PC87383-VS [NSC]

Legacy-Reduced SuperI/O with Fast Infrared Port, Serial Port, Parallel Port and GPIOs for Portable Applications; 传统的还原SuperI / O具有快速红外端口,串行端口,并行端口和GPIO用于​​便携式应用
PC87383-VS
型号: PC87383-VS
厂家: National Semiconductor    National Semiconductor
描述:

Legacy-Reduced SuperI/O with Fast Infrared Port, Serial Port, Parallel Port and GPIOs for Portable Applications
传统的还原SuperI / O具有快速红外端口,串行端口,并行端口和GPIO用于​​便携式应用

便携式 PC 时钟
文件: 总77页 (文件大小:829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
December 2003  
Revision 1.1  
PC87383  
Legacy-Reduced SuperI/O with Fast Infrared Port, Serial  
Port, Parallel Port and GPIOs for Portable Applications  
General Description  
Outstanding Features  
The PC87383, a member of the National Semiconductor  
LPC SuperI/O family, is targeted for a wide range of porta-  
ble applications. The PC87383 is PC2001 and ACPI com-  
pliant, and features Fast Infrared port (FIR, IrDA 1.1  
compliant), Serial Port, Parallel Port and General-Purpose  
Input/Output (GPIO) support for a total of 21 ports.  
LPC bus interface, based on Intel’s LPC Interface  
Specification Revision 1.1, August 2002 (supports  
CLKRUN and LPCPD signals)  
Fast Infrared port  
PC2001 and ACPI Revision 2.0 compliant  
Serial IRQ support (15 options)  
Protection features, including GPIO lock and pin con-  
figuration lock  
21 GPIO ports, including 14 with “assert IRQ” capabil-  
ity  
XOR Tree and TRI-STATE device pins (or ICT) test-  
ability modes.  
5V tolerant and back-drive protected pins (except LPC  
bus pins)  
64-pin TQFP package  
System Block Diagram  
Portable  
Platform  
South Bridge  
LPC Bus  
Embedded  
Controller  
TPM  
PC87383  
Parallel  
Port  
Interface  
Serial  
Infrared  
I/O  
Ports  
Interface Interface  
National Semiconductor and TRI-STATE are registered trademarks of National Semiconductor Corporation.  
All other brand or product names are trademarks or registered trademarks of their respective holders.  
©2003 National Semiconductor Corporation  
www.national.com  
Features  
LPC System Interface  
Serial Port (SP1)  
Synchronous cycles, up to 33 MHz bus clock  
8-bit I/O cycles  
Software compatible with the 16550A and the 16450  
Shadow register support for write-only bit monitoring  
UART data rates up to 1.5 Mbaud  
Up to four 8-bit DMA channels  
LPCPD and CLKRUN support  
IEEE 1284-compliant Parallel Port  
Implements PCI mobile design guide recommenda-  
tion (PCI Mobile Design Guide 1.1, Dec. 18, 1998)  
ECP, with Level 2 (14 mA sink and source output  
buffers)  
PC2001 and ACPI Compliant  
PnP Configuration Register structure  
Flexible resource allocation for all logical devices  
Relocatable base address  
Software or hardware control  
Enhanced Parallel Port (EPP) compatible with EPP  
1.7 and EPP 1.9  
Supports EPP as mode 4 of the Extended Control  
Register (ECR)  
15 IRQ routing options  
Selection of internal pull-up or pull-down resistor for  
Three optional 8-bit DMA channels (where appli-  
cable) selected from four possible DMA chan-  
nels  
Paper End (PE) pin  
Supports a demand DMA mode mechanism and a  
DMA fairness mechanism for improved bus utiliza-  
tion  
Clock Sources  
Protection circuit that prevents damage to the  
parallel port when a printer connected to it is pow-  
ered up or is operated at high voltages (in both  
cases, even if the PC87383 is in power-down state)  
14.318 MHz or 48 MHz clock input  
LPC clock, up to 33 MHz  
Power Supply  
3.3V supply operation  
Fast Infrared Port (FIR)  
All pins are 5V tolerant, except LPC bus pins  
Software compatible with the 16550A and the 16450  
Shadow register support for write-only bit monitoring  
FIR IrDA 1.1 compliant  
All pins are back-drive protected, except LPC bus  
pins  
21 General-Purpose I/O (GPIO) Ports  
14 support assert IRQ  
HP-SIR  
ASK-IR option of SHARP-IR  
DASK-IR option of SHARP-IR  
Programmable drive type for each output pin (open-  
drain, push-pull or output disable)  
Consumer Remote Control supports RC-5, RC-6,  
Programmable option for internal pull-up resistor on  
NEC, RCA and RECS 80  
each input pin  
DMA support: 1 or 2 channels  
Strap Configuration  
Output lock option  
Programmable option for input debounce mecha-  
Base Address (BADDR) strap to determine the base  
nism  
address of the Index-Data register pair  
Strap Inputs to select testability mode  
Testability  
XOR Tree  
TRI-STATE device pins  
www.national.com  
2
Revision1.1  
Revision Record  
Revision Date  
Status  
Draft 1.0  
Revision 1.1  
Comments  
October 2003  
First draft.  
December 2003  
Added IDD and IDDLP current numbers.  
Added IR register map and bit map.  
Technical writing edits and typos.  
Revision 1.1  
3
www.national.com  
Table of Contents  
1.0 Signal/Pin Connection and Description  
1.1  
1.2  
1.3  
CONNECTION DIAGRAM ...........................................................................................................8  
BUFFER TYPES AND SIGNAL/PIN DIRECTORY ......................................................................9  
DETAILED SIGNAL/PIN DESCRIPTIONS ................................................................................10  
1.3.1  
1.3.2  
1.3.3  
1.3.4  
1.3.5  
1.3.6  
1.3.7  
1.3.8  
1.3.9  
LPC Bus Interface .......................................................................................................10  
Clocks ..........................................................................................................................10  
Parallel Port ..............................................................................................................10  
Infrared (IR) ................................................................................................................11  
Serial Port (SP1) ..........................................................................................................11  
General-Purpose Input/Output (GPIO) Ports ...............................................................12  
Power and Ground .....................................................................................................12  
Strap Configuration ......................................................................................................13  
Test and Miscellaneous ...............................................................................................13  
1.4  
INTERNAL PULL-UP AND PULL-DOWN RESISTORS ............................................................14  
2.0 Power, Reset and Clocks  
2.1  
POWER .....................................................................................................................................15  
2.1.1  
2.1.2  
2.1.3  
Power Planes ..............................................................................................................15  
Power States ...............................................................................................................15  
Power Connection and Layout Guidelines ..................................................................15  
2.2  
2.3  
RESET SOURCES AND TYPES ...............................................................................................16  
2.2.1  
2.2.2  
VDD Power-Up Reset ..................................................................................................16  
Hardware Reset ...........................................................................................................16  
CLOCK DOMAINS .....................................................................................................................16  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
LPC Domain ................................................................................................................16  
48 MHz Domain ...........................................................................................................16  
Chip Power-Up ............................................................................................................17  
Specifications ..............................................................................................................17  
2.4  
TESTABILITY SUPPORT ..........................................................................................................17  
2.4.1  
2.4.2  
2.4.3  
ICT ...............................................................................................................................17  
XOR Tree Testing ........................................................................................................17  
Test Mode Entry Sequence .........................................................................................18  
3.0 Device Architecture and Configuration  
3.1  
3.2  
OVERVIEW ...............................................................................................................................19  
CONFIGURATION STRUCTURE AND ACCESS .....................................................................19  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
The Index-Data Register Pair ......................................................................................19  
Banked Logical Device Registers Structure ................................................................20  
Standard Configuration Register Definitions ...............................................................21  
Standard Configuration Registers ...............................................................................23  
Default Configuration Setup ........................................................................................24  
3.3  
MODULE CONTROL .................................................................................................................25  
3.3.1 Module Enable/Disable ................................................................................................25  
www.national.com  
4
Revision1.1  
Table of Contents (Continued)  
3.3.2  
Floating Module Output ...............................................................................................25  
3.4  
3.5  
INTERNAL ADDRESS DECODING ..........................................................................................26  
PROTECTION ...........................................................................................................................26  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
Multiplexed Pins Configuration Lock ...........................................................................26  
GPIO Ports Configuration Lock ...................................................................................26  
Fast Disable Configuration Lock ..................................................................................26  
Clock Control Lock ......................................................................................................26  
GPIO Ports Lock ..........................................................................................................26  
3.6  
3.7  
REGISTER TYPE ABBREVIATIONS ........................................................................................27  
SUPERI/O CONFIGURATION REGISTERS .............................................................................27  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.7.6  
SuperI/O ID Register (SID) ..........................................................................................27  
SuperI/O Configuration 1 Register (SIOCF1) ..............................................................28  
SuperI/O Configuration 2 Register (SIOCF2) ..............................................................29  
SuperI/O Configuration 6 Register (SIOCF6) ..............................................................30  
SuperI/O Revision ID Register (SRID) ........................................................................30  
Clock Generator Control Register (CLOCKCF) ...........................................................31  
3.8  
3.9  
PARALLEL PORT (PP) CONFIGURATION ..............................................................................32  
3.8.1  
3.8.2  
3.8.3  
General Description .....................................................................................................32  
Logical Device 1 (PP) Configuration ............................................................................32  
Parallel Port Configuration Register ............................................................................33  
INFRARED CONFIGURATION .................................................................................................34  
3.9.1  
3.9.2  
Logical Device 2 (IR) Configuration .............................................................................34  
Infrared Configuration Register ...................................................................................34  
3.10 SERIAL PORT 1 CONFIGURATION .........................................................................................35  
3.10.1 Logical Device 3 (SP1) Configuration ..........................................................................35  
3.10.2 Serial Port 1 Configuration Register ............................................................................35  
3.11 GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PORTS CONFIGURATION ..........................36  
3.11.1 General Description .....................................................................................................36  
3.11.2 Implementation ............................................................................................................36  
3.11.3 Logical Device 7 (GPIO) Configuration .......................................................................37  
3.11.4 GPIO Pin Select Register (GPSEL) .............................................................................38  
3.11.5 GPIO Pin Configuration Register (GPCFG) ................................................................38  
3.11.6 GPIO Event Routing Register (GPEVR) ......................................................................40  
Revision 1.1  
5
www.national.com  
Table of Contents (Continued)  
4.0 LPC Bus Interface  
4.1  
4.2  
4.3  
4.4  
OVERVIEW ...............................................................................................................................41  
LPC TRANSACTIONS ...............................................................................................................41  
CLKRUN FUNCTIONALITY ......................................................................................................41  
INTERRUPT SERIALIZER ........................................................................................................41  
5.0 General-Purpose Input/Output (GPIO) Port  
5.1  
5.2  
OVERVIEW ...............................................................................................................................42  
BASIC FUNCTIONALITY ..........................................................................................................43  
5.2.1  
5.2.2  
Configuration Options ..................................................................................................43  
Operation .....................................................................................................................43  
5.3  
5.4  
EVENT HANDLING AND SYSTEM NOTIFICATION ................................................................44  
5.3.1  
5.3.2  
Event Configuration .....................................................................................................44  
System Notification ......................................................................................................44  
GPIO PORT REGISTERS .........................................................................................................45  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
GPIO Pin Configuration Registers Structure ...............................................................46  
GPIO Port Runtime Register Map ...............................................................................46  
GPIO Data Out Register (GPDO) ................................................................................46  
GPIO Data In Register (GPDI) ....................................................................................47  
GPIO Event Enable Register (GPEVEN) ....................................................................47  
GPIO Event Status Register (GPEVST) ......................................................................47  
6.0 Legacy Functional Blocks  
6.1  
PARALLEL PORT ......................................................................................................................49  
6.1.1  
6.1.2  
6.1.3  
General Description .....................................................................................................49  
Parallel Port Register Map ...........................................................................................49  
Parallel Port Bitmap Summary ....................................................................................50  
6.2  
SERIAL PORT 1 (SP1) ..............................................................................................................52  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
General Description .....................................................................................................52  
UART Mode Register Bank Overview .........................................................................52  
Register Bank Overview ..............................................................................................52  
SP1 Register Maps ......................................................................................................53  
SP1 Bitmap Summary ................................................................................................54  
6.3  
IR FUNCTIONALITY (IR) ...........................................................................................................56  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
General Description .....................................................................................................56  
Register Bank Overview ..............................................................................................56  
IR Register Map for IR Functionality ............................................................................57  
IR Register Map for IR Functionality ............................................................................57  
IR Bitmap Summary for IR Functionality  
.................................................................60  
7.0 Device Characteristics  
7.1  
GENERAL DC ELECTRICAL CHARACTERISTICS .................................................................63  
7.1.1 Recommended Operating Conditions .........................................................................63  
www.national.com  
6
Revision 1.1  
Table of Contents (Continued)  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
Absolute Maximum Ratings .........................................................................................63  
Capacitance ................................................................................................................63  
Power Consumption under Recommended Operating Conditions ..............................63  
Voltage Thresholds ......................................................................................................64  
7.2  
DC CHARACTERISTICS OF PINS, BY I/O BUFFER TYPES ..................................................64  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.2.8  
Input, PCI 3.3V ............................................................................................................64  
Input, TTL Compatible .................................................................................................64  
Input, TTL Compatible with Schmitt Trigger ................................................................64  
Output, PCI 3.3V .........................................................................................................65  
Output, Push-Pull Buffer ..............................................................................................65  
Output, Open-Drain Buffer ...........................................................................................65  
Exceptions ...................................................................................................................65  
Terminology .................................................................................................................66  
7.3  
7.4  
INTERNAL RESISTORS ...........................................................................................................66  
7.3.1  
7.3.2  
Pull-Up Resistor ...........................................................................................................67  
Pull-Down Resistor ......................................................................................................67  
AC ELECTRICAL CHARACTERISTICS ....................................................................................67  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
7.4.7  
7.4.8  
7.4.9  
AC Test Conditions ......................................................................................................67  
Clock Input Timing .......................................................................................................68  
LCLK and LRESET ......................................................................................................69  
VDD Power-Up Reset ..................................................................................................70  
LPC and SERIRQ Signals ...........................................................................................71  
Parallel Port Timing .....................................................................................................72  
Serial Port, Sharp-IR, SIR and Consumer Remote Control Timing .............................74  
MIR and FIR Timing ....................................................................................................75  
Modem Control Timing ................................................................................................76  
Revision 1.1  
7
www.national.com  
1.0 Signal/Pin Connection and Description  
1.1 CONNECTION DIAGRAM  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
NC  
NC  
NC  
NC  
3
CTS1/GPIO11  
DTR1_BOUT1/BADDR  
RI1/GPIO10  
PD3  
LAD1  
VDD  
4
5
VSS  
6
PD2  
7
GPIO06  
LAD0  
GPIO07  
GPIO05  
PD4  
PC87383  
64-Pin TQFP  
(Top View)  
8
IRRX1  
9
IRTX  
10  
11  
12  
13  
14  
15  
16  
IRRX2_IRSL0/GPIO17  
VDD  
LFRAME  
VSS  
PD5  
SERIRQ  
LRESET  
VCORF  
STB_WRITE  
GPIO00  
PD6  
LCLK  
GPIO01  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
64-Pin Thin Quad Flatpack (TQFP)  
NS Package Number VEC064A  
Order Number PC87383-VS  
www.national.com  
8
Revision 1.1  
1.0 Signal/Pin Connection and Description (Continued)  
1.2 BUFFER TYPES AND SIGNAL/PIN DIRECTORY  
This section describes all signals. Signals are organized in functional groups.  
Buffer Types  
The signal DC characteristics are denoted by a buffer type symbol, described briefly in Table 1and in further detail in  
Chapter 7 on page 63.  
Table 1. Buffer Types  
Symbol  
INPCI  
INT  
Description  
Input, PCI 3.3V  
Input, TTL compatible  
INTS  
OPCI  
Op/n  
Input, TTL compatible, with Schmidt Trigger  
Output, PCI 3.3V  
Output, push-pull buffer that is capable of sourcing p mA and sinking n mA  
Output, open-drain output buffer that is capable of sinking n mA  
ODn  
PWR  
GND  
Power pin  
Ground pin  
Table 2. Pin Multiplexing Configuration  
Functional  
Block  
Functional  
Block  
Configuration Functional  
Select Block  
Configuration  
Select  
Signal  
Signal  
BADDR  
Signal  
Serial Port  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
LPC  
DTR1_BOUT1 Straps  
Serial Port  
Strap  
SIOCF2[0]  
GPIO10  
GPIO11  
GPO12  
GPO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO21  
GPO22  
GPIO23  
GPIO24  
LDRQ  
RI1  
Serial Port  
Serial Port  
Serial Port  
Serial Port  
Serial Port  
Serial Port  
Infrared  
CTS1  
SOUT1  
RTS1  
SIN1  
Straps  
Straps  
TEST  
TRIS  
Strap  
Strap  
DSR1  
DCD1  
IRRX2_IRSL0 SIOCF2[1]  
LPC  
LPCPD  
SIOCF2[3]  
SIOCF2[5]  
SIOCF2[7]  
SIOCF2[7]  
Strap  
LPC  
CLKRUN  
Parallel Port PD7  
Parallel Port ACK  
Testability  
XOR_OUT  
Revision 1.1  
9
www.national.com  
1.0 Signal/Pin Connection and Description (Continued)  
1.3 DETAILED SIGNAL/PIN DESCRIPTIONS  
This section describes all PC87383 signals.  
1.3.1  
LPC Bus Interface  
Signal  
Pin(s)  
I/O Buffer Type  
Description  
LAD3-0  
53, 51,  
46, 42  
I/O  
INPCI/OPCI LPC Address-Data. Multiplexed command, address bidirectional data  
and cycle status.  
LCLK  
33  
22  
38  
I
O
I
INPCI  
OPCI  
INPCI  
LPC Clock. Same as PCI clock (up to 33 MHz).  
LDRQ  
LPC DMA Request. Encoded DMA request for LPC interface.  
LFRAME  
LPC Frame. Low pulse indicates the beginning of a new LPC cycle or  
termination of a broken cycle.  
LRESET  
SERIRQ  
LPCPD  
35  
36  
29  
27  
I
I/O  
I
INPCI  
LPC Reset. In a practical implementation, it is connected to the PCI  
system reset.  
INPCI/OPCI Serial IRQ. The interrupt requests are serialized over a single pin, where  
each IRQ level is delivered during a designated time slot.  
INPCI  
Power Down. Indicates that the peripheral should prepare for power to  
be shut down on the LPC interface.  
CLKRUN  
I/OD  
INPCI/OD6  
Clock Run. Same as PCI CLKRUN.  
1.3.2  
Clocks  
Signal  
Pin(s)  
I/O Buffer Type  
Description  
CLKIN  
58  
I
INT  
Clock In. 14.318 MHz or 48 MHz clock input.  
1.3.3  
Parallel Port  
Signal  
Pin(s)  
28  
I/O  
Buffer Type  
Description  
ACK  
I
INT  
Acknowledge. Pulsed low by the printer to indicate that it has received  
data from the parallel port.  
AFD_DSTRB 57  
O
OD14, O14/14 AFD - Automatic Feed. When low, instructs the printer to  
automatically feed a line after printing each line. This pin is in TRI-  
STATE after a 0 is loaded into the corresponding control register bit.  
An external 4.7 Kpull-up resistor must be connected to this pin.  
DSTRB - Data Strobe (EPP). Active low; used in EPP mode to  
denote a data cycle. When the cycle is aborted, DSTRB becomes  
inactive (high).  
BUSY_WAIT 26  
I
INT  
INT  
Busy. Set high by the printer when it cannot accept another character.  
Wait. In EPP mode, the parallel port device uses this active low signal  
to extend its access cycle.  
ERR  
INIT  
54  
56  
I
Error. Set active low by the printer when it detects an error.  
O
OD14, O14/14 Initialize. When low, initializes the printer. This signal is in TRI-STATE  
after a 1 is loaded into the corresponding control register bit. An  
external 4.7 Kpull-up resistor must be connected to this pin.  
PD7-0  
PE  
30, 34,  
I/O  
I
INT/O14/14 Parallel Port Data. Transfers data to and from the peripheral data bus  
and the appropriate parallel port data register. These signals have a  
high current drive capability.  
37, 39, 6,  
43, 50, 52  
25  
INT  
Paper End. Set high by the printer when it is out of paper. This pin  
has an internal weak pull-up or pull-down resistor.  
www.national.com  
10  
Revision1.1  
1.0 Signal/Pin Connection and Description (Continued)  
Signal  
SLCT  
Pin(s)  
24  
I/O  
I
Buffer Type  
Description  
INT  
Select. Set active high by the printer when the printer is selected.  
SLIN_ASTRB 55  
O
OD14, O14/14 SLIN - Select Input. When low, selects the printer. This signal is in  
TRI-STATE after a 0 is loaded into the corresponding control register  
bit. An external 4.7 Kpull-up resistor must be connected to this pin.  
ASTRB - Address Strobe (EPP). Active low, used in EPP mode to  
denote an address or data cycle. When the cycle is aborted, ASTRB  
becomes inactive (high).  
STB_WRITE 14  
O
OD14, O14/14 STB - Data Strobe. When low, Indicates to the printer that valid data  
is available at the printer port. This signal is in TRI-STATE after a 0 is  
loaded into the corresponding control register bit. An external 4.7 KΩ  
pull-up resistor must be connected to this pin.  
WRITE - Write Strobe. Active low, used in EPP mode to denote an  
address or data cycle. When the cycle is aborted, WRITE becomes  
inactive (high).  
1.3.4  
Infrared (IR)  
Pin(s)  
Signal  
I/O Buffer Type  
Description  
IRRX1  
8
I
INTS  
IR Receive 1. Primary input to receive serial data from the IR transceiver.  
IRRX2_IRSL0 10  
I/O  
INTS/O3/6 IRRX2 - IR Receive 2. Auxiliary IR receiver input to support a second  
transceiver.  
IRSL0 - IR Select. Output used to control the IR transceiver.  
IRTX  
9
O
O6/12  
IR Transmit. IR serial output data.  
1.3.5  
Serial Port (SP1)  
Pin(s) I/O Buffer Type  
Signal  
Description  
CTS1  
DCD1  
DSR1  
3
I
I
INTS  
INTS  
INTS  
O3/6  
Clear to Send. When low, indicates that the modem or other data transfer  
device is ready to exchange data.  
59  
60  
Data Carrier Detected. When low, indicates that the modem or other data  
transfer device has detected the data carrier.  
I
Data Set Ready. When low, indicates that the data transfer device, e.g.,  
modem, is ready to establish a communications link.  
DTR1_BOUT1 4  
O
Data Terminal Ready. When low, indicates to the modem or other data  
transfer device that the UART is ready to establish a communications link.  
Baud Output. Provides the associated serial channel baud rate generator  
output signal if Test mode is selected, i.e., if bit 7 of the EXCR1 register is set.  
RI1  
5
I
INTS  
O3/6  
Ring Indicator. When low, indicates that a telephone ring signal was received  
by the modem. It is monitored during power-off for wake-up event detection.  
RTS1  
62  
O
Request to Send. When low, indicates to the modem or other data transfer  
device that the corresponding UART is ready to exchange data. A system  
reset sets this signal to inactive high; a loopback operation holds it inactive.  
SIN1  
61  
63  
I
INTS  
O3/6  
Serial Input. Receives composite serial data from the communications link  
(peripheral device, modem or other data transfer device).  
SOUT1  
O
Serial Output. Sends composite serial data to the communications link  
(peripheral device, modem or other data transfer device). These signals  
are set active high after a system reset.  
Revision 1.1  
11  
www.national.com  
1.0 Signal/Pin Connection and Description (Continued)  
1.3.6  
General-Purpose Input/Output (GPIO) Ports  
Signal  
GPIO00-07  
Pin(s)  
I/O Buffer Type  
Description  
15, 16,  
19, 20,  
21, 40,  
7, 41  
I/O  
INTS  
/
General-Purpose I/O Port 0, bits 0-7. Each pin is configured independent-  
ly as input or I/O, with or without static pull-up, and with either open-drain or  
push-pull output type. The port supports interrupt assertion, and each pin  
can be enabled or masked as an interrupt source.  
OD6, O3/6  
GPIO10-11, 5, 3,  
I/O  
O
INTS  
OD6, O3/6  
/
General-Purpose I/O Port 1, bits 0-1 and bits 4-7. Same as Port 0.  
GPIO14-17  
61, 60,  
59, 10  
GPO12-13  
63, 62  
OD6, O3/6 General-Purpose Output Port 1, bits 2-3. Each pin is configured  
independently with or without static pull-up, and with either open-drain or  
push-pull output type.  
GPIO20-21, 23, 29,  
I/O  
O
INTS  
OD6, O3/6  
/
General-Purpose I/O Port 2, Bits 0, 1, 3, 4. Same as Port 0, but without  
interrupt support.  
GPIO23-24  
30, 28  
GPO22  
27  
OD6, O3/6 General-Purpose Output Port 2, bit 2. The pin is configured with or  
without static pull-up, and with either open-drain or push-pull output type.  
1.3.7  
Power and Ground  
Signal  
Pin(s)  
I/O  
Buffer Type  
Description  
VDD  
VSS  
11, 32  
45  
I
I
PWR  
Main 3.3V Power Supply.  
Ground.  
12, 31,  
44  
GND  
www.national.com  
12  
Revision1.1  
1.0 Signal/Pin Connection and Description (Continued)  
1.3.8  
Strap Configuration  
Signal  
BADDR  
Pin(s) I/O Buffer Type  
Description  
4
I
INTS  
Base Address. Sampled at VDD Power-Up to determine the base  
address of the configuration Index-Data register pair.  
– No pull-down resistor (default)  
- the Index-Data pair at  
164Eh-164Fh.  
– 10 K1 external pull-down resistor - the Index-Data pair at 2Eh-2Fh1.  
The external pull-down resistor must be connected to VSS  
.
TRIS  
62  
I
INTS  
TRI-STATE Device. Sampled at VDD Power-Up to force the device to  
float all its output and I/O pins.  
– No pull-down resistor (default)  
- normal pin operation  
– 10 K1 external pull-down resistor - floating device pins  
The external pull-down resistor must be connected to VSS  
.
When TRIS is set to 0 (by an external pull-down resistor), TEST must be  
1 (i.e., left unconnected).  
TEST  
63  
I
INTS  
XOR Tree Test Mode. Sampled at VDD Power-Up to force the device  
pins into a XOR tree configuration.  
– No pull-down resistor (default)  
– 10 K1 external pull-down resistor - pins configured as XOR tree.  
The external pull-down resistor must be connected to VSS  
- normal device operation  
.
When TEST is set to 0 (by an external pull-down resistor), TRIS must be  
1 (i.e., left unconnected).  
1. Because the strap function is multiplexed with the Serial Port pins, a CMOS transceiver device is recommended  
for Serial Port functionality; in this case, the value of the external pull-down resistor is 10 K. If, however, a TTL  
transceiver device is used, the value of the external pull-down resistor must be 470, and since the Serial Port  
pins are not able to drive this load, the external pull-down resistor must disconnect tEPLV after VDD power-up  
(see Section 7.4.4 on page 70).  
1.3.9  
Test and Miscellaneous  
Signal Pin(s) I/O Buffer Type  
Description  
XOR_OUT  
VCORF  
22  
13  
O
O3/6  
-
XOR Tree Output. All the device pins (except power, ground and Not  
Connected pins) are internally connected in a XOR tree structure.  
On-Chip Core Power Converter Filter. Powers the core logic of all the  
device modules. An external 0.1 µF ceramic filter capacitor must be  
connected between this pin and VSS  
.
Revision 1.1  
13  
www.national.com  
1.0 Signal/Pin Connection and Description (Continued)  
1.4 INTERNAL PULL-UP AND PULL-DOWN RESISTORS  
The signals listed in Table 3 can optionally support internal pull-up (PU) and/or pull-down (PD) resistors. See Section 7.3 for  
the values of each resistor type.  
Table 3. Internal Pull-Up and Pull-Down Resistors  
Signal  
Pin(s)  
Type  
Comments  
General-Purpose Input/Output (GPIO) Ports  
GPIO00-07  
15, 16, 19, 20,  
21, 40, 7, 41  
PU30  
PU30  
Programmable  
Programmable  
GPIO10-11,  
GPIO14-17  
5, 3, 61, 60,  
59, 10  
GPO12-13  
GPIO21  
63, 62  
29  
PU30  
PU80  
PU30  
Programmable  
Programmable  
Programmable  
GPIO20,  
GPIO23,  
GPIO24  
23,  
30  
GPO22  
27  
PU80  
Programmable  
Strap Configuration and Testability  
Strap1  
Strap1  
Strap1  
BADDR  
TEST  
TRIS  
4
PU30  
PU30  
PU30  
63  
62  
Parallel Port  
PU30  
ACK  
28  
57  
26  
54  
56  
25  
AFD_DSTRB  
BUSY_WAIT  
ERR  
PU440  
PD120  
PU30  
INIT  
PU440  
PE  
PU220  
/
Programmable  
PD120  
PD30  
PU80  
PU440  
SLCT  
24  
55  
14  
SLIN_ASTRB  
STB_WRITE  
1. Active only during VDD Power-Up reset.  
www.national.com  
14  
Revision1.1  
2.0 Power, Reset and Clocks  
2.1 POWER  
2.1.1 Power Planes  
The PC87383 has a single 3.3V power source, VDD. Internally, an additional power plane (VCORF) is generated using an on-  
chip voltage converter. This power plane feeds all the core logic.  
2.1.2 Power States  
The following terminology is used in this document to describe the power states:  
Power On - VDD is active  
Power Off - VDD is inactive  
2.1.3 Power Connection and Layout Guidelines  
The PC87383 requires a power supply voltage of 3.3V ± 10% for the VDD supply. The on-chip Core voltage converter gen-  
erates a voltage below 3V for the internal logic.  
VDD and VCORF use a common ground return marked VSS.  
To obtain the best performance, bear in mind the following recommendations.  
Ground Connection. The following items must be connected to the ground layer (VSS) as close to the device as possible:  
The ground return (VSS) pins  
The decoupling capacitors of the Main power supply (VDD) pins  
The decoupling capacitor of the on-chip Core power converter (VCORF) pin  
Note that a low-impedance ground layer also improves noise isolation.  
Decoupling Capacitors. The following decoupling capacitors must be used in order to reduce EMI and ground bounce:  
Main power supply (VDD): Place one 0.1 µF capacitor on each VDD-VSS pin pair, as close to the pin as possible. In ad-  
dition, place one 1047 µF tantalum capacitor on the common net as close to the device as possible.  
On-chip Core power converter (VCORF): Place one 0.1 µF ceramic capacitor on the VCORF-VSS pin pair as close to the  
pin as possible.  
Main 3.3V  
11  
12  
32  
31  
VDD  
VSS  
VDD  
VSS  
+
PC87383  
10-47  
µF  
0.1 µF  
0.1 µF  
0.1 µF  
13  
VCORF  
45  
44  
VDD  
VSS  
0.1 µF  
Figure 1. Decoupling Capacitors Connection  
Revision 1.1  
15  
www.national.com  
2.0 Power, Reset and Clocks (Continued)  
2.2 RESET SOURCES AND TYPES  
The PC87383 has the following reset sources:  
VDD Power-Up Reset - activated when VDD is powered up.  
Hardware Reset - activated when the LRESET input is asserted (low)  
2.2.1  
V
Power-Up Reset  
DD  
VDD Power-Up reset is generated by an internal circuit when VDD power is turned on. VDD Power-Up reset time (tIRST) lasts  
until the LRESET signal is de-asserted. The Hardware reset (LRESET) must be asserted for a minimum of 10 ms to ensure  
that the PC87383 operates correctly.  
External devices must wait at least tIRST before accessing the PC87383. If the host processor accesses the PC87383 during  
this time, the PC87383 LPC interface ignores the transaction (that is, it does not return a SYNC handshake).  
VDD Power-Up reset performs the following actions:  
Puts pins with strap options into TRI-STATE and enables their internal pull-up resistors  
Samples the logic levels of the strap pins  
Executes all the actions performed by the Hardware reset; see Section 2.2.2  
2.2.2 Hardware Reset  
Hardware reset is activated by assertion of LRESET input while VDD is “good”. When VDD power is off, the PC87383 ignores  
the level of the LRESET input. Hardware reset performs the following actions:  
Resets all lock bits in configuration registers  
Loads default values to all the bits in the Configuration Control.  
Resets all the logical devices.  
Loads default values to all the module registers.  
2.3 CLOCK DOMAINS  
The PC87383 has two clock domains, as shown in Table 4.  
Table 4. Clock Domains of the PC87383  
Clock  
Domain  
Frequency  
Source  
Usage  
LPC  
Up to 33 MHz  
LPC clock input (LCLK)  
LPC bus interface and Configuration Registers  
Legacy functions  
(Serial Port, Parallel Port, Infrared)  
On-chip Clock Generator or di-  
rectly from Clock Input (CLKIN)  
48 MHz  
48 MHz  
2.3.1 LPC Domain  
The LPC clock signal at the LCLK pin must become valid before the end of the Hardware reset (LRESET) (see  
Section 2.2.2). This clock can be slowed down or stopped using the CLKRUN protocol.  
2.3.2 48 MHz Domain  
The 48 MHz clock domain is sourced either by the on-chip Clock Generator or directly by the CLKIN input pin. The Clock  
Generator is fed by applying a clock source at a frequency of 14.31818 MHz. The Clock Generator generates two internal  
clocks, 24 MHz and 48 MHz. After power-up or Hardware reset, the clock (Clock Generator or external clock) is disabled.  
Clock Generator Functional Description  
The on-chip Clock Generator starts working when it is enabled by bit 7 of the CLOCKCF register, Index 29h, i.e., when the  
bit value changes from 0 to 1 (only for 14.31818 MHz clock source). Once enabled, the output clock is frozen to a steady  
logic level until the clock generator provides a stable output clock that meets all requirements. Then the clock starts toggling.  
On Hardware reset, the chip wakes up with the on-chip Clock Generator disabled. The input clock of the Clock Generator  
may toggle regardless of the state of the LRESET pin. The Clock Generator waits for a toggling input clock.  
www.national.com  
16  
Revision1.1  
Bit 4 (read only) of the CLOCKCF register is the Valid Clock Generator status bit. While stabilizing, the output clock is frozen  
to a steady logic level, and the status bit is cleared to 0 to indicate a frozen clock. When the clock generator is stable, the  
output clock starts toggling and the status bit is set to 1. The status bit tells the software when the Clock Generator is ready.  
The software should poll this status bit until it is set (1), and only then activate the UART and the Infrared interface.  
The clock generator and its output clock do not consume power when they are disabled.  
2.3.3 Chip Power-Up  
To ensure proper operation, proceed as follows after power-up:  
1. Set bit 5 of the Clock Generator Control register (CLOCKCF) at Index 29h according to the clock source used; see  
Table 5.  
2. Enable the clock. If the clock source is 14.31818 MHz:  
Poll bit 4 of the CLOCKCF register while the clock generator is stabilizing.  
When bit 4 of CLOCKCF is set to 1, go to step 3.  
3. Enable any module in the chip, as needed.  
Table 5. Clock Generator Encoding Options  
CLKIN Pin Frequency  
CLOCKCF Bit 5  
48 MHz  
0
1
14.31818 MHz  
2.3.4 Specifications  
Wake-up time is 33 msec (maximum). This is measured from the time the Clock Generator is enabled until the clock is stable.  
Note: The reference clock must be stable at the time the Clock Generator is enabled. Tolerance (long term deviation) of the  
generator output clock, relative to the input clock, is ±110 ppm. Total tolerance is therefore  
± (input clock tolerance + 110 ppm).  
2.4 TESTABILITY SUPPORT  
The PC87383 supports two testability modes:  
In-Circuit Testing (ICT)  
XOR Tree Testing  
2.4.1 ICT  
The In-Circuit Testing (ICT) technique, also known as “bed-of-nails”, injects logic patterns to the input pins of the devices  
mounted on the tested board. It then checks their outputs for the correct logic levels.  
The PC87383 supports this testing technique by floating (putting in TRI-STATE) all the device pins. This prevents “back-  
driving” the PC87383 pins by the ICT tester when a device normally controlled by PC87383 is tested (device inputs are driv-  
en by the ICT tester).  
2.4.2 XOR Tree Testing  
When the PC87383 is mounted on a board, it can be tested using the XOR Tree technique. This test also checks the correct  
connection of the device pins to the board.  
In XOR Tree mode, all PC87383 pins are configured as inputs, except the last pin in the tree, which is the XOR_OUT output.  
The buffer type of the input pins participating in the XOR tree is INT (Input, TTL compatible), regardless of the buffer type of  
these pins in normal device operation mode (see Section 1.3 on page 10). The input pins are chained through XOR gates,  
as shown in Figure 2. The Not Connected, power and ground pins (NC, VDD, VSS, VCORF) are excluded from the XOR  
tree.  
Revision 1.1  
17  
www.national.com  
2.0 Power, Reset and Clocks (Continued)  
VDD  
XOR_OUT  
Pin n  
Pin n+1  
Pin n+2  
Pin n+3  
Pin 21  
Pin 22  
Figure 2. XOR Tree (Simplified Diagram)  
The maximum propagation delay through the XOR tree, from the first pin in the chain to XOR_OUT is 200 ns.  
2.4.3 Test Mode Entry Sequence  
Table 6 shows the decoding values required to enter each test mode. The test modes are decoded from the TEST and TRIS  
strap pins and are latched into PC87383 on power up.  
