LMX2314 [NSC]

1.2 GHz Frequency Synthesizer for RF Personal Communications; 1.2 GHz的频率合成器的射频个人通信
LMX2314
型号: LMX2314
厂家: National Semiconductor    National Semiconductor
描述:

1.2 GHz Frequency Synthesizer for RF Personal Communications
1.2 GHz的频率合成器的射频个人通信

射频 个人通信
文件: 总20页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
March 1995  
LMX2314/LMX2315 PLLatinumTM  
1.2 GHz Frequency Synthesizer  
for RF Personal Communications  
General Description  
Features  
Y
Y
Y
RF operation up to 1.2 GHz  
The LMX2314 and the LMX2315 are high performance fre-  
quency synthesizers with integrated prescalers designed for  
RF operation up to 1.2 GHz. They are fabricated using Na-  
tional’s ABiC IV BiCMOS process.  
2.7V to 5.5V operation  
Low current consumption:  
e
e
3V  
I
6 mA (typ) at V  
CC  
CC  
Y
Y
Y
The LMX2314 and the LMX2315 contain dual modulus pre-  
scalers which can select either a 64/65 or a 128/129 divide  
ratio at input frequencies of up to 1.2 GHz. Using a proprie-  
tary digital phase locked loop technique, the LMX2314/15’s  
linear phase detector characteristics can generate very sta-  
ble, low noise local oscillator signals.  
Dual modulus prescaler: 64/65 or 128/129  
Internal balanced, low leakage charge pump  
Power down feature for sleep mode:  
e
Small-outline, plastic, surface mount JEDEC, 0.150  
e
3V  
I
30 mA (typ) at V  
CC  
CC  
Y
×
wide, (2314) or TSSOP, 0.173 wide, (2315) package  
×
Serial data is transferred into the LMX2314 and the  
LMX2315 via a three line MICROWIRETM interface (Data,  
Enable, Clock). Supply voltage can range from 2.7V to 5.5V.  
The LMX2314 and the LMX2315 feature very low current  
consumption, typically 6 mA at 3V.  
Applications  
Y
Cellular telephone systems  
(GSM, IS-54, IS-95, RCR-27)  
Y
Portable wireless communications  
(DECT, ISM902-928 CT-2)  
The LMX2314 is available in a JEDEC 16-pin surface mount  
plastic package. The LMX2315 is available in a TSSOP  
20-pin surface mount plastic package.  
Y
Other wireless communication systems  
Block Diagram  
TL/W/11766–1  
TRI-STATEÉ is a registered trademark of National Semiconductor Corporation.  
MICROWIRETM and PLLatinumTM are trademarks of National Semiconductor Corporation.  
C
1995 National Semiconductor Corporation  
TL/W/11766  
RRD-B30M115/Printed in U. S. A.  
Connection Diagrams  
LMX2314  
LMX2315  
TL/W/11766–2  
JEDEC 16-Lead (0.150 Wide) Small  
×
Outline Molded Package (M)  
TL/W/11766–3  
Order Number LMX2314M or LMX2314MX  
See NS Package Number M16A  
20-Lead (0.173 Wide) Thin Shrink  
×
Small Outline Package (TM)  
Order Number LMX2315TM or LMX2315TMX  
See NS Package Number MTC20  
Pin Descriptions  
Pin No.  
2314  
1
Pin No.  
2315  
1
Pin Name  
I/O  
Description  
2314/2315  
OSC  
I
Oscillator input. A CMOS inverting gate input intended for connection to a crystal  
resonator for operation as an oscillator. The input has a V /2 input threshold and  
IN  
CC  
can be driven from an external CMOS or TTL logic gate. May also be used as a  
buffer for an externally provided reference oscillator.  
2
3
4
3
4
5
OSC  
O
Oscillator output.  
OUT  
t
V
V
Power supply for charge pump. Must be  
V
CC  
.
P
Power supply voltage input. Input may range from 2.7V to 5.5V. Bypass capacitors  
should be placed as close as possible to this pin and be connected directly to the  
ground plane.  
CC  
5
6
D
O
O
Internal charge pump output. For connection to a loop filter for driving the input of  
an external VCO.  
o
6
7
7
8
GND  
LD  
Ground.  
Lock detect. Output provided to indicate when the VCO frequency is in ‘‘lock’’.  
When the loop is locked, the pin’s output is HIGH with narrow low pulses.  
8
9
10  
11  
f
I
I
Prescaler input. Small signal input from the VCO.  
IN  
CLOCK  
DATA  
LE  
High impedance CMOS Clock input. Data is clocked in on the rising edge, into the  
various counters and registers.  
10  
11  
13  
14  
I
I
Binary serial data input. Data entered MSB first. LSB is control bit. High impedance  
CMOS input.  
Load enable input (with internal pull-up resistor). When LE transitions HIGH, data  
stored in the shift registers is loaded into the appropriate latch (control bit  
dependent). Clock must be low when LE toggles high or low. See Serial Data Input  
Timing Diagram.  
12  
X
15  
16  
FC  
I
Phase control select (with internal pull-up resistor). When FC is LOW, the polarity of  
the phase comparator and charge pump combination is reversed.  
BISW  
O
Analog switch output. When LE is HIGH, the analog switch is ON, routing the  
internal charge pump output through BISW (as well as through D ).  
o
13  
14  
17  
18  
f
O
O
Monitor pin of phase comparator input. CMOS output.  
OUT  
w
Output for external charge pump. w is an open drain N-channel transistor and  
p
p
requires a pull-up resistor.  
15  
19  
PWDN  
I
Power Down (with internal pull-up resistor).  
e
e
PWDN  
PWDN  
HIGH for normal operation.  
LOW for power saving.  
Power down function is gated by the return of the charge pump to a TRI-STATE  
condition.  
16  
X
20  
w
O
Output for external charge pump. w is a CMOS logic output.  
r
r
2,9,12  
NC  
No connect.  
2
Functional Block Diagram  
TL/W/11766–4  
Note 1: The power down function is gated by the charge pump to prevent any unwanted frequency jumps. Once the power down pin is brought low the part will go  
into power down mode when the charge pump reaches a TRI-STATE condition.  
3
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales  
Office/Distributors for availability and specifications.  
Recommended Operating  
Conditions  
Power Supply Voltage  
V
CC  
V
P
2.7V to 5.5V  
a
to 5.5V  
Power Supply Voltage  
V
CC  
40 C to 85 C  
b
b
a
0.3V to 6.5V  
a
0.3V to 6.5V  
V
V
CC  
P
b
a
Operating Temperature (T )  
A
§
§
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to  
the device may occur. Operating Ratings indicate conditions for which the  
device is intended to be functional, but do not guarantee specific perform-  
ance limits. For guaranteed specifications and test conditions, see the Elec-  
trical Characteristics. The guaranteed specifications apply only for the test  
conditions listed.  
Voltage on Any Pin  
e
b
a
0.3V to 6.5V  
with GND  
0V (V )  
I
b
a
65 C to 150 C  
Storage Temperature Range (T )  
S
§
§
§
a
Lead Temperature (T ) (solder, 4 sec.)  
L
260 C  
k
k
85 C, except as specified  
e
e
b
5.0V; 40 C  
Electrical Characteristics V  
5.0V, V  
T
A
§
§
CC  
P
Symbol  
Parameter  
Power Supply Current  
Conditions  
Min  
Typ  
6.0  
6.5  
30  
Max  
8.0  
Units  
mA  
e
e
e
e
I
I
V
CC  
V
CC  
V
CC  
V
CC  
3.0V  
5.0V  
3.0V  
5.0V  
CC  
8.5  
mA  
Power Down Current  
180  
350  
mA  
CC-PWDN  
60  
mA  
f
f
Maximum Operating Frequency  
Maximum Oscillator Frequency  
1.2  
20  
40  
10  
GHz  
MHz  
MHz  
MHz  
IN  
OSC  
No Load on OSC Out  
f
Maximum Phase Detector Frequency  
Input Sensitivity  
w
e
e
b
b
a
a
Pf  
V
V
2.7V to 3.3V  
3.3V to 5.5V  
15  
10  
6
6
IN  
CC  
dBm  
CC  
V
V
V
Oscillator Sensitivity  
OSC  
0.5  
0.7 V  
V
PP  
OSC  
IN  
High-Level Input Voltage  
*
*
V
IH  
CC  
Low-Level Input Voltage  
0.3 V  
CC  
V
IL  
e
e
b
b
I
I
I
I
I
I
High-Level Input Current (Clock, Data)  
Low-Level Input Current (Clock, Data)  
Oscillator Input Current  
V
IH  
V
IL  
V
IH  
V
IL  
V
IH  
V
IL  
V
5.5V  
1.0  
1.0  
1.0  
mA  
mA  
mA  
mA  
mA  
mA  
IH  
CC  
e
e
e
e
e
e
0V, V  
CC  
5.5V  
1.0  
IL  
IH  
IL  
IH  
IL  
e
V
CC  
5.5V  
100  
e
b
100  
0V, V  
5.5V  
CC  
e
b
1.0  
High-Level Input Current (LE, FC)  
Low-Level Input Current (LE, FC)  
V
CC  
5.5V  
1.0  
1.0  
e
b
100  
0V, V  
5.5V  
CC  
*Except f and OSC  
IN  
IN  
4
k
k
85 C, except as specified (Continued)  
e
e
b
5.0V; 40 C  
Electrical Characteristics V  
5.0V, V  
T
A
§
§
CC  
P
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
mA  
e
b
5.0  
5.0  
I
I
I
Charge Pump Output Current  
V
V
V /2  
P
D
-source  
-sink  
-Tri  
D
o
o
o
o
e
V /2  
P
mA  
D
D
D
o
s
85 C  
s
b
b
Charge Pump TRI-STATE Current  
É
0.5V  
e
V
V
V
0.5V  
0.5V  
D
P
o
o
b
2.5  
2.5  
15  
nA  
%
T
§
s
25 C  
s
I
vs V  
Charge Pump Output Current  
Magnitude Variation vs Voltage  
(Note 1)  
0.5V  
e
V
D
D
D
P
o
o
T
§
e
V /2  
P
25 C  
§
I
I
vs  
Charge Pump Output Current  
Sink vs Source Mismatch  
(Note 2)  
V
T
D
D
-sink  
D
e
o
o
o
10  
%
%
-source  
k
V /2  
k
85 C  
b
I
vs T  
Charge Pump Output Current  
Magnitude Variation vs Temperature  
(Note 3)  
40 C  
§
o
T
§
D
o
e
V
D
10  
P
e b  
b
b
V
OH  
V
OL  
V
OH  
V
OL  
High-Level Output Voltage  
Low-Level Output Voltage  
I
1.0 mA**  
200 mA  
V
V
0.8  
0.8  
V
V
OH  
CC  
e
I
I
I
1.0 mA**  
0.4  
0.4  
OL  
OH  
OL  
e b  
High-Level Output Voltage (OSC  
)
V
OUT  
CC  
e
Low-Level Output Voltage (OSC  
)
200 mA  
V
OUT  
e
e
0.4V  
I
I
Open Drain Output Current (w )  
V
5.0V, V  
1.0  
mA  
mA  
X
OL  
OH  
p
CC  
OH  
OL  
e
Open Drain Output Current (w )  
V
5.5V  
100  
p
R
Analog Switch ON Resistance (2315)  
Data to Clock Set Up Time  
Data to Clock Hold Time  
Clock Pulse Width High  
100  
ON  
t
t
t
t
t
t
See Data Input Timing  
See Data Input Timing  
See Data Input Timing  
See Data Input Timing  
See Data Input Timing  
See Data Input Timing  
50  
10  
50  
50  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
CS  
CH  
CWH  
CWL  
ES  
Clock Pulse Width Low  
Clock to Enable Set Up Time  
Enable Pulse Width  
EW  
**Except OSC  
OUT  
Notes 1, 2, 3: See related equations in Charge Pump Current Specification Definitions  
5
Typical Performance Characteristics  
I
vs V  
CC  
I
TRI-STATE vs D Voltage  
D o  
o
CC  
TL/W/1176629  
TL/W/1176630  
Charge Pump Current vs D Voltage  
o
Charge Pump Current vs D Voltage  
o
TL/W/1176631  
TL/W/1176632  
Charge Pump Current Variation  
Oscillator Input Sensitivity  
TL/W/1176634  
TL/W/1176633  
6
Typical Performance Characteristics (Continued)  
Input Sensitivity vs Frequency  
Input Sensitivity vs Frequency  
TL/W/1176635  
TL/W/1176636  
Input Sensitivity at Temperature  
e
Input Sensitivity at Temperature  
e
3V  
Variation, V  
CC  
5V  
Variation, V  
CC  
TL/W/1176637  
TL/W/1176638  
LMX2314 Input Impedance vs Frequency  
e
LMX2315 Input Impedance vs Frequency  
e
e
e
2.7V to 5.5V, f 100 MHz to 1,600 MHz  
IN  
V
2.7V to 5.5V, f  
IN  
100 MHz to 1,600 MHz  
V
CC  
CC  
TL/W/1176640  
TL/W/1176639  
e
e
e
e
e
e
e
b
b
b
126  
b
e
e
e
e
e
e
e
b
b
b
Marker 1  
Marker 2  
Marker 3  
Marker 4  
500 MHz, Real  
900 MHz, Real  
67, Imag.  
24, Imag.  
e
9, Imag.  
317  
150  
Marker 1  
Marker 2  
Marker 3  
Marker 4  
500 MHz, Real  
900 MHz, Real  
69, Imag.  
36, Imag.  
330  
193  
e
19, Imag.  
e
35, Imag.  
e
1,500 MHz, Real  
e
1,500 MHz, Real  
e
1 GHz, Real  
1 GHz, Real  
172  
e
e
e
e b  
30, Imag. 106  
63  
7
Charge Pump Current Specification Definitions  
TL/W/1176641  
e
e
e
e
e
e
b
e
e
e
e
e
e
b
DV  
I1  
I2  
I3  
CP sink current at V  
CP sink current at V  
CP sink current at V  
V
V
DV  
I4  
I5  
I6  
CP source current at V  
CP source current at V  
CP source current at V  
V
V
D
D
D
P
P
D
D
D
P
P
o
o
o
o
o
o
/2  
/2  
DV  
DV  
e
DV  
Voltage offset from positive and negative rails. Dependent on VCO tuning range relative to V  
and ground. Typical values are between 0.5V and 1.0V.  
CC  
e
b
e
À
1. I vs V  
D
Charge Pump Output Current magnitude variation vs Voltage  
D
o
o
À
a
Ó
b
a
Ó
]
I6 * 100%  
[
]
[
]
[
]
[
(/2 * I1  
I3 / (/2 * I1  
I3  
* 100% and (/2 * I4  
I6 / (/2 * I4  
l
l
vs I  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
e
e
2. I  
D
Charge Pump Output Current Sink vs Source Mismatch  
D
o-sink  
o-source  
b
À
a
Ó
]
I5  
[
]
[
I2  
I5 / (/2 * I2  
* 100%  
l
l
3. I vs T  
l
l
l
l
l
l
e
A
e
Charge Pump Output Current magnitude variation vs Temperature  
D
o
@
I2 temp  
@
@
@
I5 temp  
@
@
b
b
[
]
[
]
§
l l  
I2 25 C / I2 25 C * 100% and  
I5 25 C / I5 25 C * 100%  
§
§
Phase detector/charge pump gain constant  
§
l
l
l
l
l
l
l
l
l
l
e
e
4. Kw  
À
a
Ó
I5  
(/2 * I2  
l
l
l
l
RF Sensitivity Test Block Diagram  
TL/W/1176642  
e
e
e
64  
Note 1: N  
10,000  
R
50  
P
Note 2: Sensitivity limit is reached when the error of the divided RF output, f  
, is greater than or equal to 1 Hz.  
OUT  
8
Functional Description  
The simplified block diagram below shows the 19-bit data register, the 14-bit R Counter and the S Latch, and the 18-bit  
N Counter (intermediate latches are not shown). The data stream is clocked (on the rising edge) into the DATA input, MSB first.  
If the Control Bit (last bit input) is HIGH, the DATA is transferred into the R Counter (programmable reference divider) and the  
S Latch (prescaler select: 64/65 or 128/129). If the Control Bit (LSB) is LOW, the DATA is transferred into the N Counter  
(programmable divider).  
TL/W/11766–5  
PROGRAMMABLE REFERENCE DIVIDER (R COUNTER) AND PRESCALER SELECT (S LATCH)  
If the Control Bit (last bit shifted into the Data Register) is HIGH, data is transferred from the 19-bit shift register into a 14-bit  
latch (which sets the 14-bit R Counter) and the 1-bit S Latch (S15, which sets the prescaler: 64/65 or 128/129). Serial data  
format is shown below.  
TL/W/11766–6  
14-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO  
(R COUNTER)  
1-BIT PRESCALER SELECT  
(S LATCH)  
Divide  
Prescaler  
S
Select  
S
S
S
S
S
S
9
S
8
S
7
S
6
S
5
S
4
S
3
S
2
S
1
Ratio  
R
14 13 12 11 10  
15  
P
3
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
1
#
1
0
#
1
0
#
128/129  
64/65  
0
1
4
#
16383  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Notes: Divide ratios less than 3 are prohibited.  
Divide ratio: 3 to 16383  
S1 to S14: These bits select the divide ratio of the programmable  
reference divider.  
C: Control bit (set to HIGH level to load R counter and S Latch)  
Data is shifted in MSB first.  
9
Functional Description (Continued)  
PROGRAMMABLE DIVIDER (N COUNTER)  
The N counter consists of the 7-bit swallow counter (A counter) and the 11-bit programmable counter (B counter). If the Control  
Bit (last bit shifted into the Data Register) is LOW, data is transferred from the 19-bit shift register into a 7-bit latch (which sets  
the 7-bit Swallow (A) Counter) and an 11-bit latch (which sets the 11-bit programmable (B) Counter). Serial data format is shown  
below.  
TL/W/11766–7  
Note: S8 to S18: Programmable counter divide ratio control bits (3 to 2047)  
7-BIT SWALLOW COUNTER DIVIDE RATIO  
(A COUNTER)  
11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO  
(B COUNTER)  
Divide  
Divide  
S
7
S
6
S
5
S
4
S
3
S
2
S
1
S
S
S
S
S
S
S
S
S
S
9
S
8
Ratio  
A
Ratio  
B
18 17 16 15 14 13 12 11 10  
0
1
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
1
#
3
4
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
0
#
0
1
#
1
0
#
1
0
#
#
#
127  
1
1
1
1
1
1
1
2047  
1
1
1
1
1
1
1
1
1
1
1
Note: Divide ratio: 0 to 127  
Note: Divide ratio: 3 to 2047 (Divide ratios less than 3 are prohibited)  
t
t
A
B
A
B
PULSE SWALLOW FUNCTION  
e
c
(P B)  
a
c
]
A f /R  
OSC  
[
f
f
VCO  
: Output frequency of external voltage controlled oscil-  
lator (VCO)  
VCO  
B:  
A:  
Preset divide ratio of binary 11-bit programmable  
counter (3 to 2047)  
Preset divide ratio of binary 7-bit swallow counter  
s
s
s
127, A B)  
(0  
A
f
: Output frequency of the external reference frequency  
oscillator  
OSC  
R:  
P:  
Preset divide ratio of binary 14-bit programmable ref-  
erence counter (3 to 16383)  
Preset modulus of dual moduIus prescaler (64 or  
128)  
10  
Functional Description (Continued)  
SERIAL DATA INPUT TIMING  
TL/W/11766–8  
Notes: Parenthesis data indicates programmable reference divider data.  
Data shifted into register on clock rising edge.  
Data is shifted in MSB first.  
Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around V /2. The test waveform has an edge rate of 0.6 V/ns with  
CC  
@
@
e
e
5.5V.  
amplitudes of 2.2V  
V
CC  
2.7V and 2.6V  
V
CC  
Phase Characteristics  
In normal operation, the FC pin is used to reverse the polari-  
ty of the phase detector. Both the internal and any external  
charge pump are affected.  
VCO Characteristics  
Depending upon VCO characteristics, FC pin should be set  
accordingly:  
When VCO characteristics are like (1), FC should be set  
HIGH or OPEN CIRCUIT;  
When VCO characteristics are like (2), FC should be set  
LOW.  
When FC is set HIGH or OPEN CIRCUIT, the monitor pin of  
the phase comparator input, f , is set to the reference  
out  
TL/W/11766–9  
divider output, f . When FC is set LOW, f  
out  
is set to the  
r
programmable divider output, f .  
p
PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS  
TL/W/1176610  
b
a
Notes: Phase difference detection range: 2q to 2q  
The minimum width pump up and pump down current pulses occur at the D pin when the loop is locked.  
o
e
FC  
HIGH  
11  
Analog Switch (2315 only)  
The analog switch is useful for radio systems that utilize a frequency scanning mode and a narrow band mode. The purpose of  
the analog switch is to decrease the loop filter time constant, allowing the VCO to adjust to its new frequency in a shorter  
amount of time. This is achieved by adding another filter stage in parallel. The output of the charge pump is normally through the  
D
o
pin, but when LE is set HIGH, the charge pump output also becomes available at BISW. A typical circuit is shown below. The  
second filter stage (LPF-2) is effective only when the switch is closed (in the scanning mode).  
TL/W/1176611  
Typical Crystal Oscillator Circuit  
A typical circuit which can be used to implement a crystal  
oscillator is shown below.  
Typical Lock Detect Circuit  
A lock detect circuit is needed in order to provide a steady  
LOW signal when the PLL is in the locked state. A typical  
circuit is shown below.  
TL/W/1176612  
TL/W/1176613  
12  
Typical Application Example  
Operational Notes:  
TL/W/1176614  
*
VCO is assumed AC coupled.  
**  
R increases impedance so that VCO output power is provided to the load rather than the PLL. Typical values are 10X to 200X depending on the VCO power  
IN  
level. f RF impedance ranges from 40X to 100X.  
IN  
*** 50X termination is often used on test boards to allow use of external reference oscillator. For most typical products a CMOS clock is used and no terminating  
resistor is required. OSC may be AC or DC coupled. AC coupling is recommended because the input circuit provides its own bias. (See Figure below)  
IN  
TL/W/1176615  
Proper use of grounds and bypass capacitors is essential to achieve a high level of performance.  
Crosstalk between pins can be reduced by careful board layout.  
This is a static sensitive device. It should be handled only at static free work stations.  
13  
Application Information  
LOOP FILTER DESIGN  
A block diagram of the basic phase locked loop is shown.  
TL/W/1176616  
FIGURE 1. Basic Charge Pump Phase Locked Loop  
An example of a passive loop filter configuration, including  
the transfer function of the loop filter, is shown in Figure 2.  
TL/W/1176617  
a
s (C2 R2)  
#
(C1 C2 R2)  
1
e
Z(s)  
2
a
a
sC2  
s
sC1  
#
#
FIGURE 2. 2nd Order Passive Filter  
TL/W/1176619  
Define the time constants which determine the pole and  
zero frequencies of the filter transfer function by letting  
FIGURE 3. Open Loop Transfer Function  
Thus we can calculate the 3rd order PLL Open Loop Gain in  
terms of frequency  
e
T2  
R2 C2  
#
(1a)  
and  
b
a
j0 T2) T1  
Kw  
K
(1  
#
#
VCO  
e
0
#
G(s) H(s)  
#
#
e
l
s
j
C1 C2  
#
2
a
0 C1 N(1  
j0 T1)  
#
T2 (2)  
#
e
T1  
R2  
#
a
C1  
C2  
(1b)  
From equation 2 we can see that the phase term will be  
dependent on the single pole and zero such that  
The PLL linear model control circuit is shown along with the  
open loop transfer function in Figure 3. Using the phase  
detector and VCO gain constants Kw and K  
loop filter transfer function Z(s) , the open loop Bode plot  
can be calculated. The loop bandwidth is shown on the  
Bode plot (0p) as the point of unity gain. The phase margin  
is shown to be the difference between the phase at the unity  
b
b
1
1
e
b
a
e
w(0)  
tan  
(0 T2) tan  
#
(0 T1)  
180 (3)  
§
#
[
]
and the  
VCO  
By setting  
[
]
dw  
T2  
b
2
T1  
e
0
2
a
a
(0 T1)  
d0  
1
(0 T2)  
1
(4)  
#
#
we find the frequency point corresponding to the phase in-  
flection point in terms of the filter time constants T1 and T2.  
This relationship is given in equation 5.  
b
gain point and 180 .  
§
e
0
1/ T2 T1  
(5)  
#
For the loop to be stable the unity gain point must occur  
0
p
b
before the phase reaches  
180 degrees. We therefore  
want the phase margin to be at a maximum when the magni-  
tude of the open loop gain equals 1. Equation 2 then gives  
TL/W/1176618  
a
a
Kw  
K
T1 (1  
#
T2 (1  
j0 T2)  
#
#
VCO  
N
p
e
C1  
e
/Ns  
VCO  
e
H(s) G(s)  
Open Loop Gain  
e
i /i  
i
e
2
0
j0 T1)  
#
#
#
Ó
Ó
(6)  
p
p
Kw Z(s) K  
e
e
i
a
[
G(s)/ 1 H(s) G(s)  
]
Closed Loop Gain  
i /i  
o
14  
Application Information (Continued)  
Therefore, if we specify the loop bandwidth, 0 , and the  
In choosing the loop filter components a trade off must be  
made between lock time, noise, stability, and reference  
spurs. The greater the loop bandwidth the faster the lock  
time will be, but a large loop bandwidth could result in higher  
reference spurs. Wider loop bandwidths generally improve  
close in phase noise but may increase integrated phase  
noise depending on the reference input, VCO and division  
ratios used. The reference spurs can be reduced by reduc-  
ing the loop bandwidth or by adding more low pass filter  
stages but the lock time will increase and stability will de-  
crease as a result.  
p
phase margin, w , Equations 1 through 6 allow us to calcu-  
p
late the two time constants, T1 and T2, as shown in equa-  
tions 7 and 8. A common rule of thumb is to begin your  
design with a 45 phase margin.  
§
b
secw  
tanw  
p
p
e
T1  
0
(7)  
(8)  
p
1
e
T2  
2
0
T1  
#
p
From the time constants T1, and T2, and the loop band-  
width, 0 , the values for C1, R2, and C2 are obtained in  
THIRD ORDER FILTER  
p
equations 9 to 11.  
A low pass filter section may be needed for some applica-  
tions that require additional rejection of the reference side-  
bands, or spurs. This configuration is given in Figure 4. In  
order to compensate for the added low pass section, the  
component values are recalculated using the new open  
loop unity gain frequency. The degradation of phase margin  
caused by the added low pass is then mitigated by slightly  
increasing C1 and C2 while slightly decreasing R2.  
2
a
a
T1 Kw  
K
1
1
(0 T2)  
#
#
VCO  
N
p
e
C1  
#
2
2
T2  
0
(0 T1)  
(9)  
(10)  
(11)  
#
#
0
T2  
T1  
p
p
e
b
1
C2  
C1  
R2  
#
# J  
T2  
e
C2  
K
(MHz/V)  
Voltage Controlled Oscillator (VCO)  
Tuning Voltage constant. The fre-  
quency vs voltage tuning ratio.  
The added attenuation from the low pass filter is:  
2
VCO  
e
a
]
1
[
ATTEN  
20 log (2qf  
R3 C3)  
(12)  
(13)  
#
#
Defining the additional time constant as  
ref  
Kw (mA)  
Phase detector/charge pump gain  
constant. The ratio of the current out-  
put to the input phase differential.  
e
T3  
R3 C3  
#
Then in terms of the attenuation of the reference spurs add-  
ed by the low pass pole we have  
N
Main divider ratio. Equal to RF /f  
opt ref  
ATTEN/20  
b
2
10  
1
RF (MHz)  
opt  
Radio Frequency output of the VCO at  
which the loop filter is optimized.  
e
T3  
(14)  
0
(2q  
f )  
ref  
#
We then use the calculated value for loop bandwidth 0 in  
c
equation 11, to determine the loop filter component values  
f
ref  
(kHz)  
Frequency of the phase detector in-  
puts. Usually equivalent to the RF  
channel spacing.  
in equations 1517. 0 is slightly less than 0 , therefore  
c
the frequency jump lock time will increase.  
p
1
e
e
e
T2  
2
a
0
(T1  
T3)  
(15)  
(16)  
(17)  
#
c
2
a
a
a
tanw (T1  
T3)  
(T1  
T3)  
T1 T3  
#
T3)  
#
T3)  
a
b
1
0
1
#
c
2
2
a
a
a
[
]
[
]
(T1  
T1 T3  
#
tanw (T1  
#
Ð0  
(
2
#
c
2
T2 )  
(/2  
a
T1 Kw  
K
VCO  
(1  
2
0
#
C1  
#
#
2
2
2
2
T3 )  
a
a
0
T2  
0
N
(1  
0
T1 ) (1  
#
#
#
c
Ð
(
c
c
15  
Application Information (Continued)  
Consider the following application example:  
Ý
Example  
1
e
K
20 MHz/V  
5 mA (Note 1)  
VCO  
e
Kw  
RF  
e
900 MHz  
200 kHz  
opt  
e
F
ref  
e
e
4500  
N
0
w
RF /f  
opt ref  
e
e
2q * 20 kHz  
45  
1.256e5  
p
e
§
p
e
T1  
T3  
ATTEN  
20 dB  
b
secw  
tanw  
p
p
e
e
b
3.29e 6  
0
p
(20/20)  
b
10  
1
e
e
e
b
6
2.387e  
2
0
(2q 200e3)  
#
b
a
b
2.387e 6)  
(3.29e  
6
0
c
2
b
a
b
2.387e 6)  
a
b
b
]
2.387e 6  
[
(3.29e  
6
3.29e  
6
#
2
b
a
b
a
b
b
2.387e 6  
(3.29e  
6
2.387e 6)  
3.29e  
6
#
a
b
1
1
#
2
a
2.387e 6)  
b
b
]
[
(3.29e  
6
Ð0  
1.085 nF  
(
e
e
7.045e4  
1
e
b
5
T2  
C1  
3.549e  
2
b
a b  
2.387e 6)  
(7.045e4) (3.29e  
6
#
2
(7.045e4) (3.549e 5)  
2
(/2  
b
b
(5e 3) 20e6  
a
b
[
]
3.29e  
6
1
#
#
1
e
e
#
2
2
(7.045e4) (3.29e 6)  
2
] [  
2
(7.045e4) (2.387e 6)  
2
b
a
b
a
b
[
]
3.549e 5 (7.045e4) 4500  
1
#
#
#
Ð
(
b
b
3.55e  
3.29e  
5
6
e
e
b
e
C2  
R2  
1.085 nF  
1
10.6 nF;  
#
#
J
b
b
3.55e  
10.6e  
5
9
e
3.35 kX;  
b
2.34e  
6
e
e
e
106 pF.  
if we choose R3  
22k; then C3  
22e3  
Converting to standard component values gives the follow-  
ing filter values, which are shown in Figure 4.  
e
e
e
e
e
C1  
R2  
C2  
R3  
C3  
1000 pF  
3.3 kX  
10 nF  
22 kX  
100 pF  
TL/W/1176620  
Note 1: See related equation for Kw in Charge Pump Current Specification  
E
FIGURE 4. 20 kHz Loop Filter  
e
Definitions. For this example V  
5.0V. The value of Kw can then  
be approximated using the curves in the Typical Peformance Char-  
acteristics for Charge Pump Current vs. D Voltage. The units for  
P
o
e
Kw are in mA. You may also use Kw  
(5 mA/2q rad), but in this  
case you must convert K to (rad/V) multiplying by 2q.  
VCO  
16  
Application Information (Continued)  
MEASUREMENT RESULTS  
TL/W/1176621  
TL/W/1176622  
FIGURE 5. PLL Reference Spurs  
@
FIGURE 7. PLL Phase Noise 1 kHz Offset  
k
b
The reference spurious level is  
74 dBc, due to the loop  
b
The phase noise level at 1 kHz offset is 79.5 dBc/Hz.  
filter attenuation and the low spurious noise level of the  
LMX2315.  
TL/W/1176623  
FIGURE 6. PLL Phase Noise 10 kHz Offset  
b
The phase noise level at 10 kHz offset is 80 dBc/Hz.  
TL/W/1176624  
FIGURE 8. Frequency Jump Lock Time  
Of concern in any PLL loop filter design is the time it takes  
to lock in to a new frequency when switching channels. Fig-  
ure 8 shows the switching waveforms for a frequency jump  
of 865 MHz to 915 MHz. By narrowing the frequency span  
of the HP53310A Modulation Domain Analyzer enables  
g
evaluation of the frequency lock time to within 500 Hz.  
The lock time is seen to be less than 500 ms for a frequency  
jump of 50 MHz.  
17  
Application Information (Continued)  
EXTERNAL CHARGE PUMP  
EXAMPLE  
e
e
e
50  
The LMX PLLatimum series of frequency synthesizers are  
equipped with an internal balanced charge pump as well as  
outputs for driving an external charge pump. Although the  
superior performance of NSC’s on board charge pump elim-  
inates the need for an external charge pump in most appli-  
cations, certain system requirements are more stringent. In  
these cases, using an external charge pump allows the de-  
signer to take direct control of such parameters as charge  
pump voltage swing, current magnitude, TRI-STATE leak-  
age, and temperature compensation.  
Typical Device Parameters  
Typical System Parameters  
b
100, b  
n
p
V
V
V
I
5.0V;  
P
e
b
4.5V;  
0.5V  
cntl  
wp  
e
e
e
0.0V; V  
5.0V  
wr  
e
Design Parameters  
I
5.0 mA;  
SINK  
SOURCE  
e
e
V
fn  
V
fp  
0.8V  
e
e
I
I
1 mA  
rmax  
pmax  
e
e
0.3V  
V
V
V
R5  
R8  
OLwp  
e
e
100 mV  
V
OHwr  
One possible architecture for an external charge pump cur-  
rent source is shown in Figure 9. The signals w and w in  
p
r
the diagram, correspond to the phase detector outputs of  
the LMX2314/2315 frequency synthesizers. These logic  
signals are converted into current pulses, using the circuitry  
shown in Figure 9, to enable either charging or discharging  
of the loop filter components to control the output frequency  
of the PLL.  
Referring to Figure 9, the design goal is to generate a 5 mA  
current which is relatively constant to within 5V of the power  
supply rail. To accomplish this, it is important to establish as  
large of a voltage drop across R5, R8 as possible without  
saturating Q2, Q4. A voltage of approximately 300 mV pro-  
vides a good compromise. This allows the current source  
reference being generated to be relatively repeatable in the  
absence of good Q1, Q2/Q3, Q4 matching. (Matched tran-  
sistor pairs is recommended.) The wp and wr outputs are  
rated for a maximum output load current of 1 mA while 5 mA  
current sources are desired. The voltages developed across  
R4,  
42 mV  
9 will consequently be approximately 258 mV, or  
k
R8, 5, due to the current density differences  
Ó
TL/W/1176643  
À
0.026*1n (5 mA/1 mA) through the Q1, Q2/Q3, Q4 pairs.  
FIGURE 9  
In order to calculate the value of R7 it is necessary to first  
estimate the forward base to emitter voltage drop (Vfn,p) of  
the transistors used, the V drop of wp, and the V  
Therefore select  
drop  
OL  
OH  
b
0.3V 0.026 1n(5.0 mA/1.0 mA)  
k
#
of wr’s under 1 mA loads. (wp’s V  
0.1V and wr’s  
OL  
e
e
e
e
e
9
e
51.6X  
R
R
R
R
R
4
5
8
6
k
V
0.1V.)  
5 mA  
OH  
Knowing these parameters along with the desired current  
allow us to design a simple external charge pump. Separat-  
ing the pump up and pump down circuits facilitates the no-  
dal analysis and give the following equations.  
a
0.3V (50  
1)  
#
1.0 mA (50  
e
332X  
a
b
1) 5.0 mA  
#
b
0.3V (100 1)  
#
1.0 mA (100  
e
315.6X  
a
0.8V)  
a
b
1) 5.0 mA  
i
#
source  
b
V
V
ln  
#
R5  
T
i
i
# J  
p max  
b
b
(5V 0.1V) (0.3V  
e
R
4
e
e
3.8 kX  
R
7
1.0 mA  
source  
i
sink  
b
V
R8  
V
T
ln  
#
i
# J  
n max  
e
e
R
R
9
i
sink  
a
V
(b  
1)  
#
R5  
p
5
a
b
i
(b  
1)  
i
#
p max  
V
p
source  
a
n
(b  
1)  
#
(b  
R8  
e
e
R
R
R
8
a
i
1) i  
#
r max  
n
sink  
b
b
a
a
(V  
(V  
V
)
(V  
Vfp)  
Vfn)  
p
VOLwp  
R5  
6
i
p max  
b
b
V
)
(V  
P
VOHwr  
R8  
e
7
i
max  
18  
Physical Dimensions inches (millimeters)  
JEDEC 16-Lead (0.150 Wide) Small Outline Molded Package (M)  
×
Order Number LMX2314M  
For Tape and Reel Order Number LMX2314MX (2500 Units per Reel)  
NS Package Number M16A  
19  
Physical Dimensions millimeters (Continued)  
NS Package Number MTC20  
20-Lead (0.173 Wide) Thin Shrink Small Outline Package (TM)  
×
Order Number LMX2315TM  
For Tape and Reel Order Number LMX2315TMX (2500 Units per Reel)  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance  
with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury  
to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
a
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax:  
(
49) 0-180-530 85 86  
@
13th Floor, Straight Block,  
Ocean Centre, 5 Canton Rd.  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
Email: cnjwge tevm2.nsc.com  
a
a
a
a
Deutsch Tel:  
English Tel:  
Fran3ais Tel:  
Italiano Tel:  
(
(
(
(
49) 0-180-530 85 85  
49) 0-180-532 78 32  
49) 0-180-532 93 58  
49) 0-180-534 16 80  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

LMX2314M

1.2 GHz Frequency Synthesizer for RF Personal Communications
NSC

LMX2314MX

1.2 GHz Frequency Synthesizer for RF Personal Communications
NSC

LMX2315

Frequency Synthesizer for RF Personal Communications
NSC

LMX2315MDA

PLL FREQUENCY SYNTHESIZER, 1200MHz, UUC, DIE
TI

LMX2315TM

Frequency Synthesizer for RF Personal Communications
NSC

LMX2315TMX

Frequency Synthesizer for RF Personal Communications
NSC

LMX2315TMX

PLL FREQUENCY SYNTHESIZER, 1200MHz, PDSO20, 0.173 INCH, PLASTIC, TSSOP-20
TI

LMX2315WG-MLS

PLL FREQUENCY SYNTHESIZER, 1200MHz, CDSO20, 0.300 INCH, CERAMIC, SOIC-20
TI

LMX2315WG-QML

PLL FREQUENCY SYNTHESIZER, 1200MHz, CDSO20, 0.300 INCH, CERAMIC, SOIC-20
TI

LMX2315WG-QMLX

PLL FREQUENCY SYNTHESIZER, 1200MHz, CDSO20, 0.300 INCH, CERAMIC, SOIC-20
TI

LMX2316

PLLatinum⑩ Low Power Frequency Synthesizer for RF Personal Communications
NSC

LMX2316LBX

FREQUENCY SYNTHESIZER|BICMOS|LLCC|16PIN|PLASTIC
ETC