 1,  
IB1/IB2 = 900 µA  
0.55  
0.45  
%
3V & 5V / 214.65 / OFF / OFF / 1,  
IB1/IB2 = 1000 µA  
%
IB1/IB2 Matching VA = 3.0V & 5.0V,  
IBMTC  
ppm/°C  
Drfit  
IB1/IB2 = 100 µA to 1000 µA  
INTERNAL/EXTERNAL CLK  
Internal Clock  
CLKIN  
893  
kHz  
Frequency  
External Clock  
CLKEXT  
(Note 5)  
1.8  
1.8  
3.5717  
7.2  
MHz  
Frequency  
Input Low Voltage  
Input High Voltage  
Frequency  
0
V
V
1
3.5717  
7
External Crystal  
Frequency  
7.2  
10  
MHz  
ms  
Start-up time  
SCLK  
Serial Clock  
MHz  
www.national.com  
10  
TABLE 1. ENOB (Noise Free Resolution) vs. Sampling Rate and Gain at VA = VIO = VREF = 3V  
Gain  
ODR (SPS)  
1
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
2
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
4
8
16 (16)  
16 (16)  
16 (15.5)  
16 (15)  
16 (16)  
16 (16)  
16 (15.5)  
16 (15)  
16  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
32  
16 (16)  
16 (16)  
16 (16)  
16 (15.5)  
16 (16)  
16 (16)  
16 (15.5)  
16 (15)  
64  
16 (16)  
16 (16)  
16 (15)  
16 (15)  
16 (15.5)  
16 (15)  
16 (14.5)  
16 (14.5)  
128  
16 (15.5)  
16 (14.5)  
16 (14.5)  
16 (14)  
1.6775  
3.355  
16 (16)  
16 (16)  
16 (16)  
16 (15.5)  
16 (16)  
16 (16)  
16 (16)  
16 (15.5)  
6.71  
13.42  
26.83125  
53.6625  
107.325  
214.65  
16 (15)  
16 (14.5)  
16 (14)  
16 (13.5)  
TABLE 2. RMS Noise (µV) vs. Sampling Rate and Gain at VA = VIO = VREF = 3V  
Gain of the ADC  
ODR (SPS)  
1
2
4
8
16  
32  
64  
128  
0.14  
0.26  
0.35  
0.49  
0.25  
0.36  
0.49  
0.70  
1.6775  
3.355  
3.08  
4.56  
6.15  
8.60  
3.35  
4.81  
6.74  
9.52  
1.90  
2.70  
4.10  
5.85  
2.24  
3.11  
4.51  
6.37  
1.53  
2.21  
3.16  
4.29  
1.65  
2.37  
3.38  
4.72  
1.27  
1.67  
2.39  
3.64  
1.33  
1.90  
2.66  
3.79  
0.23  
0.34  
0.51  
0.67  
0.33  
0.44  
0.63  
0.90  
0.21  
0.27  
0.40  
0.54  
0.27  
0.39  
0.54  
0.79  
0.15  
0.24  
0.37  
0.51  
0.26  
0.37  
0.52  
0.72  
6.71  
13.42  
26.83125  
53.6625  
107.325  
214.65  
TABLE 3. ENOB (Noise Free Resolution) vs. Sampling Rate and Gain at VA = VIO = VREF = 5V  
Gain of the ADC  
SPS  
1.6775  
1
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
2
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
4
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
8
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
32  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
64  
16 (16)  
16 (16)  
16 (16)  
16 (15.5)  
16 (16)  
16 (16)  
16 (15.5)  
16 (15)  
128  
16 (16)  
3.355  
16 (15.5)  
16 (15)  
6.71  
13.42  
16 (15)  
26.83125  
53.6625  
107.325  
214.65  
16 (15.5)  
16 (15)  
16 (14.5)  
16 (14)  
TABLE 4. RMS Noise (µV) vs. Sampling Rate and Gain at VA = VIO = VREF = 5V  
Gain of the ADC  
SPS  
1
2
4
8
16  
32  
64  
128  
0.16  
0.22  
0.32  
0.43  
0.23  
0.31  
0.44  
0.63  
1.6775  
3.355  
2.68  
3.86  
5.23  
7.94  
2.90  
4.11  
5.74  
8.25  
1.65  
2.36  
3.49  
5.01  
1.86  
2.60  
3.72  
5.31  
1.24  
1.78  
2.47  
3.74  
1.34  
1.90  
2.72  
3.82  
1.00  
1.47  
2.09  
2.94  
1.08  
1.50  
2.11  
2.97  
0.22  
0.34  
0.44  
0.61  
0.29  
0.39  
0.56  
0.79  
0.19  
0.27  
0.34  
0.50  
0.24  
0.35  
0.48  
0.68  
0.17  
0.22  
0.30  
0.45  
0.23  
0.32  
0.46  
0.64  
6.71  
13.42  
26.83125  
53.6625  
107.325  
214.65  
11  
www.national.com  
13.0 Timing Diagrams  
Unless otherwise noted, specified limits apply for VA = VIO = 3.0V. Boldface limits apply for TMIN TA TMAX; the typical values  
apply for TA = +25°C.  
30169701  
FIGURE 2. Timing Diagram  
Symbol  
fSCLK  
tCH  
Parameter  
Conditions  
Min  
Typical  
Max  
Units  
MHz  
ns  
10  
0.4 / fSCLK  
0.4 / fSCLK  
SCLK High time  
SCLK Low time  
tCL  
ns  
30169702  
30169703  
Symbol  
Parameter  
Conditions  
Min  
Typical  
Max  
Units  
CSB Setup time prior to an SCLK  
rising edge  
tCSSU  
5
ns  
CSB Hold time after the last rising  
edge of SCLK  
tCSH  
6
ns  
www.national.com  
12  
30169704  
30169705  
Symbol  
tCLKR  
Parameter  
SCLK Rise time  
Conditions  
Min  
Typical  
1.15  
Max  
Units  
ns  
ns  
tCLKF  
SCLK Fall time  
1.15  
SDI Setup time prior to an SCLK  
rising edge  
5
6
ns  
ns  
tDISU  
tDIH  
SDI Hold time after an SCLK rising  
edge  
30169706  
30169707  
Symbol  
Parameter  
Conditions  
Min  
Typical  
Max  
Units  
SDO Access time after an SCLK  
falling edge  
tDOA  
35  
ns  
SDO Hold time after an SCLK  
falling edge  
tDOH  
5
ns  
ns  
SDO Disable time after the rising  
edge of CSB  
tDOD1  
5
13  
www.national.com  
30169708  
30169709  
Symbol  
Parameter  
Conditions  
Min  
Typical  
Max  
Units  
SDO Disable time after either  
edge of SCLK  
tDOD2  
27  
ns  
30169711  
30169710  
Symbol  
Parameter  
Conditions  
Min  
Typical  
Max  
Units  
SDO Enable time from the falling  
edge of the 8th SCLK  
tDOE  
35  
ns  
tDOR  
tDOF  
SDO Rise time  
SDO Fall time  
(Note 5)  
(Note 5)  
7
7
ns  
ns  
µs  
µs  
64  
4
ODR 13.42 SPS  
13.42 < ODR 214.65 SPS  
Data Ready Bar pulse at every  
1/ODR second  
tDRDYB  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed  
specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test  
conditions.  
Note 2: All voltages are measured with respect to GND, unless otherwise specified  
Note 3: When the input voltage (VIN) exceeds the power supply (VIN < GND or VIN > VA), the current at that pin must be limited to 5mA and VIN has to be within  
the Absolute Maximum Rating for that pin. The 20 mA package input current rating limits the number of pins that can safely exceed the power supplies with current  
flow to four pins.  
Note 4: The maximum power dissipation is a function of TJ(MAX) AND θJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ  
(MAX) - TA) / θJA  
.
Note 5: This parameter is guaranteed by design and/or characterization and is not tested in production.  
www.national.com  
14  
NEGATIVE GAIN ERROR is the difference between the neg-  
ative full-scale error and the offset error divided by (VREF /  
Gain).  
14.0 Specific Definitions  
COMMON MODE REJECTION RATIO is a measure of how  
well in-phase signals common to both input pins are rejected.  
To calculate CMRR, the change in output offset is measured  
while the common mode input voltage is changed.  
NOISE FREE RESOLUTION is a method of specifying the  
number of bits for a converter with noise.  
CMRR = 20 LOG(ΔCommon Input / ΔOutput Offset)  
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE  
BITS) – says that the converter is equivalent to a perfect ADC  
of this (ENOB) number of bits. LMP90080’s ENOB is a DC  
ENOB spec, not the dynamic ENOB that is measured using  
FFT and SINAD. Its equation is as follows:  
ODR Output Data Rate.  
OFFSET ERROR is the difference between the differential  
input voltage at which the output code transitions from code  
0000h to 0001h and 1 LSB.  
POSITIVE FULL-SCALE ERROR is the difference between  
the differential input voltage at which the output code transi-  
tions to positive full scale and (VREF – 1LSB).  
GAIN ERROR is the deviation from the ideal slope of the  
transfer function.  
POSITIVE GAIN ERROR is the difference between the pos-  
itive full-scale error and the offset error divided by (VREF /  
Gain).  
INTEGRAL NON-LINEARITY (INL) is a measure of the de-  
viation of each individual code from a straight line through the  
input to output transfer function. The deviation of any given  
code from this straight line is measured from the center of that  
code value. The end point fit method is used. INL for this  
product is specified over a limited range, per the Electrical  
Tables.  
POWER SUPPLY REJECTION RATIO (PSRR) is a measure  
of how well a change in the analog supply voltage is rejected.  
PSRR is calculated from the ratio of the change in offset error  
for a given change in supply voltage, expressed in dB.  
PSRR = 20 LOG (ΔVA / ΔOutput Offset)  
NEGATIVE FULL-SCALE ERROR is the difference between  
the differential input voltage at which the output code transi-  
tions to negative full scale and (-VREF + 1LSB).  
15  
www.national.com  
15.0 Typical Performance Characteristics Unless otherwise noted, specified limits apply for VA =  
VIO = VREF = 3.0V. The maximum and minimum values apply for TA = TMIN to TMAX; the typical values apply for TA = +25°C.  
Noise Measurement without Calibration at Gain = 1  
Noise Measurement with Calibration at Gain = 1  
250  
50  
230  
210  
190  
170  
30  
10  
-10  
-30  
VA = 3V  
150  
VA = 3V  
-50  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
TIME (ms)  
TIME (ms)  
30169715  
30169716  
Histogram without Calibration at Gain = 1  
Histogram with Calibration at Gain = 1  
30169721  
30169722  
Noise Measurement without Calibration at Gain = 8  
Noise Measurement with Calibration at Gain = 8  
40  
20  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
0
-5  
-10  
-15  
VA = 3V  
VA = 3V  
-20  
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
TIME (ms)  
TIME (ms)  
30169717  
30169718  
www.national.com  
16  
Histogram without Calibration at Gain = 8  
Histogram with Calibration at Gain = 8  
30169723  
30169724  
Noise Measurement without Calibration at Gain = 128  
Noise Measurement with Calibration at Gain = 128  
4
4
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
VA = 3V  
VA = 3V  
-4  
-4  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
TIME (ms)  
TIME (ms)  
30169719  
30169720  
Histogram without Calibration at Gain = 128  
Histogram with Calibration at Gain = 128  
30169725  
30169726  
17  
www.national.com  
Noise vs. Gain without Calibration at ODR = 13.42 SPS  
Noise vs. Gain with Calibration at ODR = 13.42 SPS  
30169741  
30169748  
Noise vs. Gain without Calibration at ODR = 214.65 SPS  
Noise vs. Gain with Calibration at ODR = 214.65 SPS  
30169749  
30169750  
Offset Error vs. Temperature without Calibration at Gain = 1 Offset Error vs. Temperature with Calibration at Gain = 1  
300  
250  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
0.0  
VA = 3V  
VA = 5V  
VA = 3V  
VA = 5V  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
30169761  
30169764  
www.national.com  
18  
Offset Error vs. Temperature without Calibration at Gain = 8 Offset Error vs. Temperature with Calibration at Gain = 8  
25  
20  
15  
10  
5
0.4  
0.2  
VA = 5V  
VA = 3V  
0.0  
VA = 3V  
VA = 5V  
-0.2  
-0.4  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
30169762  
30169765  
Gain Error vs. Temperature without Calibration at Gain = 1 Gain Error vs. Temperature with Calibration at Gain = 1  
160  
150  
140  
130  
120  
110  
40  
20  
0
VA = 5V  
VA = 5V  
VA = 3V  
-20  
VA = 3V  
-40  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
30169767  
30169770  
Gain Error vs. Temperature without Calibration at Gain = 8 Gain Error vs. Temperature with Calibration at Gain = 8  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-20  
VA = 3V  
-40  
VA = 3V  
-60  
-80  
VA = 5V  
VA = 5V  
-100  
-120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
30169768  
30169771  
19  
www.national.com  
Digital Filter Frequency Response  
Digital Filter Frequency Response  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
1.7 SPS  
3.4 SPS  
26.83 SPS  
53.66 SPS  
-100  
-120  
-100  
6.7 SPS  
107.33 SPS  
13.4 SPS  
214.65 SPS  
-120  
1
10  
100  
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
30169751  
30169753  
INL at Gain = 1  
10  
5
0
-5  
-10  
VA = 5V, 13.4 SPS  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
VIN (V)  
30169727  
www.national.com  
20  
programming the VREF_SEL bit in the CHx_INPUTCN reg-  
isters (CHx_INPUTCN: VREF_SEL). The default mode is  
VREF1. If VREF2 is used, then VIN6 and VIN7 cannot be  
used as inputs because they share the same pin.  
16.0 Functional Description  
Throughout this datasheet, the LMP90080/LMP90079/  
LMP90078/LMP90077 will be referred to as the LMP900xx.  
The LMP900xx is a low-power 16-Bit ΣΔ ADC with 4 fully dif-  
ferential / 7 single-ended analog channels for the LMP90080/  
LMP90079 and 2 full differential / 4 single-ended for the  
LMP90078/LMP90077. Its serial data output is two’s comple-  
ment format. The output data rate (ODR) ranges from 1.6775  
SPS to 214.65 SPS.  
Refer to Section 17.2.2 VREF for VREF applications infor-  
mation.  
16.1.2 Flexible Input MUX (VIN)  
LMP900xx provides a flexible input MUX as shown in Figure  
3. The input that is digitized is VIN = VINP – VINN; where  
VINP and VINN can be any availablie input.  
The serial communication for LMP900xx is SPI, a syn-  
chronous serial interface that operates using 4 pins: chip  
select bar (CSB), serial clock (SCLK), serial data in (SDI), and  
serial data out / data ready bar (SDO/DRYDYB).  
The digitized input is also known as a channel, where  
CH = VIN = VINP – VINN. Thus, there are a maximum of 4  
differential channels: CH0, CH1, CH2, and CH3 for the  
LMP90080/LMP90079. The LMP90078/LMP90077 has 2 dif-  
ferential channels: CH0 and CH1 because it does not have  
the VIN3, VIN4, and VIN5 pins.  
True continuous built-in offset and gain background calibra-  
tion is also available to improve measurement accuracy. Un-  
like other ADCs, the LMP900xx’s background calibration can  
run without heavily impacting the input signal. This unique  
technique allows for positive as well as negative gain calibra-  
tion and is available at all gain settings.  
LMP900xx can also be configured single-endedly, where the  
common ground is any one of the inputs. There are a maxi-  
mum of 7 single-ended channels: CH0, CH1, CH2, CH3, CH4,  
CH5, and CH6 for the LMP90080/LMP90079 and 4: CH0,  
CH1, CH2, CH3 for the LMP90078/LMP90077.  
The registers can be found in Section 18.0 Registers, and a  
detailed description of the LMP900xx are provided in the fol-  
lowing sections.  
The input MUX can be programmed in the CHx_INPUTCN  
registers. For example on the LMP90080, to program CH0 =  
VIN = VIN4 – VIN1, go to the CH0_INPUTCN register and set:  
16.1 SIGNAL PATH  
1. VINP = 0x4  
2. VINN = 0x1  
16.1.1 Reference Input (VREF)  
The differential reference voltage VREF (VREFP – VREFN)  
sets the range for VIN.  
The muxed VREF allows the user to choose between VREF1  
or VREF2 for each channel. This selection can be made by  
30169777  
FIGURE 3. Simplified VIN Circuitry  
21  
www.national.com  
16.1.3 Selectable Gains (FGA & PGA)  
When gain 16, the buffer is automatically included in the  
signal path. When gain < 16, including or excluding the buffer  
from the signal path can be done by programming the  
CHX_CONFIG: BUF_EN bit.  
LMP900xx provides two types of gain amplifiers: a fixed gain  
amplifier (FGA) and a programmable gain amplifier (PGA).  
FGA has a fixed gain of 16x or it can be bypassed, while the  
PGA has programmable gain settings of 1x, 2x, 4x, or 8x.  
16.1.5 Internal/External CLK Selection  
Total gain is defined as FGA x PGA. Thus, LMP900xx pro-  
vides gain settings of 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x  
with true continuous background calibration.  
LMP900xx allows two clock options: internal CLK or external  
CLK (crystal (XTAL) or clock source).  
There is an “External Clock Detection” mode, which detects  
the external XTAL if it is connected to XOUT and XIN. When  
operating in this mode, the LMP900xx shuts off the internal  
clock to reduce power consumption. Below is a flow chart to  
help set the appropriate clock registers.  
The gain is channel specific, which means that one channel  
can have one gain, while another channel can have the same  
or a different gain.  
The gain can be selected by programming the CHx_CONFIG:  
GAIN_SEL bits.  
16.1.4 Buffer (BUFF)  
There is an internal unity gain buffer that can be included or  
excluded from the signal path. Including the buffer provides a  
high input impedance but increases the power consumption.  
30169778  
FIGURE 4. CLK Register Settings  
The recommended value for the external CLK is discussed in  
the next sections.  
case, use the equation below to calculate the new ODR val-  
ues.  
ODR_Base1 = (CLKEXT) / (266,240)  
ODR_Base2 = (CLKEXT) / (16,640)  
16.1.6 Programmable ODRs  
If using the internal CLK or external CLK of 3.5717 MHz, then  
the output date rates (ODR) can be selected (using the  
ODR_SEL bit) as:  
ODR1 = (ODR_Base1) / n, where n = 1,2,4,8  
ODR2 = (ODR_Base2) / n, where n = 1,2,4,8  
1. 13.42/8 = 1.6775 SPS  
2. 13.42/4 = 3.355 SPS  
3. 13.42/2 = 6.71SPS  
4. 13.42 SPS  
For example, a 3.6864 MHz XTAL or external clock has the  
following ODR values:  
ODR_Base1 = (3.6864 MHz) / (266,240) = 13.85 SPS  
ODR_Base2 = (3.6864 MHz) / (16,640) = 221.54 SPS  
ODR1 = (13.85 SPS) / n = 13.85, 6.92, 3.46, 1.73 SPS  
ODR2 = (221.54 SPS) / n = 221.54, 110.77, 55.38, 27.69 SPS  
5. 214.65/8 = 26.83125 SPS  
6. 214.65/4 = 53.6625 SPS  
7. 214.65/2 = 107.325 SPS  
8. 214.65 SPS (default)  
If the internal CLK is not being used and the external CLK is  
not 3.5717 MHz, then the ODR will be different. If this is the  
www.national.com  
22  
The ODR is channel specific, which means that one channel  
can have one ODR, while another channel can have the same  
or a different ODR.  
scanning. For example, if the ADC were running at 214.65  
SPS and four channels are being scanned, then the ODR per  
channel would be 214.65/4 = 53.6625 SPS.  
Note that these ODRs are meant for a single channel con-  
version; the ODR needs to be divided by n for n channels  
23  
www.national.com  
16.1.7 Digital Filter  
The LMP900xx has a fourth order rotated sinc filter that is used to configure various ODRs and to reject power supply frequencies  
of 50Hz and 60Hz. The 50/60 Hz rejection is only effective when the device is operating at ODR 13.42 SPS. If the internal CLK  
or the external CLK of 3.5717 MHz is used, then the LMP900xx will have the frequency response shown in Figure 5 through Figure  
9.  
0
1.6775 SPS  
3.355 SPS  
-20  
-40  
-60  
-80  
-100  
-120  
0
12  
24  
36  
48  
60  
72  
84  
96  
108  
120  
FREQUENCY (Hz)  
30169760  
FIGURE 5. Digital Filter Response, 1.6775 SPS and 3.355 SPS  
0
-20  
6.71 SPS  
13.42 SPS  
-40  
-60  
-80  
-100  
-120  
0
12  
24  
36  
48  
60  
72  
84  
96  
108  
120  
FREQUENCY (Hz)  
30169773  
FIGURE 6. Digital Filter Response, 6.71 SPS and 13.42 SPS  
www.national.com  
24  
-60  
-70  
13.42 SPS  
-80  
-90  
-100  
-110  
-120  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
FREQUENCY (Hz)  
30169744  
FIGURE 7. Digital Filter Response at 13.42 SPS  
0
26.83125 SPS  
53.6625 SPS  
-40  
-80  
-120  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
FREQUENCY (Hz)  
30169786  
FIGURE 8. Digital Filter Response, 26.83125 SPS and 53.6625 SPS  
25  
www.national.com  
0
107.325 SPS  
214.65 SPS  
-40  
-80  
-120  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
FREQUENCY (Hz)  
30169787  
FIGURE 9. Digital Filter Response 107.325 SPS and 214.65 SPS  
If the internal CLK is not being used and the external CLK is not 3.5717 MHz, then the filter response would be the same as the  
response shown above, but the frequency will change according to the equation:  
fNEW = [(CLKEXT) / 256 ] x (fOLD / 13.952k)  
Using the equation above, an example of the filter response for a 3.5717 MHz XTAL versus a 3.6864 MHz XTAL can be seen in  
Figure 10.  
0
Crystal = 3.5717 MHz  
Crystal = 3.6864 MHz  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
30169756  
FIGURE 10. Digital Filter Response for a 3.5717MHz  
versus 3.6864 MHz XTAL  
www.national.com  
26  
16.1.8 GPIO (D0–D6)  
Figure 11 shows a flowchart how these GPIOs can be pro-  
grammed.  
Pins D0-D6 are general purpose input/output (GPIO) pins that  
can be used to control external LEDs or switches. Only a high  
or low value can be sourced to or read from each pin.  
30169733  
FIGURE 11. GPIO Register Settings  
16.2 CALIBRATION  
As seen in Figure 12, there are two types of calibration: back-  
ground calibration and system calibration. These calibrations  
are further described in the next sections.  
30169779  
FIGURE 12. Types of Calibration  
16.2.1 Background Calibration  
Figure 12 also shows that there are two types of background  
calibration:  
Background calibration is the process of continuously deter-  
mining and applying the offset and gain calibration coeffi-  
cients to the output codes to minimize the LMP900xx’s offset  
and gain errors. Background calibration is a feature built into  
the LMP900xx and is automatically done by the hardware  
without interrupting the input signal.  
1. Type 1: Correction - the process of continuously  
determining and applying the offset and gain calibration  
coefficients to the output codes to minimize the  
LMP900xx’s offset and gain errors.  
This method keeps track of changes in the LMP900xx's  
gain and offset errors due to changes in the operating  
condition such as voltage, temperature, or time.  
Four differential channels, CH0-CH3, each with its own gain  
and ODRs, can be calibrated to improve the accuracy.  
2. Type 2: Estimation - the process of determining and  
continuously applying the last known offset and gain  
Types of Background Calibration:  
27  
www.national.com  
calibration coefficients to the output codes to minimize  
the LMP900xx’s offset and gain errors.  
The System Calibration Offset Registers (CHx_SCAL_OFF-  
SET) hold the System Calibration Offset Coefficients in 16-  
bit, two's complement binary format. The System Calibration  
Gain Registers (CHx_SCAL_GAIN) hold the System Calibra-  
tion Gain Coefficient in 16-bit, 1.15, unsigned, fixed-point  
binary format. For each channel, the System Calibration Off-  
set coefficient is subtracted from the conversion result prior  
to the division by the System Calibration Gain coefficient.  
The last known offset or gain calibration coefficients can  
come from two sources. The first source is the default  
coefficient which is pre-determined and burnt in the  
device’s non-volatile memory. The second source is from  
a previous calibration run of Type 1: Correction.  
The benefits of using type 2 calibration is a higher throughput,  
lower power consumption, and slightly better noise. The exact  
savings would depend on the number of channels being  
scanned, and the ODR and gain of each channel.  
A data-flow diagram of these coefficients can be seen in Fig-  
ure 14.  
Using Background Calibration:  
There are four modes of background calibration, which can  
be programmed using the BGCALCN bits. They are as fol-  
lows:  
1. BgcalMode0: Background Calibration OFF  
2. BgcalMode1: Offset Correction / Gain Estimation  
30169731  
3. BgcalMode2: Offset Correction / Gain Correction  
Follow Figure 13 to set other appropriate registers when  
using this mode.  
FIGURE 14. System Calibration Data-Flow Diagram  
4. BgcalMode3: Offset Estimation / Gain Estimation  
There are four distinct sets of System Calibration Offset and  
System Calibration Gain Registers for use with CH0-CH3.  
CH4-CH6 reuse the registers of CH0-CH2, respectively.  
The LMP900xx provides two system calibration modes that  
automatically fill the Offset and Gain coefficients for each  
channel. These modes are the System Calibration Offset Co-  
efficient Determination mode and the System Calibration  
Gain Coefficient Determination mode. The System Calibra-  
tion Offset Coefficient Determination mode must be entered  
prior to the System Calibration Gain Coefficient Determina-  
tion mode, for each channel.  
The system zero-scale condition is a system input condition  
(sensor loading) for which zero (0x0000) system-calibrated  
output code is desired. It may not, however, cause a zero in-  
put voltage at the input of the ADC.  
The system reference-scale condition is usually the system  
full-scale condition in which the system's input (or sensor's  
loading) would be full-scale and the desired system-calibrat-  
ed output code would be 0x8000 (unsigned 16-bit binary).  
However, system full-scale condition need not cause full-  
scale input voltage at the input of the ADC.  
The system reference-scale condition is not restricted to just  
the system full-scale condition. In fact, it can be any arbitrary  
fraction of full-scale (up to 1.25 times) and the desired system-  
calibrated output code can be any appropriate value (up to  
0xA000). The CHx_SCAL_GAIN register must be written with  
the desired system-calibrated output code (default:0x8000)  
before entering the System Calibration Gain Coefficient De-  
termination mode. This helps in in-place system calibration.  
30169730  
FIGURE 13. BgcalMode2 Register Settings  
If operating in BgcalMode2, four channels (with the same  
ODR) are being converted, and FGA_BGCAL = 0 (default),  
then the ODR is reduced by:  
Below are the detailed procedures for using the System Cal-  
ibration Offset Coefficient Determination and System Cali-  
bration Gain Coefficient Determination modes.  
1. 0.19% of 1.6775 SPS  
2. 0.39% of 3.355 SPS  
3. 0.78% of 6.71 SPS  
4. 1.54% of 13.42 SPS  
5. 3.03% of 26.83125 SPS  
6. 5.88% of 53.6625 SPS  
7. 11.11% of 107.325 SPS  
8. 20% of 214.65 SPS  
System Calibration Offset Coefficient Determination  
mode  
1. Apply system zero-scale condition to the channel (CH0/  
CH1/CH2/CH3).  
2. Enter the System Calibration Offset Coefficient  
Determination mode by programming 0x1 in the  
SCALCN register.  
16.2.2 System Calibration  
The LMP900xx provides some unique features to support  
easy system offset and system gain calibrations.  
3. LMP900xx starts a fresh conversion at the selected  
output data rate for the selected channel. At the end of  
www.national.com  
28  
the conversion, the CHx_SCAL_OFFSET register is  
filled-in with the System Calibration Offset coefficient.  
4. The System Calibration Offset Coefficient Determination  
mode is automatically exited.  
5. The computed calibration coefficient is accurate only to  
the effective resolution of the device and will probably  
contain some noise. The noise factor can be minimized  
by computing over many times, averaging (externally)  
and putting the resultant value back into the register.  
Alternatively, select the output data rate to be 26.83 sps  
or 1.67 sps.  
30169742  
FIGURE 15. Post-calibration Scaling Data-Flow Diagram  
System Calibration Gain Coefficient Determination mode  
16.3 CHANNELS SCAN MODE  
1. Repeat the System Calibration Offset Coefficient  
Determination to calibrate the System offset for the  
channel.  
There are four scan modes. These scan modes are selected  
using the CH_SCAN: CH_SCAN_SEL bit. The first scanned  
channel is FIRST_CH, and the last scanned channel is  
LAST_CH; they are both located in the CH_SCAN register.  
2. Apply the system reference-scale condition to the  
channel CH0/CH1/CH2/CH3.  
The CH_SCAN register is double buffered. That is, user in-  
puts are stored in a slave buffer until the start of the next  
conversion during which time they are transferred to the mas-  
ter buffer. Once the slave buffer is written, subsequent up-  
dates are disregarded until a transfer to the master buffer  
happens. Hence, it may be appropriate to check the  
CH_SCAN_NRDY bit before programming the CH_SCAN  
register.  
3. In the CHx_SCAL_GAIN register, program the expected  
(desired) system-calibrated output code for this condition  
in 16-bit unsigned format.  
4. Enter the System Calibration Gain Coefficient  
Determination mode by programming 0x3 in the  
SCALCN register.  
5. LMP900xx starts a fresh conversion at the selected  
output data rate for the channel. At the end of the  
conversion, the CHx_SCAL_GAIN is filled-in (or  
overwritten) with the System Calibration Gain coefficient.  
ScanMode0: Single-Channel Continuous Conversion  
LMP900xx continuously converts the selected FIRST_CH.  
6. The System Calibration Gain Coefficient Determination  
mode is automatically exited.  
Do not operate in this scan mode if gain 16 and the LM-  
P900xx is running in background calibration modes Bg-  
calMode1 or BgcalMode2. If this is the case, then it is more  
suitable to operate the device in ScanMode2 instead.  
7. The computed calibration coefficient is accurate only to  
the effective resolution of the device and will probably  
contain some noise. The noise factor can be minimized  
by computing over many times, averaging (externally)  
and putting the resultant value back into the register.  
Alternatively, select the output data rate to be 26.83 sps  
or 1.67 sps.  
ScanMode1: Multiple-Channels Single Scan  
LMP900xx converts one or more channels starting from  
FIRST_CH to LAST_CH, and then enters the stand-by state.  
Post-calibration Scaling  
ScanMode2: Multiple-Channels Continuous Scan  
LMP900xx allows scaling (multiplication and shifting) for the  
System Calibrated result. This eases downstream process-  
ing, if any. Multiplication is done using the System Calibration  
Scaling Coefficient in the CHx_SCAL_SCALING register and  
shifting is done using the System Calibration Bits Selector in  
the CHx_SCAL_BITS_SELECTOR register.  
LMP900xx continuously converts one or more channels start-  
ing from FIRST_CH to LAST_CH, and then it repeats this  
process.  
ScanMode3: Multiple-Channels Continuous Scan with  
Burnout Currents  
This mode is the same as ScanMode2 except that the burnout  
current is provided in a serially scanned fashion (injected in a  
channel after it has undergone a conversion). Thus it avoids  
burnout current injection from interfering with the conversion  
result for the channel.  
The System Calibration Bits Selector value should ideally be  
the logarithm (to the base 2) of the System Calibration Scaling  
Coefficient value.  
There are four distinct sets of System Calibration Scaling and  
System Calibration Bits Selector Registers for use with CH0-  
CH3. CH4-CH6 reuse the registers of CH0-CH2, respectively.  
The sensor diagnostic burnout currents are available for all  
four scan modes. The burnout current is further gated by the  
BURNOUT_EN bit for each channel. ScanMode3 is the only  
mode that scans multiple channels while injecting burnout  
currents without interfering with the signal. This is described  
in details in Section 16.4.2 Burnout Currents.  
A data-flow diagram of these coefficients can be seen in Fig-  
ure 15  
29  
www.national.com  
16.4 SENSOR INTERFACE  
Burnout Current Injection:  
The LMP90080/LMP90078 contains two excitation currents  
(IB1 & IB2) for sourcing external sensors, and the LMP900xx  
contain two burnout currents for sensor diagnostics. They are  
described in the next sections.  
Burnout currents are injected differently depending on the  
channel scan mode selected.  
When BURNOUT_EN = 1 and the device is operating in  
ScanMode0, 1, or 2, the burnout currents are injected into all  
the channels for which the BURNOUT_EN bit is selected.  
This will cause problems and hence in this mode, more than  
one channel should not have its BURNOUT_EN bit selected.  
Also, the burnout current will interfere with the signal and in-  
troduce a fixed error depending on the particular external  
sensor.  
16.4.1 IB1 & IB2 - Excitation Currents (LMP90080/  
LMP90078)  
IB1 and IB2 can be used for providing currents to external  
sensors, such as RTDs or bridge sensors. 100µA to 1000µA,  
in steps of 100µA, can be sourced by programming the  
ADC_AUXCN: RTD_CUR_SEL bits.  
When BURNOUT_EN = 1 and the device is operating in  
ScanMode3, burnout currents are injected into the last sam-  
pled channel on a cyclical basis (Figure 17). In this mode,  
burnout currents injection is truly done in the background  
without affecting the accuracy of the on-going conversion.  
Operating in this mode is recommended.  
Refer to Section 17.6.1 3–Wire RTD to see how IB1 and IB2  
can be used to source a 3-wire RTD.  
16.4.2 Burnout Currents  
As shown in Figure 16, the LMP900xx contains two internal  
10 µA burnout current sources, one sourcing current from VA  
to VINP, and the other sinking current from VINN to ground.  
These currents are used for sensor diagnostics and can be  
enabled for each channel using the CHx_INPUTCN:  
BURNOUT_EN bit.  
30169781  
FIGURE 17. Burnout Currents Injection for ScanMode3  
16.4.3 Sensor Diagnostic Flags  
Burnout currents can be used to verify that an external sensor  
is still operational before attempting to make measurements  
on that channel. A non-operational sensor means that there  
is a possibility the connection between the sensor and the  
LMP900xx is open circuited, short circuited, shorted to VA or  
GND, overloaded, or the reference may be absent. The sen-  
sor diagnostic flags diagram can be seen in Figure 18.  
30169780  
FIGURE 16. Burnout Currents  
www.national.com  
30  
30169782  
FIGURE 18. Sensor Diagnostic Flags Diagram  
The sensor diagnostic flags are located in the  
POR_AFT_LST_RD:  
SENDIAG_FLAGS register and are described in further de-  
tails below.  
If POR_AFT_LST_READ = 1, then there was a power-on re-  
set since the last time the SENDIAG_FLAGS register was  
read. This flag's status is cleared when this bit is read, unless  
this bit is set again on account of another power-on-reset  
event in the intervening period.  
SHORT_THLD_FLAG:  
The short circuit threshold flag is used to report a short-circuit  
condition. It is set when the output voltage (VOUT) is within  
the absolute Vthreshold. Vthreshold can be programmed us-  
ing the 8-bit SENDIAG_THLDH register.  
OFLO_FLAGS:  
OFLO_FLAGS is used to indicate whether the modulator is  
over-ranged or under-ranged. The following conditions are  
possible:  
For example, assume VREF = 5V, gain = 1, SENDIAG_THLD  
= 0xDA (218d). In this case, Vthreshold can be calculated as:  
1. OFLO_FLAGS = 0x0: Normal Operation  
Vthreshold = [(SENDIAG_THLD)(2)(VREF)] / [(Gain)(216)]  
Vthreshold = [(218)(2)(5V)] / [(1)(216)]  
Vthreshold = 33.3 mV  
2. OFLO_FLAGS = 0x1: The modulator was not  
overranged, but ADC_DOUT got clamped to 0x7FFF  
(positive fullscale) or 0x8000 (negative full scale). For  
example, if VREF = 5V, VIN = 2V, and gain = 128, then  
OFLO_FLAGS would be 01b.  
When  
(-33.3mV)  
VOUT  
(33.3mV),  
then  
SHORT_THLD_FLAG = 1; otherwise, SHORT_THLD_FLAG  
= 0.  
3. OFLO_FLAGS = 0x2: The modulator was over-ranged  
towards +VREF.  
4. OFLO_FLAGS = 0x3: The modulator was over-ranged  
towards −VREF.  
RAILS_FLAG:  
The rails flag is used to detect if one of the sampled channels  
is within 50mV of the rails potential (VA or VSS). This can be  
further investigated to detect an open-circuit or short-circuit  
condition. If the sampled channel is near a rail, then  
RAILS_FLAG = 1; otherwise, RAILS_FLAG = 0.  
The condition of OFLO_FLAGS = 10b or 11b can be used in  
conjunction with the RAILS_FLAG to determine the fault con-  
dition.  
SAMPLED_CH:  
These three bits show the channel number for which the  
ADC_DOUT and SENDIAG_FLAGS are available. This does  
not necessarily indicate the current channel under conversion  
because the conversion frame and computation of results  
from the channels are pipelined. That is, while the conversion  
is going on for a particular channel, the results for the previous  
conversion (of the same or a different channel) are available.  
31  
www.national.com  
16.5 SERIAL DIGITAL INTERFACE  
16.5.2 Register Read/Write Protocol  
A synchronous 4-wire serial peripheral interface (SPI) pro-  
vides access to the internal registers of LMP900xx via CSB,  
SCLK, SDI, SDO/DRDYB.  
Figure 19 shows the protocol how to write to or read from a  
register.  
Transaction 1 sets up the upper register address (URA)  
where the user wants to start the register-write or register-  
read.  
16.5.1 Register Address (ADDR)  
All registers are memory-mapped. A register address (ADDR)  
is composed of an upper register address (URA) and lower  
register address (LRA) as shown in ADDR Map. For example,  
ADDR 0x3A has URA=0x3 and LRA=0xA.  
Transaction 2 sets the lower register address (LRA) and in-  
cludes the Data Byte(s), which contains the incoming data  
from the master or outgoing data from the LMP900xx.  
Examples of register-reads or register-writes can be found in  
ADDR Map  
Section 17.4 REGISTER READ/WRITE EXAMPLES.  
Bit  
[6:4]  
[3:0]  
Name  
URA  
LRA  
30169736  
FIGURE 19. Register Read/Write Protocol  
16.5.3 Streaming  
0x1F, 0x20, 0x21. Once the data reaches ADDR 0x21, LM-  
P900xx will wrap back to ADDR 0x1C and repeat this process  
until CSB deasserts. See Section 17.5.2 Controlled Stream-  
ing Example for an example of the Controlled Streaming  
mode.  
When writing/reading 3+ bytes, the user must operate the de-  
vice in Normal Streaming mode or Controlled Streaming  
mode. In the Normal Streaming mode, which is the default  
mode, data runs continuously starting from ADDR until CSB  
deasserts. This mode is especially useful when programming  
all the configuration registers in a single transaction. See  
Section 17.5.1 Normal Streaming Example for an example of  
the Normal Streaming mode.  
If streaming reaches ADDR 0x7F, then it will wrap back to  
ADDR 0x00. Furthermore, reading back the Upper Register  
Address after streaming will report the Upper Register Ad-  
dress at the start of streaming, not the Upper Register Ad-  
dress at the end of streaming.  
In the Controlled Streaming mode, data runs continuously  
starting from ADDR until the data has run through all  
(STRM_RANGE + 1) registers. For example, if the starting  
ADDR is 0x1C, STRM_RANGE = 5, then data will be written  
to or read from the following ADDRs: 0x1C, 0x1D, 0x1E,  
To stream, write 0x3 to INST2’s SZ bits as seen in Figure  
19. To select the stream type, program the SPI_STREAMCN:  
STRM_TYPE bit. The STRM_RANGE can also be pro-  
grammed in the same register.  
www.national.com  
32  
16.5.4 CSB - Chip Select Bar  
rising edge. After an SPI Reset, SDI is monitored for a pos-  
sible Write Instruction at each SCLK rising edge.  
An SPI transaction begins when the master asserts (active  
low) CSB and ends when the master deasserts (active high)  
CSB. Each transaction might be separated by a subsequent  
one with a CSB deassertion, but this is optional. Once CSB  
is asserted, it must not pulse (deassert and assert again) dur-  
ing a (desired) transaction.  
SPI Reset will reset the Upper Address Register (URA) to 0,  
but the register contents are not reset.  
By default, SPI reset is disabled, but it can be enabled by  
writing 0x01 to SPI Reset Register (ADDR 0x02).  
16.5.6 DRDYB - Data Ready Bar  
CSB can be grounded in systems where LMP900xx is the only  
SPI slave. This frees the software from handling the CSB.  
Care has to be taken to avoid any false edge on SCLK, and  
while operating in this mode, the streaming transaction should  
not be used because exiting from this mode can only be done  
through a CSB deassertion.  
DRDYB is a signal generated by the LMP900xx that indicates  
a fresh conversion data is available in the ADC_DOUT reg-  
isters.  
DRDYB is automatically asserted every (1/ODR) second as  
seen in Figure 20. Before the next assertion, DRDYB will  
pulse for tDRDYB second. The value for tDRDYB can be found in  
Section 13.0 Timing Diagrams.  
16.5.5 SPI Reset  
SPI Reset resets the SPI-Protocol State Machine by moni-  
toring the SDI for at least 73 consecutive 1's at each SCLK  
30169785  
FIGURE 20. DRDYB Behavior  
If ADC_DOUT is being read while a new ADC_DOUT be-  
comes available, then the ADC_DOUT that is being read is  
still valid (Figure 21). DRDYB will still be deasserted every 1/  
ODR second, but a consecutive read on the ADC_DOUT reg-  
ister will fetch the newly converted data available.  
30169712  
FIGURE 21. DRDYB Behavior for an Incomplete ADC_DOUT Reading  
DRDYB can also be accessed via registers using the  
DT_AVAIL_B bit. This bit indicates when fresh conversion  
data is available in the ADC_DOUT registers. If new conver-  
sion data is available, then DT_AVAIL_B = 0; otherwise,  
DT_AVAIL_B = 1.  
DrdybCase1:  
SDO_DRDYB_DRIVER = 0x00  
Combining  
SDO/DRDYB  
with  
A complete reading for DT_AVAIL_B occurs when the MSB  
of ADC_DOUTH is read out. This bit cannot be reset even if  
REG_AND_CNV_RST = 0xC3.  
33  
www.national.com  
30169732  
FIGURE 22. DrdybCase1 Connection Diagram  
As shown in Figure 22, the drdyb signal and SDO can be  
Note that INST1 and UAB are omitted from the figure below  
because this transaction is only required if a new UAB needs  
to be implemented.  
multiplexed on the same pin as their functions are mostly  
complementary. In fact, this is the default mode for the  
SDO/DRDYB pin.  
While the CSB is asserted, DRDYB is driving the  
SDO/DRDYB pin unless the device is reading data, in which  
case, SDO will be driving the pin. If CSB is deasserted, then  
the SDO/DRDYB pin is High-Z.  
Figure 23 shows a timing protocol for DrdybCase1. In this  
case, start by asserting CSB first to monitor a drdyb assertion.  
When the drdyb signal asserts, begin writing the Instruction  
Bytes (INST1, UAB, INST2) to read from or write to registers.  
30169701  
FIGURE 23. Timing Protocol for DrdybCase1  
DrdybCase2:  
SDO_DRDYB_DRIVER = 0x03  
Combining  
SDO/DRDYB  
with  
can only be used when the LMP900xx is the only device con-  
nected to the master's SPI bus because the SDO/DRDYB pin  
will be DRDYB even when CSB is deasserted.  
SDO/DRDYB can be made independent of CSB by setting  
SDO_DRDYB_DRIVER = 0x03 in the SPI Handshake Control  
register. In this case, DRDYB will drive the pin unless the de-  
vice is reading data, independent of the state of CSB. SDO  
will drive the pin when CSB is asserted and the device is  
reading data.  
The timing protocol for this case can be seen in Figure 24.  
When drdyb asserts, assert CSB to start the SPI transaction  
and begin writing the Instruction Bytes (INST1, UAB, INST2)  
to read from or write to registers.  
With this scheme, one can use SDO/DRDYB as a true inter-  
rupt source, independent of the state of CSB. But this scheme  
www.national.com  
34  
30169729  
FIGURE 24. Timing Protocol for DrdybCase2  
35  
www.national.com  
DrdybCase3: Routing DRDYB to D6  
30169791  
FIGURE 25. DrdybCase3 Connection Diagram  
The drdyb signal can be routed to pin D6 by setting  
SPI_DRDYB_D6 high and SDO_DRDYB_DRIVER to 0x4.  
This is the behavior for DrdybCase3 as shown in Figure 25.  
using the interrupt or polling method. If polled, the drdyb signal  
needs to be polled faster than tDRDYB to detect a drdyb as-  
sertion. When drdyb asserts, assert CSB to start the SPI  
transaction and begin writing the Instruction Bytes (INST1,  
UAB, INST2) to read from or write to registers.  
The timing protocol for this case can be seen in Figure 26.  
Since DRDYB is separated from SDO, it can be monitored  
30169789  
FIGURE 26. Timing Protocol for DrdybCase3  
16.5.7 Data Only Read Transaction  
In order to use the data only transaction, the device must be  
placed in the data first mode. The following table lists trans-  
action formats for placing the device in and out of the data first  
mode and reading the mode status.  
In a data only read transaction, one can directly access the  
data byte(s) as soon as the CSB is asserted without having  
to send any instruction byte. This is useful as it brings down  
the latency as well as the overhead associated with the in-  
struction byte (as well as the Upper Address Byte, if any).  
TABLE 5. Data First Mode Transactions  
Bit[7]  
Bits[6:5]  
Bit[4]  
Bits[3:0]  
1010  
Data Bytes  
None  
Enable Data First Mode Instruction  
Disable Data First Mode Instruction  
Read Mode Status Transaction  
1
1
1
11  
11  
00  
1
1
1
1011  
None  
1111  
One  
www.national.com  
36  
Note that while being in the data first mode, once the data  
bytes in the data only read transaction are sent out, the device  
is ready to start on any normal (non-data-only) transaction  
including the Disable Data First Mode Instruction. The current  
status of the data first mode (enabled/disabled status) can be  
read back using the Read Mode Status Transaction. This  
transaction consists of the Read Mode Status Instruction fol-  
lowed by a single data byte (driven by the device). The data  
first mode status is available on bit [1] of this data byte.  
Transaction; this transaction should be completed before the  
next scheduled DRDYB deassertion.  
16.5.8 Cyclic Redundancy Check (CRC)  
CRC can be used to ensure integrity of data read from LM-  
P900xx. To enable CRC, set EN_CRC high. Once CRC is  
enabled, the CRC value is calculated and stored in  
SPI_CRC_DAT so that the master device can periodically  
read for data comparison. The CRC is automatically reset  
when CSB or DRDYB is deasserted.  
The CRC polynomial is x8 + x5 + x4 + 1. The reset value of the  
SPI_CRC_DAT register is zero, and the final value is ones-  
complemented before it is sent out. Note that CRC computa-  
tion only includes the bits sent out on SDO and does not  
include the bits of the SPI_CRC_DAT itself; thus it is okay to  
read SPI_CRC_DAT repeatedly.  
The data only read transaction allows reading up to eight  
consecutive registers, starting from any start address. Usu-  
ally, the start address will be the address of the most signifi-  
cant byte of conversion data, but it could just as well be any  
other address. The start address and number of bytes to be  
read during the data only read transaction can be pro-  
grammed using the DATA_ONLY_1 AND DATA_ONLY_2  
registers respectively.  
The drdyb signal normally deasserts (active high) every 1/  
ODR second. However, this behavior can be changed so that  
drdyb deassertion can occur after SPI_CRC_DAT is read, but  
not later than normal DRDYB deassertion which occurs at  
every 1/ODR seconds. This is done by setting bit  
DRDYB_AFT_CRC high.  
The upper register address is unaffected by a data only read  
transaction. That is, it retains its setting even after encoun-  
tering a data only transaction. The data only transaction uses  
its own address (including the upper address) from the  
DATA_ONLY_1 register. When in the data first mode, the  
SCLK must stop high before entering the Data Only Read  
The timing protocol for CRC can be found in Figure 27.  
30169759  
FIGURE 27. Timing Protocol for Reading SPI_CRC_DAT  
If SPI_CRC_DAT read extends beyond the normal DRDYB  
deassertion at every 1/ODR seconds, then CRC_RST has to  
be set in the SPI Data Ready Bar Control Register. This is  
done to avoid a CRC reset at the DRDYB deassertion.Timing  
protocol for reading CRC with CRC_RST set is shown in Fig-  
ure 28  
30169738  
FIGURE 28. Timing Protocol for Reading SPI_CRC_DAT beyond normal DRDYB deassertion at every 1/ODR seconds  
37  
www.national.com  
16.7 RESET and RESTART  
16.6 POWER MANAGEMENT  
Writing 0xC3 to the REG_AND_CNV_RST field will reset the  
conversion and most of the programmable registers to their  
default values. The only registers that will not be reset are the  
System Calibration Registers (CHx_SCAL_OFFSET,  
CHx_SCAL_GAIN) and the DT_AVAIL_B bit.  
The device can be placed in Active, Power-Down, or Stand-  
By state.  
In Power-Down, the ADC is not converting data, contents of  
the registers are unaffected, and there is a drastic power re-  
duction. In Stand-By, the ADC is not converting data, but the  
power is only slightly reduced so that the device can quickly  
transition into the active state if desired.  
If it is desirable to reset the System Calibration Coefficient  
Registers, then set RESET_SYSCAL = 1 before writing 0xC3  
to REG_AND_CNV_RST. If the device is operating in the  
“System Calibration Offset/Gain Coefficient Determination”  
mode (SCALCN register), then write REG_AND_CNV_RST  
= 0xC3 twice to get out of this mode.  
These states can be selected using the PWRCN register.  
When written, PWRCN brings the device into the Active, Pow-  
er-Down, or Stand-By state. When read, PWRCN indicates  
the state of the device.  
After a register reset, any on-going conversions will be abort-  
ed and restarted. If the device is in the power-down state, then  
a register reset will bring it out of the power-down state.  
The read value would confirm the write value after a small  
latency (approximately 15 µs with the internal CLK). It may be  
appropriate to wait for this latency to confirm the state change.  
Requests not adhering to this latency requirement may be  
rejected.  
To restart a conversion, write 1 to the RESTART bit. This bit  
can be used to synchronize the conversion to an external  
event.  
It is not possible to make a direct transition from the power-  
down state to the stand-by state. This state diagram is shown  
below.  
30169788  
FIGURE 29. Active, Power-Down, Stand-by State Diagram  
www.national.com  
38  
be the same as VA and sourced with a clean source that is  
bypassed with a ceramic capacitor value of 0.1 µF and a tan-  
talum capacitor of 10 µF.  
17.0 Applications Information  
17.1 QUICK START  
LMP900xx also allows ratiometric connection for noise im-  
munity reasons. A ratiometric connection is when the ADC’s  
VREFP and VREFN are used to excite the input device’s (i.e.  
a bridge sensor) voltage references. This type of connection  
severely attenuates any VREF ripple seen the ADC output,  
and is thus strongly recommended.  
This section shows step-by-step instructions to configure the  
LMP900xx to perform a simple DC reading from CH0.  
1. Apply VA = VIO = VREFP1 = 5V, and ground VREFN1  
2. Apply VINP = ¾VREF and VINN = ¼VREF for CH0.  
Thus, set CH0 = VIN = VINP - VINN = ½VREF  
(CH0_INPUTCN register)  
17.3 ADC_DOUT CALCULATION  
3. Set gain = 1 (CH0_CONFIG: GAIN_SEL = 0x0)  
The output code of the LMP900xx can be calculated as:  
4. Exclude the buffer from the signal path (CH0_CONFIG:  
BUF_EN = 1)  
5. Set the background to BgcalMode2 (BGCALCN = 0x2)  
6. Select VREF1 (CH0_INPUTCN: VREF_SEL = 0)  
7. To use the internal CLK, set CLK_EXT_DET = 1 and  
CLK_SEL = 0.  
Equation 1 — Output Code  
8. Follow the register read/write protocol (Figure 19) to  
capture ADC_DOUT from CH0.  
ADC_DOUT is in 16−bit two's complement binary format. The  
largest positive value is 0x7FFF (or 32767 in decimal), while  
the largest negative value is 0x8000 (or 32768 in decimal). In  
case of an over range the value is automatically clamped to  
one of these two values.  
17.2 CONNECTING THE SUPPLIES  
17.2.1 VA and VIO  
Any ADC architecture is sensitive to spikes on the analog  
voltage, VA, digital input/output voltage, VIO, and ground  
pins. These spikes may originate from switching power sup-  
plies, digital logic, high power devices, and other sources. To  
diminish these spikes, the LMP900xx’s VA and VIO pins  
should be clean and well bypassed. A 0.1 µF ceramic bypass  
capacitor and a 1 µF tantalum capacitor should be used to  
bypass the LMP900xx supplies, with the 0.1 µF capacitor  
placed as close to the LMP900xx as possible.  
Figure 30 shows the theoretical output code, ADC_DOUT, vs.  
analog input voltage, VIN, using the equation above.  
Since the LMP900xx has both external VA and VIO pins, the  
user has two options on how to connect these pins. The first  
option is to tie VA and VIO together and power them with the  
same power supply. This is the most cost effective way of  
powering the LMP900xx but is also the least ideal because  
noise from VIO can couple into VA and negatively affect per-  
formance. The second option involves powering VA and VIO  
with separate power supplies. These supply voltages can  
have the same amplitude or they can be different.  
17.2.2 VREF  
Operation with VREF below VA is also possible with slightly  
diminished performance. As VREF is reduced, the range of  
acceptable analog input voltages is also reduced. Reducing  
the value of VREF also reduces the size of the LSB. When  
the LSB size goes below the noise floor of the LMP900xx, the  
noise will span an increasing number of codes and perfor-  
mance will degrade. For optimal performance, VREF should  
30169747  
FIGURE 30. ADC_DOUT vs. VIN of a 16-Bit Resolution  
(VREF = 5.5V, Gain = 1).  
39  
www.national.com  
17.4 REGISTER READ/WRITE EXAMPLES  
17.4.1 Writing to Register Examples  
Using the register read/write protocol shown in Figure 19, the following example shows how to write three data bytes starting at  
register address (ADDR) 0x1F. After the last byte has been written to ADDR 0x21, deassert CSB to end the register-write.  
30169737  
FIGURE 31. Register-Write Example 1  
The next example shows how to write one data byte to ADDR 0x12. Since the URA for this example is the same as the last example,  
transaction 1 can be omitted.  
30169790  
FIGURE 32. Register-Write Example 2  
www.national.com  
40  
17.4.2 Reading from Register Example  
The following example shows how to read two bytes. The first byte will be read from starting ADDR 0x24, and the second byte will  
be read from ADDR 0x25.  
30169739  
FIGURE 33. Register-Read Example  
41  
www.national.com  
17.5 STREAMING EXAMPLES  
17.5.1 Normal Streaming Example  
This example shows how to write six data bytes starting at ADDR 0x28 using the Normal Streaming mode. Because the default  
STRM_TYPE is the Normal Streaming mode, setting up the SPI_STREAMCN register can be omitted.  
30169792  
FIGURE 34. Normal Streaming Example  
www.national.com  
42  
17.5.2 Controlled Streaming Example  
This example shows how to read the 16-bit conversion data (ADC_DOUT) four times using the Controlled Streaming mode. The  
ADC_DOUT registers consist of ADC_DOUTH at ADDR 0x1A and ADC_DOUTL at ADDR 0x1B.  
The first step (Figure 35) sets up the SPI_STREAMCN register. This step enters the Controlled Streaming mode by setting  
STRM_TYPE high in ADDR 0x03. Since two registers (ADDR 0x1A - 0x1B) need to be read, the STRM_RANGE is 1.  
30169793  
FIGURE 35. Setting up SPI_STREAMCN  
The next step shows how to perform the Controlled Streaming mode so that the master device will read ADC_DOUT from ADDR  
0x1A and 0x1B, then wrap back to ADDR 0x1A, and repeat this process for four times. After this process, deassert CSB to end  
the Controlled Streaming mode.  
43  
www.national.com  
30169794  
FIGURE 36. Controlled Streaming Example  
www.national.com  
44  
17.6 EXAMPLE APPLICATIONS  
17.6.1 3–Wire RTD  
30169752  
FIGURE 37. Topology #1: 3-wire RTD Using 2 Current Sources  
Figure 37 shows the first topology for a 3-wire resistive tem-  
perature detector (RTD) application. Topology #1 uses two  
excitation current sources, IB1 and IB2, to create a differential  
voltage across VIN0 and VIN1. As a result of using both IB1  
and IB2, only one channel (VIN0-VIN1) needs to be mea-  
sured. As shown in Equation 2, the equation for this channel  
is IB1 x (RTD – RCOMP) assuming that RLINE1 = RLINE2.  
The advantage of this circuit is its ratiometric configuration,  
where VREF = (IB1 + IB2) x (RREF). Equation 3 shows that  
a ratiometric configuration eliminates IB1 and IB2 from the  
output equation, thus increasing the overall performance.  
Equation 2 — VIN Equation for Topology #1  
The PT-100 changes linearly from 100 Ohm at 0°C to  
146.07 Ohm at 120°C. If desired, choose a suitable compen-  
sating resistor (RCOMP) so that VIN can be virtually 0V at any  
desirable temperature. For example, if RCOMP = 100 Ohm,  
then at 0°C, VIN = 0V and thus a higher gain can be used.  
Equation 3 — ADC_DOUT Showing IB1 & IB2 Elimination  
45  
www.national.com  
30169796  
FIGURE 38. Topology #2: 3-wire RTD Using 1 Current Source  
Figure 38 shows the second topology for a 3-wire RTD appli-  
cation. Topology #2 shows the same connection as topology  
#1, but without IB2. Although this topology eliminates a cur-  
rent source, it requires two channel measurements as shown  
in Equation 4.  
Equation 4 — VIN Equation for Topology #2  
www.national.com  
46  
17.6.2 Thermocouple and IC Analog Temperature  
30169799  
FIGURE 39. Thermocouple with CJC  
The LMP900xx is also ideal for thermocouple temperature  
applications. Thermocouples have several advantages that  
make them popular in many industrial and medical applica-  
tions. Compare to RTDs, thermistors, and IC sensors, ther-  
mocouples are the most rugged, least expensive, and can  
operate over the largest temperature range.  
In a CJC technique, the “cold” junction temperature, Tcold, is  
sensed by using an IC temperature sensor, such as the  
LM94022. The temperature sensor should be placed within  
close proximity of the reference junction and should have an  
isothermal connection to the board to minimize any potential  
temperature gradients.  
A thermocouple is a sensor whose junction generates a dif-  
ferential voltage, VIN, that is relative to the temperature dif-  
ference (Thot – Tcold). Thot is also known as the measuring  
junction or “hot” junction, which is placed at the measured  
environment. Tcold is also known as the reference or “cold”  
junction, which is placed at the measuring system environ-  
ment.  
Once Tcold is obtained, use a standard thermocouple look-  
up-table to find its equivalent voltage. Next, measure the  
differential thermocouple voltage and add the equivalent cold  
junction voltage. Lastly, convert the resulting voltage to tem-  
perature using a standard thermocouple look-up-table.  
For example, assume Tcold = 20°C. The equivalent voltage  
from a type K thermocouple look-up-table is 0.798 mV. Next,  
add the measured differential thermocouple voltage to the  
Tcold equivalent voltage. For example, if the thermocouple  
voltage is 4.096 mV, the total would be 0.798 mV + 4.096 mV  
= 4.894 mV. Referring to the type K thermocouple table gives  
a temperature of 119.37°C for 4.894 mV.  
Because a thermocouple can only measure a temperature  
difference, it does not have the ability to measure absolute  
temperature. To determine the absolute temperature of the  
measured environment (Thot), a technique known as cold  
junction compensation (CJC) must be used.  
47  
www.national.com  
4. If written to, registers indicated as Reserved must have  
the indicated default value as shown below. Any other  
value can cause unexpected results.  
18.0 Registers  
1. If written to, RESERVED bits must be written to only 0  
unless otherwise indicated.  
18.1 REGISTER MAP  
2. Read back value of RESERVED bits and registers is  
unspecified and should be discarded.  
3. Recommended values must be programmed and  
forbidden values must not be programmed where they  
are indicated in order to avoid unexpected results.  
ADDR  
(URA & LRA)  
Register Name  
Type  
Default  
RESETCN  
Reset Control  
SPI Handshake Control  
SPI Reset Control  
SPI Stream Control  
-
0x00  
WO  
R/W  
R/W  
R/W  
-
-
SPI_HANDSHAKECN  
SPI_RESET  
0x01  
0x00  
0x00  
0x00  
0x00  
0x02  
SPI_STREAMCN  
Reserved  
0x03  
0x04 - 0x07  
RO &  
WO  
PWRCN  
Power Mode Control and Status  
Data Only Read Control 1  
Data Only Read Control 2  
ADC Restart Conversion  
-
0x08  
0x09  
0x00  
0x1A  
0x02  
-
DATA_ONLY_1  
DATA_ONLY_2  
ADC_RESTART  
Reserved  
R/W  
R/W  
WO  
-
0x0A  
0x0B  
0x0C - 0x0D  
0x0E  
0x00  
0x00  
GPIO_DIRCN  
GPIO Direction Control  
R/W  
RO &  
WO  
GPIO_DAT  
GPIO Data  
0x0F  
0x10  
-
0x00  
0x03  
0x00  
0x02  
0x00  
0x0000  
0x00  
-
BGCALCN  
Background Calibration Control  
SPI Data Ready Bar Control  
ADC Auxiliary Control  
CRC Control  
R/W  
R/W  
R/W  
R/W  
R/W  
-
SPI_DRDYBCN  
ADC_AUXCN  
SPI_CRC_CN  
SENDIAG_THLD  
Reserved  
0x11  
0x12  
0x13  
Sensor Diagnostic Threshold  
-
0x14  
0x15-0x16  
0x17  
SCALCN  
System Calibration Control  
ADC Data Available  
Sensor Diagnostic Flags  
Conversion Data 1 and 0  
-
R/W  
RO  
RO  
RO  
-
ADC_DONE  
SENDIAG_FLAGS  
ADC_DOUT  
Reserved  
0x18  
0x19  
-
0x1A - 0x1B  
0x1C  
-
-
RO &  
WO  
SPI_CRC_DAT  
CRC Data  
0x1D  
-
CHANNEL CONFIGURATION REGISTERS (CH4 to CH6 for LMP90080/LMP90079 only)  
CH_STS  
Channel Status  
0x1E  
0x1F  
0x20  
0x21  
0X22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
RO  
0x00  
0x30  
0x01  
0x70  
0x13  
0x70  
0x25  
0x70  
0x37  
0x70  
0x01  
0x70  
0x13  
0x70  
CH_SCAN  
Channel Scan Mode  
CH0 Input Control  
CH0 Configuration  
CH1 Input Control  
CH1 Configuration  
CH2 Input Control  
CH2 Configuration  
CH3 Input Control  
CH3 Configuration  
CH4 Input Control  
CH4 Configuration  
CH5 Input Control  
CH5 Configuration  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CH0_INPUTCN  
CH0_CONFIG  
CH1_INPUTCN  
CH1_CONFIG  
CH2_INPUTCN  
CH2_CONFIG  
CH3_INPUTCN  
CH3_CONFIG  
CH4_INPUTCN  
CH4_CONFIG  
CH5_INPUTCN  
CH5_CONFIG  
www.national.com  
48  
ADDR  
(URA & LRA)  
Register Name  
Type  
Default  
CH6_INPUTCN  
CH6_CONFIG  
Reserved  
CH6 Input Control  
0x2C  
0x2D  
R/W  
R/W  
-
0x25  
0x70  
0x00  
CH6 Configuration  
-
0x2E - 0x2F  
SYSTEM CALIBRATION REGISTERS  
CH0_SCAL_OFFSET  
Reserved  
CH0 System Calibration Offset Coefficients  
0x30 - 0x31  
0x32  
R/W  
-
0x0000  
0x00  
-
CH0_SCAL_GAIN  
Reserved  
CH0 System Calibration Gain Coefficients  
-
0x33 - 0x34  
0x35  
R/W  
-
0x8000  
0x00  
CH0_SCAL_SCALING CH0 System Calibration Scaling Coefficients  
0x36  
R/W  
0x01  
CH0_SCAL_BITS_SEL  
CH0 System Calibration Bit Selector  
ECTOR  
0x37  
0x38 - 0x39  
0x3A  
R/W  
R/W  
-
0x00  
0x0000  
0x00  
CH1_SCAL_OFFSET  
Reserved  
CH1 System Calibration Offset Coefficients  
-
CH1_SCAL_GAIN  
Reserved  
CH1 System Calibration Gain Coefficient  
-
0x3B - 0x3C  
0x3D  
R/W  
-
0x8000  
0x00  
CH1_SCAL_SCALING CH1 System Calibration Scaling Coefficients  
0x3E  
R/W  
0x01  
CH1_SCAL_BITS_SEL  
CH1 System Calibration Bit Selector  
ECTOR  
0x3F  
0x40 - 0x41  
0x42  
R/W  
R/W  
-
0x00  
0x0000  
0x00  
CH2_SCAL_OFFSET  
Reserved  
CH2 System Calibration Offset Coefficients  
-
CH2_SCAL_GAIN  
Reserved  
CH2 System Calibration Gain Coefficient  
-
0x43 - 0x44  
0x45  
R/W  
-
0x8000  
0x00  
CH2_SCAL_SCALING CH2 System Calibration Scaling Coefficients  
0x46  
R/W  
0x01  
CH2_SCAL_BITS_SEL  
CH2 System Calibration Bit Selector  
ECTOR  
0x47  
0x48 - 0x49  
0x4A  
R/W  
R/W  
-
0x00  
0x0000  
0x00  
CH3_SCAL_OFFSET  
Reserved  
CH3 System Calibration Offset Coefficients  
-
CH3_SCAL_GAIN  
Reserved  
CH3 System Calibration Gain Coefficient  
-
0x4B - 0x4C  
0x4D  
R/W  
-
0x8000  
0x00  
CH3_SCAL_SCALING CH3 System Calibration Scaling Coefficients  
0x4E  
R/W  
0x01  
CH3_SCAL_BITS_SEL  
CH3 System Calibration Bit Selector  
ECTOR  
0x4F  
R/W  
-
0x00  
0x00  
Reserved  
-
0x50 - 0x7F  
18.2 POWER AND RESET REGISTERS  
RESETCN: Reset Control (Address 0x00)  
Bit Bit Symbol  
Bit Description  
Register and Conversion Reset  
[7:0] REG_AND_CNV_ RST  
0xC3: Register and conversion reset  
Others: Neglected  
49  
www.national.com  
SPI_RESET: SPI Reset Control (Address 0x02)  
Bit Bit Symbol  
Bit Description  
SPI Reset Enable  
0x0 (default): SPI Reset Disabled  
0x1: SPI Reset Enabled  
[0] SPI_ RST  
Note:Once Written, The contents of this register are sticky. That is, the content of this reg-  
ister cannot be changed with subsequent write.However, a Register reset clears the register  
as well as the sticky status.  
PWRCN: Power Mode Control and Status (Address 0x08)  
Bit Bit Symbol  
Bit Description  
[7:2] Reserved  
-
Power Control  
Write Only – power down mode control  
0x0: Active Mode  
0x1: Power-down Mode  
0x3: Stand-by Mode  
[1:0] PWRCN  
Read Only – the present mode is:  
0x0 (default): Active Mode  
0x1: Power-down Mode  
0x3: Stand-by Mode  
www.national.com  
50  
18.3 ADC REGISTERS  
ADC_RESTART: ADC Restart Conversion (Address 0x0B)  
Bit Bit Symbol  
Bit Description  
[7:1] Reserved  
-
Restart conversion  
0
RESTART  
1: Restart conversion.  
14.2.1. ADC_AUXCN: ADC Auxiliary Control (Address 0x12)  
Bit Bit Symbol  
Bit Description  
7
Reserved  
-
The System Calibration registers (CHx_SCAL_OFFSET and CHx_SCAL_GAIN) are:  
0 (default): preserved even when "REG_AND_CNV_ RST" = 0xC3.  
1: reset by setting "REG_AND_CNV_ RST" = 0xC3.  
6
RESET_SYSCAL  
External clock detection  
5
4
CLK_EXT_DET  
CLK_SEL  
0 (default): "External Clock Detection" is operational  
1: "External-Clock Detection" is bypassed  
Clock select – only valid if CLK_EXT_DET = 1  
0 (default): Selects internal clock  
1: Selects external clock  
Selects RTD Current as follows:  
0x0 (default): 0 µA  
0x1: 100 µA  
0x2: 200 µA  
0x3: 300 µA  
0x4: 400 µA  
0x5: 500 µA  
0x6: 600 µA  
RTD_CUR_SEL  
[3:0] (LMP90080 and LMP90078  
only)  
0x7: 700 µA  
0x8: 800 µA  
0x9: 900 µA  
0xA: 1000 µA  
ADC_DONE: ADC Data Available (Address 0x18)  
Bit Bit Symbol  
Bit Description  
Data Available – indicates if new conversion data is available  
0x00 − 0xFE: Available  
[7:0] DT_AVAIL_B  
0xFF: Not available  
51  
www.national.com  
ADC_DOUT: 16-bit Conversion Data (two’s complement) (Address 0x1A - 0x1B)  
Address Name  
Register Description  
ADC Conversion Data [15:8]  
ADC Conversion Data [7:0]  
Reserved  
0x1A  
0x1B  
0x1C  
ADC_DOUTH  
ADC_DOUTL  
Reserved  
Note: Repeat reads of these registers are allowed as long as such reads are spaced apart by at least 72 µs.  
18.4 CHANNEL CONFIGURATION REGISTERS  
CH_STS: Channel Status (Address 0x1E)  
Bit Bit Symbol  
Bit Description  
[7:2] Reserved  
-
Channel Scan Not Ready – indicates if it is okay to program CH_SCAN  
0: Update not pending, CH_SCAN register is okay to program  
1: Update pending, CH_SCAN register is not ready to be programmed  
1
0
CH_SCAN_NRDY  
Invalid or Repeated Read Status  
INV_OR_RPT_RD_STS  
0: ADC_DOUT just read was valid and hitherto unread  
1: ADC_DOUT just read was either invalid (not ready) or there was a repeated read.  
www.national.com  
52  
CH_SCAN: Channel Scan Mode (Address 0x1F)  
Bit Bit Symbol  
Bit Description  
Channel Scan Select  
0x0 (default): ScanMode0: Single-Channel Continuous Conversion  
0x1: ScanMode1: One or more channels Single Scan  
0x2: ScanMode2: One or more channels Continuous Scan  
0x3: ScanMode3: One or more channels Continuous Scan with Burnout Currents  
[7:6] CH_SCAN_SEL  
Last channel for conversion  
0x0: CH0  
0x1: CH1  
0x2: CH2  
0x3: CH3  
0x4: CH4  
0x5: CH5  
LAST_CH  
[5:3] (CH4 to CH6 for LMP90080  
and LMP90079 only)  
0x6 (default): CH6  
Note: LAST_CH cannot be smaller than FIRST_CH. For example, if LAST_CH = CH5, then  
FIRST_CH cannot be CH6. If 0x7 is written it is ignored.  
Starting channel for conversion  
0x0 (default): CH0  
0x1: CH1  
0x2: CH2  
0x3: CH3  
0x4: CH4  
0x5: CH5  
FIRST_CH  
[2:0] (CH4 to CH6 for LMP90080  
and LMP90079 only)  
0x6: CH6  
Note: FIRST_CH cannot be greater than LAST_CH. For example, if FIRST_CH = CH1,  
then LAST_CH cannot be CH0. If 0x7 is written it is ignored.  
Note: While writing to the CH_SCAN register, if 0x7 is written  
to FIRST_CH or LAST_CH the write to the entire CH_SCAN  
register is ignored.  
53  
www.national.com  
CHx_INPUTCN: Channel Input Control (CH4 to CH6 for LMP90080/LMP90079 only)  
Register Address (hex):  
a. CH0: 0x20  
b. CH1: 0X22  
c. CH2: 0x24  
d. CH3: 0x26  
e. CH4: 0x28  
f. CH5: 0x2A  
g. CH6: 0x2C  
Bit Bit Symbol  
Bit Description  
Enable sensor diagnostic  
7
6
BURNOUT_EN  
VREF_SEL  
0 (default): Disable Sensor Diagnostics current injection for this Channel  
1: Enable Sensor Diagnostics current injection for this Channel  
Select the reference  
0 (Default): Select VREFP1 and VREFN1  
1: Select VREFP2 and VREFN2  
Positive input select  
0x0: VIN0  
0x1: VIN1  
0x2: VIN2  
0x3: VIN3 (LMP90080/LMP90079 only)  
0x4: VIN4 (LMP90080/LMP90079 only)  
0x5: VIN5 (LMP90080/LMP90079 only)  
0x6: VIN6  
[5:3] VINP  
0x7: VIN7  
Note: to see the default values for each channel, refer to the table below.  
Negative input select  
0x0: VIN0  
0x1: VIN1  
0x2: VIN2  
0x3: VIN3 (LMP90080/LMP90079 only)  
0x4: VIN4 (LMP90080/LMP90079 only)  
0x5: VIN5 (LMP90080/LMP90079 only)  
0x6: VIN6  
[2:0] VINN  
0x7: VIN7  
Note: to see the default values for each channel, refer to the table below.  
Default VINx for CH0-CH6  
CH4 (LMP90080/ VIN0  
LMP90079 only)  
VIN1  
VIN3  
VIN5  
VINP  
VIN0  
VIN2  
VINN  
CH5 (LMP90080/ VIN2  
LMP90079 only)  
CH0  
CH1  
VIN1  
VIN3 (LMP90080/  
LMP90079 only)  
CH6 (LMP90080/ VIN4  
LMP90079 only)  
CH2  
CH3  
VIN4 (LMP90080/ VIN5 (LMP90080/  
LMP90079 only)  
VIN6  
LMP90079 only)  
VIN7  
www.national.com  
54  
CHx_CONFIG: Channel Configuration (CH4 to CH6 LMP90080/LMP90079 only)  
Register Address (hex):  
a. CH0: 0x21  
b. CH1: 0x23  
c. CH2: 0x25  
d. CH3: 0x27  
e. CH4: 0x29  
f. CH5: 0x2B  
g. CH6: 0x2D  
Bit Bit Symbol  
Reserved  
Bit Description  
7
-
ODR Select  
0x0: 13.42 / 8 = 1.6775 SPS  
0x1: 13.42 / 4 = 3.355 SPS  
0x2: 13.42 / 2 = 6.71 SPS  
0x3: 13.42 SPS  
[6:4] ODR_SEL  
0x4: 214.65 / 8 = 26.83125 SPS  
0x5: 214.65 / 4 = 53.6625 SPS  
0x6: 214.65 / 2 = 107.325 SPS  
0x7 (default): 214.65 SPS  
Gain Select  
0x0 (default): 1 (FGA OFF)  
0x1: 2 (FGA OFF)  
0x2: 4 (FGA OFF)  
0x3: 8 (FGA OFF)  
0x4: 16 (FGA ON)  
0x5: 32 (FGA ON)  
0x6: 64 (FGA ON)  
0x7: 128 (FGA ON)  
[3:1] GAIN_SEL  
Enable/Disable the buffer  
0 (default): Include the buffer in the signal path  
1: Exclude the buffer from the signal path  
0
BUF_EN  
Note: When gain 16, the buffer is automatically included in the signal path irrespective  
of this bit.  
55  
www.national.com  
18.5 CALIBRATION REGISTERS  
BGCALCN: Background Calibration Control (Address 0x10)  
Bit Bit Symbol  
Bit Description  
[7:2] Reserved  
-
Background calibration control – selects scheme for continuous background calibration.  
0x0 (default): BgcalMode0: Background Calibration OFF  
0x1: BgcalMode1: Offset Correction / Gain Estimation  
0x2: BgcalMode2: Offset Correction / Gain Correction  
0x3: BgcalMode3: Offset Estimation / Gain Estimation  
[1:0] BGCALN  
SCALCN: System Calibration Control (Address 0x17)  
Bit Bit Symbol  
Bit Description  
[7:2] Reserved  
-
System Calibration Control  
When written, set SCALCN to:  
0x0 (default): Normal Mode  
0x1: “System Calibration Offset Coefficient Determination” mode  
0x2: “System Calibration Gain Coefficient Determination” mode  
0x3: Reserved  
[1:0] SCALCN  
When read, this bit indicates the system calibration mode is in:  
0x0: Normal Mode  
0x1: "System Calibration Offset Coefficient Determination" mode  
0x2: "System Calibration Gain Coefficient Determination" mode  
0x3: Reserved  
Note: when read, this bit will indicate the current System Calibration status. Since this co-  
efficient determination mode will only take 1 conversion cycle, reading this register will only  
return 0x00, unless this register is read within 1 conversion window.  
CHx_SCAL_OFFSET: CH0-CH3 System Calibration Offset Registers (Two's-Complement)  
ADDR  
Name  
Description  
CH0 CH1 CH2 CH3  
0x30 0x38 0x40 0x48 CHx_SCAL_OFFSETH  
0x31 0x39 0x41 0x49 CHx_SCAL_OFFSETM  
0x32 0x3A 0x42 0x4A Reserved  
System Calibration Offset Coefficient Data [15:8]  
System Calibration Offset Coefficient Data [7:0]  
-
CHx_SCAL_GAIN: CH0-CH3 System Calibration Gain Registers (Fixed Point 1.23 Format)  
ADDR  
Name  
Description  
CH0 CH1 CH2 CH3  
0x33 0x3B 0x43 0x4B CHx_SCAL_GAINH  
0x34 0x3C 0x44 0x4C CHx_SCAL_GAINL  
0x35 0x3D 0x45 0x4D Reserved  
System Calibration Gain Coefficient Data [15:8]  
System Calibration Gain Coefficient Data [7:0]  
-
www.national.com  
56  
CHx_SCAL_SCALING: CH0-CH3 System Calibration Scaling Coefficient Registers  
ADDR  
Name  
Description  
CH0 CH1 CH2 CH3  
0x36 0x3E 0x46 0x4E CHx_SCAL_SCALING  
System Calibration Scaling Coefficient Data [5:0]  
CHx_SCAL_BITS_SELECTOR: CH0-CH3 System Calibration Bit Selector Registers  
ADDR  
Name  
Description  
CH0 CH1 CH2 CH3  
0x37 0x3F 0x47 0x4F CHx_SCAL_BITS_SELECTOR  
System Calibration Bit Selection Data [2:0]  
18.6 SENSOR DIAGNOSTIC REGISTERS  
SENDIAG_THLD: Sensor Diagnostic Threshold (Address 0x14)  
Address Name  
0x14 SENDIAG_THLD  
Register Description  
Sensor Diagnostic threshold  
SENDIAG_FLAGS: Sensor Diagnostic Flags (Address 0x19 )  
Bit Bit Symbol  
Bit Description  
Short Circuit Threshold Flag = 1 when the absolute value of VOUT is within the absolute  
threshold voltage set by the SENDIAG_THLD register.  
7
6
5
SHORT_THLD_ FLAG  
RAILS_FLAG  
Rails Flag = 1 when at least one of the inputs is near rail (VA or GND).  
Power-on-reset after last read = 1 when there was a power-on-reset event since the last  
time the SENDIAG_FLAGS register was read.  
POR_AFT_LST_RD  
Overflow flags  
0x0: Normal operation  
[4:3] OFLO_FLAGS  
[2:0] SAMPLED_CH  
0x1: The modulator was not overranged, but ADC_DOUT got clamped to 0x7f_ffff (positive  
fullscale) or 0x80_0000 (negative full scale)  
0x2: The modulator was over-ranged (VIN > 1.2*VREF/GAIN)  
0x3: The modulator was over-ranged (VIN < -1.2*VREF/GAIN)  
Channel Number – the sampled channel for ADC_DOUT and SENDIAG_FLAGS.  
57  
www.national.com  
18.7 SPI REGISTERS  
SPI_HANDSHAKECN: SPI Handshake Control (Address 0x01)  
Bit Bit Symbol  
Bit Description  
[7:4] Reserved  
-
SDO/DRDYB Driver – sets who is driving the SDO/DRYB pin  
Whenever CSB is  
Whenever CSB is  
Asserted and the Device CSB is  
Asserted and the Device  
is Reading ADC_DOUT  
is Not Reading  
ADC_DOUT  
Deasserted  
[3:1] SDO_DRDYB_ DRIVER  
0x0 (default)  
0x3  
SDO is driving  
SDO is driving  
SDO is driving  
Forbidden  
DRDYB is driving  
DRDYB is driving  
High-Z  
High-Z  
DRDYB is driving  
High-Z  
0x4  
Others  
Switch-off trigger - refers to the switching of the output drive from the slave to the master.  
0 (default): SDO will be high-Z after the last (16th, 24th, 32nd, etc) rising edge of SCLK.  
This option allows time for the slave to transfer control back to the master at the end of the  
frame.  
0
SW_OFF_TRG  
1: SDO’s high-Z is postponed to the subsequent falling edge following the last (16th, 24th,  
32nd, etc) rising edge of SCLK. This option provides additional hold time for the last bit, DB0,  
in non-streaming read transfers.  
SPI_STREAMCN: SPI Streaming Control (Address 0x03)  
Bit Bit Symbol  
Bit Description  
Stream type  
7
STRM_TYPE  
0 (default): Normal Streaming mode  
1: Controlled Streaming mode  
Stream range – selects Range for Controlled Streaming mode  
[6:0] STRM_ RANGE  
Default: 0x00  
DATA_ONLY_1: Data Only Read Control 1 (Address 0x09)  
Bit Bit Symbol  
Bit Description  
7
Reserved  
-
Start address for the Data Only Read Transaction  
Default: 0x1A  
[6:0] DATA_ONLY_ADR  
Please refer to the description of DT_ONLY_SZ in DATA_ONLY_2 register.  
www.national.com  
58  
DATA_ONLY_2: Data Only Read Control 2 (Address 0x0A)  
Bit Bit Symbol  
[7:3] Reserved  
[2:0]  
Bit Description  
-
Number of bytes to be read out in Data Only mode. A value of 0x0 means read one byte  
and 0x7 means read 8 bytes.  
DATA_ONLY_SZ  
Default: 0x2  
SPI_DRDYBCN: SPI Data Ready Bar Control (Address 0x11 )  
Bit Bit Symbol  
Bit Description  
Enable DRDYB on D6  
7
SPI_DRDYB_D6  
0 (default): D6 is a GPIO  
1: D6 = drdyb signal  
6
5
4
Reserved  
CRC_RST  
Reserved  
-
CRC Reset  
0 (default): Enable CRC reset on DRDYB deassertion  
1: Disbale CRC reset on DRDYB deassertion  
-
Gain background calibration  
0 (default): Correct FGA gain error. This is useful only if the device is operating in Bg-  
calMode2 and ScanMode2 or ScanMode3.  
3
FGA_BGCAL  
1: Correct FGA gain error using the last known coefficients.  
[2:0] Reserved  
Default - 0x3 (do not change this value)  
SPI_CRC_CN: CRC Control (Address 0x13 )  
Bit Bit Symbol  
Bit Description  
[7:5] Reserved  
-
Enable CRC  
4
3
2
EN_CRC  
0 (default): Disable CRC  
1: Enable CRC  
Reserved  
Default - 0x1 (do not change this value)  
DRDYB After CRC  
DRDYB_AFT_CRC  
0 (default): DRDYB is deasserted (active high) after ADC_DOUTL is read.  
1: DRDYB is deasserted after SPI_CRC_DAT (which follows ADC_DOUTL), is read.  
[1:0] Reserved  
-
59  
www.national.com  
SPI_CRC_DAT: CRC Data (Address 0x1D )  
Bit Bit Symbol  
Bit Description  
CRC Data  
[7:0] CRC_DAT  
When written, this register reset CRC:  
Any Value: Reset CRC  
When read, this register indicates the CRC data.  
18.8 GPIO REGISTERS  
GPIO_DIRCN: GPIO Direction (Address 0x0E )  
Bit Bit Symbol Bit Description  
7
x
Reserved  
-
GPIO direction control – these bits are used to control the direction of each General Purpose  
Input/Outputs (GPIO) pins D0 - D6.  
0 (default): Dx is an Input  
1: Dx is an Output  
GPIO_DIRCNx  
where 0 x 6.  
For example, writing a 1 to bit 6 means D6 is an Output.  
Note: If D6 is used for DRDYB, then it cannot be used for GPIO.  
GPIO_DAT: GPIO Data (Address 0x0F)  
Bit Bit Symbol Bit Description  
7 Reserved  
-
Write Only - when GPIO_DIRCNx = 0  
0: Dx is LO  
1: Dx is HI  
Read Only - when GPIO_DIRCNx = 1  
0: Dx driven LO  
1: Dx driven HI  
x
Dx  
where 0 x 6.  
For example, writing a 0 to bit 4 means D4 is LO.  
It is okay to Read the GPIOs that are configured as outputs and write to GPIOs that are  
configured as inputs. Reading the GPIOs that are outputs would return the current value  
on those GPIOs, and writing to the GPIOs that are inputs are neglected.  
www.national.com  
60  
19.0 Physical Dimensions inches (millimeters) unless otherwise noted  
28-Lead Molded Plastic TSSOP  
Order Number LMP90080MH/NOPB, LMP90079MH/NOPB, LMP90078MH/NOPB, LMP90077MH/NOPB  
NS Package Number MO-153  
61  
www.national.com  
Notes  
For more National Semiconductor product information and proven design tools, visit the following Web sites at:  
www.national.com  
Products  
www.national.com/amplifiers  
Design Support  
www.national.com/webench  
Amplifiers  
WEBENCH® Tools  
App Notes  
Audio  
www.national.com/audio  
www.national.com/timing  
www.national.com/adc  
www.national.com/interface  
www.national.com/lvds  
www.national.com/power  
www.national.com/appnotes  
www.national.com/refdesigns  
www.national.com/samples  
www.national.com/evalboards  
www.national.com/packaging  
www.national.com/quality/green  
www.national.com/contacts  
www.national.com/quality  
www.national.com/feedback  
www.national.com/easy  
Clock and Timing  
Data Converters  
Interface  
Reference Designs  
Samples  
Eval Boards  
LVDS  
Packaging  
Power Management  
Green Compliance  
Distributors  
Switching Regulators www.national.com/switchers  
LDOs  
www.national.com/ldo  
www.national.com/led  
www.national.com/vref  
www.national.com/powerwise  
Quality and Reliability  
Feedback/Support  
Design Made Easy  
Applications & Markets  
Mil/Aero  
LED Lighting  
Voltage References  
PowerWise® Solutions  
www.national.com/solutions  
www.national.com/milaero  
www.national.com/solarmagic  
www.national.com/training  
Serial Digital Interface (SDI) www.national.com/sdi  
Temperature Sensors  
PLL/VCO  
www.national.com/tempsensors SolarMagic™  
www.national.com/wireless  
PowerWise® Design  
University  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2011 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Technical  
Support Center  
National Semiconductor Europe  
Technical Support Center  
Email: europe.support@nsc.com  
National Semiconductor Asia  
Pacific Technical Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Technical Support Center  
Email: jpn.feedback@nsc.com  
Email: support@nsc.com  
Tel: 1-800-272-9959  
www.national.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY