TP3064 [NSC]

``Enhanced' Serial Interface CMOS CODEC/Filter COMBO; ``增强型'串行接口CMOS编解码器/滤波器COMBO
TP3064
型号: TP3064
厂家: National Semiconductor    National Semiconductor
描述:

``Enhanced' Serial Interface CMOS CODEC/Filter COMBO
``增强型'串行接口CMOS编解码器/滤波器COMBO

晶体 解码器 编解码器 晶体管 CD 放大器 局域网
文件: 总18页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
October 1991  
TP3064, TP3067  
‘‘Enhanced’’ Serial Interface  
CMOS CODEC/Filter COMBO  
General Description  
The TP3064 (m-law) and TP3067 (A-law) are monolithic  
PCM CODEC/Filters utilizing the A/D and D/A conversion  
architecture shown in Figure 1, and a serial PCM interface.  
The devices are fabricated using National’s advanced dou-  
ble-poly CMOS process (microCMOS).  
É
Features  
Y
Complete CODEC and filtering system including:  
Ð Transmit high-pass and low-pass filtering  
Ð Receive low-pass filter with sin x/x correction  
Ð Active RC noise filters  
Ð m-law or A-law compatible COder and DECoder  
Ð Internal precision voltage reference  
Ð Serial I/O interface  
Ð Internal auto-zero circuitry  
Ð Receive push-pull power amplifiers  
m-lawÐTP3064  
Similar to the TP305X family, these devices feature an addi-  
tional Receive Power Amplifier to provide push-pull bal-  
anced output drive capability. The receive gain can be ad-  
justed by means of two external resistors for an output level  
Y
Y
Y
Y
Y
Y
Y
Y
Y
g
of up to 6.6V across a balanced 600X load.  
A-lawÐTP3067  
Also included is an Analog Loopback switch and a TS out-  
X
put.  
Designed for D3/D4 and CCITT applications  
g
5V operation  
See also AN-370, ‘‘Techniques for Designing with CODEC/  
Filter COMBO Circuits.’’  
Low operating powerÐtypically 70 mW  
Power-down standby modeÐtypically 3 mW  
Automatic power-down  
TTL or CMOS compatible digital interfaces  
Maximizes line interface card circuit density  
COMBOÉ and TRI-STATEÉ are registered trademarks of National Semiconductor Corpora-  
tion.  
Block Diagram  
TL/H/5070–1  
FIGURE 1  
C
1995 National Semiconductor Corporation  
TL/H/5070  
RRD-B30M115/Printed in U. S. A.  
Connection Diagrams  
Plastic Chip Carrier  
Dual-In-Line Package  
TL/H/5070–6  
Top View  
Order Number TP3064J or TP3067J  
See NS Package J20A  
Order Number TP3064WM or TP3067WM  
See NS Package M20B  
Order Number TP3064N or TP3067N  
See NS Package N20A  
TL/H/5070–2  
Top View  
Order Number TP3064V or TP3067V  
See NS Package V20A  
Pin Description  
Symbol  
MCLK  
Function  
Symbol  
Function  
Transmit master clock. Must be 1.536 MHz,  
1.544 MHz or 2.048 MHz. May be  
X
VPOa  
GNDA  
VPOb  
VPI  
The non-inverted output of the receive power  
amplifier.  
asynchronous with MCLK . Best  
R
performance is realized from synchronous  
operation.  
Analog ground. All signals are referenced to  
this pin.  
The inverted output of the receive power  
amplifier.  
BCLK  
The bit clock which shifts out the PCM data  
on D . May vary from 64 kHz to 2.048 MHz,  
X
X
Inverting input to the receive power amplifier.  
Analog output of the receive filter.  
ea  
but must be synchronous with MCLK .  
X
VF O  
R
V
D
X
The TRI-STATE PCM data output which is  
É
enabled by FS .  
X
g
5V 5%.  
Positive power supply pin. V  
CC  
CC  
FS  
X
Transmit frame sync pulse input which  
FS  
Receive frame sync pulse which enables  
BCLK to shift PCM data into D . FS is an  
8 kHz pulse train. SeeFigures 2 and3 for  
timing details.  
R
enables BCLK to shift out the PCM data on  
X
D . FS is an 8 kHz pulse train, seeFigures 2  
R
R
R
X
X
and3 for timing details.  
TS  
X
Open drain output which pulses low during  
the encoder time slot.  
D
Receive data input. PCM data is shifted into  
following the FS leading edge.  
R
R
D
R
ANLB  
Analog Loopback control input. Must be set  
to logic ‘0’ for normal operation. When pulled  
to logic ‘1’, the transmit filter input is  
disconnected from the output of the transmit  
preamplifier and connected to the VPOa  
output of the receive power amplifier.  
Analog output of the transmit input amplifier.  
Used to externally set gain.  
BCLK  
/
The bit clock which shifts data into D after  
R
the FS leading edge. May vary from 64 kHz  
R
to 2.048 MHz. Alternatively, may be a logic  
input which selects either  
1.536 MHz/1.544 MHz or 2.048 MHz for  
master clock in synchronous mode and  
R
CLKSEL  
BCLK is used for both transmit and receive  
X
directions (see Table I).  
GS  
X
VF Ib  
X
Inverting input of the transmit input amplifier.  
Non-inverting input of the transmit input  
amplifier.  
MCLK /  
R
PDN  
Receive master clock. Must be 1.536 MHz,  
1.544 MHz or 2.048 MHz. May be  
VF Ia  
X
asynchronous with MCLK , but should be  
X
synchronous with MCLK for best  
X
performance. When MCLK is connected  
eb  
g
5V 5%.  
V
BB  
Negative power supply pin. V  
BB  
R
continuously low, MCLK is selected for all  
X
internal timing. When MCLK is connected  
R
continuously high, the device is powered  
down.  
2
Functional Description  
POWER-UP  
sion performance, however, MCLK should be synchronous  
R
with MCLK , which is easily achieved by applying only static  
X
logic levels to the MCLK /PDN pin. This will automatically  
When power is first applied, power-on reset circuitry initializ-  
es the COMBOTM and places it into a power-down state. All  
non-essential circuits are deactivated and the D , VF O,  
R
connect MCLK to all internal MCLK functions (see Pin  
X
R
X
R
Description). For 1.544 MHz operation, the device automati-  
cally compensates for the 193rd clock pulse each frame.  
FS starts each encoding cycle and must be synchronous  
VPOb and VPOa outputs are put in high impedance states.  
To power-up the device, a logical low level or clock must be  
applied to the MCLK /PDN pin and FS and/or FS pulses  
X
R
X
R
with MCLK and BCLK . FS starts each decoding cycle  
X
X
R
and must be synchronous with BCLK . BCLK must be a  
must be present. Thus, 2 power-down control modes are  
available. The first is to pull the MCLK /PDN pin high; the  
alternative is to hold both FS and FS inputs continuously  
R
R
R
clock, the logic levels shown in Table I are not valid in asyn-  
chronous mode. BCLK and BCLK may operate from 64  
kHz to 2.048 MHz.  
X
R
X
R
lowÐthe device will power-down approximately 2 ms after  
the last FS or FS pulse. Power-up will occur on the first  
FS or FS pulse. The TRI-STATE PCM data output, D ,  
X
R
SHORT FRAME SYNC OPERATION  
X
R
X
will remain in the high impedance state until the second FS  
pulse.  
X
The COMBO can utilize either a short frame sync pulse (the  
same as the TP3020/21 CODECs) or a long frame sync  
pulse. Upon power initialization, the device assumes a short  
SYNCHRONOUS OPERATION  
frame mode. In this mode, both frame sync pulses, FS and  
X
FS , must be one bit clock period long, with timing relation-  
For synchronous operation, the same master clock and bit  
clock should be used for both the transmit and receive di-  
rections. In this mode, a clock must be applied to MCLK  
R
ships specified in Figure 2. With FS high during a falling  
X
edge of BCLK , the next rising edge of BCLK enables the  
X
X
X
TRI-STATE output buffer, which will output the sign bit.  
and the MCLK /PDN pin can be used as a power-down  
R
control. A low level on MCLK /PDN powers up the device  
R
and a high level powers down the device. In either case,  
D
X
The following seven rising edges clock out the remaining  
seven bits, and the next falling edge disables the D output.  
With FS high during a falling edge of BCLK (BCLK in  
X
MCLK will be selected as the master clock for both the  
X
transmit and receive circuits. A bit clock must also be ap-  
R
R
X
synchronous mode), the next falling edge of BCLK latches  
R
plied to BCLK and the BCLK /CLKSEL can be used to  
R
X
in the sign bit. The following seven falling edges latch in the  
seven remaining bits. All devices may utilize the short frame  
sync pulse in synchronous or asynchronous operating  
mode.  
select the proper internal divider for a master clock of 1.536  
MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz operation,  
the device automatically compensates for the 193rd clock  
pulse each frame.  
LONG FRAME SYNC OPERATION  
With a fixed level on the BCLK /CLKSEL pin, BLCK will be  
X
R
selected as the bit clock for both the transmit and receive  
directions. Table I indicates the frequencies of operation  
To use the long (TP5116A/56 CODECs) frame mode, both  
the frame sync pulses, FS and FS , must be three or more  
X
R
bit clock periods long, with timing relationships specified in  
which can be selected, depending on the state of BCLK  
/
R
CLKSEL. In this synchronous mode, the bit clock, BCLK ,  
X
may be from 64 kHz to 2.048 MHz, but must be synchro-  
Figure 3. Based on the transmit frame sync, FS , the COM-  
X
BO will sense whether short or long frame sync pulses are  
being used. For 64 kHz operation, the frame sync pulse  
must be kept low for a minimum of 160 ns. The D TRI-  
nous with MCLK .  
X
X
Each FS pulse begins the encoding cycle and the PCM  
X
data from the previous encode cycle is shifted out of the  
STATE output buffer is enabled with the rising edge of FS  
X
or the rising edge of BCLK , whichever comes later, and the  
X
first bit clocked out is the sign bit. The following seven  
enabled D output on the positive edge of BCLK . After 8  
X
X
bit clock periods, the TRI-STATE D output is returned to a  
X
high impedance state. With an FS pulse, PCM data is  
BCLK rising edges clock out the remaining seven bits. The  
X
R
latched via the D input on the negative edge of BCLK (or  
D
X
output is disabled by the falling BCLK edge following  
X
R
X
BCLK if running). FS and FS must be synchronous with  
the eighth rising edge, or by FS going low, whichever  
X
comes later. A rising edge on the receive frame sync pulse,  
R
X
R
MCLK  
.
X/R  
FS , will cause the PCM data at D to be latched in on the  
R
R
next eight falling edges of BCLK (BCLK in synchronous  
TABLE I. Selection of Master Clock Frequencies  
R
X
mode). All devices may utilize the long frame sync pulse in  
synchronous or asynchronous mode.  
Master Clock  
Frequency Selected  
BCLK /CLKSEL  
R
TRANSMIT SECTION  
TP3067  
TP3064  
The transmit section input is an operational amplifier with  
provision for gain adjustment using two external resistors,  
see Figure 4. The low noise and wide bandwidth allow gains  
in excess of 20 dB across the audio passband to be real-  
ized. The op amp drives a unity-gain filter consisting of RC  
active pre-filter, followed by an eighth order switched-ca-  
pacitor bandpass filter clocked at 256 kHz. The output of  
this filter directly drives the encoder sample-and-hold circuit.  
The A/D is of companding type according to m-law  
(TP3064) or A-law (TP3067) coding conventions. A preci-  
sion voltage reference is trimmed in manufacturing to pro-  
Clocked  
2.048 MHz  
1.536 MHz or  
1.544 MHz  
2.048 MHz  
0
1
1.536 MHz or  
1.544 MHz  
2.048 MHz  
1.536 MHz or  
1.544 MHz  
ASYNCHRONOUS OPERATION  
For asynchronous operation, separate transmit and receive  
clocks may be applied. MCLK and MCLK must be 2.048  
MHz for the TP3067, or 1.536 MHZ, 1.544 MHz for the  
TP3064, and need not be synchronous. For best transmis-  
X
R
vide an input overload (t  
) of nominally 2.5V peak (see  
MAX  
3
Functional Description (Continued)  
table of Transmission Characteristics). The FS frame sync  
ods. At the end of the decoder time slot, the decoding cycle  
begins, and 10 ms later the decoder DAC output is updated.  
X
pulse controls the sampling of the filter output, and then the  
successive-approximation encoding cycle begins. The 8-bit  
code is then loaded into a buffer and shifted out through D  
E
The total decoder delay is  
10 ms (decoder update) plus  
110 ms (filter delay) plus 62.5 ms ((/2 frame), which gives  
approximately 180 ms.  
X
at the next FS pulse. The total encoding delay will be ap-  
X
proximately 165 ms (due to the transmit filter) plus 125 ms  
(due to encoding delay), which totals 290 ms. Any offset  
voltage due to the filters or comparator is cancelled by sign  
bit integration.  
RECEIVE POWER AMPLIFIERS  
Two inverting mode power amplifiers are provided for direct-  
ly driving a matched line interface transformer. The gain of  
g
the first power amplifier can be adjusted to boost the 2.5V  
peak output signal from the receive filter up to 3.3V peak  
RECEIVE SECTION  
g
g
The receive section consists of an expanding DAC which  
fifth order switched-capacitor low pass filter  
clocked at 256 kHz. The decoder is A-law (TP3067) or  
m-law (TP3064) and the 5th order low pass filter corrects for  
the sin x/x attenuation due to the 8 kHz sample/hold. The  
filter is then followed by a 2nd order RC active post-filter  
into an unbalanced 300X load, or 4.0V into an unbal-  
drives  
a
anced 15 kX load. The second power amplifier is internally  
connected in unity-gain inverting mode to give 6 dB of signal  
gain for balanced loads.  
Maximum power transfer to a 600X subscriber line termina-  
tion is obtained by differentially driving a balanced trans-  
with its output at VF O. The receive section is unity-gain,  
R
but gain can be added by using the power amplifiers. Upon  
former with a  
S
2:1 turns ratio, as shown in Figure 4. A total  
peak power of 15.6 dBm can be delivered to the load plus  
termination.  
the occurrence of FS , the data at the D input is clocked in  
R
R
on the falling edge of the next eight BCLK (BCLK ) peri-  
R
X
ENCODING FORMAT AT D OUTPUT  
X
TP3067  
A-Law  
TP3064  
m-Law  
(Includes Even Bit Inversion)  
e a  
V
V
Full-Scale  
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1
0
1
1
0
IN  
e
0V  
IN  
Ð
0
e b  
V
Full-Scale  
0
IN  
4
Absolute Maximum Ratings  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales  
Office/Distributors for availability and specifications.  
Voltage at any Digital Input  
or Output  
a
b
0.3V to GNDA 0.3V  
V
CC  
b
b
a
25 C to 125 C  
Operating Temperature Range  
Storage Temperature Range  
Lead Temp. (Soldering, 10 sec.)  
ESD (Human Body Model) J  
ESD (Human Body Model) N  
Latch-Up Immunity  
§
§
V
V
to GNDA  
to GNDA  
7V  
7V  
a
65 C to 150 C  
CC  
§
§
b
BB  
300 C  
§
Voltage at any Analog Input  
or Output  
1000V  
1500V  
a
b
0.3V  
V
CC  
0.3V to V  
BB  
100 mA on Any Pin  
e
25 C. All other limits  
Electrical Characteristics Unless otherwise noted, limits printed in BOLD characters are guaranteed for V  
CC  
a
e b  
e
e
0 C to 70 C by correlation with 100% electrical testing at T  
A
g
g
5.0V 5%, V  
5.0V 5%; T  
§
§
§
BB  
A
are assured by correlation with other production tests and/or product design and characterization. All signals referenced to  
e a  
e b  
e
5.0V, T 25 C.  
A
GNDA. Typicals specified at V  
5.0V, V  
§
CC  
BB  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
POWER DISSIPATION (ALL DEVICES)  
I
I
I
I
0
Power-Down Current  
Power-Down Current  
Active Current  
(Note)  
(Note)  
0.5  
0.05  
7.0  
1.5  
0.3  
mA  
mA  
mA  
mA  
CC  
0
1
BB  
VPI 0V; VF O, VPOa and VPOb unloaded  
10.0  
10.0  
e
CC  
R
VPI 0V; VF O, VPOa and VPOb unloaded  
7.0  
e
1
Active Current  
BB  
R
DIGITAL INTERFACE  
V
V
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
0.6  
V
V
IL  
2.2  
2.4  
IH  
OL  
e
D , I  
X
3.2 mA  
0.4  
0.4  
V
V
L
e
TS , I  
X
3.2 mA, Open Drain  
L
eb  
s
V
OH  
Output High Voltage  
Input Low Current  
Input High Current  
D , I  
X H  
3.2 mA  
V
s
b
I
I
I
GNDA  
V
IN  
V
, All Digital Inputs  
IL  
10  
10  
10  
10  
10  
10  
mA  
mA  
mA  
IL  
s
s
b
b
V
IH  
V
IN  
V
CC  
IH  
s
s
V
CC  
Output Current in High Impedance  
State (TRI-STATE)  
D , GNDA  
X
V
O
OZ  
Note: I  
and I  
are measured after first achieving a power-up state.  
BB0  
CC0  
5
Electrical Characteristics (Continued)  
Unless otherwise noted, limits printed in BOLD characters are guaranteed for V  
e a  
e b  
e
5.0V 5%; T  
A
g
g
5.0V 5%, V  
CC  
BB  
e
production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at V  
0 C to 70 C by correlation with 100% electrical testing at T  
25 C. All other limits are assured by correlation with other  
e
§
§
§
A
CC  
a
e b  
e
5.0V, T 25 C.  
A
5.0V, V  
§
BB  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
200  
3
Units  
ANALOG INTERFACE WITH TRANSMIT INPUT AMPLIFIER (ALL DEVICES)  
a
2.5V, VF I or VF Ib  
nA  
MX  
X
s
s
s
s
b
b
a
a
b
200  
I XA  
I
Input Leakage Current  
Input Resistance  
2.5V  
2.5V  
V
V
X
X
a
R XA  
I
2.5V, VF I or VF Ib  
10  
X
X
R
XA  
O
Output Resistance  
Closed Loop, Unity Gain  
1
R XA  
L
Load Resistance  
GS  
X
GS  
X
10  
kX  
pF  
C XA  
L
Load Capacitance  
50  
t
L
b
a
2.8  
V
XA  
Output Dynamic Range  
Voltage Gain  
GS , R 10 kX  
2.8  
5000  
1
V
O
X
A XA  
V
VF Ia to GS  
X
V/V  
MHz  
mV  
V
X
F XA  
U
Unity-Gain Bandwidth  
Offset Voltage  
2
b
V
XA  
20  
20  
OS  
CM  
l
CMRRXA 60 dB  
b
V
XA  
Common-Mode Voltage  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
2.5  
2.5  
CMRRXA  
PSRRXA  
DC Test  
60  
60  
dB  
dB  
DC Test  
ANALOG INTERFACE WITH RECEIVE FILTER (ALL DEVICES)  
R
RF  
Output Resistance  
Load Resistance  
Pin VF  
O
1
3
X
O
R
e
VF O  
R
g
R RF  
L
2.5V  
10  
kX  
pF  
mV  
C RF  
L
Load Capacitance  
Output DC Offset Voltage  
Connect from VF O to GNDA  
R
25  
b
VOS  
O
R
Measure from VF O to GNDA  
R
200  
200  
ANALOG INTERFACE WITH POWER AMPLIFIERS (ALL DEVICES)  
s
s
1.0V VPI 1.0V  
b
b
b
100  
IPI  
Input Leakage Current  
Input Resistance  
100  
25  
nA  
MX  
mV  
X
s
s
1.0V VPI 1.0V  
RIPI  
VIOS  
ROP  
10  
b
Input Offset Voltage  
Output Resistance  
25  
Inverting Unity-Gain at  
VPOa or VPOb  
1
F
C
Unity-Gain Bandwidth  
Load Capacitance  
Open Loop (VPOb  
)
400  
kHz  
pF  
C P  
L
100  
a
a
GA  
Gain from VPOb to VPOa  
600X VPO to VPOb  
V/V  
e
R
L
b
1
P
Level at VPOb 1.77 Vrms  
e
PSRR  
Power Supply Rejection of  
VPOb Connected to VPI  
P
b
V
or V  
BB  
0 kHz 4 kHz  
60  
36  
dB  
dB  
CC  
b
4 kHz 50 kHz  
R P  
L
Load Resistance  
Connect from VPOa to VPOb  
600  
X
6
Timing Specifications  
Unless otherwise noted, limits printed in BOLD characters are guaranteed for V  
e a  
e b  
25 C. All other limits are assured by correlation with other  
e
5.0V 5%, T  
g
5.0V 5%, V  
g
CC  
BB  
A
e
production tests and/or product design and characterization. All signals are referenced to GNDA. Typicals specified at V  
0 C to 70 C by correlation with 100% electrical testing at T  
§
§
§
A
e
CC  
a
e b  
e
e
e
0.7V.  
OL  
5.0V, V  
5.0V, T  
25 C. All timing parameters are measured at V  
2.0V and V  
§
See Definitions and Timing Conventions section for test methods information.  
BB  
A
OH  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
1/t  
Frequency of Master Clock  
1.536  
1.544  
MHz  
MHz  
MHz  
PM  
MCLK and MCLK  
X
2.048  
R
R
R
t
t
t
t
t
t
t
t
Rise Time of Master Clock  
Fall Time of Master Clock  
Period Bit of Clock  
MCLK and MCLK  
X
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RM  
FM  
PB  
RB  
FB  
MCLK and MCLK  
X
485  
488  
15725  
50  
Rise Time of Bit Clock  
Fall Time of Bit Clock  
BCLK and BCLK  
X R  
BCLK and BCLK  
X
50  
R
Width of Master Clock High  
Width of Master Clock Low  
MCLK and MCLK  
X
160  
160  
100  
WMH  
WML  
SBFM  
R
MCLK and MCLK  
X
R
Set-Up Time from BCLK High  
X
to MCLK Falling Edge  
X
t
Set-Up Time from FS High  
X
Long Frame Only  
100  
ns  
SFFM  
to MCLK Falling Edge  
X
t
t
t
Width of Bit Clock High  
Width of Bit Clock Low  
160  
160  
0
ns  
ns  
ns  
WBH  
WBL  
HBFL  
Holding Time from Bit Clock  
Low to Frame Sync  
Long Frame Only  
Short Frame Only  
Long Frame Only  
t
t
t
Holding Time from Bit Clock  
High to Frame Sync  
0
80  
0
ns  
ns  
ns  
HBFS  
SFB  
Set-Up Time for Frame Sync  
to Bit Clock Low  
e
Load 150 pF plus 2 LSTTL Loads  
Delay Time from BCLK High  
X
180  
DBD  
to Data Valid  
e
Load 150 pF plus 2 LSTTL Loads  
t
t
Delay Time to TS Low  
X
140  
165  
ns  
ns  
DBTS  
Delay Time from BCLK Low to  
X
50  
20  
DZC  
Data Output Disabled  
e
C
L
t
Delay Time to Valid Data from  
0 pF to 150 pF  
165  
ns  
DZF  
FS or BCLK , Whichever  
X X  
Comes Later  
t
t
t
t
t
Set-Up Time from D Valid to  
R
50  
50  
ns  
ns  
ns  
ns  
ns  
SDB  
HBD  
SF  
BCLK  
R/X  
Low  
Hold Time from BCLK  
R/X  
Low to  
D
R
Invalid  
Set-Up Time from FS  
X/R  
to  
Short Frame Sync Pulse (1 Bit Clock  
Period Long)  
50  
BCLK  
X/R  
Low  
Hold Time from BCLK  
X/R  
Low  
Short Frame Sync Pulse (1 Bit Clock  
Period Long)  
100  
100  
HF  
to FS  
X/R  
Low  
Hold Time from 3rd Period of  
Bit Clock Low to Frame Sync  
Long Frame Sync Pulse (from 3 to 8 Bit  
Clock Periods Long)  
HBFI  
(FS or FS  
X
)
R
t
Minimum Width of the Frame  
Sync Pulse (Low Level)  
64k Bit/s Operating Mode  
160  
ns  
WFL  
7
Timing Diagrams  
8
Timing Diagrams (Continued)  
9
Transmission Characteristics  
Unless otherwise noted, limits printed in BOLD characters are guaranteed for V  
e a  
e b  
25 C. All other limits are assured by correlation with other  
e
5.0V 5%; T  
g
5.0V 5%, V  
g
CC  
BB  
A
e
production tests and/or product design and characterization. GNDA  
0 C to 70 C by correlation with 100% electrical testing at T  
§
§
§
A
e
e
0V, f  
5.0V, V  
e
0 dbm0, transmit input amplifier  
1.02 kHz, V  
IN  
5.0V, T  
A
e a  
e b  
e
connected for unity gain non-inverting. Typicals specified at V  
25 C.  
§
CC  
BB  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
AMPLITUDE RESPONSE  
Absolute Levels  
(Definition of  
Nominal 0 dBm0 Level is 4 dBm  
(600X)  
0 dBm0  
nominal gain)  
1.2276  
Vrms  
t
Virtual Decision Value Defined  
per CCITT Rec. G711  
Max Transmit Overload Level  
TP3064 (3.17 dBm0)  
MAX  
2.501  
2.492  
V
V
PK  
TP3067 (3.14 dBm0)  
PK  
e
e
25 C, V  
CC  
eb  
b
0.15  
G
G
Transmit Gain, Absolute  
T
5V, V  
BB  
5V  
0.15  
dB  
§
XA  
XR  
A
e
e
e
e
e
e
e
e
e
b
b
Transmit Gain, Relative to G  
XA  
f
f
f
f
f
f
f
f
f
16 Hz  
50 Hz  
60 Hz  
200 Hz  
40  
30  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
b
26  
0.1  
b
b
1.8  
b
b
300 Hz-3000 Hz  
3300 Hz  
0.15  
0.35  
0.15  
0.05  
0
b
3400 Hz  
0.7  
b
b
4000 Hz  
14  
32  
4600 Hz and Up, Measure  
Response from 0 Hz to 4000 Hz  
b
G
G
G
Absolute Transmit Gain Variation  
with Temperature  
Relative to G  
0.1  
0.1  
dB  
dB  
XAT  
XAV  
XRL  
XA  
XA  
b
Absolute Transmit Gain Variation  
with Supply Voltage  
Relative to G  
0.05  
0.05  
Transmit Gain Variations with  
Level  
Sinusoidal Test Method  
eb  
40 dBm0 to 3 dBm0  
Reference Level  
10 dBm0  
a
b
VF Ia  
0.2  
0.4  
1.2  
0.2  
0.4  
1.2  
dB  
dB  
dB  
eb  
eb  
eb  
b
b
b
X
VF Ia  
X
50 dBm0 to 40 dBm0  
b
55 dBm0 to 50 dBm0  
VF Ia  
X
e
e
eb  
b
G
G
Receive Gain, Absolute  
T
25 C, V  
§
5V, V  
BB  
5V  
0.15  
0.15  
dB  
RA  
RR  
A
CC  
e
Input Digital Code Sequence  
for 0 dBm0 Signal  
e
e
e
e
b
b
b
Receive Gain, Relative to G  
RA  
f
f
f
f
0 Hz to 3000 Hz  
3300 Hz  
0.15  
0.35  
0.15  
0.05  
0
dB  
dB  
dB  
dB  
3400 Hz  
0.7  
b
4000 Hz  
14  
b
G
G
G
Absolute Receive Gain Variation  
with Temperature  
Relative to G  
0.1  
0.1  
dB  
RAT  
RAV  
RRL  
RA  
RA  
b
Absolute Receive Gain Variation  
with Supply Voltage  
Relative to G  
0.05  
0.05  
dB  
Receive Gain Variations with  
Level  
Sinusoidal Test Method; Reference  
Input PCM Code Corresponds to an  
b
Ideally Encoded 10 dBm0 Signal  
eb  
eb  
eb  
a
b
b
b
PCM Level  
PCM Level  
PCM Level  
40 dBm0 to 3 dBm0  
0.2  
0.4  
1.2  
0.2  
0.4  
1.2  
dB  
dB  
dB  
b
50 dBm0 to 40 dBm0  
b
55 dBm0 to 50 dBm0  
e
b
2.5  
V
RO  
Receive Filter Output at VF  
O
R
RL 10 kX  
2.5  
V
10  
Transmission Characteristics (Continued)  
Unless otherwise noted, limits printed in BOLD characters are guaranteed for V  
e a  
e b  
e
5.0V 5%; T  
A
g
g
5.0V 5%, V  
CC  
BB  
e
production tests and/or product design and characterization. GNDA  
0 C to 70 C by correlation with 100% electrical testing at T  
25 C. All other limits are assured by correlation with other  
§
§
§
A
e
e
0V, f  
5.0V, V  
e
1.02 kHz, V 0 dbm0, transmit input amplifier  
IN  
e a  
e b  
e
5.0V, T  
A
connected for unity gain non-inverting. Typicals specified at V  
25 C.  
§
CC  
BB  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
ENVELOPE DELAY DISTORTION WITH FREQUENCY  
e
D
D
Transmit Delay, Absolute  
f
1600 Hz  
290  
315  
ms  
XA  
e
e
e
e
e
e
e
b
Transmit Delay, Relative to D  
f
f
f
f
f
f
f
500 Hz 600 Hz  
195  
120  
50  
220  
145  
75  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
XR  
XA  
b
600 Hz 800 Hz  
b
800 Hz 1000 Hz  
b
b
b
1000 Hz 1600 Hz  
20  
40  
1600 Hz 2600 Hz  
55  
75  
2600 Hz 2800 Hz  
b
2800 Hz 3000 Hz  
80  
105  
155  
130  
e
D
D
Receive Delay, Absolute  
f
1600 Hz  
180  
200  
ms  
RA  
e
e
e
e
e
b
b
b
b
b
Receive Delay, Relative to D  
f
f
f
f
f
500 Hz 1000 Hz  
40  
30  
25  
20  
ms  
ms  
ms  
ms  
ms  
RR  
RA  
b
b
b
1000 Hz 1600 Hz  
1600 Hz 2600 Hz  
70  
90  
2600 Hz 2800 Hz  
b
2800 Hz 3000 Hz  
100  
145  
125  
175  
NOISE  
N
XC  
N
XP  
N
RC  
Transmit Noise, C Message  
Weighted  
TP3064 (Note 1)  
TP3067 (Note 1)  
12  
15  
dBrnC0  
dBm0p  
b
b
67  
Transmit Noise, Psophometric  
Weighted  
74  
Receive Noise, C Message  
Weighted  
PCM Code Equals Alternating  
Positive and Negative Zero  
TP3064  
8
11  
dBrnCO  
N
RP  
N
RS  
Receive Noise, Psophometric  
Weighted  
PCM Code Equals Positive  
Zero  
b
b
79  
TP3067  
82  
dBm0p  
dBm0  
e
b
53  
Noise, Single Frequency  
f
0 kHz to 100 kHz, Loop Around  
e
Measurement, VF Ia 0 Vrms  
X
e
CC  
a
PPSR  
Positive Power Supply Rejection,  
Transmit  
V
5.0 V  
100 mVrms  
0 kHz 50 kHz (Note 2)  
eb a  
100 mVrms  
X
DC  
e
b
f
40  
dBC  
dBC  
NPSR  
Negative Power Supply Rejection,  
Transmit  
V
BB  
5.0 V  
DC  
X
e
b
0 kHz 50 kHz (Note 2)  
f
40  
PPSR  
Positive Power Supply Rejection,  
Receive  
PCM Code Equals Positive Zero  
a
100 mVrms  
R
e
V
5.0 V  
DC  
CC  
Measure VF  
O
R
0 Hz 4000 Hz  
b
4 kHz 50 kHz  
e
e
b
f
f
38  
25  
dBC  
dB  
NPSR  
Negative Power Supply Rejection,  
Receive  
PCM Code Equals Positive Zero  
R
eb  
a
100 mVrms  
V
5.0 V  
BB  
Measure VF  
DC  
O
R
e
e
e
b
f
f
f
0 Hz 4000 Hz  
40  
40  
36  
dBC  
dB  
b
4 kHz 25 kHz  
b
25 kHz 50 kHz  
dB  
b
0 dBm0, 300 Hz 3400 Hz Input  
PCM Code Applied at DR  
SOS  
Spurious Out-of-Band Signals  
at the Channel Output  
Measure Individual Image Signals at  
VF O  
R
b
b
b
4600 Hz7600 Hz  
7600 Hz8400 Hz  
8400 Hz100,000 Hz  
32  
40  
dB  
dB  
dB  
32  
11  
Transmission Characteristics (Continued)  
Unless otherwise noted, limits printed in BOLD characters are guaranteed for V  
e a  
e b  
e
5.0V 5%; T  
A
g
g
5.0V 5%, V  
CC  
BB  
e
production tests and/or product design and characterization. GNDA  
0 C to 70 C by correlation with 100% electrical testing at T  
25 C. All other limits are assured by correlation with other  
§
§
§
A
e
e
0V, f  
5.0V, V  
e
1.02 kHz, V  
0 dbm0, transmit input amplifier  
e
IN  
5.0V, T  
A
e a  
e b  
connected for unity gain non-inverting. Typicals specified at V  
25 C.  
§
CC  
BB  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DISTORTION  
STD  
STD  
Signal to Total Distortion  
Transmit or Receive  
Half-Channel  
Sinusoidal Test Method (Note 3)  
e
X,  
Level 3.0 dBm0  
e
33  
36  
29  
30  
14  
15  
dBC  
dBC  
dBC  
dBC  
dBC  
dBC  
R
b
0 dBm0 to 30 dBm0  
eb  
40 dBm0  
XMT  
RCV  
XMT  
RCV  
eb  
55 dBm0  
b
b
SFD  
SFD  
IMD  
Single Frequency Distortion,  
Transmit  
46  
46  
dB  
dB  
dB  
X
Single Frequency Distortion,  
Receive  
R
b
Intermodulation Distortion  
Loop Around Measurement,  
eb  
41  
VF Ia  
4 dBm0 to 21 dBm0, Two  
Frequencies in the Range  
b
X
b
300 Hz 3400 Hz  
CROSSTALK  
e b  
300 Hz 3000 Hz  
CT  
X-R  
Transmit to Receive Crosstalk  
f
e
b
b
b
b
D
Quiet PCM Code  
90  
90  
75  
70  
dB  
dB  
R
e
b
e
300 Hz 3000 Hz, VF I 0V  
X
CT  
R-X  
Receive to Transmit Crosstalk  
f
(Note 2)  
POWER AMPLIFIERS  
PA Maximum 0 dBm0 Level  
V
O
Balanced Load, R Connected Between  
L
(Better than 0.1 dB Linearity over  
VPOa and VPOb  
.
g
b
a
the Range 10 dBm0 to 3 dBm0)  
e
e
R
R
600X  
3.3  
Vrms  
Vrms  
L
1200X  
3.5  
L
e
S/D  
Signal/Distortion  
R
L
600X  
50  
dB  
P
b
Note 1: Measured by extrapolation from the distortion test result at 50 dBm0.  
Note 2: PPSR , NPSR , and CT  
X
are measured with a 50 dBm0 activation signal applied to VF Ia  
.
b
X
b
X
R
X
Note 3: TP3064 is measured using C message weighted filter. TP3067 is measured using psophometric weighted filter.  
12  
Applications Information  
POWER SUPPLIES  
While the pins of the TP3060 family are well protected  
against electrical misuse, it is recommended that the stan-  
dard CMOS practice be followed, ensuring that ground is  
connected to the device before any other connections are  
made. In applications where the printed circuit board may be  
plugged into a ‘‘hot’’ socket with power and clocks already  
present, an extra long ground pin in the connector should  
be used.  
minimizes the interaction of ground return currents flowing  
through a common bus impedance. 0.1 mF supply decou-  
pling capacitors should be connected from this common  
ground point to V  
possible.  
and V , as close to the device as  
BB  
CC  
For best performance, the ground point of each CODEC/  
FILTER on a card should be connected to a common card  
ground in ‘‘STAR’’ formation, rather than via a ground bus.  
All ground connections to each device should meet at a  
common point as close as possible to the GNDA pin. This  
This common ground point should be decoupled to V and  
CC  
V
with 10 mF capacitors.  
BB  
Note: See Application Note 370 for further details  
Typical Asynchronous Application  
TL/H/5070–5  
a
R1  
R2  
t
10 kX  
e
c
a
,(R1 R2)  
Note 1: Transmit gain  
Note 2: Receive gain  
20  
20  
log  
log  
R2  
#
J
c
2
R3  
t
e
c
,R4  
10 kX  
R4  
#
J
FIGURE 4  
13  
Definitions and Timing Conventions  
DEFINITIONS  
TIMING CONVENTIONS  
V
IH  
V
is the d.c. input level above which  
For the purposes of this timing specification, the following  
conventions apply:  
IH  
an input level is guaranteed to appear  
as a logical one. This parameter is to  
be measured by performing a  
Input Signals  
All input signals may be characterized  
k
e
e
2.4V, t  
as: V  
0.4V, V  
10 ns,  
L
H
R
functional test at reduced clock  
speeds and nominal timing, (i.e. not  
minimum setup and hold times or  
output strobes), with the high level of  
k
t
10 ns.  
The period of clock signal is  
designated as t where xx  
F
Period  
Pxx  
represents the mnemonic of the clock  
signal being specified.  
all driving signals set to V and  
IH  
maximum supply voltages applied to  
the device  
Rise Time  
Fall Time  
Rise times are designated as t ,  
Ryy  
where yy represents a mnemonic of  
the signal whose rise time is being  
V
V is the d.c. input level below which  
IL  
IL  
an input level is guaranteed to appear  
as a logical zero to the device. This  
parameter is measured in the same  
specified. t  
Ryy  
is measured from V to  
IL  
V
.
IH  
Fall times are designated as t  
,
Fyy  
manner as V but with all driving  
IH  
signal low levels set to V and  
IL  
minimum supply voltages applied to  
the device.  
where yy represents a mnemonic of  
the signal whose fall time is being  
specified. t  
is measured from V to  
IH  
Fyy  
V
.
IL  
Pulse Width High The high pulse width is designated as  
, where zz represents the  
V
V
V
OH  
is the minimum d.c. output level  
OH  
OL  
to which an output placed in a logical  
one state will converge when loaded  
at the maximum specified load current.  
t
WzzH  
mnemonic of the input or output signal  
whose pulse width is being specified.  
High pulse widths are measured from  
V
OL  
is the maximum d.c. output level  
to which an output placed in a logical  
zero state will converge when loaded  
at the maximum specified load current.  
V
to V .  
IH  
IH  
Pulse Width Low The low pulse width is designated as  
, where zz represents the  
t
WzzL  
Threshold Region The threshold region is the range of  
.
mnemonic of the input or output signal  
whose pulse width is being specified.  
Low pulse widths are measured from  
input voltages between V and V  
IL IH  
Valid Signal  
A signal is Valid if it is in one of the  
valid logic states, (i.e. above V or  
IH  
V
to V .  
IL  
IL  
below V ). In timing specifiations, a  
IL  
signal is deemed valid at the instant it  
enters a valid state.  
Setup Time  
Hold Time  
Delay Time  
Setup times are designated as t ,  
Swwxx  
where ww represents the mnemonic of  
the input signal whose setup time is  
being specified relative to a clock or  
strobe input represented by mnemonic  
xx. Setup times are measured from the  
ww Valid to xx Invalid.  
Invalid Signal  
A signal is Invalid if it is not in a valid  
logic state, i.e. when it is in in the  
threshold region between V and V  
IL  
.
IH  
In timing specifications, a signal is  
deemed Invalid at the instant it enters  
the threshold region.  
Hold times are designated as t  
,
Hxxww  
where ww represents the mnemonic of  
the input signal whose hold time is  
being specified relative to a clock or  
strobe input represented by mnemonic  
xx. Hold times are measured from xx  
Valid to ww Invalid.  
Delay times are designated as t  
Dxxyy  
Hi to Low, where xx represents the  
mnemonic of the input reference  
signal and yy represents the  
mnemonic of the output signal whose  
timing is being specified relative to xx.  
The mnemonic may optionally be  
terminated by an H or L to specify the  
high going or low going transition of  
the output signal. Maximum delay  
times are measured from xx Valid to yy  
Valid. Minimum delay times are  
measured from xx Valid to yy Invalid.  
This parameter is tested under the  
load conditions specified in the  
Conditions column of the Timing  
Specifications section of this data  
sheet.  
14  
15  
Physical Dimensions inches (millimeters)  
Cavity Dual-In-Line Package (J)  
Order Number TP3064J or TP3067J  
NS Package Number J20A  
Molded Small Outline Package (WM)  
Order Number TP3064WM or TP3067WM  
NS Package Number M20B  
16  
Physical Dimensions inches (millimeters) (Continued)  
Molded Dual-In-Line Package (N)  
Order Number TP3064N or TP3067N  
NS Package Number N20A  
17  
Ý
Lit. 113975  
Physical Dimensions inches (millimeters) (Continued)  
Plastic Chip Carrier (V)  
Order Number TP3064V or TP3067V  
NS Package Number V20A  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance  
with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury  
to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
a
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax:  
(
49) 0-180-530 85 86  
@
13th Floor, Straight Block,  
Ocean Centre, 5 Canton Rd.  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
Email: cnjwge tevm2.nsc.com  
a
a
a
a
Deutsch Tel:  
English Tel:  
Fran3ais Tel:  
Italiano Tel:  
(
(
(
(
49) 0-180-530 85 85  
49) 0-180-532 78 32  
49) 0-180-532 93 58  
49) 0-180-534 16 80  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

TP3064A

MONOLITHIC SERIAL INTERFACE COMBINED PCM CODEC AND FILTER
TI

TP3064ADW

MONOLITHIC SERIAL INTERFACE COMBINED PCM CODEC AND FILTER
TI

TP3064AJ

u-Law CODEC
ETC

TP3064AN

MONOLITHIC SERIAL INTERFACE COMBINED PCM CODEC AND FILTER
TI

TP3064B

MONOLITHIC SERIAL INTERFACE COMBINED PCM CODEC AND FILTER
TI

TP3064BDW

MONOLITHIC SERIAL INTERFACE COMBINED PCM CODEC AND FILTER
TI

TP3064BDWR

u-Law CODEC
ETC

TP3064BFN

MU-LAW, PCM CODEC, PQCC20
TI

TP3064BFNR

MU-LAW, PCM CODEC, PQCC20
TI

TP3064BJ

MU-LAW, PCM CODEC, CDIP20
TI

TP3064BN

MONOLITHIC SERIAL INTERFACE COMBINED PCM CODEC AND FILTER
TI

TP3064J

``Enhanced' Serial Interface CMOS CODEC/Filter COMBO
NSC