LPV321M5 [NSC]

General Purpose, Low Voltage, Low Power, Rail-to-Rail Output Operational Amplifiers; 通用,低电压,低功耗,轨到轨输出运算放大器
LPV321M5
型号: LPV321M5
厂家: National Semiconductor    National Semiconductor
描述:

General Purpose, Low Voltage, Low Power, Rail-to-Rail Output Operational Amplifiers
通用,低电压,低功耗,轨到轨输出运算放大器

运算放大器 放大器电路 光电二极管 信息通信管理
文件: 总21页 (文件大小:718K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 1999  
LPV321 Single/ LPV358 Dual/ LPV324 Quad  
General Purpose, Low Voltage, Low Power, Rail-to-Rail  
Output Operational Amplifiers  
General Description  
Features  
(For V+ 5V and V  
=
0V, Typical Unless Otherwise Noted)  
=
The LPV321/358/324 are low power (9µA per channel at  
5.0V) versions of the LMV321/358/324 op amps. This is an-  
other addition to the LMV321/358/324 family of commodity  
op amps.  
j
j
j
Guaranteed 2.7V and 5V Performance  
No Crossover Distortion  
Space Saving Package  
SC70-5  
The LPV321/358/324 are the most cost effective solutions  
for the applications where low voltage, low power operation,  
space saving and low price are needed. The  
LPV321/358/324 have rail-to-rail output swing capability and  
the input common-mode voltage range includes ground.  
They all exhibit excellent speed-power ratio, achieving  
152 KHz of bandwidth with a supply current of only 9µA.  
2.0x2.1x1.0mm  
−40˚C to +85˚C  
152KHz  
j
j
j
Industrial Temp.Range  
Gain-Bandwidth Product  
Low Supply Current  
LPV321  
9µA  
15µA  
28µA  
The LPV321 is available in space saving SC70-5, which is  
approximately half the size of SOT23-5. The small package  
saves space on pc boards, and enables the design of small  
portable electronic devices. It also allows the designer to  
place the device closer to the signal source to reduce noise  
pickup and increase signal integrity.  
LPV358  
LPV324  
j
j
Rail-to-Rail Output Swing  
100kLoad  
V+−3.5mV  
V+90mV  
−0.2V to V+ −0.8V  
@
The chips are built with National’s advanced submicron  
silicon-gate BiCMOS process. The LPV321/358/324 have bi-  
polar input and output stages for improved noise perfor-  
mance and higher output current drive.  
VCM  
Applications  
n Active Filters  
n General Purpose Low Voltage Applications  
n General Purpose Portable Devices  
Connection Diagrams  
14-Pin SO/TSSOP  
5-Pin  
SC70-5/SOT23-5  
DS100920-3  
DS100920-1  
Top View  
Top View  
8-Pin SO/MSOP  
DS100920-2  
Top View  
© 1999 National Semiconductor Corporation  
DS100920  
www.national.com  
Ordering Information  
Temperature Range  
Package  
Industrial  
−40˚C to +85˚C  
LPV321M7  
LPV321M7X  
LPV321M5  
LPV321M5X  
LPV358M  
Packaging Marking  
Transport Media  
NSC Drawing  
MAA05  
5-Pin SC70-5  
A19  
A19  
1k Units Tape and Reel  
3k Units Tape and Reel  
1k Units Tape and Reel  
3k Units Tape and Reel  
Rails  
5-Pin SOT23-5  
8-Pin Small Outline  
8-Pin MSOP  
A27A  
MA05B  
A27A  
LPV358M  
LPV358M  
P358  
M08A  
MUA08A  
M14A  
LPV358MX  
LPV358MM  
LPV358MMX  
LPV324M  
2.5k Units Tape and Reel  
1k Units Tape and Reel  
3.5k Units Tape and Reel  
Rails  
P358  
14-Pin Small Outline  
14-Pin TSSOP  
LPV324M  
LPV324M  
LPV324MT  
LPV324MT  
LPV324MX  
LPV324MT  
LPV324MTX  
2.5k Units Tape and Reel  
Rails  
MTC14  
2.5k Units Tape and Reel  
www.national.com  
2
Absolute Maximum Ratings (Note 1)  
Junction Temp. (Tj, max) (Note 5)  
150˚C  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Operating Ratings (Note 1)  
Supply Voltage  
2.7V to 5V  
ESD Tolerance (Note 2)  
Temperature Range  
Thermal Resistance (θ JA)(Note 10)  
5-pin SC70-5  
−40˚CT J85˚C  
Machine Model  
100V  
2000V  
Human Body Model  
478˚C/W  
265˚C/W  
190˚C/W  
235˚C/W  
145˚C/W  
155˚C/W  
±
Differential Input Voltage  
Supply Voltage  
5.5V  
5-pin SOT23-5  
Supply Voltage (V+–V  
)
8-Pin SOIC  
+
Output Short Circuit to V  
Output Short Circuit to V  
Soldering Information  
(Note 3)  
8-Pin MSOP  
(Note 4)  
14-Pin SOIC  
14-Pin TSSOP  
Infrared or Convection (20 sec)  
Storage Temp. Range  
235˚C  
−65˚C to 150˚C  
2.7V DC Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for T = 25˚C, V+ = 2.7V, V= 0V, VCM = 1.0V, VO = V+/2 and R  
1 M.  
Units  
>
L
J
Typ  
Limit  
(Note 7)  
Symbol  
Parameter  
Conditions  
(Note 6)  
VOS  
Input Offset Voltage  
1.2  
2
7
mV  
max  
TCVOS  
IB  
Input Offset Voltage Average  
Drift  
µV/˚C  
Input Bias Current  
1.7  
0.6  
70  
50  
40  
nA  
max  
IOS  
Input Offset Current  
nA  
max  
CMRR  
PSRR  
VCM  
Common Mode Rejection Ratio 0V VCM 1.7V  
50  
dB  
min  
Power Supply Rejection Ratio  
2.7V V+ 5V  
65  
50  
dB  
min  
=
=
VO 1V, VCM 1V  
Input Common-Mode Voltage  
Range  
For CMRR 50dB  
−0.2  
1.9  
V+ -3  
80  
0
V
min  
1.7  
V+ -100  
180  
8
V
max  
VO  
Output Swing  
RL = 100kto 1.35V  
mV  
min  
mV  
max  
IS  
Supply Current  
LPV321  
4
µA  
max  
LPV358  
8
16  
µA  
Both amplifiers  
max  
LPV324  
16  
24  
µA  
All four amplifiers  
max  
3
www.national.com  
2.7V AC Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for T = 25˚C, V+ = 2.7V, V= 0V, VCM = 1.0V, VO = V+/2 and R  
J
1 M.  
Units  
>
L
Typ  
(Note 6)  
Limit  
(Note 7)  
Symbol  
Parameter  
Conditions  
CL = 22 pF  
GBWP  
Φm  
Gain-Bandwidth Product  
Phase Margin  
112  
97  
KHz  
Deg  
dB  
Gm  
Gain Margin  
35  
en  
Input-Referred Voltage Noise  
f = 1 kHz  
f = 1 kHz  
178  
in  
Input-Referred Current Noise  
0.50  
5V DC Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for T = 25˚C, V+ = 5V, V= 0V, VCM = 2.0V, VO = V+/2 and R  
1 M.  
>
J
L
Boldface limits apply at the temperature extremes.  
Typ  
(Note 6)  
Limit  
(Note 7)  
Symbol  
Parameter  
Conditions  
Units  
VOS  
Input Offset Voltage  
1.5  
2
7
10  
mV  
max  
TCVOS  
IB  
Input Offset Voltage Average  
Drift  
µV/˚C  
Input Bias Current  
2
50  
nA  
60  
max  
IOS  
Input Offset Current  
0.6  
71  
40  
50  
nA  
max  
CMRR  
PSRR  
VCM  
Common Mode Rejection Ratio 0V VCM 4V  
50  
50  
0
dB  
min  
Power Supply Rejection Ratio  
2.7V V+ 5V  
65  
dB  
min  
=
=
VO 1V, VCM 1V  
Input Common-Mode Voltage  
Range  
For CMRR 50dB  
−0.2  
4.2  
100  
V+ −3.5  
90  
V
min  
4
V
max  
AV  
VO  
Large Signal Voltage Gain  
(Note 8)  
RL = 100kΩ  
15  
10  
V+ −100  
V+ −200  
V/mV  
min  
Output Swing  
RL = 100kto 2.5V  
mV  
min  
180  
mV  
220  
max  
IO  
Output Short Circuit Current  
Supply Current  
Sourcing, VO = 0V  
Sinking, VO = 5V  
LPV321  
17  
2
mA  
min  
72  
20  
mA  
min  
IS  
9
12  
µA  
15  
max  
LPV358  
15  
20  
µA  
Both amplifiers  
24  
max  
LPV324  
28  
42  
µA  
All four amplifiers  
46  
max  
www.national.com  
4
5V AC Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for T = 25˚C, V+ = 5V, V= 0V, VCM = 2.0V, VO = V+/2 and R  