Table 6. Test Mode Selection  
Test Mode  
TEST  
TRIS  
No Test Mode Selected  
1
1
0
0
1
0
1
0
ICT  
XOR Tree  
Reserved exclusively for  
NSC use  
www.national.com  
18  
Revision1.1  
3.0 Device Architecture and Configuration  
The PC87383 comprises a collection of legacy and proprietary functional blocks. Each functional block is described in a sep-  
arate chapter. This chapter describes the PC87383 structure and provides all logical device specific information, including  
special implementation of generic blocks, system interface and device configuration.  
3.1 OVERVIEW  
The PC87383 consists of four logical devices, the host interface, and a central set of configuration registers, all built around  
a central internal bus. Figure 3 illustrates the blocks and related logic.  
The system interface serves as a bridge between the external LPC interface and the internal bus. It supports 8-bit read and  
write transactions for I/O and DMA, as defined in Intel’s LPC Interface Specification, Revision 1.1.  
The central configuration register set is ACPI compliant and supports a PnP configuration. The configuration registers are struc-  
tured as a subset of the Plug and Play Standard registers, defined in Appendix A of the Plug and Play ISA Specification, Revision  
1.0a by Intel and Microsoft. All system resources assigned to the functional blocks (I/O address space, DMA channels and IRQ  
lines) are configured in, and managed by, the central configuration register set. In addition, some function-specific parameters are  
configurable through the configuration registers and distributed to the functional blocks through special control signals.  
3.2 CONFIGURATION STRUCTURE AND ACCESS  
The configuration structure is comprised of a set of banked registers which are accessed via a pair of specialized registers.  
3.2.1 The Index-Data Register Pair  
Access to the PC87383 configuration registers is via an Index-Data register pair, using only two system I/O byte locations.  
The base address of this register pair is determined during VDD Power-Up reset, according to the state of the hardware strap-  
ping option on the BADDR pin. Table 7 shows the selected base addresses as a function of BADDR.  
Table 7. BADDR Strapping Options  
I/O Address  
BADDR  
Index Register Data Register  
0
2Eh  
2Fh  
1 (default)  
164Eh  
164Fh  
The Index register is an 8-bit read/write register located at the selected base address (Base+0). It is used as a pointer to the  
configuration register file, and holds the index of the configuration register that is currently accessible via the Data register.  
Reading the Index register returns the last value written to it (or the default of 00h after reset).  
The Data register is an 8-bit register (Base+1) used as a data path to any configuration register. Accessing the Data register  
actually accesses the configuration register that is currently pointed to by the Index register.  
SIN1  
GPIO20,21,23  
SOUT1  
GPO22,24  
GPO12-13  
GPIO10,11,14-17  
GPIO00-07  
RTS1  
DTR1_BOUT1  
CTS1  
DSR1  
DCD1  
GPIO  
Ports  
Serial  
Port 1  
RI1  
IRRX1,IRRX2  
IRTX  
IR  
CLKIN  
LRESET  
LCLK  
SERIRQ  
LDRQ  
LFRAME  
LAD3-0  
CLKRUN  
LPCPD  
IRSL0  
SLCT  
PE  
BUSY_WAIT  
ACK  
SLIN_ASTRB  
INIT  
PD7-0  
ERR  
AFD_DSTRB  
STB_WRITE  
Bus  
Interface  
Parallel  
Port  
BADDR  
TEST  
TRIS  
Strap  
Config  
Config &  
Control Registers  
Figure 3. PC87383 Detailed Block Diagram  
Revision 1.1  
19  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.2.2 Banked Logical Device Registers Structure  
Each functional block is associated with a Logical Device Number (LDN). The configuration registers are grouped into banks,  
where each bank holds the standard configuration registers of the corresponding logical device. Table 8 shows the LDN val-  
ues of the PC87383 functional blocks. Any value not listed is reserved.  
Figure 4 shows the structure of the standard configuration register file. The LDN and PC87383 configuration registers are  
not banked and are accessed by the Index-Data register pair only, as described in Section 3.2.1. However, the device control  
and device configuration registers are duplicated over four banks for four logical devices. Therefore, accessing a specific  
register in a specific bank is performed by two-dimensional indexing, where the LDN register selects the bank (or logical  
device) and the Index register selects the register within the bank. Accessing the Data register while the Index register holds  
a value of 30h or higher physically accesses the logical device configuration registers currently pointed to by the Index reg-  
ister, within the logical device currently selected by the LDN register.  
07h  
Logical Device Number Register  
SuperI/O Configuration Registers  
20h  
2Fh  
Logical Device Control Register  
30h  
60h  
63h  
70h  
71h  
74h  
75h  
Standard Logical Device  
Configuration Registers  
Bank Select  
Special (Vendor-defined)  
Logical Device  
F0h  
FFh  
Configuration Registers  
Banks  
(One per logical device)  
Figure 4. Structure of Standard Configuration Register File  
Table 8. Logical Device Number (LDN) Assignments  
Functional Block  
LDN  
01h  
02h  
03h  
07h  
Parallel Port (PP)  
Infrared (IR)  
Serial Port 1 (SP1)  
General-Purpose I/O (GPIO) Ports  
Write accesses to unimplemented registers (i.e. accessing the Data register while the Index register points to a non-existing  
register) are ignored; reads return 00h on all addresses, except 74h and 75h (DMA configuration registers), which return  
04h (indicating no DMA channel is active). The configuration registers are accessible immediately after reset.  
www.national.com  
20  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
3.2.3 Standard Configuration Register Definitions  
In the registers below, any undefined bit is reserved. Unless otherwise noted, the following definitions also hold true:  
All registers are read/write.  
All reserved bits return 0 on reads, except where noted otherwise. To prevent unpredictable results, do not modify  
these bits. Use read-modify-write to prevent the values of reserved bits from being changed during write.  
Write-only registers must not use read-modify-write during updates.  
Table 9. Standard General Configuration Registers  
Index  
Register Name  
Description  
07h  
Logical Device  
Number  
This register selects the current logical device. See Table 8 for valid numbers. All  
other values are reserved.  
20h-2Fh  
PC87383  
Configuration  
PC87383 configuration registers and ID registers.  
Table 10. Logical Device Activate Register  
Index  
Register Name  
Description  
30h  
Activate  
Bits 7-1: Reserved.  
Bit 0:  
Logical device activation control; see Section 3.3 on page 25.  
0: Disabled.  
1: Enabled.  
Table 11. I/O Space Configuration Registers  
Index  
Register Name  
Description  
60h  
I/O Port Base  
Address Bits 15-8  
Descriptor 0  
Indicates selected I/O lower limit address bits 15-8 for I/O Descriptor 0.  
61h  
I/O Port Base  
Address Bits 7-0  
Descriptor 0  
Indicates selected I/O lower limit address bits 7-0 for I/O Descriptor 0.  
Revision 1.1  
21  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
Table 12. Interrupt Configuration Registers  
Index  
Register Name  
Description  
70h  
Interrupt Number Indicates selected interrupt number.  
Bits 7-4: Reserved.  
Bits 3-0: These bits select the interrupt number. A value of 1 selects IRQ1. A value  
of 15 selects IRQ15. IRQ0 is not a valid interrupt selection and  
represents no interrupt selection.  
Note: Avoid selecting the same interrupt number (except 0) for different logical  
devices, as it causes the PC87383 to behave unpredictably.  
71h  
Interrupt Request Indicates the type and polarity of the interrupt request number selected in the  
Type Select  
previous register. If a logical device supports only one type of interrupt, the  
corresponding bit is read only.  
Bits 7-2: Reserved.  
Bit 1:  
Polarity of interrupt request selected in previous register.  
0: Low polarity.  
1: High polarity.  
Bit 0:  
Type of interrupt request selected in previous register.  
0: Edge.  
1: Level.  
Table 13. DMA Configuration Registers  
Description  
Index  
Register Name  
74h  
DMA Channel  
Select 0  
Indicates selected DMA channel for DMA 0 of the logical device (0 is the first DMA  
channel if more than one DMA channel is used).  
Bits 7-3: Reserved.  
Bits 2-0: These select the DMA channel for DMA 0, where:  
- A value of 0, 1, 2, or 3 selects DMA channel 0, 1, 2, or 3, respectively.  
- A value of 4 indicates that no DMA channel is active.  
- The values 5-7 are reserved.  
Note: Avoid selecting the same DMA channel (except 4) for different logical  
devices, as it causes the PC87383 to behave unpredictably.  
75h  
DMA Channel  
Select 1  
Indicates selected DMA channel for DMA 1 of the logical device (1 is the second  
DMA channel if more than one DMA channel is used).  
Bits 7-3: Reserved.  
Bits 2-0: These select the DMA channel for DMA 1, where:  
- A value of 0, 1, 2, or 3 selects DMA channel 0, 1, 2, or 3, respectively.  
- A value of 4 indicates that no DMA channel is active.  
- The values 5-7 are reserved.  
Note: Avoid selecting the same DMA channel (except 4) for different logical  
devices, as it causes the PC87383 to behave unpredictably.  
Table 14. Special Logical Device Configuration Registers  
Index  
Register Name  
Description  
F0h-FFh  
Logical Device Special (vendor-defined) configuration options.  
Configuration  
www.national.com  
22  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
3.2.4 Standard Configuration Registers  
Index  
Register Name  
Logical Device Number  
07h  
20h  
SuperI/O ID  
21h  
SuperI/O Configuration 1  
SuperI/O Configuration 2  
Reserved  
22h  
23h-25h  
26h  
SuperI/O Control and  
Configuration Registers  
SuperI/O Configuration 6  
SuperI/O Revision ID  
27h  
28h  
Reserved  
29h  
Clock Generator Control  
2Ah - 2Fh  
30h  
Reserved exclusively for National use  
Logical Device Control (Activate)  
I/O Base Address Descriptor 0 Bits 15-8  
I/O Base Address Descriptor 0 Bits 7-0  
Interrupt Number and Wake-Up on IRQ Enable  
IRQ Type Select  
60h  
61h  
Logical Device Control and  
Configuration Registers -  
70h  
71h  
(some are optional)  
74h  
DMA Channel Select 0  
75h  
DMA Channel Select 1  
F0h - FFh  
Device Specific Logical Device Configuration 1 to 16  
Figure 5. Configuration Register Map  
SuperI/O Configuration Registers  
The PC87383 configuration registers at Indexes 20h and 27h are used for part identification. The other configuration  
registers are used for global power management and the selection of pin multiplexing options. For details, see Section 3.7  
on page 27.  
Logical Device Control and Configuration Registers  
A subset of these registers is implemented for each logical device. See the functional block descriptions in the following sec-  
tions.  
Control  
The only implemented control register for each logical device is the Activate register at Index 30h. Bit 0 of the Activate reg-  
ister controls the activation of the associated functional block. Activation enables access to the functional block’s registers,  
and attaches its system resources, which are unassigned as long as it is not activated. Other effects may apply on a function-  
specific basis (such as clock enable and active pinout signaling). Access to the configuration register of the logical device is  
enabled even when the logical device is not activated.  
Standard Configuration  
The standard configuration registers manage the PnP resource allocation to the functional blocks. The I/O port base address  
descriptor 0 is a pair of registers at Index 60-61h, holding the first 16-bit base address for the register set of the functional  
block. An optional 16-bit second base-address (descriptor 1) at Index 62-63h is used for logical devices with more than one  
continuous register set. Interrupt Number (Index 70h) and IRQ Type Select (Index 71h) allocate an IRQ line to the block and  
control its type. DMA Channel Select 0 (Index 74h) allocates a DMA channel to the block, where applicable. DMA Channel  
Select 1 (Index 75h) allocates a second DMA channel, where applicable.  
Revision 1.1  
23  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
Special Configuration  
The vendor-defined registers, starting at Index F0h, control function-specific parameters such as operation modes, power  
saving modes, pin TRI-STATE, and non-standard extensions to generic functions.  
3.2.5 Default Configuration Setup  
In the event of a VDD Power-Up or Hardware reset, the PC87383 wakes up with the following default configuration setup:  
The configuration base address is 2Eh or 164Eh, according to the BADDR strap pin value, as shown in Table 7 on  
page 19.  
All logical devices are disabled.  
All multiplexed GPIO pins are configured to their respective default function. When configured as GPIO, they have  
an internal static pull-up (default direction is input).  
The legacy devices (Serial Port, Parallel Port and IR) are assigned with their legacy system resource allocation.  
National Semiconductor proprietary functions are not assigned with any default resources, and the default values of  
their base addresses are all 00h.  
See Section 2.2 on page 16 for more details on PC87383 reset sources and types.  
www.national.com  
24  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
3.3 MODULE CONTROL  
3.3.1 Module Enable/Disable  
Module control is performed primarily through the Activation bit (bit 0 of Index 30h) of each logical device. The operation of  
each module can be controlled by the host through the LPC bus.  
Module enable/disable by the host through the LPC bus is controlled by the following bits:  
Activation bit (bit 0) in Index 30h of the Standard configuration registers; see Section 3.2.3 on page 21.  
Fast Disable bit in SIOCF6 register; for the Serial Port 1, Parallel Port and IR modules only; see Section 3.7.4 on  
page 30.  
Global Enable bit (GLOBEN) in SIOCF1 register; see Section 3.7.2 on page 28.  
A module is enabled only if all of these bits are set to their “enable” value.  
When a legacy (SP1, Parallel Port or IR) module is disabled, the following takes place:  
The host system resources of the logical device (IRQ, DMA and runtime address range) are unassigned.  
Access to the standard- and device-specific Logical Device configuration registers through the LPC bus remains enabled.  
Access to the module’s runtime registers through the LPC bus is disabled (transactions are ignored; SYNC cycle is  
not generated).  
The module’s internal clock is disabled (the module is not functional) to lower the power consumption.  
When the GPIO module is disabled, the following takes place:  
The host system resources of the logical device (IRQ and runtime address range) are unassigned.  
Access to the standard- and device-specific Logical Device configuration registers through the LPC bus remains enabled.  
Access to the module’s runtime registers through the LPC bus is disabled (transactions are ignored; SYNC cycle is  
not generated).  
The module is functional.  
3.3.2 Floating Module Output  
The pins of the Legacy modules (Serial Port, Parallel Port, Infrared) can be floated. When the TRI-STATE Control bit (bit 0)  
is set in the specific module configuration register (at Index F0h of the specific logical device in the configuration space) and  
the module is disabled (see Section 3.3.1), the module output signals are floated and the I/O signals are configured as inputs  
(note that the logic level at the inputs is ignored by the module, which is disabled).  
Figure 6 shows the control mechanism for floating the pins of a Legacy module.  
Device Configuration  
Activation  
Bit (bit 0)  
Index 30h  
Register  
Global  
Enable  
GLOBEN  
Legacy  
Module  
Module  
Enable  
SIOCF1  
Register  
Fast  
Disable  
xxxDIS  
SIOCF6  
Register  
1
Legacy Module  
Output  
Buffer  
Enable  
TRI-  
STATE  
Control  
Configuration  
Register  
(Index F0h)  
1. Wherever the bit is implemented  
Figure 6. Control of Floating Legacy Module Pins  
Revision 1.1  
25  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.4 INTERNAL ADDRESS DECODING  
A full 16-bit address decoding is applied when accessing the configuration I/O space as well as the registers of the functional  
blocks. However, the number of configurable bits in the base address registers varies for each logical device.  
The lower 1, 2, 3, 4 or 5 address bits are decoded within the functional block to determine the offset of the accessed register  
within the logical device’s I/O range of 2, 4, 8, 16 or 32 bytes, respectively. The remaining bits are matched with the base  
address register to decode the entire I/O range allocated to the logical device. Therefore the lower bits of the base address  
register are forced to 0 (read only), and the base address is forced to be 2, 4, 8, 16 or 32 byte-aligned, according to the size  
of the I/O range.  
The base addresses of the Serial Port 1 and FIR modules are limited to the I/O address range of 00h to 7FXh only (bits 11-15  
are forced to 0). The Parallel Port base address is limited to the I/O address range of 00h to 3F8h. The addresses of the  
non-legacy logical devices are configurable within the full 16-bit address range (up to FFFXh).  
In some special cases, other address bits are used for internal decoding (such as bit 10 in the Parallel Port). For more details,  
see the description of the base address register for each logical device.  
3.5 PROTECTION  
The PC87383 provides features to protect the hardware configuration from changes made by application software running  
on the host.  
The protection is activated by the software setting a “sticky” lock bit. Each lock bit protects a group of configuration bits lo-  
cated either in the same register or in different registers. When the lock bit is set, the lock bit and all the protected bits be-  
come read only and cannot be further modified by the host through the LPC bus. All the lock bits are reset by Hardware  
reset, thus unlocking the protected configuration bits.  
The bit locking protection mechanism is optional.  
The protected groups of configuration bits are described below.  
3.5.1 Multiplexed Pins Configuration Lock  
Protects the configuration of all the multiplexed device pins.  
Lock bit:  
LOCKMCF in SIOCF1 register (Device Configuration).  
Protected bits: LOCKMCF and IOWAIT (in SIOCF1 register) and all bits in SIOCF2 register (Device Configuration).  
3.5.2 GPIO Ports Configuration Lock  
Protects the configuration (but not the data) of all the GPIO Ports.  
Lock bit:  
LOCKGCF in SIOCF1 register (Device Configuration).  
Protected bits for each GPIO Port: LOCKGCF in SIOCF1 register, and all bits in GPCFG register (except LOCKCFP bit) and  
GPEVR register (Device Configuration).  
3.5.3 Fast Disable Configuration Lock  
Protects the Fast Disable bits for all the Legacy modules.  
Lock bit:  
LOCKFDS in SIOCF6 register (Device Configuration).  
Protected bits: All bits in SIOCF6 register (except General-Purpose Scratch bits) and GLOBEN bit in SIOCF1 register  
(Device Configuration).  
3.5.4 Clock Control Lock  
Protects the Clock Generator control bits.  
Lock bit:  
LOCKCCF in CLOCKCF register (Device Configuration).  
Protected bits: All bits in CLOCKCF register (Device Configuration).  
3.5.5 GPIO Ports Lock  
Protects the configuration and data of all the GPIO Ports.  
Lock bit:  
Protected bits for each GPIO Port:  
PUPCTL, OUTTYPE and OUTENA in GPCFG register; the corresponding bit (to the port pin) in GPDO reg-  
ister (GPIO Ports).  
LOCKCFP in GPCFG register, for each GPIO Port (Device Configuration).  
www.national.com  
26  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
3.6 REGISTER TYPE ABBREVIATIONS  
The following abbreviations are used to indicate the Register Type:  
R/W  
R
= Read/Write.  
= Read from a specific address returns the value of a specific register. Write to the same address is to a dif-  
ferent register.  
W
= Write.  
RO  
= Read Only.  
R/W1C = Read/Write 1 to Clear. Writing 1 to a bit clears it to 0. Writing 0 has no effect.  
R/W1S = Read/Write 1 to Set. Writing 1 to a bit sets its value to 1. Writing 0 has no effect.  
3.7 SUPERI/O CONFIGURATION REGISTERS  
This section describes the SuperI/O configuration and ID registers (those registers with first level indexes in the range of  
20h-2Eh). See Table 15 for a summary and directory of these registers.  
Note: Set the configuration registers to enable functions or signals that are relevant to the specific device. The values of  
fields that select functions, or signals, that are excluded from a specific device are treated as reserved and should  
not be selected.  
Table 15. SuperI/O Configuration Registers  
Index  
Mnemonic  
SID  
Register Name  
Type  
Section  
20h  
21h  
SuperI/O ID  
RO  
R/W  
R/W  
3.7.1  
3.7.2  
3.7.3  
SIOCF1  
SIOCF2  
SuperI/O Configuration 1  
SuperI/O Configuration 2  
22h  
23h-25h  
26h  
Reserved for National use  
SIOCF6  
SRID  
SuperI/O Configuration 6  
R/W  
RO  
3.7.4  
3.7.5  
3.7.6  
27h  
SuperI/O Revision ID  
29h  
CLOCKCF  
Clock Generator Control Register  
R/W  
2Ah - 2Fh  
Reserved exclusively for National use  
3.7.1 SuperI/O ID Register (SID)  
This register contains the identity number of the chip. The PC87383 family is identified by the value F4h.  
Location: Index 20h  
Type:  
RO  
Bit  
7
6
5
4
3
2
1
0
Name  
Chip ID  
Reset  
F4h  
Revision 1.1  
27  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.7.2 SuperI/O Configuration 1 Register (SIOCF1)  
Location: Index 21h  
Type:  
Varies per bit  
Bit  
7
6
5
0
4
1
3
2
0
1
Reserved  
0
0
GLOBEN  
1
Name  
Reset  
LOCKMCF LOCKGCF  
Reserved  
IOWAIT  
0
0
0
Bit  
Type  
Description  
7
R/W1S LOCKMCF (Lock Multiplexing Configuration). When set to 1, this bit locks the configuration of  
registers SIOCF1 and SIOCF2 by disabling writing to all bits in these registers (including the LOCKMCF  
bit itself), except for the LOCKGCF and GLOBEN bits in SIOCF1. Once set, this bit can only be cleared  
by Hardware reset.  
0: R/W bits are enabled for write (default).  
1: All bits are RO.  
6
R/W1S LOCKGCF (Lock GPIO Pins Configuration). When set to 1, this bit locks the configuration registers  
of all GPIO pins (see Section 3.11.3 on page 37) by disabling writes to all their bits (including the  
LOCKGCF bit itself). The locked registers include the GPCFG (except LOCKCFP bit) and GPEVR  
registers of all GPIO pins. Once set, this bit can only be cleared by Hardware reset.  
0: R/W bits are enabled for write (default).  
1: All bits are RO.  
5-4  
Reserved. These bits must be ‘01’.  
3-2 R/W or IOWAIT (Number of I/O Wait States). These bits set the number of wait states for I/O transactions  
RO through the LPC bus.  
Bits  
3 2  
Number of Wait States  
0 0:  
0 1:  
1 0:  
0 (default)  
2
6
1 1: 12  
1
0
Reserved. This bit must be 0.  
R/W or GLOBEN (Global Device Enable). This bit makes it possible to disable all logical devices by setting a  
RO single bit (to 0). In addition, when the bit is set to 1, it enables the operation of all the logical devices of  
the PC87383, as long as the logical device is itself enabled (see Table 8 on page 20). The behavior of  
the different devices is explained in Section 3.3 on page 25.  
0: All logical devices in the PC87383 are disabled and their resources are released.  
1: Enables each PC87383 logical device that is itself enabled (default); see Section 3.3.1 on page 25.  
www.national.com  
28  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
3.7.3 SuperI/O Configuration 2 Register (SIOCF2)  
This register is reset by hardware to 63h.  
Location: Index 22h  
Type:  
R/W or RO  
Bit  
7
6
5
4
3
2
1
0
Name  
Reset  
PPSEL  
Reserved CLKRUNSEL Reserved LPCPDSEL Reserved IRRX2SEL SP1SEL  
0
1
1
0
0
0
1
1
Bit  
Description  
7
PPSEL (Parallel Port Selection Control). Selects the functions connected to pins 28 and 30.  
0: GPIO24, GPIO23 (default).  
1: ACK, PD7.  
6
5
Reserved.  
CLKRUNSEL (CLKRUN Selection Control). Selects the functions connected to pin 27. This bit is reset on VDD  
power-up only.  
0: GPO22.  
1: CLKRUN (default).  
4
3
Reserved.  
LPCPDSEL (LPCPD Selection Control). Selects the function connected to pin 29. This bit is reset on VDD  
power-up only.  
0: GPIO21 (default)  
1: LPCPD  
2
1
Reserved.  
IRRX2SEL (IRRX2 Selection Control). Selects the function connected to pin 10.  
0: GPIO17.  
1: IRRX2_IRSL0 (default).  
0
SP1SEL (Serial Port 1 Selection Control). Selects the function connected to pins 5, 3, 63, 62, 61, 60 and 59.  
0: GPIO10-GPIO16.  
1: RI1, DTR1_BOUT1, CTS1, SOUT1, RTS1, SIN1, DSR1, DCD1 (default).  
Note: During initialization, bits 6 and 4 must be initialized to 0 to allow correct operation of the chip.  
Revision 1.1  
29  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.7.4 SuperI/O Configuration 6 Register (SIOCF6)  
This register provides a fast way to disable one or more modules without having to access the Activate register of each; see  
Section 3.3.1 on page 25.  
Location: Index 26h  
Type:  
Varies per bit  
Bit  
7
LOCKFDS  
0
6
5
4
Reserved  
0
3
SER1DIS  
0
2
IRDIS  
0
1
PARPDIS  
0
0
Reserved  
0
Name  
General-Purpose  
Scratch  
Reset  
0
0
Bit  
Type  
Description  
7
R/W1 LOCKFDS (Lock Fast Disable Configuration). When set to 1, this bit locks itself, SER1DIS, PARPDIS  
S
and IRDIS bits in this register and GLOBEN bit in SIOCF1 register by disabling writing to all of these bits.  
Once set, this bit can be cleared by Hardware reset.  
0: R/W bits are enabled for write (default).  
1: All bits are RO.  
6-5  
4
R/W General-Purpose Scratch.  
Reserved.  
3
R/W SER1DIS (Serial Port 1 Disable).  
or RO  
0: Enabled or Disabled, according to Activation bit (default).  
1: Disabled.  
2
1
R/W IRDIS (Infrared Disable).  
or RO  
0: Enabled or Disabled, according to Activation bit (default).  
1: Disabled.  
R/W PARPDIS (Parallel Port Disable). When set to 1, this bit forces the Parallel Port module to be disabled  
or RO (and its resources released) regardless of the actual setting of its Activation bit (Index 30).  
0: Enabled or Disabled, according to Activation bit (default).  
1: Disabled.  
0
Reserved.  
3.7.5 SuperI/O Revision ID Register (SRID)  
This register contains the ID number of the specific family member (Chip ID) and the chip revision number (Chip Rev).  
Location: Index 27h  
Type:  
RO  
Bit  
7
0
6
Chip ID  
0
5
0
4
3
2
Chip Rev  
X
1
0
Name  
Reset  
X
X
X
X
Bit  
Description  
7-5 Chip ID.  
4-0 Chip Rev. These bits identify the device revision.  
www.national.com  
30  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
3.7.6 Clock Generator Control Register (CLOCKCF)  
Location: Index 29h  
Type:  
Varies per bit  
Bit  
7
CKEN  
0
6
5
4
3
2
0
1
Reserved  
0
0
0
Name  
Reset  
Reserved CK48SEL CKVALID LOCKCCF  
0
0
0
0
Bit  
Type  
Description  
7
R/W or CKEN (Clock Enable). This bit enables the internal clock of PC87383. If the clock source selected by  
RO CK48SEL bit is the Clock Generator, this bit enables the Clock Generator. Otherwise it enables the  
path from the CLKIN input pin.  
0: Clock disabled (default).  
1: Clock enabled.  
6
5
Reserved.  
R/W or CK48SEL (48 MHz Clock Select). Selects the source of the internal 48 MHz clock.  
RO  
0: The source of the internal 48 MHz clock is CLKIN pin (default).  
Use when CLKIN pin is connected to 48 MHz clock source.  
1: The source of the internal 48 MHz clock is the Clock Generator.  
Use when CLKIN pin is connected to 14.31818 MHz clock source.  
4
3
RO CKVALID (Valid Clock Generator, Clock Status). This bit indicates the status of the on-chip, 48 MHz  
Clock Generator and controls the generator output clock signal. The PC87383 modules using this clock  
may be enabled (see Section 3.3.1 on page 25) only after this bit is read high (generator clock is valid).  
0: Generator output clock frozen (default).  
1: Generator output clock active (stable and toggling).  
R/W1S LOCKCCF (Lock Clock Configuration). When set to 1, this bit locks the configuration register  
CLOCKCF by disabling writing to all its bits (including to the LOCKCCF bit itself). Once set, this bit can  
be cleared by Hardware reset.  
0: The R/W bits are enabled for write (default).  
1: All the bits are Read-Only.  
2-0  
Reserved.  
Revision 1.1  
31  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.8 PARALLEL PORT (PP) CONFIGURATION  
3.8.1 General Description  
The PC87383 Parallel Port supports all IEEE1284 standard communication modes: Compatibility (also known as Standard  
or SPP), Bi-directional (known also as PS/2), FIFO, EPP (also known as mode 4) and ECP (with an optional Extended ECP  
mode).  
The Parallel Port includes two groups of runtime registers (see Section 6.1 on page 49):  
A group of 21 registers at first level offset, sharing 14 entries. Three of these registers (at offsets 403h, 404h and 405h)  
are used only in Extended ECP mode.  
A group of four registers, used only in Extended ECP mode, is accessed by a second level offset.  
The desired mode is selected by the ECR runtime register (offset 402h). The selected mode determines which runtime reg-  
isters are used and which address bits are used for the base address. The Parallel Port functional block registers are shown  
in Section 6.1 on page 49.  
3.8.2 Logical Device 1 (PP) Configuration  
Table 16 lists the configuration registers that affect the Parallel Port. Only the last register (F0h) is described here. See Sec-  
tions 3.2.3 and 3.2.4 for descriptions of the other configuration registers.  
Table 16. Parallel Port Configuration Registers  
Index  
Configuration Register or Action  
Type  
Reset  
30h Activate (see Section 3.3.1 on page 25).  
R/W  
R/W  
00h  
02h  
60h Base Address MSB register. Bits 7-3 (for A15-11) are read only, 00000’. Bit 2 (for A10) must  
be ‘0’.  
61h Base Address LSB register. Bits 1 and 0 (A1 and A0) are read only, 00’. For ECP mode 4  
(EPP) or when using Extended registers, bit 2 (A2) must also be ‘0’.  
R/W  
78h  
70h Interrupt Number and Wake-Up on IRQ Enable register.  
R/W  
R/W  
07h  
02h  
71h Interrupt Type:  
- Bits 7-2 are read only.  
- Bit 1 is a read/write bit.  
- Bit 0 is read only. It reflects the interrupt type dictated by the Parallel Port operation mode.  
This bit is set to 1 (level interrupt) in Extended mode and cleared (edge interrupt) in all other  
modes.  
74h DMA Channel Select.  
R/W  
RO  
04h  
04h  
F2h  
75h Report no second DMA assignment.  
F0h Parallel Port Configuration register.  
R/W  
www.national.com  
32  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
3.8.3 Parallel Port Configuration Register  
This register is reset to F2h.  
Location: Index F0h  
Type:  
R/W  
Bit  
7
6
5
4
3
0
2
0
1
0
Name  
Extended  
Register  
Access  
Power  
Mode  
Control  
TRI-STATE  
Control  
Parallel Port Mode Select  
Reserved  
Reset  
1
1
1
1
1
0
Bit  
Description  
7-5 Parallel Port Mode Select.  
Bits  
7 6 5  
0 0 0:  
0 0 1:  
0 1 0:  
0 1 1:  
1 0 0:  
1 0 1:  
1 1 0:  
1 1 1:  
Mode  
SPP-Compatible mode. PD7-0 are always output signals  
SPP Extended mode. PD7-0 direction is controlled by software  
EPP 1.7 mode  
EPP 1.9 mode  
ECP mode (IEEE1284 register set), with no support for EPP mode  
Reserved  
Reserved  
ECP mode (IEEE1284 register set), with EPP mode selectable as mode “100” (default)  
Selection of EPP 1.7 or 1.9 in ECP mode “100” is controlled by bit 4 of the Control2 configuration register of the  
Parallel Port at offset 02h.  
Note: Before setting bits 7-5, enable the Parallel Port and set CTR/DCR (at base address + 2) to C4h.  
4
Extended Register Access.  
0: Registers at base (address) + 403h, base + 404h and base + 405h are not accessible (reads and writes are  
ignored).  
1: Registers at base (address) + 403h, base + 404h and base + 405h are accessible. This option supports runtime  
configuration within the Parallel Port address space (default).  
3-2 Reserved.  
1
Power Mode Control. When the logical device is active:  
0: Parallel Port clock disabled. ECP modes and EPP time-out are not functional when the logical device is active.  
Registers are maintained.  
1: Parallel Port clock enabled. All operation modes are functional when the logical device is active (default).  
0
TRI-STATE Control. When this bit is set to 1 and the logical device is inactive, the logical device output pins  
are in TRI-STATE (see Section 3.3.2 on page 25).  
0: Normal outputs (default).  
1: TRI-STATE outputs when the logical device is inactive.  
Revision 1.1  
33  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.9 INFRARED CONFIGURATION  
3.9.1 Logical Device 2 (IR) Configuration  
Table 17 lists the configuration registers that affect the Infrared. Only the last register (F0h) is described here. See Sections  
3.2.3 and 3.2.4 for descriptions of the other registers.  
Table 17. Infrared Configuration Registers  
Index  
Configuration Register or Action  
Type  
Reset  
30h Activate. See also bit 0 of the SIOCF1 register and bit 2 of the SIOCF6 register. R/W  
00h  
02h  
F8h  
03h  
03h  
04h  
04h  
02h  
60h Base Address MSB register. Bits 7-3 (for A15-11) are read only, 00000b.  
61h Base Address LSB register. Bit 2-0 (for A2-0) are read only, 000b.  
70h Interrupt Number and Wake-Up on IRQ Enable register  
71h Interrupt Type. Bit 1 is R/W; other bits are read only.  
74h DMA Channel Select 0 (RX_DMA)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
75h DMA Channel Select 1 (TX_DMA)  
F0h Infrared Configuration register  
3.9.2 Infrared Configuration Register  
This register is reset by hardware to 02h.  
Location: Index F0h  
Type:  
R/W  
Bit  
7
6
0
5
0
4
3
0
2
1
0
Name  
Bank  
Select  
Enable  
Power  
Mode  
Control  
Busy  
Indicator  
TRI-STATE  
Control  
Reserved  
Reset  
0
0
0
1
0
Bit  
Description  
7
Bank Select Enable. Enables bank switching for Infrared.  
0: All attempts to access the extended registers in Infrared are ignored (default).  
1: Enables bank switching for Infrared.  
6-3 Reserved.  
2
Busy Indicator. This read-only bit can be used by power management software to decide when to power down  
the Infrared logical device.  
0: No transfer in progress (default).  
1: Transfer in progress.  
1
Power Mode Control. When the logical device is active in:  
0: Low power mode  
Infrared clock disabled. The output signals are set to their default states. Registers are maintained (unlike  
Active bit in Index 30, which also prevents access to Infrared registers).  
1: Normal power mode  
Infrared clock enabled. Infrared is functional when the logical device is active (default).  
0
TRI-STATE Control. When enabled and the device is inactive, the logical device output pins are in TRI-STATE.  
One exception is the IRTX pin, which is driven to 0 when Infrared is inactive and is not affected by this bit.  
0: TRI-STATE disabled (default).  
1: TRI-STATE enabled.  
www.national.com  
34  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
3.10 SERIAL PORT 1 CONFIGURATION  
3.10.1 Logical Device 3 (SP1) Configuration  
Table 18 lists the configuration registers that affect the Serial Port 1. Only the last register (F0h) is described here. See Sec-  
tions 3.2.3 and 3.2.4 for descriptions of the other registers.  
Table 18. Serial Port 1 Configuration Registers  
Index  
Configuration Register or Action  
Type  
Reset  
30h Activate. See also bit 0 of the SIOCF1 register and bit 3 of the SIOCF6 register. R/W  
00h  
03h  
F8h  
04h  
03h  
04h  
04h  
02h  
60h Base Address MSB register. Bits 7-3 (for A15-11) are read only, 00000b.  
61h Base Address LSB register. Bit 2-0 (for A2-0) are read only, 000b.  
70h Interrupt Number and Wake-Up on IRQ Enable register.  
71h Interrupt Type. Bit 1 is R/W; other bits are read only.  
74h Report no DMA Assignment.  
R/W  
R/W  
R/W  
R/W  
RO  
75h Report no DMA Assignment.  
RO  
F0h Serial Port 1 Configuration register.  
R/W  
3.10.2 Serial Port 1 Configuration Register  
This register is reset by hardware to 02h.  
Location: Index F0h  
Type:  
R/W  
Bit  
7
6
0
5
0
4
3
0
2
1
0
Name  
Bank  
Select  
Enable  
Power  
Mode  
Control  
Busy  
Indicator  
TRI-STATE  
Control  
Reserved  
Reset  
0
0
0
1
0
Bit  
Description  
7
Bank Select Enable. Enables bank switching for Serial Port 1.  
0: Disabled (default).  
1: Enabled.  
6-3 Reserved.  
2
Busy Indicator. This read-only bit can be used by power management software to decide when to power down  
the Serial Port 1 logical device.  
0: No transfer in progress (default).  
1: Transfer in progress.  
1
Power Mode Control. When the logical device is active in:  
0: Low power mode  
Serial Port 1 clock disabled. The output signals are set to their default states. The RI input signal can be  
programmed to generate an interrupt. Register values are maintained (unlike Active bit in Index 30, which also  
prevents access to Serial Port 1 registers).  
1: Normal power mode  
Serial Port 1 clock enabled. Serial Port 1 is functional when the logical device is active (default).  
0
TRI-STATE Control. When enabled and the device is inactive, the logical device output pins are in TRI-STATE.  
0: TRI-STATE disabled (default).  
1: TRI-STATE enabled.  
Revision 1.1  
35  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.11 GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PORTS CONFIGURATION  
3.11.1 General Description  
The GPIO functional block includes 21 pins,arranged in three 8-bit ports (ports 0, 1 and 2):  
Port 0 contains eight GPIOE pins (i.e., GPIO pins with event detection).  
Port 1 contains six GPIOE pins and two GPO pins.  
Port 2 contains three GPIO pins (i.e., GPIO pins without event detection).  
All pins in port 0 and 1 have full event detection capability, enabling them to trigger the assertion of IRQ signals. Pins in port  
2 do not have event detection capability. The runtime registers associated with the three ports are arranged in the GPIO  
address space as shown in Table 19. The GPIO base address is 16-byte aligned. Address bits 3-0 are used to indicate the  
register offset.  
Table 19. Runtime Registers in GPIO Address Space  
Offset  
Mnemonic  
GPDO0 GPIO Data Out 0  
GPDI0 GPIO Data In 0  
Register Name  
Port Type  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0
1
2
R/W  
RO  
GPEVEN0 GPIO Event Enable 0  
GPEVST0 GPIO Event Status 0  
GPDO1 GPIO Data Out 1  
R/W  
R/W1C  
R/W  
RO  
GPDI1  
GPIO Data In 1  
GPEVEN1 GPIO Event Enable 1  
GPEVST1 GPIO Event Status 1  
GPDO2 Data Out 2  
R/W  
R/W1C  
R/W  
RO  
GPDI2  
Data In 2  
3.11.2 Implementation  
The standard GPIO port with event detection capability (such as port 0, and port 1 bits 0, 1, 4, 5, 6, and 7) has four runtime  
registers. Each pin is associated with a GPIO Pin Configuration register that includes seven configuration bits. Port 2 is a  
non-standard port that does not support event detection, and therefore differs from the generic model as follows:  
It has two runtime registers for basic functionality: GPDO2 and GPDI2. Event detection registers GPEVEN2 and  
GPEVST2 are not available.  
Only bits 3-0 are implemented in the GPIO Pin Configuration register of port 2. Bits 6-4, associated with the event  
detection functionality, are reserved.  
www.national.com  
36  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
3.11.3 Logical Device 7 (GPIO) Configuration  
Table 20 lists the configuration registers that affect the GPIO. Only the last three registers (F0h - F2h) are described here.  
See Sections 3.2.3 and 3.2.4 for a detailed description of the other registers.  
Table 20. GPIO Configuration Register  
Index  
Configuration Register or Action  
Type  
Reset  
30h Activate. See also bit 7 of the SIOCF1 register.  
60h Base Address MSB register.  
R/W  
R/W  
00h  
00h  
00h  
00h  
03h  
04h  
04h  
00h  
61h Base Address LSB register. Bits 3-0 (for A3-0) are read only, 0000b.  
70h Interrupt Number register.  
R/W  
R/W  
71h Interrupt Type. Bit 1 is read/write. Other bits are read only.  
74h Report no DMA assignment.  
R/W  
RO  
75h Report no DMA assignment.  
RO  
F0h GPIO Pin Select register (GPSEL).  
R/W  
04h or 44h1  
01h  
F1h GPIO Pin Configuration register (GPCFG).  
Varies per bit  
F2h GPIO Pin Event Routing register (GPEVR).  
1. Depending on port number  
R/W or RO  
Figure 7 shows the organization of these registers.  
GPIO Pin Select Register  
(Index F0h)  
Port Select  
Pin Select  
Port 2, Pin 0  
Port 1, Pin 0  
Port 0, Pin 0  
Pin 0  
Port 0  
GPIO Pin  
Configuration Register  
(Index F1h)  
Configuration Registers  
Port 0, Pin 7  
Port 2  
Pin 7  
Pin 0  
Port 1, Pin 0  
Port 0, Pin 0  
Port 0  
Port 1  
GPIO Pin Event  
Routing Register  
(Index F2h)  
Event Routing  
Registers  
Port 0, Pin 7  
Pin 7  
Figure 7. Organization of GPIO Pin Registers  
Revision 1.1  
37  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.11.4 GPIO Pin Select Register (GPSEL)  
This register selects the GPIO pin (port number and bit number) to be configured (i.e., which register is accessed via the  
GPIO Pin Configuration register). It is reset by hardware to 00h.  
Location: Index F0h  
Type:  
R/W  
Bit  
7
0
6
0
5
0
4
0
3
Reserved  
0
2
0
1
PINSEL  
0
0
0
Name  
Reset  
Reserved  
PORTSEL  
Bit  
Description  
7-6 Reserved.  
5-4 PORTSEL (Port Select). These bits select the GPIO port to be configured:  
Bits  
5 4 GPIO Port  
0 0: Port 0 (default)  
0 1: Port 1  
1 0: Port 2  
1 1: Reserved  
3
Reserved.  
2-0 PINSEL (Pin Select). These bits select the GPIO pin to be configured in the selected port:  
000, 001,... 111: Binary value of the pin number, 0, 1,... 7 respectively (default=0).  
Only values that correspond to implemented GPIO pins are legal; for example, for GPIO11,  
GPO13, and GPIO17, the value of GPIO11 (Port 1, bit 1) is ‘001’, the value of GPO13 (Port  
1, bit 3) is ‘011’, and the value of GPIO17 (Port 1, bit 7) is ‘111’, and only these three values  
would be legal.  
3.11.5 GPIO Pin Configuration Register (GPCFG)  
This register reflects, for both read and write, the register currently selected by the GPIO Pin Select register (GPSEL). All  
the GPIO Pin registers that are accessed via this register have a common bit structure, as shown below. This register is  
reset by hardware to 44h for ports 0 and 1, and to 04h for port 2.  
Location: Index F1h  
Type:  
Varies per bit  
Port 0 and Port 1, bits 0, 1, 4, 5, 6, and 7 (with event detection capability)  
Bit  
7
Reserved  
0
6
EVDBNC  
1
5
EVPOL  
0
4
EVTYPE  
0
3
LOCKCFP  
0
2
PUPCTL  
1
1
OUTTYPE  
0
0
OUTENA  
0
Name  
Reset  
Port 1, bits 2 and 3 (without event detection capability)  
Bit  
7
6
5
4
0
3
LOCKCFP  
0
2
PUPCTL  
1
1
OUTTYPE  
0
0
OUTENA  
0
Name  
Reset  
Reserved  
0
1
0
Port 2 (without event detection capability), bits 0-4  
Bit  
7
6
5
4
0
3
LOCKCFP  
0
2
PUPCTL  
1
1
OUTTYPE  
0
0
OUTENA  
0
Name  
Reset  
Reserved  
0
0
0
www.national.com  
38  
Revision 1.1  
3.0 Device Architecture and Configuration (Continued)  
Bit  
Type  
Description  
7
6
-
Reserved.  
R/W or EVDBNC (Event Debounce Enable). (Ports 0 and 1 with event detection capability). Enables  
RO transferring the signal only after a predetermined debounce period.  
0: Disabled.  
1: Enabled (default).  
Reserved. (Port 2 and Port 1 - bits 2 and 3).  
5
4
3
R/W or EVPOL (Event Polarity). (Ports 0 and 1 with event detection capability). This bit defines the polarity of  
RO the signal that issues an interrupt from the corresponding GPIO pin (falling/low or rising/high).  
0: Falling edge or low level input (default).  
1: Rising edge or high level input.  
Reserved. (Port 2). Always 0.  
R/W or EVTYPE (Event Type). (Ports 0 and 1 with event detection capability). This bit defines the type of the  
RO signal that issues an interrupt from the corresponding GPIO pin (edge or level).  
0: Edge input (default).  
1: Level input.  
Reserved. (Port 2). Always 0.  
R/W1S LOCKCFP (Lock Configuration of Pin). When set to 1, this bit locks the GPIO pin configuration and  
data (see also Section 5.4 on page 45) by disabling writing to itself, to GPCFG register bits PUPCTL,  
OUTTYPE and OUTENA, and to the corresponding bit in GPDO register. Once set, this bit can only be  
cleared by Hardware reset.  
0: R/W bits are enabled for write (default).  
1: All bits are RO.  
2
R/W or PUPCTL (Pull-Up Control). This bit is used to enable/disable the internal pull-up capability of the  
RO corresponding GPIO pin. It supports open-drain output signals with internal pull-ups and TTL input  
signals.  
0: Disabled.  
1: Enabled (default).  
1
0
R/W or  
RO  
(
OUTTYPE Output Type). This bit controls the output buffer type (open-drain or push-pull) of the  
corresponding GPIO pin.  
0: Open-drain (default).  
1: Push-pull.  
R/W or OUTENA (Output Enable). This bit indicates the GPIO pin output state. It has no effect on the input  
RO path.  
0: TRI-STATE (default).  
1: Output enabled.  
Revision 1.1  
39  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.11.6 GPIO Event Routing Register (GPEVR)  
This register enables the routing of the GPIO event to IRQ signals. It is implemented only for ports 0,1 which have event  
detection capability. This register is reset by hardware to 00h.  
Location: Index F2h  
Type:  
R/W  
Bit  
7
0
6
0
5
0
4
Reserved  
0
3
0
2
0
1
0
0
EV2IRQ  
0
Name  
Reset  
Bit  
Description  
7-1 Reserved.  
0
EV2IRQ (Event to IRQ Routing). Controls the routing of the event from the selected GPIO pin to IRQ (see  
Section 5.3.2 on page 44).  
0: Disabled (default).  
1: Enabled.  
www.national.com  
40  
Revision 1.1  
4.0 LPC Bus Interface  
4.1 OVERVIEW  
The LPC host Interface supports 8-bit I/O Read and Write and 8-bit DMA transactions, as defined in Intel’s LPC Interface  
Specification, Revision 1.1.  
4.2 LPC TRANSACTIONS  
The LPC Interface of the PC87383 can respond to the following LPC transactions:  
8-bit I/O read and write cycles  
8-bit DMA read and write cycles  
DMA request cycles  
4.3 CLKRUN FUNCTIONALITY  
The PC87383 supports the CLKRUN signal, which is implemented according to the specification in PCI Mobile Design  
Guide, Revision 1.1, December 18, 1998. The PC87383 supports operation with both a slow and stopped clock in ACPI state  
S0 (when the system is active but is not being accessed). In the following cases, the PC87383 drives the CLKRUN signal  
low to force the LPC bus clock into full speed operation:  
An IRQ is pending internally, waiting to be sent through the serial IRQ.  
A DMA request is pending internally, waiting to be sent through the serial DMA.  
Note: When the CLKRUN signal is not in use, the PC87383 assumes a valid clock on the LCLK pin.  
4.4 INTERRUPT SERIALIZER  
The Interrupt Serializer translates parallel interrupt request signals received from internal IRQ sources, into serial interrupt  
request data transmitted over the SERIRQ bus.  
The internal IRQs are fed into a Mapping, Enable and Polarity Control block, which maps them to their associated IRQ slots.  
The IRQs are then fed into the Interrupt Serializer, where they are translated into serial data and transmitted over the SER-  
IRQ bus.  
The same slot cannot be shared among different interrupt sources in the device.  
Revision 1.1  
41  
www.national.com  
5.0 General-Purpose Input/Output (GPIO) Port  
This chapter describes one 8-bit port. A device may include a combination of several ports with different implementations.  
For the device specific implementation, see Section 3.11 on page 36.  
5.1 OVERVIEW  
The GPIO port is an 8-bit port, which is based on eight pins. It features:  
Software capability to manipulate and read pin levels  
Controllable system notification by several means based on the pin level or level transition  
Ability to capture and manipulate events and their associated status  
Back-drive protected pins.  
GPIO port operation is associated with two sets of registers:  
Pin Configuration registers, mapped in the Device Configuration space. These registers are used to statically set up  
the logical behavior of each pin. There are two 8-bit registers for each GPIO pin.  
Four 8-bit runtime registers: GPIO Data Out (GPDO), GPIO Data In (GPDI), GPIO Event Enable (GPEVEN) and  
GPIO Event Status (GPEVST). These registers are mapped in the GPIO device I/O space (which is determined by  
the base address registers in the GPIO Device Configuration). They are used to manipulate and/or read the pin val-  
ues, and to control and handle system notification. Each runtime register corresponds to the 8-pin port, such that bit  
n in each one of the four registers is associated with GPIOXn pin, where X is the port number.  
Each GPIO pin is associated with ten configuration bits and the corresponding bit slice of the four runtime registers, as  
shown in Figure 8.  
The functionality of the GPIO port is divided into basic functionality, which includes the manipulation and reading of the GPIO  
pins, and enhanced functionality. Basic functionality is described in Section 5.2. Enhanced functionality, which includes  
event detection and system notification, is described in Section 5.3.  
Bit n  
GPDOX  
GPIOX Base Address  
GPDIX  
Runtime  
8 GPCFG  
Registers  
GPEVENX  
GPEVSTX  
Registers  
X = port number  
n = pin number, 0 to 7  
GPIO Pin  
Configuration (GPCFG)  
Register  
GPIOXn  
Pin  
GPIOXn CNFG  
GPIOXn  
Port Logic  
x8  
Port and Pin  
Select  
GPIO Pin  
Select (GPSEL)  
Register  
x8  
8 GPEVR  
Registers  
Event  
Pending  
Indicator  
Interrupt  
Request  
Event  
Routing  
Control  
x8  
GPIO Pin Event  
Routing (GPEVR)  
Register  
GPIOXn ROUTE  
Figure 8. GPIO Port Architecture  
www.national.com  
42  
Revision 1.1  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
5.2 BASIC FUNCTIONALITY  
The basic functionality of each GPIO pin is based on four configuration bits and a bit slice of runtime registers GPDO and  
GPDI. The configuration and operation of a single GPIOXn pin (pin n in port X) is shown in Figure 9.  
GPIO Device  
Enable  
Read Only  
Data In  
Static  
Pull-Up  
Push-Pull =1  
Pin  
Read/Write  
Data Out  
Internal  
Bus  
Pull-Up  
Enable  
Output  
Enable  
Output  
Type  
Pull-Up  
Control  
Lock  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GPIO Pin Configuration (GPCFG) Register  
Figure 9. GPIO Basic Functionality  
5.2.1 Configuration Options  
The GPCFG register controls the following basic configuration options:  
Port Direction - Controlled by the Output Enable bit (bit 0).  
Output Type - Push-pull vs. open-drain. It is controlled by Output Buffer Type (bit 1) by enabling/disabling the pull-up  
portion of the output buffer.  
Weak Static Pull-Up - May be added to any type of port (input, open-drain or push-pull). It is controlled by Pull-Up Control  
(bit 2).  
Pin Lock - GPIO pin may be locked to prevent any changes in the output value and/or the output characteristics. The  
lock is controlled by Lock (bit 3). It disables writes to the GPDO register bits, and to bits 0-3 of the GPCFG register (In-  
cluding the Lock bit itself). Once locked, it can be released by Hardware reset only.  
5.2.2 Operation  
The value that is written to the GPDO register is driven to the pin if the output is enabled. Reading from the GPDO register  
returns its contents, regardless of the pin value or the port configuration. The GPDI register is a read-only register. Reading  
from the GPDI register returns the pin value, regardless of what is driving it (the port itself, configured as an output port, or  
the external device when the port is configured as an input port). Writing to this register is ignored.  
Activation of the GPIO port is controlled by an external device-specific configuration bit (or a combination of bits). When the  
port is inactive, access to GPDI and GPDO registers is disabled. However, there is no change in the port configuration and  
in the GPDO value, and hence there is no effect on the outputs of the pins.  
Revision 1.1  
43  
www.national.com  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
5.3 EVENT HANDLING AND SYSTEM NOTIFICATION  
The enhanced GPIO port supports system notification based on event detection. This functionality is based on six configu-  
ration bits and a bit slice of runtime registers GPEVEN and GPEVST. The configuration and operation of the event detection  
capability is shown in Figure 10. System notification is shown in Figure 11.  
GPIO  
Event  
Pending  
Indication  
GPIO  
Status  
1
0
Set  
Read  
Reset  
R/W  
Event  
Enable  
Write 1 to Clear  
0
1
Rising  
Edge  
Detector  
Input  
Debouncer  
Internal  
Bus  
Pin  
Rising Edge or  
High Level =1  
Level =1  
Event  
Debounce  
Enable  
GPIO Pin Configuration Register  
(GPCFG)  
Event Type  
Bit 4  
Event Polarity  
Bit 5  
Bit 6  
Figure 10. Event Detection  
5.3.1 Event Configuration  
Each pin in the GPIO port is a potential input event source. The event detection can trigger a system notification on prede-  
termined behavior of the source pin. The GPCFG register determines the event detection trigger type for the system notifi-  
cation.  
Event Type and Polarity  
Two trigger types of event detection are supported: edge and level. An edge event may be detected on a source pin transi-  
tion either from high to low or low to high. A level event may be detected when the source pin is at active level. The trigger  
type is determined by Event Type (bit 4 of the GPCFG register). The direction of the transition (for edge) or the polarity of  
the active level (for level) is determined by Event Polarity (bit 5 of the GPCFG register).  
Active edge refers to a change in a GPIO pin level that matches the Event Polarity bit (1 for rising edge and 0 for falling  
edge). Active level refers to the GPIO pin level that matches the Event Polarity bit (1 for high level and 0 for low level). The  
corresponding bit in GPEVST register is set by hardware whenever an active edge or an active level is detected, regardless  
of the GPEVEN register setting. Writing 1 to the Status bit clears it to 0. Writing 0 is ignored.  
Event Debounce Enable  
The input signal can be debounced for at least 16 msec before entering the Rising Edge detector. The signal state is trans-  
ferred to the detector only after a debouncing period during which the signal has no transitions, to ensure that the signal is  
stable. The debouncer adds 16 msec delay to both assertion and de-assertion of the event pending indicator. Therefore,  
when working with a level event and system notification by IRQ, it is recommended to disable the debounce if the delay in  
the IRQ de-assertion is not acceptable. The debounce is controlled by Event Debounce Enable (bit 6 of the GPCFG register).  
5.3.2 System Notification  
System notification on GPIO-triggered events is done by asserting an Interrupt Request (via the device’s Bus Interface).  
The system notification for each GPIO pin is controlled by the corresponding bits in the GPEVEN and GPEVR registers.  
System notification by a GPIO pin is enabled if the corresponding bit of the GPEVEN register is set to 1. The event routing  
mechanism is described in Figure 11.  
www.national.com  
44  
Revision1.1  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
GPIO Event Pending Indication  
GPIO Event to  
IRQ  
Event  
Routing  
Logic  
Routed Events  
from other GPIO Pins  
Enable  
IRQ  
Routing  
GPIO Pin  
Event Routing Register  
(GPEVR)  
Bit 0  
Figure 11. GPIO Event Routing Mechanism  
The GPEVST register reflects the event source pending status.  
Active edge refers to a change in a GPIO pin level that matches the Event Polarity bit (1 for rising edge and 0 for falling  
edge). Active level refers to the GPIO pin level that matches the Event Polarity bit (1 for high level and 0 for low level). The  
corresponding bit of the GPEVST register is set by hardware whenever an active edge is detected, regardless of any other  
bit settings. Writing 1 to the Status bit clears it to 0. Writing 0 is ignored.  
A GPIO pin is in event pending state if the corresponding bit of the GPEVEN register is set and one of the following is true:  
The Event Type is level and the pin is at active level.  
The Event Type is edge and the corresponding bit of the GPEVST register is set.  
The target means of system notification is asserted if at least one GPIO pin is in event pending state.  
The selection of the target means of system notification is determined by the GPEVR register. If IRQ is selected as one of the  
means for the system notification, the specific IRQ line is determined by the IRQ selection procedure of the device configura-  
tion. The assertion of any means of system notification is blocked when the GPIO functional block is deactivated.  
System event notification functionality is provided even when the GPIO pin is enabled as output.  
A pending edge event may be cleared by clearing the corresponding GPEVST bit. However, a level event source must not  
be released by software (except for disabling the source) as long as the pin is at active level. When a level event is used, it  
is recommended to disable the input debouncer.  
On de-activation of the GPIO port, the GPEVST register is cleared, and access to both the GPEVST and GPEVEN registers  
is disabled. The target IRQ line is detached from the GPIO and de-asserted.  
Before enabling any system notification, it is recommended to first set the desired event configuration and then verify that  
the status registers are cleared.  
5.4 GPIO PORT REGISTERS  
The register maps in this chapter use the following abbreviations for Type:  
R/W = Read/Write  
R
= Read from a specific address returns the value of a specific register. Write to the same address is to a  
different register.  
W
= Write  
RO  
= Read Only  
R/W1C = Read/Write 1 to Clear. Writing 1 to a bit clears it to 0. Writing 0 has no effect.  
Revision 1.1  
45  
www.national.com  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
5.4.1 GPIO Pin Configuration Registers Structure  
For each GPIO Port, there is a group of eight identical sets of configuration registers. Each set is associated with one GPIO  
pin. The entire group is mapped to the PnP configuration space. The mapping scheme is based on the GPSEL register (see  
Section 3.11.4 on page 38), which functions as an index register for the pin, and the selected GPCFG and GPEVR registers,  
which reflect the configuration of the currently selected pin (see Table 21).  
Table 21. GPIO Configuration Registers  
Index  
Configuration Register or Action  
Type  
Reset  
F0h GPIO Pin Select register (GPSEL)  
R/W  
00h  
04h or 44h1  
01h  
F1h GPIO Pin Configuration register 1 (GPCFG)  
Varies per bit  
F2h GPIO Pin Event Routing register (GPEVR)  
1. Depending on port number  
R/W or RO  
5.4.2 GPIO Port Runtime Register Map  
Offset  
Mnemonic  
Register Name  
GPIO Data Out  
Type  
R/W  
Section  
5.4.3  
1
1
1
1
GPDO  
GPDI  
Device specific  
Device specific  
Device specific  
Device specific  
GPIO Data In  
RO  
5.4.4  
GPEVEN  
GPEVST  
GPIO Event Enable  
GPIO Event Status  
R/W  
5.4.5  
R/W1C  
5.4.6  
1. The location of this register is defined in Section 3.11.3 on page 37.  
5.4.3 GPIO Data Out Register (GPDO)  
Location: Device specific  
Type:  
R/W  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Name  
DATAOUT  
Reset  
Bit  
Description  
7-0 DATAOUT (Data Out). Bits 7-0 correspond to pins 7-0 of the specific Port. The value of each bit determines the  
value driven on the corresponding GPIO pin when its output buffer is enabled. Writing to the bit latches the  
written data, unless the bit is locked by the GPCFG register Lock bit. Reading the bit returns its value regardless  
of the pin value and configuration.  
0: Corresponding pin driven to low.  
1: Corresponding pin driven or released (according to buffer type selection) to high (default).  
www.national.com  
46  
Revision1.1  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
5.4.4 GPIO Data In Register (GPDI)  
Location:Device specific  
Type: RO  
Bit  
7
6
5
4
3
2
1
0
Name  
DATAIN  
Reset  
X
X
X
X
X
X
X
X
Bit  
Description  
7-0 DATAIN (Data In). Bits 7-0 correspond to pins 7-0 of the specific Port. Reading each bit returns the value of the  
corresponding GPIO pin. Pin configuration and the GPDO register value may influence the pin value. Writes are  
ignored.  
0: Corresponding pin level low.  
1: Corresponding pin level high.  
5.4.5 GPIO Event Enable Register (GPEVEN)  
Location: Device specific  
Type:  
R/W  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Name  
EVTENA  
Reset  
Bit  
Description  
7-0 EVTENA (Event Enable). Bits 7-0 correspond to pins 7-0 of the specific Port. Each bit enables system  
notification by the corresponding GPIO pin. The bit has no effect on the corresponding Status bit in GPEVST  
register.  
0: Event pending by corresponding GPIO pin masked.  
1: Event pending by corresponding GPIO pin enabled.  
5.4.6 GPIO Event Status Register (GPEVST)  
Location: Device specific  
Type:  
R/W1C  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Name  
EVTSTAT  
Reset  
Bit  
Description  
70 EVTSTAT (Event Status). Bits 70 correspond to pins 70 of the specific Port. The setting of each bit is  
independent of the Event Enable bit in GPEVEN register. An active event sets the Status bit, which may be  
cleared only by software writing 1 to the bit.  
0: No active edge or level detected since last cleared.  
1: Active edge or level detected.  
Revision 1.1  
47  
www.national.com  
6.0 Legacy Functional Blocks  
This chapter briefly describes the following blocks, which provide legacy device functions:  
Parallel Port (PP)  
Serial Port 1 (SP1)  
Infrared (IR)  
The description of each Legacy block includes the sections listed below. For details on the general implementation of each  
legacy block, see the SuperI/O Legacy Functional Blocks Datasheet.  
General Description  
Register Map table(s)  
Bitmap table(s).  
The register maps in this chapter use the following abbreviations for Type:  
R/W = Read/Write  
R
= Read from a specific address returns the value of a specific register. Write to the same address is to a  
different register.  
W
= Write  
RO  
= Read Only  
R/W1C= Read/Write 1 to Clear. Writing 1 to a bit clears it to 0. Writing 0 has no effect.  
www.national.com  
48  
Revision 1.1  
6.0 Legacy Functional Blocks (Continued)  
6.1 PARALLEL PORT  
6.1.1 General Description  
The Parallel Port supports all IEEE1284 standard communication modes:  
Compatibility (known also as Standard or SPP)  
Bi-directional (known also as PS/2)  
FIFO  
EPP (known also as Mode 4)  
ECP (with an optional Extended ECP mode)  
6.1.2 Parallel Port Register Map  
The Parallel Port includes two groups of runtime registers, as follows:  
A group of 21 registers at first level offset, sharing 14 entries. Three of these registers (at offsets 403h, 404h and 405h)  
are used only in Extended ECP mode.  
A group of four registers, used only in Extended ECP mode, accessed by a second level offset.  
EPP and second level offset registers are available only when the base address is 8-byte aligned.  
The desired mode is selected by the ECR runtime register (offset 402h). The selected mode determines which runtime reg-  
isters and which address bits are used for the base address. See Tables 22 and 23 for a listing of all registers, their offset  
addresses and the associated modes. All registers are VDD3 powered.  
Table 22. Parallel Port Register Map for First Level Offset  
Group  
Offset Mnemonic  
Register  
Type  
Mode(s)  
DATAR Data  
AFIFO ECP Address FIFO  
R/W  
W
Standard, PS/2 and EPP  
ECP  
000h  
Common  
Set  
001h  
002h  
003h  
004h  
005h  
006h  
007h  
DSR  
DCR  
Status  
RO  
All Modes  
Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
All Modes  
ADDR  
EPP Address  
DATA0 EPP Data Port 0  
DATA1 EPP Data Port 1  
DATA2 EPP Data Port 2  
DATA3 EPP Data Port 3  
CFIFO PP Data FIFO  
DFIFO ECP Data FIFO  
TFIFO FIFO Test  
EPP  
Only1  
EPP  
PP FIFO  
ECP  
R/W  
R/W  
RO  
PP FIFO,  
ECP,  
Test and  
Configuration  
Set  
400h  
FIFO Test  
CNFGA Configuration A  
CNFGB Configuration B  
Configuration  
All Modes  
401h  
402h  
403h  
404h  
405h  
RO  
ECR  
EIR  
Extended Control  
Extended Index  
R/W  
R/W  
R/W  
R/W  
Extended  
Set1, 2  
EDR  
EAR  
Extended Data  
Extended Auxiliary Status  
1. These registers are not accessible when the base address is four-byte aligned (i.e. A2=1).  
2. These registers are extended to the register set as defined by MS standard. They are accessible only  
when enabled by the chip Configuration.  
Revision 1.1  
49  
www.national.com  
6.0 Legacy Functional Blocks (Continued)  
Table 23. Parallel Port Registers at Second Level Offset  
Offset  
Mnemonic  
Register Name  
Type  
00h  
02h  
04h  
05h  
Control0  
Control2  
Extended Control 0  
Extended Control 1  
Extended Control 4  
Configuration 0  
R/W  
R/W  
R/W  
R/W  
Control4  
PP Confg0  
6.1.3 Parallel Port Bitmap Summary  
The Parallel Port functional block bitmaps are grouped according to first and second level offsets.  
Table 24. Parallel Port Bitmap for First Level Offset  
Register  
Bits  
Offset Mnemonic  
7
6
5
4
3
2
1
0
000h  
000h  
DATAR  
AFIFO  
Data Bits  
Data Type  
Address/RLE Field  
EPP  
Timeout  
Status  
BUSY  
Status  
ACK  
Status  
SLCT  
Status  
ERR  
Status  
Reserved1  
001h  
002h  
DSR  
DCR  
PE Status  
ACK  
Interrupt  
Enable  
Direction  
Control  
SLIN  
Control  
INIT  
Control  
AFD  
Control  
STB  
Control  
Reserved  
003h  
004h  
005h  
006h  
007h  
400h  
400h  
400h  
ADDR  
DATA0  
DATA1  
DATA2  
DATA3  
CFIFO  
DFIFO  
TFIFO  
EPP Device or Register Selection Address Bits  
EPP Device or R/W Data  
EPP Device or R/W Data  
EPP Device or R/W Data  
EPP Device or R/W Data  
Data Bits  
Data Bits  
Data Bits  
Bit 7 of PP  
Confg0  
400h  
401h  
402h  
CNFGA  
CNFGB  
ECR  
Reserved  
Reserved  
IRQ Signal  
Value  
Reserved  
Interrupt Select  
Reserved  
DMA Channel Select  
Interrupt  
Mask  
DMA  
Enable  
Interrupt  
Service  
FIFO  
FIFO Full  
Parallel Port Mode Control  
Reserved  
Empty  
403h  
404h  
405h  
EIR  
EDR  
EAR  
Second Level Offset  
Data Bits  
Reserved  
FIFO Tag  
1. See Note in the Register description (see the SuperI/O Legacy Functional Blocks datasheet, Section 3.6.5.)  
www.national.com  
50  
Revision 1.1  
6.0 Legacy Functional Blocks (Continued)  
Table 25. Parallel Port Bitmap for Second Level Offset  
Bits  
Register  
Second  
Level Mnemonic  
Offset  
7
6
5
4
3
2
1
0
EPP  
Timeout  
Interrupt  
Mask  
DCR  
Register  
Live  
00h  
Control0  
Reserved  
Freeze  
Reserved  
Channel  
Address  
Enable  
SPP  
Compatibility  
EPP 1.7 or  
1.9 Select  
02h  
04h  
Control2  
Control4  
Reserved  
Reserved  
Reserved  
PP DMA Request Inactive Time  
Reserved  
PP DMA Request Active Time  
PE  
Internal  
Pull-Up or  
Pull-Down  
Demand  
DMA  
Enable  
Bit 3 of  
CNFGA  
DMA Channel  
Number  
05h  
PP Confg0  
IRQ Channel Number  
Revision 1.1  
51  
www.national.com  
6.0 Legacy Functional Blocks (Continued)  
6.2 SERIAL PORT 1 (SP1)  
6.2.1 General Description  
The Serial Port functional block supports serial data communication with a remote peripheral device or modem using a wired  
interface. The Serial Port can function in one of three modes:  
16450-Compatible mode (Standard 16450)  
16550-Compatible mode (Standard 16550)  
Extended mode  
Extended mode provides advanced functionality for the UART.  
The Serial Port provides receive and transmit channels that can operate concurrently in full-duplex mode. It performs all  
functions required to conduct parallel data interchange with the system and composite serial data exchange with the external  
data channel, including:  
Format conversion between the internal parallel data format and the external programmable composite serial format  
Serial data timing generation and recognition  
Parallel data interchange with the system using a choice of bidirectional data transfer mechanisms  
Status monitoring for all phases of communication activity  
Complete MODEM-control capability.  
Existing 16550-based legacy software is completely and transparently supported. Module organization and specific fallback  
mechanisms switch the module to 16550-Compatible mode on reset or when initialized by 16550 software.  
6.2.2 UART Mode Register Bank Overview  
6.2.3  
Register Bank Overview  
Four register banks, each containing eight registers, control Serial Port operation. All registers use the same 8-byte address  
space to indicate offsets 00h through 07h. The active bank must be selected by the software.  
The register bank organization enables access to the banks as required for activation of all module modes, while maintaining  
transparent compatibility with 16450 or 16550 software.  
The Bank Selection register (BSR) selects the active bank and is common to all banks as shown in Figure 12.Therefore,  
each bank defines seven new registers.  
The default bank selection after system reset is 0.  
BANK 3  
BANK 2  
BANK 1  
Common  
Register  
Throughout  
All Banks  
BANK 0  
Offset 07h  
Offset 06h  
Offset 05h  
Offset 04h  
LCR/BSR  
Offset 02h  
Offset 01h  
Offset 00h  
16550 Banks  
Figure 12. UART Mode Register Bank Architecture  
www.national.com  
52  
Revision 1.1  
6.0 Legacy Functional Blocks (Continued)  
6.2.4  
SP1 Register Maps  
Table 26. Bank 0 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
RXD  
TXD  
IER  
Receiver Data  
RO  
W
00h  
01h  
02h  
Transmitter Data  
Interrupt Enable  
Event Identification  
FIFO Control  
R/W  
R
EIR  
FCR  
LCR  
BSR  
MCR  
LSR  
MSR  
SPR  
ASCR  
W
Link Control  
W
03h  
Bank Select  
R/W  
R/W  
R/W  
R
04h  
05h  
06h  
Modem/Mode Control  
Link Status  
Modem Status  
Scratch Pad  
R/W  
RO  
07h  
Auxiliary Status and Control  
Table 27. Bank 1 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
LBGD(L)  
Legacy Baud Generator Divisor (Low Byte)  
R/W  
R/W  
01h  
LBGD(H) Legacy Baud Generator Divisor (High Byte)  
02h  
Reserved  
LCR/BSR Link Control/ Bank Select  
Reserved  
03h  
R/W  
04h-07h  
Table 28. Bank 2 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
BGD(L)  
Baud Generator Divisor (Low Byte)  
R/W  
R/W  
R/W  
R/W  
R/W  
BGD(H) Baud Generator Divisor (High Byte)  
EXCR1  
BSR  
Extended Control 1  
Bank Select  
EXCR2  
Extended Control 2  
Reserved  
TXFLV  
RXFLV  
TX_FIFO Level  
RX_FIFO Level  
RO  
RO  
Revision 1.1  
53  
www.national.com  
6.0 Legacy Functional Blocks (Continued)  
Table 29. Bank 3 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
MRID  
SH_LCR  
SH_FCR  
BSR  
Module Identification and Revision ID  
Shadow of LCR  
RO  
RO  
01h  
02h  
Shadow of FIFO Control  
Bank Select  
RO  
03h  
R/W  
04h-07h  
Reserved  
6.2.5  
SP1 Bitmap Summary  
Table 30. Bank 0 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
00h  
RXD  
TXD  
RXD7-0  
TXD7-0  
IER1  
IER2  
EIR1  
EIR2  
FCR1  
Reserved  
MS_IE  
MS_IE  
RXFT  
LS_IE  
LS_IE  
TXLDL_IE RXHDL_IE  
TXLDL_IE RXHDL_IE  
01h  
Reserved  
FEN1-0  
TXEMP_IE Reserved  
Reserved  
IPR1-0  
IPF  
Reserved  
RXFTH1-0  
RXFTH1-0  
TXEMP_EV Reserved  
Reserved  
MS_EV  
LS_EV  
TXSR  
TXSR  
STB  
TXLDL_EV RXHDL_EV  
02h  
RXSR  
RXSR  
FIFO_EN  
FIFO_EN  
FCR2  
LCR  
BSR  
TXFTH1-0  
Reserved  
PEN  
BKSE  
BKSE  
SBRK  
STKP  
EPS  
WLS1-0  
03h  
04h  
BSR6-0  
ISEN/  
DCDLP  
MCR1  
Reserved  
LOOP  
RILP  
RTS  
DTR  
MCR2  
LSR  
Reserved  
TX_DFR  
FE  
Reserved  
PE  
RTS  
OE  
DTR  
RXDA  
DCTS  
05h  
06h  
ER_INF  
DCD  
TXEMP  
RI  
TXRDY  
DSR  
BRK  
CTS  
MSR  
DDCD  
TERI  
DDSR  
SPR1  
Scratch Data  
Reserved  
07h  
ASCR2  
RXF_TOUT  
1. Non-Extended mode  
2. Extended mode  
www.national.com  
54  
Revision 1.1  
6.0 Legacy Functional Blocks (Continued)  
Table 31. Bank 1 Bitmap  
Register  
Bits  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
LBGD(L)  
LBGD(H)  
LBGD7-0  
LBGD15-8  
Reserved  
LCR  
BSR  
BKSE  
BKSE  
SBRK  
STKP  
EPS  
PEN  
STB  
WLS1-0  
03h  
BSR6-0  
04h-07h  
Reserved  
Table 32. Bank 2 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
BGD(L)  
BGD(H)  
EXCR1  
BSR  
BGD7-0  
BGD15-8  
LOOP  
BTEST  
BKSE  
LOCK  
Reserved ETDLBK  
Reserved  
EXT_SL  
BSR6-0  
EXCR2  
Reserved  
PRESL1-0  
Reserved  
Reserved  
TXFLV  
RXFLV  
Reserved  
Reserved  
TFL4-0  
RFL4-0  
Table 33. Bank 3 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
MRID  
SH_LCR  
SH_FCR  
BSR  
MID3-0  
RID3-0  
BKSE  
SBRK  
STKP  
EPS  
PEN  
STB  
WLS1-0  
02h  
RXFTH1-0  
BKSE  
TXFTH1-0  
Reserved  
BSR6-0  
TXSR  
RXSR  
FIFO_EN  
03h  
04-07h  
Reserved  
Revision 1.1  
55  
www.national.com  
6.0 Legacy Functional Blocks (Continued)  
6.3 IR FUNCTIONALITY (IR)  
6.3.1 General Description  
This functional block provides advanced, versatile serial communications features with IR capabilities. It supports six modes  
of operation: UART, Sharp-IR, IrDA 1.0 SIR (hereafter SIR), Consumer Electronic IR (also called TV Remote or Consumer  
remote control, hereafter CEIR), IrDA 1.1 MIR, and FIR. In UART mode, the Serial Port can function in 16450-Compatible  
mode, 16550-Compatible mode, or Extended mode. This chapter describes general implementation of the Enhanced Serial  
Port with Fast IR. For device specific implementation, see Device Architecture and Configuration in the datasheet of the rel-  
evant device.  
Note: UART operation of IR module is not supported in the PC87383.  
Existing 16550-based legacy software is completely and transparently supported. Organization and specific fallback mech-  
anisms switch the Serial Port to 16550-Compatible mode on reset or when initialized by 16550 software.  
This module has two DMA channels; the device can use either one or both of them. One channel is required for IR-based  
applications, since IR communication works in half-duplex fashion. Two channels would normally be needed to handle high-  
speed, full-duplex, UART-based applications.  
6.3.2  
Register Bank Overview  
Eight register banks, each containing eight registers, control the module operation. All registers use the same 8-byte address  
space to indicate offsets 00h-07h. The active bank must be selected by the software.  
The register bank organization enables access to the banks as required for activation of all module modes, while maintaining  
transparent compatibility with 16450 or 16550 software.  
The Bank Selection register (BSR) selects the active bank and is common to all banks. See Figure 13. Therefore, each bank  
defines seven new registers.  
The default bank selection after system reset is 0.  
BANK 7  
BANK 6  
Common  
Register  
Throughout  
BANK 5  
BANK 4  
BANK 3  
BANK 2  
BANK 1  
BANK 0  
All Banks  
Offset 07h  
Offset 06h  
Offset 05h  
Offset 04h  
LCR/BSR  
IR Special Banks  
(Banks 4-7)  
Offset 02h  
Offset 01h  
Offset 00h  
Figure 13. IR Register Bank Architecture  
Table 34 shows the main functions of the registers in each bank. Banks 0-3 control both UART and IR modes of operation;  
banks 4-7 control and configure the IR modes only.  
www.national.com  
56  
Revision 1.1  
6.0 Legacy Functional Blocks (Continued)  
6.3.3 IR Register Map for IR Functionality  
Table 34. Register Bank Summary  
Main Functions  
Bank UART Mode  
IR Mode  
0
Global Control and Status  
1
Legacy Bank  
2
Alternative Baud Generator Divisor, Extended Control and Status  
Module Revision ID and Shadow registers  
IR mode setup  
3
4
5
6
7
IR Control and Status FIFO  
IR Physical Layer Configuration  
CEIR and Optical Transceiver Configuration  
The register maps in this chapter use the following abbreviations for Type:  
R/W = Read/Write.  
R = Read from a specific address returns the value of a specific register. Write to the same address is to a different  
register.  
W = Write.  
RO = Read Only.  
R/W1C = Read/Write 1 to Clear. Writing 1 to a bit clears it to 0. Writing 0 has no effect.  
6.3.4  
IR Register Map for IR Functionality  
Table 35. Bank 0 Register Map  
Offset Mnemonic  
Register Name  
Receiver Data  
Type  
00h  
RXD  
TXD  
IER  
RO  
Transmitter Data  
Interrupt Enable  
Event Identification  
FIFO Control  
W
01h  
02h  
R/W  
EIR  
R
FCR  
LCR  
BSR  
MCR  
LSR  
MSR  
SPR  
ASCR  
W
03h  
Link Control  
W
R/W  
Bank Select  
04h  
05h  
06h  
07h  
Modem / Mode Control  
Link Status  
R/W  
R/W  
Modem Status  
R
Scratch Pad  
R/W  
Auxiliary Status and Control  
Varies per bit  
Table 36. Bank 1 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
01h  
02h  
LBGD(L)  
Legacy Baud Generator Divisor (Low Byte)  
R/W  
R/W  
LBGD(H) Legacy Baud Generator Divisor (High Byte)  
Reserved  
Revision 1.1  
57  
www.national.com  
6.0 Legacy Functional Blocks (Continued)  
Table 36. Bank 1 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
03h  
LCR/BSR Link Control / Bank Select  
Reserved  
R/W  
04h - 07h  
Table 37. Bank 2 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
BGD(L)  
BGD(H)  
EXCR1  
BSR  
Baud Generator Divisor (Low Byte)  
Baud Generator Divisor (High Byte)  
Extended Control1  
Bank Select  
R/W  
R/W  
R/W  
R/W  
R/W  
EXCR2  
Extended Control 2  
Reserved  
TXFLV  
RXFLV  
TX_FIFO Level  
RO  
RO  
RX_FIFO Level  
Table 38. Bank 3 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
MRID  
SH_LCR  
SH_FCR  
BSR  
Module Identification and Revision ID  
Shadow of LCR  
RO  
RO  
Shadow of FIFO Control  
Bank Select  
RO  
R/W  
04h-07h  
Reserved  
Table 39. Bank 4 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
04h  
TMR(L)  
TMR(H)  
IRCR1  
BSR  
Timer (Low Byte)  
Timer (High Byte)  
IR Control 1  
R/W  
R/W  
R/W  
R/W  
R/W  
Bank Select  
TFRL(L)/  
TFRCC(L)  
Transmitter Frame Length (Low Byte) /  
Transmitter Frame Current Count (Low Byte)  
05h  
06h  
07h  
TFRL(H)/  
TFRCC(H)  
Transmitter Frame Length (High Byte) /  
Transmitter Frame Current Count (High Byte)  
R/W  
R/W  
R/W  
RFRML(L)/  
RFRCC(L)  
Receiver Frame Maximum Length (Low Byte) /  
Receiver Frame Current Count (Low Byte)  
RFRML(H)/  
RFRCC(H)  
Receiver Frame Maximum Length (High Byte) /  
Receiver Frame Current Count (High Byte)  
www.national.com  
58  
Revision 1.1  
6.0 Legacy Functional Blocks (Continued)  
Table 40. Bank 5 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
SPR2  
SPR3  
Scratch Pad 2  
Scratch Pad 3  
R/W  
R/W  
Reserved  
BSR  
Bank Select  
IR Control 2  
Frame Status  
R/W  
R/W  
RO  
IRCR2  
FRM_ST  
RFRL(L)/LSTFRC Received Frame Length (Low Byte) / Lost Frame Count  
RO  
RFRL(H)  
Received Frame Length (High Byte)  
RO  
Table 41. Bank 6 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
04h  
IRCR3  
MIR_PW  
SIR_PW  
BSR  
IR Control 3  
R/W  
R/W  
R/W  
R/W  
R/W  
MIR Pulse Width Control  
SIR Pulse Width Control  
Bank Select  
BFPL  
Beginning Flags / Preamble Length  
05h-07h  
Reserved  
Table 42. Bank 7 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
IRRXDC  
IRTXMC  
RCCFG  
BSR  
IR Receiver Demodulator Control  
IR Transmitter Modulator Control  
CEIR Configuration  
R/W  
R/W  
R/W  
Bank Select  
R/W  
IRCFG1  
IR Interface Configuration 1  
Varies per bit  
Reserved  
Reserved  
IRCFG4  
IR Interface Configuration 4  
R/W  
Revision 1.1  
59  
www.national.com  
6.0 Legacy Functional Blocks (Continued)  
6.3.5 IR Bitmap Summary for IR Functionality  
Table 43. Bank 0 Bitmap  
Register  
Bits  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
00h  
01h  
RXD  
TXD  
RXD7-0  
TXD7-0  
IER1  
IER2  
Reserved  
SFIF_IE TXEMP_IE DMA_IE  
MS_IE  
MS_IE  
LS_IE  
TXLDL_IE RXHDL_IE  
TXLDL_IE RXHDL_IE  
TMR_IE  
LS_IE/  
TXHLT_IE  
EIR1  
EIR2  
02h  
FEN1-0  
Reserved  
RXFT  
IPR1-0  
IPF  
TMR_EV  
SFIF_EV TXEMP_EV DMA_EV  
MS_EV  
LS_EV/ TXLDL_EV RXHDL_EV  
TXHLT_EV  
FCR1  
RXFTH1-0  
RXFTH1-0  
Reserved  
TXFTH1-0  
TXSR  
TXSR  
STB  
RXSR  
RXSR  
FIFO_EN  
FIFO_EN  
FCR2  
LCR  
BSR  
Reserved  
03h  
04h  
BKSE  
BKSE  
SBRK  
STKP  
EPS  
PEN  
WLS1-0  
BSR6-0  
MCR1  
Reserved  
LOOP  
ISEN/  
DCDLP  
RILP  
RTS  
DTR  
MCR2  
LSR  
MDSL2-0  
TXEMP  
IR_PLS  
BRK/  
TX_DFR DMA_EN  
RTS  
OE  
DTR  
05h  
ER_INF/  
FR_END  
TXRDY  
DSR  
FE/ PE/  
RXDA  
MAX_LEN PHY_ERR BAD_CRC  
06h  
07h  
MSR  
SPR1  
DCD  
RI  
CTS  
DDCD  
TERI  
DDSR  
DCTS  
Scratch Data  
ASCR2  
CTE  
TXUR  
RXACT/  
RXBSY  
RXWDG/  
LOST_FR  
TXHFE  
S_EOT FEND_INF RXF_TOUT  
1. Non-Extended mode  
2. Extended mode  
Table 44. Bank 1 Bitmap  
Bits  
Register  
Offset  
Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
LBGD(L)  
LBGD(H)  
LBGD7-0  
LBGD15-8  
Reserved  
LCR  
BSR  
BKSE  
BKSE  
SBRK  
STKP  
EPS  
PEN  
STB  
WLS1-0  
BSR6-0  
04-07h  
Reserved  
www.national.com  
60  
Revision 1.1  
6.0 Legacy Functional Blocks (Continued)  
Table 45. Bank 2 Bitmap  
Register  
Bits  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
BGD(L)  
BGD(H)  
EXCR1  
BSR  
BGD7-0  
BGD15-8  
BTEST  
BKSE  
LOCK  
Reserved ETDLBK  
LOOP  
DMASWP  
BSR6-0  
DMATH  
DMANF  
EXT_SL  
EXCR2  
Reserved  
PRESL1-0  
RF_SIZ1-0  
TF_SIZ1-0  
05h  
Reserved  
06h  
07h  
TXFLV  
RXFLV  
Reserved  
Reserved  
TFL5-0  
RFL5-0  
Table 46. Bank 3 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
MRID  
SH_LCR  
SH_FCR  
BSR  
MID3-0  
RID3-0  
BKSE  
SBRK  
STKP  
EPS  
PEN  
STB  
WLS1-0  
RXFTH1-0  
TXFTH1-0  
Reserved  
BSR6-0  
TXSR  
RXSR  
FIFO_EN  
BKSE  
04h-07h  
Reserved  
Table 47. Bank 4 Bitmap  
Register  
Offset Mnemonic  
Bits  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
TMR(L)  
TMR(H)  
IRCR1  
BSR  
TMR7-0  
Reserved  
Reserved  
TMR11-8  
CTEST  
IR_SL1-0  
BSR6-0  
TFRL7-0 /TFRCC7-0  
TMR_EN  
BKSE  
TFRL(L)/  
TFRCC(L)  
05h  
06h  
07h  
TFRL(H)/  
TFRCC(H)  
Reserved  
TFRL12-8 / TFRCC12-8  
RFRML7-0 / RFRCC7-0  
RFRML12-8 / RFRCC12-8  
RFRML(L)/  
RFRCC(L)  
RFRML(H)/  
RFRCC(H)  
Reserved  
Revision 1.1  
61  
www.national.com  
6.0 Legacy Functional Blocks (Continued)  
Table 48. Bank 5 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
SPR2  
SPR3  
Scratch Pad 2  
Scratch Pad 3  
Reserved  
BSR  
BKSE  
Reserved  
VLD  
BSR6-0  
FEND_MD AUX_IRRX TX_MS  
IRCR2  
SFTSL  
MDRS  
IRMSSL IR_FDPLX  
FRM_ST  
LOST_FR Reserved MAX_LEN PHY_ERR BAD_CRC  
RFRL7-0 / LSTFRC7-0  
OVR1  
OVR2  
RFRL(L)/  
LSTFRC  
07h  
RFRL(H)  
Reserved  
RFRL12-8  
Table 49. Bank 6 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
IRCR3  
MIR_PW  
SIR_PW  
BSR  
SHDM_DS SHDM_DS FIR_CRC MIR_CRC Reserved TXCRC_INV TXCRC_DS Reserved  
Reserved  
Reserved  
MPW3-0  
SPW3-0  
BKSE  
BSR6-0  
BFPL  
MBF7-4  
FPL3-0  
05h-07h  
Reserved  
Table 50. Bank 7 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
IRRXDC  
IRTXMC  
RCCFG  
BSR  
DBW2-0  
MCPW2-0  
T_OV  
DFR4-0  
MCFR4-0  
TXHSC  
R_LEN  
BKSE  
RXHSC RCDM_DS Reserved  
BSR6-0  
RC_MMD1-0  
IRCFG1  
STRV_MS Reserved  
SIRTX  
IRRX1  
Level  
IRID3  
IRIC2-0  
05h  
06h  
07h  
Reserved  
Reserved  
IRCFG4  
Reserved IRRX_MD IRSL0_DS  
RXINV IRSL21_DS  
Reserved  
www.national.com  
62  
Revision 1.1  
7.0 Device Characteristics  
7.1 GENERAL DC ELECTRICAL CHARACTERISTICS  
7.1.1 Recommended Operating Conditions  
Symbol  
VDD  
Parameter  
Min  
3.0  
0
Typ  
Max  
3.6  
Unit  
V
Supply Voltage  
3.3  
TA  
Operating Temperature  
+70  
°C  
7.1.2 Absolute Maximum Ratings  
Absolute maximum ratings are values beyond which damage to the device may occur. Unless otherwise specified, all volt-  
ages are relative to ground.  
Symbol  
VDD  
Parameter  
Conditions  
Min  
-0.5  
-0.5  
Max  
+4.1  
Unit  
V
Supply Voltage  
Input Voltage  
Input Voltage  
VI  
VDD + 0.5  
V
All other pins  
LPC pins1  
-0.5  
-0.5  
5.5  
V
V
VI  
VDD + 0.5  
VO  
Output Voltage  
-0.5  
-65  
VDD + 0.5  
+165  
V
°C  
TSTG Storage Temperature  
PD  
TL  
Power Dissipation  
500  
mW  
°C  
Lead Temperature Soldering (10 s)  
ESD Tolerance  
+260  
CZAP = 100 pF  
RZAP = 1.5 K2  
2000  
V
1. LCLK, LAD3-0, LFRAME, LRESET, SERIRQ, LPCPD, LDRQ, CLKRUN.  
2. Value based on test complying with RAI-5-048-RA human body model ESD testing.  
7.1.3 Capacitance  
Min2  
Typ1  
Max2  
12  
Symbol  
Parameter  
Unit  
CLCLK  
CPIN  
LCLK Pin Capacitance  
Other Pins Capacitance  
5
8
8
pF  
pF  
10  
1. TA = 25°C, f = 1 MHz  
2. Not tested. Guaranteed by design  
7.1.4 Power Consumption under Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
VDD Average Main Supply Current  
VIL = 0.5 V, VIH = 2.4 V  
No Load  
IDD  
7
1
10  
mA  
VDD Quiescent Main Supply Current in  
Low Power Mode  
VIL = VSS, VIH = VDD  
No Load  
IDDLP  
1.5  
mA  
Revision 1.1  
63  
www.national.com  
7.0 Device Characteristics (Continued)  
7.1.5 Voltage Thresholds  
Parameter1  
Symbol  
Min2  
2.2  
Max2  
2.9  
Typ  
Unit  
VDDON  
VDD Detected as Power-on  
VDD Detected as Power-off  
2.6  
2.5  
V
V
VDDOFF  
2.1  
2.8  
1. All parameters specified for 0°C TA 70°C.  
2. Not tested. Guaranteed by characterization.  
7.2 DC CHARACTERISTICS OF PINS, BY I/O BUFFER TYPES  
The following tables summarize the DC characteristics of all device pins described in Section 1.2 on page 9. The character-  
istics describe the general I/O buffer types defined in Table 1 on page 9. For exceptions, refer to Section 7.2.7. The DC char-  
acteristics of the system interface meet the PCI2.2 3.3V DC signaling.  
7.2.1 Input, PCI 3.3V  
Symbol: INPCI  
Symbol  
Parameter  
Input High Voltage  
Conditions  
Min  
Max  
Unit  
VDD + 0.51  
0.3VDD  
±1  
VIH  
0.5VDD  
V
-0.51  
VIL  
Input Low Voltage  
V
2
Input Leakage Current  
0 < Vin < VDD  
µA  
lIL  
1. Not tested. Guaranteed by design.  
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with TRI-STATE outputs.  
7.2.2 Input, TTL Compatible  
Symbol: INT  
Symbol  
VIH  
Parameter  
Input High Voltage  
Conditions  
Min  
Max  
Unit  
V
5.51  
0.8  
2.0  
-0.51  
VIL  
Input Low Voltage  
V
Input Leakage Current  
VIN = VDD  
VIN = VSS  
1
µA  
µA  
IIL  
-1  
1. Not tested. Guaranteed by design.  
7.2.3 Input, TTL Compatible with Schmitt Trigger  
Symbol: INTS  
Symbol  
VIH  
Parameter  
Input High Voltage  
Conditions  
Min  
Max  
Unit  
V
5.51  
0.8  
2.0  
1
VIL  
Input Low Voltage  
V
-0.5  
Input Leakage Current  
VIN = VDD  
VIN = VSS  
1
µA  
µA  
mV  
IIL  
-1  
2502  
VH  
Input Hysteresis  
1. Not tested. Guaranteed by design.  
2. Not tested. Guaranteed by characterization.  
www.national.com  
64  
Revision1.1  
7.0 Device Characteristics (Continued)  
7.2.4 Output, PCI 3.3V  
Symbol: OPCI  
Symbol  
VOH  
Parameter  
Output High Voltage  
Output Low Voltage  
Conditions  
lout = -500 µA  
lout =1500 µA  
Min  
Max  
Unit  
V
0.9VDD  
VOL  
0.1 VDD  
V
7.2.5 Output, Push-Pull Buffer  
Symbol: Op/n  
Output, Push-Pull buffer that is capable of sourcing p mA and sinking n mA  
Symbol  
VOH  
Parameter  
Output High Voltage  
Output Low Voltage  
Conditions  
IOH = -p mA  
IOL = n mA  
Min  
Max  
Unit  
V
2.4  
VOL  
0.4  
V
7.2.6 Output, Open-Drain Buffer  
Symbol: ODn  
Output, Open-Drain output buffer, capable of sinking n mA. Output from these signals is open-drain and cannot be forced high.  
Symbol  
Parameter  
Output Low Voltage  
Conditions  
Min  
Max  
Unit  
VOL  
IOL = n mA  
0.4  
V
7.2.7 Exceptions  
1. All pins are 5V tolerant except for the pins with PCI (INPCI, OPCI) buffer types.  
2. All pins are back-drive protected, except for the pins with PCI (INPCI, OPCI) buffer types.  
3. The following pins have an internal static pull-up resistor (when enabled) and therefore may have leakage current from  
VDD (when VIN = 0): GPIO00-07, GPIO10-11, GPO12-13, GPIO14-17, GPIO20-21, GPO22, GPIO23-24, ACK,  
AFD_DSTRB, ERR, INIT, PE, SLIN_ASTRB, STB_WRITE.  
4. The following pins have an internal static pull-down resistor (when enabled) and therefore may have leakage current to  
VSS (when VIN = VDD): BUSY_WAIT, PE and SLCT.  
5. The following strap pins have an internal static pull-up resistor enabled during VDD Power-Up Reset and therefore may  
have leakage current to VDD (when VIN = 0): BADDR, TRIS, TEST.  
6. Output from SLCT, BUSY_WAIT (and PE if bit 2 of PP Confg0 register is 0) is open-drain in all SPP modes except in  
SPP-Compatible mode when the setup mode is ECP-based FIFO and bit 4 of the Control2 parallel port register is 1.  
Otherwise, output from these signals is level 2. External 4.7 Kpull-up resistors should be used.  
7. Output from ACK, ERR (and PE if bit 2 of PP Confg0 register is set to 1) is open-drain in all SPP modes except in SPP-  
Compatible mode when the setup mode is ECP-based FIFO and bit 4 of the Control2 parallel port register is set to 1.  
Otherwise, output from these signals is level 2. External 4.7 Kpull-up resistors should be used.  
8. Output from STB, AFD, INIT and SLIN is open-drain in all SPP modes, except in SPP-Compatible mode when the setup mode  
is ECP-based (FIFO). Otherwise, output from these signals is level 2. External 4.7 Kpull-up resistors should be used.  
9. IOH is valid for a GPIO pin only when it is not configured as open-drain.  
10. In XOR Tree mode, the buffer type of the input pins participating in the XOR Tree (Section 2.4.2 on page 17) is INT (In-  
put, TTL compatible), regardless of the buffer type of these pins in normal device operation mode; see Section 1.3 on  
page 5.  
Revision 1.1  
65  
www.national.com  
7.0 Device Characteristics (Continued)  
7.2.8 Terminology  
Back-Drive Protection. A pin that is back-drive protected does not sink current into the supply when an input voltage higher  
than the supply, but below the pin’s maximum input voltage, is applied to the pin. This is true even when the supply is inac-  
tive. Note that active pull-up resistors and active output buffers are typically not back-drive protected.  
5-Volt Tolerance. An input signal that is 5V tolerant can operate with input voltage of up to 5V even though the supply to  
the device is only 3.3V. The actual maximum input voltage allowed to be supplied to the pin is indicated by the maximum  
high voltage allowed for the input buffer. Note that some pins have multiple buffers, not all of which are 5V tolerant. In such  
cases, there is a note that indicates at what conditions a 5V input may be applied to the pin; if there is no note, the low max-  
imum voltage among the buffers is the maximum voltage allowed for the pin.  
7.3 INTERNAL RESISTORS  
DC Test Conditions  
Pull-Up Resistor Test Circuit  
Pull-Down Resistor Test Circuit  
VSUP  
VSUP  
VSUP  
Device  
Device  
IPU  
A
IPD  
A
Under  
Test  
Under  
Test  
RPU  
Pin  
Pin  
RPD  
V
V
VPIN  
VPIN  
Figure 14. Internal Resistor Test Conditions, TA = 0°C to 70°C, VSUP = 3.3V  
VSUP  
VSUP  
VSUP  
V
> V  
V
< V  
PIN IL  
PIN  
IH  
Device  
Under  
Test  
Device  
Under  
Test  
10 µA  
IPU  
RPU  
IPU  
RPU  
Pin  
Pin  
A
A
V
V
10 KΩ  
10 µA  
VPIN  
VPIN  
Figure 15. Internal Pull-Down Resistor for Straps, TA = 0°C to 70°C, VSUP = 3.3V  
Notes for Figures 14 and 15:  
1. The equivalent resistance of the pull-up resistor is calculated by RPU = (VSUP VPIN) / IPU  
.
2. The equivalent resistance of the pull-down resistor is calculated by RPD = VPIN / IPD  
.
www.national.com  
66  
Revision1.1  
7.0 Device Characteristics (Continued)  
7.3.1 Pull-Up Resistor  
Symbol: PUnn  
Conditions1  
Min2  
Max2  
Symbol  
Parameter  
Typical  
Unit  
RPU  
Pull-up equivalent resistance  
VPIN = 0V  
nn −  
30%  
nn  
nn + 30%  
KΩ  
3
nn −  
38%  
KΩ  
KΩ  
VPIN = 0.8 VSUP  
3
nn −  
35%  
VPIN = 0.17 VSUP  
1. TA = 0°C to 70°C, VSUP = 3.3V.  
2. Not tested. Guaranteed by characterization.  
3. For strap pins only.  
7.3.2 Pull-Down Resistor  
Symbol: PDnn  
Conditions1  
Min2  
Max2  
Symbol  
Parameter  
Typical  
Unit  
RPD  
Pull-down equivalent resistance  
VPIN = VSUP  
nn 30%  
nn  
nn + 30%  
KΩ  
1. TA = 0°C to 70°C, VSUP = 3.3V.  
2. Not tested. Guaranteed by characterization.  
7.4 AC ELECTRICAL CHARACTERISTICS  
7.4.1 AC Test Conditions  
Load Circuit (Notes 1, 2)  
AC Testing Input, Output Waveform  
VDD  
S1  
2.4  
2.0  
0.8  
2.0  
0.8  
0.1 µF  
Test Points  
0.4  
RL  
Device  
Input  
Output  
Under  
Test  
CL  
Figure 16. AC Test Conditions, TA = 0 °C to 70 °C, VDD = 3.3 V ±10%  
Notes:  
1. CL = 50 pF for all output pins; this value includes both jig and oscilloscope capacitance.  
2. S1 = Open for push-pull output pins.  
S1 = VDD for high impedance to active low and active low to high impedance measurements.  
S1 = GND for high impedance to active high and active high to high impedance measurements.  
RL = 1.0 Kfor all the pins.  
Revision 1.1  
67  
www.national.com  
7.0 Device Characteristics (Continued)  
7.4.2 Clock Input Timing  
48 MHz  
14.31818 MHz  
Symbol  
Parameter  
Min  
6
Max  
Min  
29.5  
29.5  
Max  
Unit  
ns  
Clock High Pulse Width1  
Clock Low Pulse Width1  
tCH  
tCL  
6
ns  
2
tCP  
FCIN  
tCR  
tCF  
20  
21.5  
ns  
69.14  
70.54  
Clock Period  
Clock Frequency  
48 - 0.1%  
48 + 0.1%  
14.31818 - 0.02% 14.31818 + 0.02% MHz  
Clock Rise Time2 (0.8V-2.0V)  
Clock Fall Time2 (2.0V-0.8V)  
5
5
5
5
ns  
ns  
1. Not tested. Guaranteed by characterization.  
2. Not tested. Guaranteed by design.  
.
tCP  
tCH  
VIH  
VIH  
VIH  
VIL  
CLKIN  
VIL  
VIL  
tCL  
tCF  
tCR  
www.national.com  
68  
Revision1.1  
7.0 Device Characteristics (Continued)  
7.4.3 LCLK and LRESET  
Symbol  
Parameter  
Min  
Max  
Units  
1
LCLK Cycle Time  
30  
ns  
tCYC  
LCLK High Time2  
LCLK Low Time2  
LCLK Slew Rate3,4  
tHIGH  
11  
11  
1
ns  
ns  
tLOW  
-
-
4
V/ns  
mV/ns  
ns  
LRESET Slew Rate3,5  
LRESET pulse width  
50  
100  
tWRST  
1. The PCI may have any clock frequency between nominal DC and 33 MHz.  
Device operational parameters at frequencies under 16 MHz can be guaranteed  
by design rather than by testing. The clock frequency can be changed at any  
time during the operation of the system as long as the clock edges remain  
“clean” (monotonic) and the minimum cycle and high and low times are not vio-  
lated. The clock may only be stopped in a low state.  
2. Not tested. Guaranteed by characterization.  
3. Not tested. Guaranteed by design  
4. Rise and fall times are specified in terms of the edge rate measured in V/ns.  
This slew rate must be met across the minimum peak-to-peak portion of the  
clock wavering as shown below.  
5. The minimum LRESET slew rate applies only to the rising (de-assertion) edge of  
the reset signal, and ensures that system noise cannot render an otherwise  
monotonic signal to appear to bounce in the switching range.  
3.3V Clock  
tHIGH  
tLOW  
0.6 VDD  
0.5 VDD  
0.4 VDD  
0.3 VDD  
0.4 VDD p-to-p  
(minimum)  
0.2 VDD  
tCYC  
Revision 1.1  
69  
www.national.com  
7.0 Device Characteristics (Continued)  
7.4.4  
V
Power-Up Reset  
DD  
Min1  
Max1  
Symbol  
Description  
Reference Conditions  
tIRST Internal Power-Up reset time VDD power-up to end of internal reset  
tLRST LRESET active time VDD power-up to end of PCI_RESET  
Internal strap pull-up resistor, Before end of internal reset  
valid time2  
tLRST  
10 ms  
tIRST  
tIPLV  
External strap pull-up resistor, Before end of internal reset  
valid time  
tEPLV  
tIRST  
1. Not tested. Guaranteed by design.  
2. Active only during VDD Power-Up reset.  
VDDONmin  
VDD (Power)  
tIRST  
tLRST  
tIPLV  
VDD Power-Up Reset  
(Internal)  
LRESET  
Internal Straps  
(Pull-up)  
tEPLV  
External Straps  
(Pull-Down)  
www.national.com  
70  
Revision1.1  
7.0 Device Characteristics (Continued)  
7.4.5 LPC and SERIRQ Signals  
Symbol  
tVAL  
tON  
Description  
Output Valid Delay  
Float to Active Delay  
Active to Float Delay  
Input Setup Time  
Input Hold Time  
Reference Conditions  
After RE LCLK  
Min  
2
Max  
Unit  
ns  
11  
After RE LCLK  
2
ns  
tOFF  
tSU  
After RE LCLK  
28  
ns  
Before RE LCLK  
After RE LCLK  
7
0
ns  
tHI  
ns  
Output  
LCLK  
tVAL  
tON  
LPC Signals/  
SERIRQ  
tOFF  
Input  
LCLK  
tSU  
tHI  
LPC Signals/  
SERIRQ  
Input  
Valid  
Revision 1.1  
71  
www.national.com  
7.0 Device Characteristics (Continued)  
7.4.6 Parallel Port Timing  
Standard Parallel Port Timing  
Min1  
Max1  
Symbol  
Parameter  
Port Data Hold  
Conditions  
Unit  
SPP Mode 0 and Mode 1, ECP Mode 0 and Mode1:  
system dependent; ECP Mode 2: device dependent.  
tPDH  
750  
ns  
SPP Mode 0 and Mode 1, ECP Mode 0 and Mode1:  
system dependent; ECP Mode 2: device dependent.  
tPDS  
tSW  
Port Data Setup  
Strobe Width  
750  
750  
ns  
ns  
SPP Mode 0 and Mode 1, ECP Mode 0 and Mode1:  
system dependent; ECP Mode 2: device dependent.  
1. Not tested. Guaranteed by design.  
BUSY  
ACK  
tPDH  
tPDS  
PD70  
tSW  
STB  
Enhanced Parallel Port Timing  
Min1 Max1 EPP 1.72 EPP 1.92  
Symbol  
Parameter  
Unit  
tWW19a  
tWW19ia  
tWST19a  
tWEST  
WRITE Active from WAIT Low  
WRITE Inactive from WAIT Low  
45  
45  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DSTRB or ASTRB Active from WAIT Low  
DSTRB or ASTRB Active after WRITE Active  
PD70 Hold after WRITE Inactive  
PD70 Valid after WRITE Active  
10  
0
tWPDH  
tWPDS  
tEPDW  
tEPDH  
15  
PD70 Valid Width  
80  
0
PD70 Hold after DSTRB or ASTRB Inactive  
1. Not tested. Guaranteed by characterization.  
2. Also in ECP Mode 4  
tWW19a  
WRITE  
DSTRB  
or  
ASTRB  
tWST19a  
tWEST  
tEPDH  
tWPDH  
tWST19a  
Valid  
tEPDW  
PD70  
tWPDS  
tWW19ia  
WAIT  
www.national.com  
72  
Revision1.1  
7.0 Device Characteristics (Continued)  
Extended Capabilities Port (ECP) Timing  
Forward Mode  
Symbol  
tECDSF  
Parameter  
Data Setup before STB Active1  
Min  
0
Max  
Unit  
ns  
ns  
ns  
s
Data Hold after BUSY Inactive1  
BUSY Active after STB Active1  
STB Inactive after BUSY Active2  
BUSY Inactive after STB Active2  
STB Active after BUSY Inactive1  
tECDHF  
tECLHF  
tECHHF  
tECHLF  
tECLLF  
0
75  
0
1
0
35  
ms  
ns  
0
1. Not tested. Guaranteed by characterization.  
2. Not tested. Guaranteed by design.  
tECDHF  
PD70  
AFD  
tECDSF  
tECLLF  
STB  
tECHLF  
tECLHF  
BUSY  
tECHHF  
Reverse Mode  
Parameter  
Symbol  
tECDSR  
Min  
0
Max  
Unit  
ns  
ns  
ns  
ms  
s
Data Setup before ACK Active1  
Data Hold after AFD Active1  
AFD Inactive after ACK Active1  
ACK Inactive after AFD Inactive2  
AFD Active after ACK Inactive2  
ACK Active after AFD Active1  
tECDHR  
tECLHR  
tECHHR  
tECHLR  
tECLLR  
0
75  
0
35  
1
0
0
ns  
1. Not tested. Guaranteed by characterization.  
2. Not tested. Guaranteed by design.  
tECDHR  
PD70  
BUSY  
tECDSR  
ACK  
AFD  
tECLLR  
tECHLR  
tECHHR  
tECLHR  
Revision 1.1  
73  
www.national.com  
7.0 Device Characteristics (Continued)  
7.4.7 Serial Port, Sharp-IR, SIR and Consumer Remote Control Timing  
Min1  
Max1  
Symbol  
Parameter  
Conditions  
Unit  
2
tBT  
Single Bit Time in Serial Port and Sharp-IR  
tBTN + 25  
Transmitter  
Receiver  
ns  
ns  
ns  
ns  
ns  
tBTN - 25  
tBTN - 2%  
tBTN + 2%  
tCWN + 25  
3
tCMW  
Modulation Signal Pulse Width in Sharp-IR  
and Consumer Remote Control  
Transmitter  
Receiver  
tCWN  
- 25  
500  
4
tCMP  
Modulation Signal Period in Sharp-IR and  
Consumer Remote Control  
tCPN + 25  
Transmitter  
tCPN - 25  
5
5
Receiver  
ns  
ns  
tMMIN  
tMMAX  
(3/16) x tBTN - 15  
(3/16) x tBTN + 15  
2
2
tSPW  
SIR Signal Pulse Width  
Transmitter,  
Variable  
Transmitter,  
Fixed  
1.48  
1.78  
µs  
µs  
Receiver  
Transmitter  
Receiver  
1
SDRT  
SIR Data Rate Tolerance.  
% of Nominal Data Rate.  
± 0.87%  
± 2.0%  
± 2.5%  
± 6.5%  
tSJT  
SIR Leading Edge Jitter.  
% of Nominal Bit Duration.  
Transmitter  
Receiver  
1. Not tested. Guaranteed by design.  
2. tBTN is the nominal bit time in Serial Port, Sharp-IR, SIR and Consumer Remote Control modes. It is deter-  
mined by the setting of the Baud Generator Divisor registers.  
3. tCWN is the nominal pulse width of the modulation signal for Sharp-IR and Consumer Remote Control modes. It  
is determined by the MCPW field (bits 7-5) of the IRTXMC register and the TXHSC bit (bit 2) of the RCCFG  
register.  
4. tCPN is the nominal period of the modulation signal for Sharp-IR and Consumer Remote Control modes. It is  
determined by the MCFR field (bits 4-0) of the IRTXMC register and the TXHSC bit (bit 2) of the RCCFG regis-  
ter.  
5. tMMIN and tMMAX define the time range within which the period of the in-coming subcarrier signal must fall for  
the signal to be accepted by the receiver. These time values are determined by the contents of the IRRXDC  
register and the setting of the RXHSC bit (bit 5) of the RCCFG register.  
t
BT  
Serial Port  
t
t
CMP  
CMW  
Sharp-IR  
Consumer Remote Control  
t
SPW  
SIR  
www.national.com  
74  
Revision1.1  
7.0 Device Characteristics (Continued)  
7.4.8 MIR and FIR Timing  
Min1  
- 25  
Max1  
Symbol  
Parameter  
Conditions  
Transmitter  
Receiver  
Unit  
nsec  
nsec  
2
tMPW  
MIR Signal Pulse Width  
tMWN + 25  
tMWN  
60  
MDRT  
tMJT  
MIR Transmitter Data Rate Tolerance  
± 0.1%  
± 2.9%  
MIR Receiver Edge Jitter, % of Nominal Bit Duration  
tFPW  
FIR Signal Pulse Width  
Transmitter  
Receiver  
120  
90  
130  
160  
nsec  
nsec  
nsec  
nsec  
tFDPW  
FIR Signal Double Pulse Width  
Transmitter  
Receiver  
245  
215  
255  
285  
FDRT  
tFJT  
FIR Transmitter Data Rate Tolerance  
± 0.01%  
FIR Receiver Edge Jitter, % of Nominal Bit Duration  
1. Not tested. Guaranteed by design.  
± 4.0%  
2. tMWN is the nominal pulse width for MIR mode. It is determined by the M_PWID field (bits 4-0) in the MIR_PW  
register at offset 01h in bank 6.  
t
t
MPW  
MIR  
FIR  
Data  
Symbol  
t
FDPW  
FPW  
Chips  
Figure 17. MIR and FIR Timing  
Revision 1.1  
75  
www.national.com  
7.0 Device Characteristics (Continued)  
7.4.9 Modem Control Timing  
Symbol  
Parameter  
Min  
10  
Max  
Unit  
ns  
RI1 Low Time1  
tL  
RI1 High Time1  
tH  
10  
ns  
Delay to Set IRQ from Modem Input2  
tSIM  
40  
ns  
1. Not tested. Guaranteed by characterization.  
2. Not tested. Guaranteed by design.  
CTS, DSR, DCD  
INTERRUPT  
tSIM  
tSIM  
tSIM  
(Read MSR)  
(Read MSR)  
RI  
tL  
tH  
www.national.com  
76  
Revision1.1  
Physical Dimensions  
All dimensions are in millimeters  
64-Pin Thin Quad Flatpack (TQFP)  
NS Package Number VEC064A  
Order Number PC87383-VS  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance  
with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury  
to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
National Semiconductor  
Europe  
National Semiconductor  
Japan Ltd.  
Tel: 81-3-5639-7560  
Fax: 81-3-5639-7507  
Email: nsj.crc@jksmtp.nsc.com  
National Semiconductor  
Corporation  
Americas  
Email:  
new.feedback@nsc.com  
National Semiconductor  
Asia Pacific Customer  
Response Group  
Tel: 65-2544466  
Fax: 65-2504466  
Fax: +49 (0) 180-530 85 86  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 87 90  
Email: ap.support@nsc.com  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY