LMX2310U [NSC]

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications; PLLatinum⑩超低功耗频率合成射频个人通信
LMX2310U
型号: LMX2310U
厂家: National Semiconductor    National Semiconductor
描述:

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications
PLLatinum⑩超低功耗频率合成射频个人通信

射频 个人通信
文件: 总29页 (文件大小:657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
December 2003  
LMX2310U/LMX2311U/LMX2312U/LMX2313U  
PLLatinum Ultra Low Power Frequency Synthesizer for  
RF Personal Communications  
LMX2310U 2.5 GHz  
LMX2312U 1.2 GHz  
General Description  
The LMX2310/1/2/3U are high performance frequency syn-  
thesizers. The LMX2310/1/2U use a selectable, dual modu-  
lus 32/33 and 16/17 prescaler. The LMX2313U uses a se-  
lectable, dual modulus 16/17 and 8/9 prescaler. The device,  
when combined with a high quality reference oscillator and a  
voltage controlled oscillator, generates very stable, low noise  
local oscillator signals for up and down conversion in wire-  
less communication devices.  
LMX2311U 2.0 GHz  
LMX2313U 600 MHz  
Features  
n RF operation up to 2.5 GHz  
n 2.7V to 5.5V operation  
n Ultra Low Current Consumption  
n Low prescaler values  
LMX2310/1/2U 32/33 or 16/17  
LMX2313U 16/17 or 8/9  
n Excellent Phase Noise  
n Internal balanced, low leakage charge pump  
n Selectable Charge Pump Current Levels  
n Selectable Fastlock mode with Time-Out Counter  
n Low Voltage MICROWIRE interface (1.72V to VCC  
n Digital and Analog Lock Detect  
n Small 20-pad Thin Chip Scale Package  
Serial data is transferred into LMX2310/1/2/3U via a three-  
wire interface (Data, Enable, Clock) that can be directly  
interfaced with low voltage baseband processors. Supply  
voltage can range from 2.7V to 5.5V. LMX2310U features  
very low current consumption, typically 2.3 mA at 3.0V.  
)
The LMX2310/1/2/3U are manufactured using National’s  
0.5µ ABiC V silicon BiCMOS process and is available in  
20-pin CSP packages.  
Applications  
n Cellular DCS, PCS, WCDMA telephone systems  
n Wireless Local Area Networks (WLAN)  
n Global Positioning Systems (GPS)  
n Other wireless communications systems  
Functional Block Diagram  
20043822  
PLLatinum is a trademark of National Semiconductor Corporation.  
© 2003 National Semiconductor Corporation  
DS200438  
www.national.com  
Connection Diagram  
20043823  
20-Pin Thin Chip Scale Package  
NS Package Number SLD20A  
www.national.com  
2
Pin Descriptions  
Pin Number  
Pin Name  
NC  
I/O  
Description  
I/O Circuit Configuration  
1
2
— No Connect.  
CPo  
O
Charge Pump output. For connection to a  
loop filter for driving the voltage control  
input of an external VCO.  
3
4
GND  
FIN  
— Analog ground.  
I
RF prescaler input. Small signal input  
from the VCO.  
5
FINB  
I
RF prescaler complementary input. For  
single ended operation, this pin should be  
AC grounded. The LMX2310/1/2/3U can  
be driven differentially when a bypass  
capacitor is omitted.  
6
OSCIN  
I
Oscillator input. An input to a CMOS low  
noise inverting buffer. The input can be  
driven from an external CMOS or TTL  
logic gate.  
7
8
NC  
— No Connect.  
OSCOUT  
O
O
I
Oscillator output. The OSCIN low noise  
buffer drives an independent oscillator  
buffer. Its output is connected to the  
OSCOUT pin. It can be used as a buffer to  
provide the reference oscillator frequency  
to other circuitry or as a crystal oscillator.  
9
FoLD  
Clock  
Multi-function CMOS output pin that  
provides multiplexed access to digital lock  
detect, open drain analog lock detect, as  
well as the outputs of the R and N  
counters. The FoLD pin is internally  
referenced to VµC  
.
10  
High impedance CMOS Clock input. Data  
for the counters is clocked in on the rising  
edge, into the 22-bit shift register. The  
Clock is internally referenced to VµC  
.
3
www.national.com  
Pin Descriptions (Continued)  
Pin Number  
Pin Name  
NC  
I/O  
Description  
I/O Circuit Configuration  
11  
12  
— No Connect.  
Data  
I
High impedance CMOS Data input. Serial  
Data is entered MSB first. The last two  
bits are the address for the target  
registers. The Data is internally referenced  
to VµC  
.
13  
LE  
I
High impedance CMOS LE input. When  
Latch Enable goes HIGH, data stored in  
the 22-bit shift register is loaded into one  
the 3 control registers, based on the  
address field. The Latch Enable is  
internally referenced to VµC  
.
14  
15  
GND  
CE  
— Digital ground.  
I
High impedance CMOS Chip Enable  
input. Provides logical power-down control  
of the device. Pull-up to VµC if unused.  
The Chip Enable is internally referenced  
to VµC  
.
16  
VµC  
— Power supply for MICROWIRE circuitry.  
Must be VCC. Typically connected to  
same supply level as microprocessor or  
baseband controller to enable  
programming at low voltages.  
17  
18  
NC  
— No Connect.  
VCC  
— Power supply voltage input. Input may  
range from 2.7V to 5.5V. Bypass  
capacitors should be placed as close as  
possible to this pin and be connected  
directly to the ground plane.  
19  
20  
FL  
O
Fastlock mode output. In Fastlock mode  
this pin is at logic low. When not in  
Fastlock mode, this pin is in TRI-STATE  
mode. This pin can also be forced to  
TRI-STATE, forced low or forced high by  
the programming of the first two-bits of the  
Timeout Counter.  
VP  
— Power supply for charge pump. Must be ≥  
VCC  
.
www.national.com  
4
Absolute Maximum Ratings (Notes 1,  
2)  
Lead Temp. (solder 4 sec.), (TL)  
+260˚C  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Recommended Operating  
Conditions (Note 1)  
Min Max Unit  
Power Supply Voltage,  
Power Supply Voltage  
(VCC, VP, VµC  
Voltage on any pin with GND=0V  
CPo, FL, FIN, OSCIN, OSCOUT (Vi) −0.3V to VCC + 0.3V  
)
−0.3V to +6.5V  
(VCC  
(VP)  
)
2.7 5.5  
VCC 5.5  
1.72 VCC  
V
V
V
(VµC  
)
Data, Clock, LE, CE, FoLD (Vi)  
Storage Temperature Range, (TS)  
−0.3V to VµC + 0.3V  
−65˚C to +150˚C  
Operating Temperature, (TA)  
−40 +85 ˚C  
Electrical Characteristics  
<
<
VCC = VP = VµC = 3.0V, −40˚C TA +85˚C unless specified otherwise.  
Symbol Parameter Conditions (Note 3)  
Min  
Typ  
2.3  
2.0  
1.4  
1.0  
Max  
Units  
ICC  
(Note 4)  
3.0  
3.4  
2.7  
3.2  
2.0  
2.4  
1.3  
1.6  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
LMX2310U  
VCC = 5.5V (Note 4)  
(Note 4)  
LMX2311U  
LMX2312U  
LMX2313U  
VCC = 5.5V (Note 4)  
(Note 4)  
Power Supply  
Current  
lCC  
VCC = 5.5V (Note 4)  
(Note 4)  
VCC = 5.5V (Note 4)  
Clock, Data and LE = GND  
CE = GND  
ICC-PWDN  
Power-Down Current  
1
10  
µA  
RF PRESCALER  
LMX2310U  
LMX2311U  
LMX2312U  
LMX2313U  
0.5  
0.5  
0.2  
45  
2.5  
2.0  
1.2  
600  
0
GHz  
GHz  
GHz  
MHz  
dBm  
dBm  
Operating  
Frequency  
FIN  
2.7 VCC 3.0V (Note 5)  
−15  
−10  
Input Sensitivity, RF  
Prescaler  
PFIN  
<
3.0V VCC 5.5V (Note 5)  
0
PHASE DETECTOR  
Fφ  
Phase Detector Frequency  
10  
50  
MHz  
REFERENCE OSCILLATOR  
Operating Frequency,  
FOSC  
VOSC  
2
MHz  
VP−P  
Reference Oscillator Input  
Input Sensitivity,  
(Note 6)  
0.5  
VCC  
100  
IN  
Reference Oscillator Input  
OSCIN Input Current  
OSCIN Input Current  
OSCOUT Bias Level  
IIH  
VIH = VCC = 5.5V  
VIL = 0, VCC = 5.5V  
OSCIN Open  
µA  
µA  
V
IIL  
−100  
VOSC  
1.5  
50  
OUT  
OSCIN = 20 MHz, 0.5 VP-P  
OSCIN Duty Cycle = 50%  
OSCIN = 20 MHz, 0.5 VP-P  
,
DOSC  
OSCOUT Duty Cycle  
%
OUT  
,
VOSC  
OSCOUT Level  
OSCOUT Load = 10 pF || 10 k  
Ohm  
2.6  
VP-P  
OUT  
VOH  
VOL  
IOH  
IOL  
OSCOUT Output Voltage  
OSCOUT Output Voltage  
OSCOUT Output Current  
OSCOUT Output Current  
IOH = -500 µA  
IOL = 500 µA  
2.6  
2.8  
0.2  
-1.1  
1.1  
V
V
0.4  
VOH = 2.25 V  
VOL = 0.75 V  
mA  
mA  
5
www.national.com  
Electrical Characteristics (Continued)  
<
<
VCC = VP = VµC = 3.0V, −40˚C TA +85˚C unless specified otherwise.  
Symbol  
CHARGE PUMP  
ICPo-source  
ICPo-sink  
Parameter  
Conditions (Note 3)  
Min  
Typ  
Max  
Units  
VCPo = Vp/2, ICPo_4X = 0  
VCPo = Vp/2, ICPo_4X = 0  
VCPo = Vp/2, ICPo_4X = 1  
VCPo = Vp/2, ICPo_4X = 1  
0.8  
−0.8  
3.2  
1.0  
−1.0  
4.0  
1.2  
−1.2  
4.8  
mA  
mA  
mA  
mA  
Charge Pump Output  
Current (Note 7)  
ICPo-source  
ICPo-sink  
−3.2  
−4.0  
−4.8  
ICPo-tri  
Charge Pump TRI-STATE 0.5V VCPo VP − 0.5V  
Current  
−2.5  
2.5  
10  
15  
nA  
ICPo-sink vs.  
ICPo-source  
CP Sink vs. Source  
Mismatch  
VCPo = Vp/2  
TA = 25˚C  
3
%
(Note 8)  
ICPo vs VCPo CP Current vs. Voltage  
0.5V VCPo VP − 0.5V  
TA = 25˚C (Note 8)  
VCPo = Vp/2V (Note 7)  
8
8
%
%
ICPo vs TA  
CP Current vs.  
Temperature  
DIGITAL INTERFACE (Data, Clock, LE, CE)  
VIH  
VIL  
IIH  
High-level Input Voltage  
Low-level Input Voltage  
High-level Input Current  
Low-level Input Current  
VµC = 1.72V to 5.5V  
VµC = 1.72V to 5.5V  
VIH = VµC= 5.5V  
0.8 VµC  
V
V
0.2 VµC  
1.0  
−1.0  
−1.0  
µA  
µA  
IIL  
VIL = 0V, VµC = 5.5V  
1.0  
VOH  
High-level Output Voltage IOH = 500 µA  
(Pin 7–FoLD)  
VµC − 0.4  
VCC − 0.4  
V
High-level Output Voltage IOH = −500 µA  
(Pin 15–FL)  
V
V
VOL  
Low-level Output Voltage  
IOL = 1.0 mA (Note 9)  
0.1  
0.4  
MICROWIRE TIMING (Data, Clock, LE, CE)  
tCS  
Data to Clock Set Up Time (Note 10)  
50  
20  
50  
50  
ns  
ns  
ns  
ns  
tCH  
Data to Clock Hold Time  
Clock Pulse Width High  
Clock Pulse Width Low  
(Note 10)  
(Note 10)  
(Note 10)  
tCWH  
tCWL  
tES  
Clock to Load Enable Set (Note 10)  
Up Time  
50  
50  
ns  
ns  
tEW  
Load Enable Pulse Width (Note 10)  
www.national.com  
6
Electrical Characteristics (Continued)  
<
<
VCC = VP = VµC = 3.0V, −40˚C TA +85˚C unless specified otherwise.  
Symbol Parameter Conditions (Note 3)  
Min  
Typ  
Max  
Units  
PHASE NOISE CHARACTERISTICS  
Fφ = 200 kHz  
FOSC = 10 MHz  
VOSC = 1.0 VPP  
ICPO = 4 mA  
TA = 25˚C  
Normalized Single  
LN(f)  
−159  
dBc/Hz  
Side-Band Phase Noise  
(Note 11)  
LMX2310U  
FIN = 2450 MHz  
Fφ = 200 kHz  
FOSC = 10 MHz  
VOSC = 1.0 VPP  
ICPO = 4 mA  
TA = 25˚C  
−78  
−80  
−85  
−85  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
(Note 12)  
LMX2311U  
FIN = 1960 MHz  
Fφ = 200 kHz  
FOSC = 10 MHz  
VOSC = 1.0 VPP  
ICPO = 4 mA  
TA = 25˚C  
(Note 12)  
Single Side-Band Phase  
L(f)  
Noise  
LMX2312U  
FIN = 902 MHz  
Fφ = 200 kHz  
FOSC = 10 MHz  
VOSC = 1.0 VPP  
ICPO = 4 mA  
TA = 25˚C  
(Note 12)  
LMX2313U  
FIN = 450 MHz  
Fφ = 50 kHz  
FOSC = 10 MHz  
VOSC = 1.0 VPP  
ICPO = 4 mA  
TA = 25˚C  
(Note 12)  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and conditions, see the Electrical Characteristics. The  
guaranteed specifications apply only for the conditions listed.  
<
Note 2: This device is a high performance RF integrated circuit with an ESD rating 2 kV. Handling and assembly of this device should only be done at ESD free  
workstations.  
Note 3: Typical Conditions are at a T of 25˚C.  
A
Note 4: Icc current is measured with Clock, Data and LE pins connected to GND. OSCin and Fin pins are connected to Vcc. PWDN bit is program to 0. Icc current  
is the current into Vcc pin.  
Note 5: See F Sensitivity Test Setup.  
IN  
Note 6: See OSC Sensitivity Test Setup.  
IN  
Note 7: Charge Pump Magnitude is controlled by CPo_4X bit [R18].  
Note 8: See Charge Pump Measurement Definition for detail on how these measurements are made.  
Note 9: Analog Lock Detect open drain output pin only can be pulled up to V that will not exceed 6.5V.  
ext  
Note 10: See Serial Input Data Timing.  
Note 11: Normalized Single-Side Band Phase Noise is defined as: L (f) = L(f) − 20 log (F / F ), where L(f) is defined as the Single Side-Band Phase Noise.  
N
IN  
φ
7
www.national.com  
Note 12: Phase Noise is measured using a reference evaluation board with a loop bandwidth of approximately 12 kHz. The phase noise specification is the  
composite average of 3 measurements made at frequency offsets of 2.0 kHz, 2.5 kHz and 3.0 kHz.  
Typical Performance Characteristics  
Icc vs Vcc LMX2310U  
Icc vs Vcc LMX2311U  
20043838  
20043839  
Icc vs Vcc LMX2312U  
Icc vs Vcc LMX2313U  
20043840  
20043841  
CPOTRI-STATE vs CPO Voltage  
20043843  
www.national.com  
8
Typical Performance Characteristics (Continued)  
LMX231xU Charge Pump Sweeps  
20043842  
9
www.national.com  
Typical Performance Characteristics (Continued)  
Charge Pump Current Variation (See formula under  
Charge Pump Current Specification Definitions)  
Sink Vs Source Mismatch (See formula under Charge  
Pump Current Specification Definitions)  
20043866  
20043867  
LMX2310U Fin Sensitivity vs Frequency at 3.0V  
20043846  
www.national.com  
10  
Typical Performance Characteristics (Continued)  
LMX2310U Fin Sensitivity vs Frequency at 5.5V  
20043847  
LMX2311U Fin Sensitivity vs Frequency at 3.0V  
20043848  
11  
www.national.com  
Typical Performance Characteristics (Continued)  
LMX2311U Fin Sensitivity vs Frequency at 5.5V  
20043849  
LMX2312U Fin Sensitivity vs Frequency at 3.0V  
20043850  
www.national.com  
12  
Typical Performance Characteristics (Continued)  
LMX2312U Fin Sensitivity vs Frequency at 5.5V  
20043851  
LMX2313U Fin Sensitivity vs Frequency at 3.0V  
20043852  
13  
www.national.com  
Typical Performance Characteristics (Continued)  
LMX2313U Fin Sensitivity vs Frequency at 5.5V  
20043853  
LMX231XU OSCin Sensitivity vs Frequency at 3.0V  
20043854  
www.national.com  
14  
Typical Performance Characteristics (Continued)  
LMX231XU OSCin Sensitivity vs Frequency at 5.5V  
20043855  
LMX231xU OSCin Input Impedance vs Frequency  
20043858  
15  
www.national.com  
Typical Performance Characteristics (Continued)  
LMX231xUSLD OSCIN IMPEDANCE  
VCC = 3.0V (TA = 25˚C)  
VCC = 5.5V (TA = 25˚C)  
OSCIN BUFFER  
OSCI N BUFFER  
OSCIN BUFFER  
OSCIN BUFFER  
NORMAL OPERATION  
POWERED-DOWN MODE  
NORMAL OPERATION  
POWERED-DOWN MODE  
Imag-  
Real  
Imag-  
Real  
Imag-  
Real  
Imag-  
Real  
FOSC  
(MHz)  
inary |ZOSCIN  
ZOSCIN  
|
inary |ZOSCIN  
ZOSCIN  
|
inary |ZOSCIN  
|
inary |ZOSCIN  
ZOSCIN  
|
ZOSCIN  
ZOSCIN  
()  
()  
ZOSCIN  
()  
()  
ZOSCIN  
()  
()  
ZOSCIN  
()  
()  
()  
()  
()  
()  
2
12900  
5200  
2400  
1350  
920  
820  
630  
570  
420  
440  
390  
360  
340  
330  
300  
290  
280  
280  
−1500  
−10900  
−7500  
−5400  
−4300  
−3600  
−3100  
−2600  
−2100  
−2000  
−1900  
−1800  
−1700  
−1500  
−1400  
−1400  
−1300  
−1300  
13000  
12100  
7900  
5600  
4400  
3700  
3200  
2700  
2100  
2000  
1900  
1800  
1700  
1500  
1400  
1400  
1300  
1300  
9000  
2000  
1100  
410  
350  
450  
220  
200  
150  
140  
140  
80  
−33000  
−20000  
−13000  
−9500  
−7000  
−5900  
−5000  
−4300  
−3800  
−3400  
−3000  
−2700  
−2500  
−2400  
−2200  
−2100  
−1900  
−1900  
34200  
20100  
13000  
9500  
7000  
5900  
5000  
4300  
3800  
3400  
3000  
2700  
2500  
2400  
2200  
2100  
1900  
1900  
10000  
5500  
2700  
1600  
1000  
800  
−7400  
−7800  
−5700  
−4500  
−3500  
−3900  
−2500  
−2100  
−1900  
−1700  
−1500  
−1400  
−1300  
−1200  
−1100  
−1000  
−1000  
−990  
12400  
9500  
6300  
4800  
3600  
4000  
2600  
2200  
2000  
1700  
1500  
1440  
1340  
1240  
1140  
1040  
1030  
1020  
12000 −35000  
12200 −21000  
37000  
24300  
13100  
9100  
7800  
6000  
5100  
4400  
3900  
3500  
3100  
2900  
2600  
2400  
2300  
2100  
2000  
2000  
4
7
1300  
800  
300  
400  
310  
280  
180  
140  
120  
110  
100  
120  
100  
90  
−13000  
−9100  
−7800  
−6000  
−5100  
−4400  
−3900  
−3500  
−3100  
−2900  
−2600  
−2400  
−2300  
−2100  
−2000  
−2000  
10  
13  
16  
19  
22  
25  
28  
31  
34  
37  
40  
43  
46  
49  
50  
630  
540  
450  
400  
350  
330  
100  
100  
95  
310  
300  
280  
80  
270  
70  
260  
80  
70  
260  
100  
www.national.com  
16  
Typical Performance Characteristics (Continued)  
LMX231xU Fin Input Impedance vs Frequency  
VCC =3.0V, TA = 25˚C  
20043856  
LMX231xU Fin Input Impedance vs Frequency  
VCC =5.5V, TA = 25˚C  
20043857  
17  
www.national.com  
Typical Performance Characteristics (Continued)  
LMX231xUSLD FIN IMPEDANCE  
VCC = 3.0V (TA = 25˚C)  
VCC = 5.5V (TA = 25˚C)  
FIN  
FIN  
FIN  
FIN  
POWERED-UP  
POWERED-DOWN  
Real Imaginary  
POWERED-UP  
POWERED-DOWN  
Real Imaginary  
Real Imaginary  
Real Imaginary  
FIN  
(MHz)  
|ZFIN  
()  
|
|ZFIN  
|
|ZFIN  
()  
|
|ZFIN|  
ZFIN  
()  
452  
305  
225  
180  
147  
120  
102  
88  
ZFIN  
()  
ZFIN  
()  
440  
300  
225  
179  
145  
118  
100  
86  
ZFIN  
()  
ZFIN  
()  
460  
313  
235  
190  
155  
127  
108  
94  
ZFIN  
()  
ZFIN  
()  
444  
312  
237  
189  
155  
126  
107  
91  
ZFIN  
()  
()  
()  
100  
200  
−325  
−278  
−243  
−219  
−197  
−175  
−158  
−141  
−126  
−117  
−109  
−98  
557  
413  
331  
283  
246  
212  
188  
166  
148  
138  
126  
113  
104  
96  
−337  
−276  
−242  
−217  
−195  
−173  
−156  
−139  
−123  
−113  
−106  
−95  
554  
408  
330  
281  
243  
209  
185  
163  
144  
134  
123  
110  
100  
95  
−325  
−277  
−244  
−221  
−200  
−179  
−162  
−146  
−131  
−118  
−112  
−102  
−95  
563  
418  
339  
291  
253  
219  
195  
174  
155  
141  
132  
119  
110  
101  
90  
−333  
−275  
−244  
−221  
−200  
−179  
−161  
−143  
−129  
−116  
−111  
−100  
−91  
555  
416  
340  
291  
253  
219  
193  
169  
152  
138  
130  
116  
106  
100  
89  
300  
400  
500  
600  
700  
800  
900  
78  
75  
83  
81  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
73  
72  
78  
75  
64  
63  
69  
68  
57  
55  
61  
59  
52  
−90  
52  
−86  
55  
55  
46  
−84  
46  
−83  
49  
−88  
50  
−87  
41  
−75  
85  
40  
−73  
83  
44  
−79  
42  
−78  
39  
−69  
79  
37  
−66  
76  
41  
−73  
84  
40  
−70  
81  
35  
−61  
70  
34  
−59  
68  
37  
−65  
75  
36  
−63  
73  
34  
−55  
65  
33  
−52  
62  
35  
−58  
68  
34  
−56  
66  
35  
−50  
61  
35  
−47  
59  
35  
−52  
63  
35  
−50  
61  
37  
−50  
62  
37  
−48  
61  
38  
−50  
63  
38  
−48  
61  
34  
−52  
62  
33  
−51  
61  
36  
−52  
63  
34  
−51  
61  
29  
−50  
58  
27  
−48  
55  
32  
−51  
60  
30  
−50  
58  
25  
−48  
54  
23  
−45  
51  
27  
−50  
57  
25  
−48  
54  
20  
−44  
48  
19  
−42  
46  
23  
−47  
52  
21  
−44  
49  
18  
−41  
45  
16  
−38  
41  
20  
−43  
47  
18  
−41  
45  
www.national.com  
18  
Charge Pump Measurement Definitions  
20043837  
I1 = CP sink current at VCP = V V  
o
o
P
I2 = CP sink current at VCP = V /2  
o
o
P
I3 = CP sink current at VCP = V  
o
o
I4 = CP source current at VCP = V V  
o
o
P
I5 = CP source current at VCP = V /2  
o
o
P
I6 = CP source current at VCP = V  
o
o
V = 0.5V  
Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage  
20043863  
Charge Pump Output Current Sink Vs Charge Pump Output Current Source Mismatch  
20043864  
Charge Pump Output Current Magnitude Variation Vs Temperature  
20043865  
19  
www.national.com  
Serial Data Input Timing  
20043810  
Notes:  
1. Data shifted into register on Clock rising edge.  
2. Data is shifted in MSB first.  
FIN Sensitivity Test Setup  
20043830  
Notes:  
1. LMX2310/1/2U Test Conditions: NA_CNTR = 16, NB_CNTR = 312, P = 1, FoLD2 = 1, FoLD1 = 1, FoLD0 = 0, PWDN = 0.  
2. LMX2313U Test Conditions: NA_CNTR = 0, NB_CNTR = 625, P = 1, FoLD2 = 1, FoLD1 = 1, FoLD0 = 0, PWDN = 0.  
3. Sensitivity limit is reached when the frequency error of the divided RF input is greater than or equal to 1 Hz.  
www.national.com  
20  
OSCIN Sensitivity Test Setup  
20043831  
Notes:  
1. Test Conditions: R_CNTR = 1000, FoLD2 = 1, FoLD1 = 0, FoLD0 = 1, PWDN = 0.  
2. Sensitivity limit is reached when the frequency error of the divided RF input is greater than or equal to 1 Hz.  
21  
www.national.com  
dividing the VCO frequency down by way of the feedback  
counter. The phase/frequency detector measures the phase  
error between the fr and fp signals and outputs control sig-  
nals that are directly proportional to the phase error. The  
charge pump then pumps charge into or out of the loop filter  
based on the magnitude and direction of the phase error.  
The loop filter converts the charge into a stable control  
voltage for the VCO. The phase/frequency detector’s func-  
tion is to adjust the voltage presented to the VCO until the  
feedback signal’s frequency and phase match that of the  
reference signal. When this “phase-locked” condition exists,  
the RF VCO frequency will be N times that of the comparison  
frequency, where N is the feedback divider ratio.  
1.0 Functional Description  
The basic phase-lock-loop (PLL) configuration consists of a  
high-stability crystal reference oscillator, a frequency synthe-  
sizer such as the National Semiconductor LMX2310/1/2/3U,  
a voltage controlled oscillator (VCO), and a passive loop  
filter. The frequency synthesizer includes a phase detector, a  
current mode charge pump, as well as a programmable  
reference divider and feedback frequency divider. The VCO  
frequency is established by dividing the crystal reference  
signal down via the reference divider to obtain a frequency  
that sets the comparison frequency. This reference signal, fr,  
is then presented to the input of a phase/frequency detector  
and compared with another signal, fp, which was obtained by  
20043829  
1.1 REFERENCE OSCILLATOR  
PLL  
Input  
Frequency  
FIN 1.2 GHz  
PLL  
Part  
Numbers  
LMX2310/1/2U  
Allowable  
Prescaler  
Values  
16/17 or  
32/33  
The reference oscillator frequency for the RF PLL is provided  
from the external source via the OSCin pin. The low noise  
reference buffer circuit supports frequencies from 2 MHz to  
50 MHz with a minimum input sensitivity of 0.5 Vpp. The input  
can be driven from an external CMOS or TTL logic gate. The  
output of this buffer drives the R COUNTER. The output of  
the buffer also connects to an oscillator/buffer circuit. Its  
output connects to the OSCout pin. The oscillator/buffer cir-  
cuit can be used as a buffer to provide the reference fre-  
quency to other circuitry. It can also be used as an oscillator  
with a crystal/resonator with proper components connected  
between OSCin and OSCout pins to generate a reference  
frequency.  
FIN 600  
LMX2313U  
8/9 or  
MHz  
16/17  
The complimentary FIN and FINB input pins drive the input of  
a bipolar, differential-pair amplifier. The output of the bipolar,  
differential-pair amplifier drives a chain of ECL D-type flip-  
flops in a dual modulus configuration. The output of the  
prescaler is used to clock the subsequent programmable  
feedback divider. Refer to Section 3.3.2 for details on pro-  
gramming the Prescaler Value.  
1.2 REFERENCE DIVIDER (R COUNTER)  
The reference divider is comprised of a 15-bit CMOS binary  
counter that supports a continuous integer divide range from  
2 to 32,767. The divide ratio should be chosen such that the  
maximum phase comparison frequency of 10 MHz is not  
exceeded. The reference divider circuit is clocked by the  
output of the reference buffer circuit. The output of the  
reference divider circuit feeds the reference input of the  
phase detector circuit. The frequency of the reference input  
to the phase detector (also referred to as the comparison  
frequency) is equal to reference oscillator frequency divided  
by the reference divider ratio. Refer to Section 3.2.1 for  
details on programming the R COUNTER.  
1.4 FEEDBACK DIVIDER (N COUNTER)  
The N COUNTER is clocked by the output of the prescaler.  
The N COUNTER is composed of a 13-bit programmable  
integer divider. The 5-bit swallow counter is part of the  
prescaler. Selecting a 32/33 prescaler provides a minimum  
continuous divider range from 992 to 262,143 while selecting  
a 16/17 prescaler value allows for continuous divider values  
from 240 to 131,071. In the LMX2313U, selecting a 8/9  
prescaler provides a minimum continuous divider range from  
56 to 65535.  
N = (P x NB_CNTR) + NA_CNTR  
FIN = N x Fφ  
1.3 PRESCALERS  
The LMX2310/1/2U contains a selectable, dual modulus  
32/33 and 16/17 prescaler. The LMX2313U contains a se-  
lectable, dual modulus 16/17 and 8/9 prescaler.  
Definitions  
Fφ  
FIN  
P
Phase Detector Comparison Frequency  
RF Input Frequency  
PLL  
Input  
Frequency  
PLL  
Part  
Numbers  
LMX2310/1U  
Allowable  
Prescaler  
Values  
Prescaler Value  
NA_CNTR A Counter Value  
NB_CNTR B Counter Value  
>
FIN 1.2 GHz  
32/33  
www.national.com  
22  
trol the charge pump. The polarity of the pump-up or pump-  
down control signals are programmed using the PD_POL  
control bit, depending on whether the RF VCO tuning char-  
acteristics are positive or negative (see programming de-  
scription in Section 3.2.2). The phase/frequency detector  
has a detection range of −2π to +2π.  
1.0 Functional Description (Continued)  
1.5 PHASE/FREQUENCY DETECTORS  
The phase/frequency detector is driven from the N and R  
COUNTER outputs. The maximum frequency at the phase  
detector inputs is 10 MHz. The phase detector outputs con-  
Phase Comparator and Internal Charge Pump Characteristics  
20043804  
Note 13: The minimum width of the pump up and pump down current pulses occur at the CP pin when the loop is phase-locked.  
o
Note 14: The diagram assumes that PD_POL = 1  
Note 15: f is the phase comparator input from the R Divider  
r
Note 16: f is the phase comparator input from the N Divider  
p
Note 17: CP is charge pump output  
o
1.6 CHARGE PUMP  
ence divider and the feedback divider circuits. The FoLD  
output pin is referenced to the VµC supply. The FoLD0,  
FoLD1 and FoLD2 bits are used to select the desired output  
function. A complete programming description of the FoLD  
output pin is in Section 3.2.5.  
The charge pumps directs charge into or out of an external  
loop filter. The loop filter converts the charge into a stable  
control voltage which is applied to the tuning input of a VCO.  
The charge pump steers the VCO control voltage towards VP  
during pump-up events and towards GND during pump-  
down events. When locked, CPo is primarily in a TRI-STATE  
condition with small corrections occurring at the phase com-  
parison rate. The charge pump output current magnitude can  
be selected as 1.0 mA or 4.0 mA by programming the  
ICPo_4X bits. When TO_CNTR[11:0] = 1, the charge pump  
output current magnitude is set to 4.0 mA. Refer to Section  
3.2.3 and 3.4.2 for details on programming the charge pump  
output current magnitude.  
1.8.1 Analog Lock Detect  
When programmed for analog lock detect, the analog lock  
detect status is available on the FoLD output pin. When the  
charge pump is inactive, the lock detect output goes to a  
high impedance in the open drain configuration and to a VµC  
source in a push-pull configuration. It goes low when the  
charge pump is active during a comparison cycle. The ana-  
log lock detect status can be programmed in either an open  
drain or push-pull configuration. The push-pull output is ref-  
1.7 MICROWIRE SERIAL INTERFACE  
erenced to VµC.  
The programmable register set is accessed through the  
MICROWIRE serial interface. The interface is comprised of  
three signal pins: CLOCK, DATA and LE (Latch Enable). The  
MICROWIRE circuitry is referenced to VµC, which allows the  
circuitry to operate down to a 1.72V source. Serial data is  
clocked into a 22-bit shift register from DATA on the rising  
edge of CLOCK. The serial data is clocked in MSB first. The  
last two bits decode the internal register address. On the  
rising edge of LE, the data stored in the shift register is  
loaded into one of the three latches based on the address  
bits. The synthesizer can be programmed even in the power-  
down state. A complete programming description is in Sec-  
tion 3.0.  
1.8.2 Digital Lock Detect  
When programmed for digital lock detect, the digital lock  
detect status is available on the FoLD pin. The digital lock  
detect filter compares the phase difference of the inputs from  
the phase detector to a RC generated delay of approxi-  
mately 15 ns. To enter the locked state (LD = High), the  
phase error must be less than the 15 ns RC delay for 5  
consecutive reference cycles. Once in lock, the RC delay is  
changed to approximately 30 ns. To exit the locked state, the  
phase error must be greater than the 30 ns RC delay. When  
a PLL is in power-down mode, the respective lock detect  
output is always low. A flow chart of the digital lock detect  
filter follows:  
1.8 MULTI-FUNCTION OUTPUTS  
The LMX2310/1/2/3U FoLD output pin is a multi-function  
output that can be configured as an analog lock detect, a  
digital lock detect, and a monitor of the output of the refer-  
23  
www.national.com  
1.0 Functional Description (Continued)  
20043805  
1.9 Fastlock OUTPUT  
The PLL can be configured to be in either the Fastlock mode  
continuously or in the Fastlock mode that uses a timeout  
counter to switch it back to the normal mode. In the Fastlock  
mode the charge pump current is set to 4 mA and the FL pin  
is set low. If the user sets the PLL to be in the Fastlock mode  
continuously he can send the R register with CPo_4X set low  
(R[18] = 0) and sets TO_CNTR[11:0] to 1. The user can set  
the PLL to normal mode (1 mA mode and set the FL pin to  
TRI-STATE mode) by programming TO_CNTR[11:0] to 0. If  
the user elects to use the timeout counter, he can program  
the timeout counter from 4 to 4095. The timeout counter will  
count down the programmed number of phase detector ref-  
erence cycles. After the programmed number of phase de-  
tector reference cycles is reached, it will automatically set  
the charge pump current to the 1 mA mode and set the FL  
pin to TRI-STATE mode. A complete programming descrip-  
tion is in Section 3.4.2.  
The FL pin can be used as the Fastlock output. The FL pin  
can also be programmed as constant low, constant high  
(referenced to VCC), or constant high impedance, selectable  
through the T register. When the device is configured in  
Fastlock mode, the charge pump current can be increased  
4x while maintaining loop stability by synchronously switch-  
ing a parallel loop filter resistor to ground with the FL pin,  
resulting in a 2x increase in loop bandwidth. The loop  
bandwidth, the zero gain crossover point of the open loop  
gain, is effectively shifted up in frequency by a factor of the  
square root of 4 = 2 during Fastlock mode. For ω' = 2 ω, the  
phase margin during Fastlock also will remain constant. The  
user calculates the loop filter component values for the  
normal steady state considerations. The device configura-  
tion ensures that as long as a second resistor, equal to the  
primary resistor value, is wired in appropriately, the loop will  
lock faster without any additional stability considerations.  
www.national.com  
24  
the load point during power-down. When the device is pro-  
grammed to normal operation, the oscillator buffer, RF pres-  
caler, phase detector, and charge pump circuits are all pow-  
ered on. The feedback divider and the reference divider are  
held at the load point. This allows the RF prescaler, feedback  
divider, reference oscillator, the reference divider and pres-  
caler circuitry to reach proper bias levels. After a 1.5 µs  
delay, the feedback and reference divider are enabled and  
they resume counting in “close” alignment (The maximum  
error is one prescaler cycle). The MICROWIRE control reg-  
ister remains active and capable of loading and latching in  
data while in the power-down mode.  
2.0 Power-Down  
The LMX2310/1/2/3U are power controlled through logical  
control of the CE pin in conjunction with programming of the  
PDWN and CPo_TRI bits. A truth table is provided that  
describes how the state of the CE pin, the PDWN bit and  
CPo_TRI bit set the operating mode of the device. A com-  
plete programming description of Power-Down is provided in  
Section 3.3.1.  
CE PWDN CPo_TRI  
Operating Mode  
Power-down (Asynchronous)  
Normal Operation  
0
1
1
1
X
0
1
1
X
0
0
1
The synchronous power-down function is gated by the  
charge pump. When the device is configured for synchro-  
nous power-down, the device will enter the power-down  
mode upon the completion of the next charge pump pulse  
event.  
Power-down (Synchronous)  
Power-down (Asynchronous)  
X = Don’t Care  
When the device enters the power-down mode, the oscillator  
buffer, RF prescaler, phase detector, and charge pump cir-  
cuits are all disabled. The OSCIN, CPo, FIN, FINB, LD pins  
are all forced to a high impedance state. The reference  
divider and feedback divider circuits are disabled and held at  
The asynchronous power-down function is NOT gated by the  
completion of a charge pump pulse event. When the device  
is configured for asynchronous power-down, the part will go  
into power-down mode immediately.  
3.0 Programming Description  
3.1 MICROWIRE INTERFACE  
The MICROWIRE interface is comprised of a 22-bit shift register and three control registers. The shift register consists of a 20-bit  
DATA field and a 2-bit address (ADDR) field as shown below. Data is loaded into the shift register on the rising edges of the  
CLOCK signal MSB first. When Latch Enable transitions HIGH, data stored in the shift register is loaded into either the R, N or  
T register depending on the state of the ADDR bit. The DATA field assignments for the R, N and T registers are shown in Section  
3.1.1.  
MSB  
LSB  
DATA  
ADDRESS  
21  
2
0
ADDR  
Target Register  
0
1
2
R register  
N register  
T register  
3.1.1 Register Map  
Register  
Most Significant Bit  
21 20 19  
SHIFT REGISTER BIT LOCATION  
Least Significant Bit  
18  
17  
16 15  
14  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Address  
Field  
Data Field  
CPo_ CP0_ PD_  
R
FoLD1 FoLD0  
R_CNTR[14:0]  
0
0
TRI  
4x  
POL  
N
T
PWDN  
0
P
0
B_CNTR[12:0]  
FoLD2  
A_CNTR[4:0]  
0
1
1
0
0
0
0
0
0
TO_CNTR[11:0]  
25  
www.national.com  
3.0 Programming Description (Continued)  
3.2 R REGISTER  
The R register contains the R_CNTR control word and PD_POL, CPo_4X, CP_TRI, FoLD0, FoLD1 control bits. The detailed  
descriptions and programming information for each control word is discussed in the following sections.  
Register Most Significant Bit  
21 20  
SHIFT REGISTER BIT LOCATION  
Least Significant Bit  
19  
18  
17  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Address  
Field  
Data Field  
R
FoLD1 FoLD0 CPO_ CPO_ PD_  
TRI 4X POL  
R_CNTR[14:0]  
0
0
3.2.1 R_CNTR[14:0]  
Reference Divider (R COUNTER)  
R[16:2]  
The reference divider can be programmed to support divide ratios from 2 to 32,767. Divide ratios of less than 2 are prohibited.  
Divider Value  
R_CNTR[14:0]  
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
3
0
0
32,767  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3.2.2 PD_POL  
Phase Detector Polarity  
R[17]  
The PD_POL control bit is used to set the polarity of the phase detector based on the VCO tuning characteristic.  
Function  
Control Bit Register Location  
Description  
0
1
PD_POL  
R[17]  
Phase Detector Polarity Negative VCO Tuning Characteristic Positive VCO Tuning Characteristic  
VCO Characteristics  
20043809  
3.2.3 CPo_4X  
Charge Pump Output Current  
R[18]  
The CPo_4X control bit allows the charge pump output current magnitude to be switched from 1 mA to 4 mA. This happens  
asynchronously or immediately with the change in CPo_4X bit.  
Function  
Control Bit  
CPo_4X  
Register Location  
R[18]  
Description  
Charge Pump Output Current Magnitude  
R[19]  
0
1
1X Current  
4X Current  
3.2.4 CPo_TRI  
Charge Pump TRI-STATE  
The CPo_TRI control bit allows the charge pump to be switched between a normal operating mode and a high impedance output  
state. This happens asynchronously or immediately with the change in CPo_TRI bit.  
Function  
Control Bit Register Location  
Description  
0
1
CPo_TRI  
R[19]  
Charge Pump TRI-STATE Charge Pump Operates Normal Charge Pump Output in High  
Impedance State  
www.national.com  
26  
3.0 Programming Description (Continued)  
3.2.5 FoLD2,1,0  
FoLD Output Truth Table  
T[14],R[21],R[20]  
The FoLD2, FoLD1 and FoLD0 are used to select which signal is routed to FoLD pin.  
T[14]  
R[21]  
R[20]  
FoLD Output State  
Disabled (TRI-STATE FoLD)  
FoLD2  
FoLD1  
FoLD0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Lock DetectAnalog (Push/Pull), Reference to Vµc  
Lock DetectAnalog (Open Drain)  
Reset R and N Dividers and TRI-STATE Charge Pump  
Lock DetectDigital (Push/Pull), Reference to VµC  
R COUNTER Output (Push/Pull), Reference to VµC  
N Counter Output (Push/Pull), Reference to VµC  
Reserved (Do Not Use)  
3.3 N REGISTER  
The N register contains the PWDN (Power-Down), P (Prescaler), NA_CNTR, and NB_CNTR control words. The detailed  
descriptions and programming information for each control word is discussed in the following sections.  
Register  
Most Significant Bit  
SHIFT REGISTER BIT LOCATION  
Least Significant Bit  
21  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Address  
Field  
Data Field  
N
PWDN  
P
B_CNTR[12:0]  
A_CNTR[4:0]  
0
1
3.3.1 PWDN  
Power-Down  
N[21]  
The PWDN control bit along with CPo_TRI control bit is used to power-down the PLL. The LMX2310/1/2/3U can be synchronous  
or asynchronous powered down by first setting the CPo_TRI bit and then setting the PWDN bit. To power up from the synchronous  
Power-Down mode, the CPo_TRI bit will have to be reset to 0.  
N[21]  
R[19]  
Operating Mode  
PWDN  
CPO_TRI  
0
1
1
0
0
1
Normal Operation  
Power-down (Synchronous)  
Power-down (Asynchronous)  
3.3.2 P  
Prescaler  
N[20]  
The LMX2310/1/2/3U contains two dual modulus prescalers. The P control bit is used to set the prescaler value.  
Prescaler Value  
LMX2310/1/2U  
16/17  
Prescaler Value  
LMX2313U  
8/9  
N[20]  
0
1
32/33  
16/17  
PLL Input Frequency  
Allowable Prescaler Values  
>
FIN 1.2 GHz  
32/33  
FIN 1.2 GHz  
FIN 600 MHz  
16/17 or 32/33  
8/9 or 16/17  
27  
www.national.com  
3.0 Programming Description (Continued)  
3.3.3 B_CNTR[12:0]  
B COUNTER  
N[19:7]  
The NB_CNTR control word is used to program the B counter. The B counter is a 13-bit binary counter used in the programmable  
feedback divider. The B counter can be programmed to values ranging from 3 to 8,191. See Section 1.4 for details on how the  
value of the B counter should be selected.  
Divider Value  
B_CNTR[12:0]  
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
4
8,191  
1
1
1
1
1
1
1
1
1
1
1
1
1
NOTE: B counter divide ratio must be 3.  
3.3.4 A_CNTR[4:0]  
A Counter  
N[6:2]  
The NA_CNTR control word is used to program the A counter. The A counter is a 5-bit swallow counter used in the programmable  
feedback divider. The A counter can be programmed to values ranging from 0 to 31. See Section 1.4 for details on how the value  
of the A counter should be selected.  
Divide  
A_CNTR[4:0]  
Ratio  
0
1
0
0
0
0
0
0
0
0
0
1
31  
1
1
1
1
1
NOTES: A counter divide ratio must be P and A counter divide ratio must be B counter divide ratio.  
3.4 T REGISTER  
The T register contains the TO_CNTR control word and FoLD2 control bit. The detailed descriptions and programming  
information for each control word is discussed in the following sections.  
Register  
Most Significant Bit  
SHIFT REGISTER BIT LOCATION  
Least Significant Bit  
21 20 19 18 17 16 15  
14  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Address  
Field  
Data Field  
T
0
0
0
0
0
0
0
FoLD2  
TO_CNTR[11:0]  
1
0
3.4.1 FoLD2  
FoLD Output (P/O Output Truth Table)  
T[14]  
See Section 3.2.5 for FoLD Output Truth Table details.  
3.4.2 TO_CNTR[11:0]  
Timeout Counter Table  
T[13:2]  
When the Fastlock Timeout counter (TO_CNTR) is loaded with 0, Fastlock is off, the FL pin will be in TRI-STATE mode, and the  
charge pump current will be the value specified by the Charge Pump Magnitude bit, R[18]. When the Timeout counter is loaded  
with 1, the FL pin is 0 (pulled low) and the charge pump current will be at the 4X state. When the Timeout counter is loaded with  
2, the FL pin will again be set to 0 (pulled low), but the charge pump current will be controlled by R[18]. When the Timeout counter  
is loaded with 3, the FL pin is 1 (pulled high) with the charge pump current will be controlled by R[18]. When loaded with 4 through  
4095, Fastlock is active and will time-out after the specified number of phase detector events.  
Count  
TO_CNTR[11:0]  
Notes  
FL Pin Forced TRI-STATE  
FL Pin Forced Low  
FL Pin Forced Low  
FL Pin Forced High  
Min Count (4)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
CP current controlled by R[18]  
CP = 4 mA (manual Fastlock mode)  
CP current controlled by R[18]  
CP current controlled by R[18]  
CP Current set to 4 mA, switches to 1 mA  
when count reaches 0  
Max Count (4095)  
1
1
1
1
1
1
1
1
1
1
1
1
www.national.com  
28  
Physical Dimensions inches (millimeters) unless otherwise noted  
20-Pin Thin Chip Scale Package  
Order Number LMX2310U, LMX2311U, LMX2312U or LMX2313U  
NS Package Number SLD20A  
For Tape and Reel (2500 Units Per Reel) Order Numbers: LMX2310USLDX, LMX2311USLDX, LMX2312USLDX,  
LMX2313USLDX  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and  
whose failure to perform when properly used in  
accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a  
significant injury to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform  
can be reasonably expected to cause the failure of  
the life support device or system, or to affect its  
safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification  
(CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

LMX2310USLDX

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications
NSC

LMX2311

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications
NSC

LMX2311U

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications
NSC

LMX2311USLDX

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications
NSC

LMX2311USLDX/NOPB

IC,FREQUENCY SYNTHESIZER,BICMOS,LLCC,20PIN,PLASTIC
TI

LMX2312U

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications
NSC

LMX2312USLDX

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications
NSC

LMX2313U

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications
NSC

LMX2313USLDX

PLLatinum⑩ Ultra Low Power Frequency Synthesizer for RF Personal Communications
NSC

LMX2313USLDX/NOPB

PLL FREQUENCY SYNTHESIZER, 600MHz, QCC20, LEAD FREE, THIN, CSP-20
TI

LMX2314

1.2 GHz Frequency Synthesizer for RF Personal Communications
NSC

LMX2314M

1.2 GHz Frequency Synthesizer for RF Personal Communications
NSC