1 M.  
>
J
L
Boldface limits apply at the temperature extremes.  
Typ  
(Note 6)  
Limit  
(Note 7)  
Symbol  
Parameter  
Conditions  
Units  
SR  
Slew Rate  
(Note 9)  
0.1  
152  
87  
V/µs  
KHz  
Deg  
dB  
GBWP  
Φm  
Gain-Bandwidth Product  
Phase Margin  
CL = 22 pF  
Gm  
Gain Margin  
19  
en  
Input-Referred Voltage Noise  
f = 1 kHz,  
f = 1 kHz  
146  
in  
Input-Referred Current Noise  
0.30  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is in-  
tended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.  
Note 2: Human body model, 1.5 kin series with 100 pF. Machine model, 0in series with 200 pF.  
+
Note 3: Shorting output to V will adversely affect reliability.  
-
Note 4: Shorting output to V will adversely affect reliability.  
Note 5: The maximum power dissipation is  
a
function of  
T
, θ , and T . The maximum allowable power dissipation at any ambient temperature is  
J(max) JA A  
P
= (T –T )/θ . All numbers apply for packages soldered directly into a PC board.  
D
J(max)  
A
JA  
Note 6: Typical values represent the most likely parametric norm.  
Note 7: All limits are guaranteed by testing or statistical analysis.  
-
Note 8:  
R
is connected to V . The output voltage is 0.5V V 4.5V.  
L
O
Note 9: Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.  
Note 10: All numbers are typical, and apply for packages soldered directly onto a PC board in still air.  
5
www.national.com  
Typical Performance Characteristics Unless otherwise specified, VS = +5V, single supply, TA = 25˚C.  
Supply Current vs Supply  
Voltage (LPV321)  
Input Current vs  
Temperature  
Sourcing Current vs  
Output Voltage  
DS100920-B4  
DS100920-B5  
DS100920-41  
Sourcing Current vs  
Output Voltage  
Sinking Current vs  
Output Voltage  
Sinking Current vs  
Output Voltage  
DS100920-42  
DS100920-43  
DS100920-44  
Output Voltage Swing vs  
Supply Voltage  
Input Voltage Noise vs  
Frequency  
Input Current Noise vs  
Frequency  
DS100920-B6  
DS100920-56  
DS100920-70  
www.national.com  
6
Typical Performance Characteristics Unless otherwise specified, VS = +5V, single supply,  
TA = 25˚C. (Continued)  
Input Current Noise vs Frequency  
Crosstalk Rejection vs Frequency  
PSRR vs Frequency  
DS100920-68  
DS100920-73  
DS100920-72  
CMRR vs  
Frequency  
CMRR vs Input  
Common Mode Voltage  
CMRR vs Input  
Common Mode Voltage  
DS100920-64  
DS100920-63  
DS100920-65  
VOS vs CMR  
VOS vs CMR  
Input Voltage vs Output Voltage  
DS100920-69  
DS100920-45  
DS100920-46  
7
www.national.com  
Typical Performance Characteristics Unless otherwise specified, VS = +5V, single supply,  
TA = 25˚C. (Continued)  
Input Voltage vs  
Output Voltage  
Open Loop  
Frequency Response  
Open Loop  
Frequency Response  
DS100920-71  
DS100920-52  
DS100920-51  
Gain and Phase vs  
Capacitive Load  
Gain and Phase vs  
Capacitive Load  
Slew Rate vs  
Supply Voltage  
DS100920-54  
DS100920-53  
DS100920-55  
Non-Inverting Large  
Signal Pulse Response  
Non-Inverting Small  
Signal Pulse Response  
Inverting Large Signal  
Pulse Response  
DS100920-50  
DS100920-49  
DS100920-47  
www.national.com  
8
Typical Performance Characteristics Unless otherwise specified, VS = +5V, single supply,  
TA = 25˚C. (Continued)  
Inverting Small Signal  
Pulse Response  
Stability vs Capacitive Load  
Stability vs Capacitive Load  
DS100920-48  
DS100920-61  
DS100920-60  
Stability vs Capacitive Load  
Stability vs Capacitive Load  
THD vs Frequency  
DS100920-59  
DS100920-58  
DS100920-62  
Open Loop Output  
Impedance vs Frequency  
Short Circuit Current  
vs Temperature (Sinking)  
Short Circuit Current  
vs Temperature (Sourcing)  
DS100920-74  
DS100920-B7  
DS100920-B8  
amplifier package, the LPV321/358/324 can be placed  
closer to the signal source, reducing noise pickup and in-  
creasing signal integrity.  
Application Notes  
1.0 Benefits of the LPV321/358/324  
Simplified Board Layout. These products help you to avoid  
using long pc traces in your pc board layout. This means that  
no additional components, such as capacitors and resistors,  
are needed to filter out the unwanted signals due to the inter-  
ference between the long pc traces.  
Size. The small footprints of the LPV321/358/324 packages  
save space on printed circuit boards, and enable the design  
of smaller electronic products, such as cellular phones, pag-  
ers, or other portable systems. The low profile of the  
LPV321/358/324 make them possible to use in PCMCIA  
type III cards.  
Low Supply Current. These devices will help you to maxi-  
mize battery life. They are ideal for battery powered sys-  
tems.  
Signal Integrity. Signals can pick up noise between the sig-  
nal source and the amplifier. By using a physically smaller  
9
www.national.com  
ing the value of R due to the input bias current of the  
F
Application Notes (Continued)  
LPV321/358/324. C and RISO serve to counteract the loss  
F
Low Supply Voltage. National provides guaranteed perfor-  
mance at 2.7V and 5V. These guarantees ensure operation  
throughout the battery lifetime.  
of phase margin by feeding the high frequency component of  
the output signal back to the amplifier’s inverting input,  
thereby preserving phase margin in the overall feedback  
loop. Increased capacitive drive is possible by increasing the  
value of CF . This in turn will slow down the pulse response.  
Rail-to-Rail Output. Rail-to-rail output swing provides maxi-  
mum possible dynamic range at the output. This is particu-  
larly important when operating on low supply voltages.  
Input Includes Ground. Allows direct sensing near GND in  
single supply operation.  
+
The differential input voltage may be larger than V without  
damaging the device. Protection should be provided to pre-  
vent the input voltages from going negative more than −0.3V  
(at 25˚C). An input clamp diode with a resistor to the IC input  
terminal can be used.  
2.0 Capacitive Load Tolerance  
The LPV321/358/324 can directly drive 200 pF in unity-gain  
without oscillation. The unity-gain follower is the most sensi-  
tive configuration to capacitive loading. Direct capacitive  
loading reduces the phase margin of amplifiers. The combi-  
nation of the amplifier’s output impedance and the capacitive  
load induces phase lag. This results in either an under-  
damped pulse response or oscillation. To drive a heavier ca-  
pacitive load, circuit in Figure 1 can be used.  
DS100920-5  
FIGURE 3. Indirectly Driving A Capacitive Load with  
DC Accuracy  
3.0 Input Bias Current Cancellation  
The LPV321/358/324 family has a bipolar input stage. The  
typical input bias current of LPV321/358/324 is 1.5nA with  
5V supply. Thus a 100kinput resistor will cause 0.15mV of  
error voltage. By balancing the resistor values at both invert-  
ing and non-inverting inputs, the error caused by the ampli-  
fier’s input bias current will be reduced. The circuit in Figure  
4 shows how to cancel the error caused by input bias  
current.  
DS100920-4  
FIGURE 1. Indirectly Driving A Capacitive Load Using  
Resistive Isolation  
In Figure 1, the isolation resistor RISO and the load capacitor  
CL form a pole to increase stability by adding more phase  
margin to the overall system. The desired performance de-  
pends on the value of RISO. The bigger the RISO resistor  
value, the more stable VOUT will be. Figure 2 is an output  
waveform of Figure 1 using 100kfor RISO and 1000pF for  
CL.  
DS100920-6  
FIGURE 4. Cancelling the Error Caused by Input Bias  
Current  
4.0 Typical Single-Supply Application Circuits  
4.1 Difference Amplifier  
The difference amplifier allows the subtraction of two volt-  
ages or, as a special case, the cancellation of a signal com-  
mon to two inputs. It is useful as a computational amplifier, in  
making a differential to single-ended conversion or in reject-  
ing a common mode signal.  
DS100920-75  
FIGURE 2. Pulse Response of the LPV324 Circuit in  
Figure 1  
The circuit in Figure 3 is an improvement to the one in Figure  
1 because it provides DC accuracy as well as AC stability. If  
there were a load resistor in Figure 1, the output would be  
voltage divided by RISO and the load resistor. Instead, in Fig-  
ure 3, RF provides the DC accuracy by using feed-forward  
techniques to connect VIN to RL. Caution is needed in choos-  
www.national.com  
10  
4.2.2 Two-op-amp Instrumentation Amplifier  
Application Notes (Continued)  
A two-op-amp instrumentation amplifier can also be used to  
make a high-input-impedance DC differential amplifier (Fig-  
ure 7). As in the three-op-amp circuit, this instrumentation  
amplifier requires precise resistor matching for good CMRR.  
R4 should equal to R1 and R3 should equal R2.  
DS100920-7  
DS100920-11  
FIGURE 5. Difference Amplifier  
4.2 Instrumentation Circuits  
FIGURE 7. Two-op-amp Instrumentation Amplifier  
4.3 Single-Supply Inverting Amplifier  
The input impedance of the previous difference amplifier is  
set by the resistor R1, R2, R3, and R 4. To eliminate the prob-  
lems of low input impedance, one way is to use a voltage fol-  
lower ahead of each input as shown in the following two in-  
strumentation amplifiers.  
There may be cases where the input signal going into the  
amplifier is negative. Because the amplifier is operating in  
single supply voltage, a voltage divider using R3 and R4 is  
implemented to bias the amplifier so the input signal is within  
the input common-common voltage range of the amplifier.  
The capacitor C1 is placed between the inverting input and  
resistor R1 to block the DC signal going into the AC signal  
source, VIN. The values of R1 and C1 affect the cutoff fre-  
4.2.1Three-op-amp Instrumentation Amplifier  
The quad LPV324 can be used to build a three-op-amp in-  
strumentation amplifier as shown in Figure 6  
=
quency, fc 1/2π R 1C1.  
As a result, the ouptut signal is centered around mid-supply  
(if the voltage divider provides V+/2 at the non-inverting in-  
put). The output can swing to both rails, maximizing the  
signal-to-noise ratio in a low voltage system.  
DS100920-85  
FIGURE 6. Three-op-amp Instrumentation Amplifier  
DS100920-13  
The first stage of this instrumentation amplifier is  
a
differential-input, differential-output amplifier, with two volt-  
age followers. These two voltage followers assure that the  
input impedance is over 100M. The gain of this instrumen-  
tation amplifier is set by the ratio of R2/R 1. R3 should equal  
R1 and R4 equal R2. Matching of R3 to R1 and R4 to R2 af-  
fects the CMRR. For good CMRR over temperature, low drift  
resistors should be used. Making R4 Slightly smaller than R  
FIGURE 8. Single-Supply Inverting Amplifier  
4.4 Active Filter  
4.4.1 Simple Low-Pass Active Filter  
2
and adding a trim pot equal to twice the difference between  
2 and R4 will allow the CMRR to be adjusted for optimum.  
R
The simple low-pass filter is shown in Figure 9. Its  
low-frequency gain(ω  
o) is defined by −R3/R1. This allows  
low-frequency gains other than unity to be obtained. The fil-  
ter has a −20dB/decade roll-off after its corner frequency fc.  
R
2 should be chosen equal to the parallel combination of R1  
and R3 to minimize errors due to bais current. The frequency  
response of the filter is shown in Figure 10  
11  
www.national.com  
Application Notes (Continued)  
DS100920-14  
FIGURE 9. Simple Low-Pass Active Filter  
DS100920-15  
FIGURE 10. Frequency Response of Simple Low-pass  
Active Filter in Figure 9  
Note that the single-op-amp active filters are used in to the  
applications that require low quality factor, Q (10), low fre-  
quency (5KHz), and low gain (10), or a small value for the  
product of gain times Q (100). The op amp should have an  
open loop voltage gain at the highest frequency of interest at  
least 50 times larger than the gain of the filter at this fre-  
quency. In addition, the selected op amp should have a slew  
rate that meets the following requirement:  
SlewRate 0.5 x (ωHV OPP) X 10−6V/µsec  
Where ωH is the highest frequency of interest, and VOPP is  
the output peak-to-peak voltage.  
www.national.com  
12  
SC70-5 Tape and Reel Specification  
DS100920-B3  
SOT-23-5 Tape and Reel Specification  
TAPE FORMAT  
Tape Section  
Leader  
# Cavities  
0 (min)  
75 (min)  
3000  
Cavity Status  
Empty  
Cover Tape Status  
Sealed  
(Start End)  
Carrier  
Empty  
Sealed  
Filled  
Sealed  
250  
Filled  
Sealed  
Trailer  
125 (min)  
0 (min)  
Empty  
Sealed  
(Hub End)  
Empty  
Sealed  
13  
www.national.com  
SOT-23-5 Tape and Reel Specification (Continued)  
TAPE DIMENSIONS  
DS100920-B1  
±
±
±
0.315 0.012  
8 mm  
0.130  
(3.3)  
0.124  
(3.15)  
0.130  
(3.3)  
0.126  
(3.2)  
0.138 0.002  
0.055 0.004  
0.157  
(4)  
±
±
±
(3.5 0.05)  
(1.4 0.11)  
(8 0.3)  
Tape Size  
DIM A  
DIM Ao  
DIM B  
DIM Bo  
DIM F  
DIM Ko  
DIM P1  
DIM W  
www.national.com  
14  
SOT-23-5 Tape and Reel Specification (Continued)  
REEL DIMENSIONS  
DS100920-B2  
8 mm  
7.00 0.059 0.512 0.795 2.165 0.331 + 0.059/−0.000 0.567  
W1+ 0.078/−0.039  
330.00 1.50 13.00 20.20 55.00  
8.40 + 1.50/−0.00  
14.40  
W1 + 2.00/−1.00  
Tape Size  
A
B
C
D
N
W1  
W2  
W3  
15  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
5-Pin SC70-5 Tape and Reel  
Order Number LPV321M7 and LPV321M7X  
NS Package Number MAA05A  
www.national.com  
16  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
5-Pin SOT23-5 Tape and Reel  
Order Number LPV321M5 and LPV321M5X  
NS Package Number MA05B  
17  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
8-Pin Small Outline  
Order Number LPV358M and LPV358MX  
NS Package Number M08A  
www.national.com  
18  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
8-Pin MSOP  
Order Number LPV358MM and LPV358MMX  
NS Package Number MUA08A  
19  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
14-Pin Small Outline  
Order Number LPV324M and LPV324MX  
NS Package Number M14A  
www.national.com  
20  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
14-Pin TSSOP  
Order Number LPV324MT and LPV324MTX  
NS Package Number MTC14  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and  
whose failure to perform when properly used in  
accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a  
significant injury to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform  
can be reasonably expected to cause the failure of  
the life support device or system, or to affect its  
safety or effectiveness.  
National Semiconductor  
Corporation  
Americas  
Tel: 1-800-272-9959  
Fax: 1-800-737-7018  
Email: support@nsc.com  
National Semiconductor  
Europe  
National Semiconductor  
Asia Pacific Customer  
Response Group  
Tel: 65-2544466  
Fax: 65-2504466  
National Semiconductor  
Japan Ltd.  
Tel: 81-3-5639-7560  
Fax: 81-3-5639-7507  
Fax: +49 (0) 1 80-530 85 86  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 1 80-530 85 85  
English Tel: +49 (0) 1 80-532 78 32  
Français Tel: +49 (0) 1 80-532 93 58  
Italiano Tel: +49 (0) 1 80-534 16 80  
Email: sea.support@nsc.com  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY