M29W320DT70ZE6T [NUMONYX]

32 Mbit (4Mbx8 or 2Mbx16, Non-uniform Parameter Blocks, Boot Block), 3V Supply Flash memory; 32兆位( 4Mbx8或2Mbx16 ,非均匀参数块,引导块) 3V供应闪存
M29W320DT70ZE6T
型号: M29W320DT70ZE6T
厂家: NUMONYX B.V    NUMONYX B.V
描述:

32 Mbit (4Mbx8 or 2Mbx16, Non-uniform Parameter Blocks, Boot Block), 3V Supply Flash memory
32兆位( 4Mbx8或2Mbx16 ,非均匀参数块,引导块) 3V供应闪存

闪存
文件: 总56页 (文件大小:1058K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M29W320DT  
M29W320DB  
32 Mbit (4Mbx8 or 2Mbx16, Non-uniform Parameter Blocks,  
Boot Block), 3V Supply Flash memory  
Feature summary  
Supply Voltage  
– V = 2.7V to 3.6V for Program, Erase and  
CC  
Read  
– V =12V for Fast Program (optional)  
PP  
Access time: 70, 90ns  
Programming time  
– 10µs per Byte/Word typical  
TSOP48 (N)  
12 x 20mm  
67 memory blocks  
– 1 Boot Block (Top or Bottom Location)  
– 2 Parameter and 64 Main Blocks  
FBGA  
Program/Erase controller  
– Embedded Byte/Word Program algorithms  
TFBGA48 (ZE)  
Erase Suspend and Resume modes  
– Read and Program another Block during  
Erase Suspend  
Unlock Bypass Program command  
– Faster Production/Batch Programming  
V /WP pin for Fast Program and Write Protect  
PP  
Temporary Block Unprotection mode  
Common Flash Interface  
– 64 bit Security code  
Low power consumption  
– Standby and Automatic Standby  
100,000 Program/Erase cycles per block  
Electronic Signature  
– Manufacturer Code: 0020h  
Top Device Code M29W320DT: 22CAh  
– Bottom Device Code M29W320DB: 22CBh  
®
ECOPACK packages available  
March 2008  
Rev 10  
1/56  
www.numonyx.com  
1
Contents  
M29W320DT, M29W320DB  
Contents  
1
2
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Address Inputs (A0-A20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Inputs/Outputs (DQ0-DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Inputs/Outputs (DQ8-DQ14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Input/Output or Address Input (DQ15A–1) . . . . . . . . . . . . . . . . . . . 12  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
VPP/Write Protect (VPP/WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Reset/Block Temporary Unprotect (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.10 Ready/Busy Output (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.11 Byte/Word Organization Select (BYTE) . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.12  
2.13  
V
CC Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
V
3
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Automatic Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Special bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.6.1  
3.6.2  
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Block Protect and Chip Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4
Command Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
4.2  
4.3  
4.4  
Read/Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Auto Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read CFI Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/56  
M29W320DT, M29W320DB  
Contents  
4.5  
4.6  
4.7  
4.8  
4.9  
Unlock Bypass command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Unlock Bypass Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Unlock Bypass Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Chip Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.10 Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.11 Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.12 Block Protect and Chip Unprotect commands . . . . . . . . . . . . . . . . . . . . . 21  
5
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.1  
5.2  
5.3  
5.4  
5.5  
Data Polling Bit (DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Toggle Bit (DQ6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Error Bit (DQ5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Erase Timer Bit (DQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Alternative Toggle Bit (DQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6
7
8
9
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Appendix A Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Appendix B Common Flash Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Appendix C Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
C.1  
C.2  
Programmer Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
In-System Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3/56  
List of tables  
M29W320DT, M29W320DB  
List of tables  
Table 1.  
Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 2.  
Table 3.  
Bus Operations, BYTE = V  
Bus Operations, BYTE = V  
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
IH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Table 4.  
Commands, 16-bit mode, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
IH  
Table 5.  
Commands, 8-bit mode, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
IL  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Program, Erase Times and Program, Erase Endurance Cycles. . . . . . . . . . . . . . . . . . . . . 24  
Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Device Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Write AC Characteristics, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Reset/Block Temporary Unprotect AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, Package Mechanical Data. . . . . . . 37  
TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Package Mechanical Data . . . . . . . . . . 38  
Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Top Boot Block Addresses, M29W320DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Bottom Boot Block Addresses, M29W320DB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Primary Algorithm-Specific Extended Query Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Security Code Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Programmer Technique Bus Operations, BYTE = V or V  
IH  
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
4/56  
M29W320DT, M29W320DB  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
TFBGA48 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Block Addresses (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Addresses (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Polling Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Data Toggle Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 10. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 11. Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 12. Reset/Block Temporary Unprotect AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 13. Accelerated Program Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 14. TSOP48 Lead Plastic Thin Small Outline, 12x20 Mm, Top View Package Outline . . . . . . 37  
Figure 15. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Bottom View Package Outline . . . . . . . 38  
Figure 16. Programmer Equipment Block Protect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 17. Programmer Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 18. In-System Equipment Block Protect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 19. In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
5/56  
Summary description  
M29W320DT, M29W320DB  
1
Summary description  
The M29W320D is a 32 Mbit (4Mb x8 or 2Mb x16) non-volatile memory that can be read,  
erased and reprogrammed. These operations can be performed using a single low voltage  
(2.7 to 3.6V) supply. On power-up the memory defaults to its Read mode where it can be  
read in the same way as a ROM or EPROM.  
The memory is divided into blocks that can be erased independently so it is possible to  
preserve valid data while old data is erased. Each block can be protected independently to  
prevent accidental Program or Erase commands from modifying the memory. Program and  
Erase commands are written to the Command Interface of the memory. An on-chip  
Program/Erase Controller simplifies the process of programming or erasing the memory by  
taking care of all of the special operations that are required to update the memory contents.  
The end of a program or erase operation can be detected and any error conditions  
identified. The command set required to control the memory is consistent with JEDEC  
standards.  
The blocks in the memory are asymmetrically arranged, see Figure 4 and Figure 5, Table 19  
and Table 20. The first or last 64 Kbytes have been divided into four additional blocks. The  
16 Kbyte Boot Block can be used for small initialization code to start the microprocessor, the  
two 8 Kbyte Parameter Blocks can be used for parameter storage and the remaining 32  
Kbyte is a small Main Block where the application may be stored.  
Chip Enable, Output Enable and Write Enable signals control the bus operation of the  
memory. They allow simple connection to most microprocessors, often without additional  
logic.  
The memory is offered in TSOP48 (12 x 20mm), and TFBGA48 (6x8mm, 0.8mm pitch)  
packages. In order to meet environmental requirements, Numonyx offers the M29W320D in  
®
ECOPACK packages. ECOPACK packages are Lead-free. The category of second Level  
Interconnect is marked on the package and on the inner box label, in compliance with  
JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also  
marked on the inner box label.  
The memory is supplied with all the bits erased (set to 1).  
6/56  
M29W320DT, M29W320DB  
Summary description  
Figure 1.  
Logic Diagram  
V
V
/WP  
CC PP  
21  
15  
A0-A20  
DQ0-DQ14  
DQ15A–1  
W
E
M29W320DT  
M29W320DB  
G
RB  
RP  
BYTE  
V
SS  
AI90189B  
Table 1.  
Signal Names  
Address Inputs  
A0-A20  
DQ0-DQ7  
Data Inputs/Outputs  
Data Inputs/Outputs  
DQ8-DQ14  
DQ15A–1  
Data Input/Output or Address Input  
Chip Enable  
E
G
Output Enable  
W
Write Enable  
RP  
RB  
BYTE  
VCC  
Reset/Block Temporary Unprotect  
Ready/Busy Output  
Byte/Word Organization Select  
Supply Voltage  
VPP/WP  
VPP/Write Protect  
VSS  
NC  
Ground  
Not Connected Internally  
7/56  
Summary description  
Figure 2.  
M29W320DT, M29W320DB  
TSOP Connections  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
A16  
BYTE  
V
SS  
DQ15A–1  
DQ7  
DQ14  
DQ6  
A8  
DQ13  
DQ5  
A19  
A20  
W
DQ12  
DQ4  
RP  
12  
13  
37  
36  
V
M29W320DT  
M29W320DB  
CC  
NC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
G
V
/WP  
RB  
A18  
A17  
A7  
PP  
A6  
A5  
A4  
A3  
V
E
SS  
A2  
A1  
24  
25  
A0  
AI90190  
8/56  
M29W320DT, M29W320DB  
Figure 3. TFBGA48 Connections (Top view through package)  
Summary description  
1
2
3
4
5
6
RB  
W
RP  
NC  
A
B
A3  
A4  
A7  
A17  
A6  
A9  
A8  
A13  
A12  
V
/WP  
PP  
A2  
A1  
A0  
E
A18  
A10  
A14  
C
D
A5  
A20  
A19  
A11  
A15  
DQ2  
DQ5  
DQ0  
DQ8  
DQ9  
DQ1  
DQ7  
DQ14  
DQ13  
DQ6  
A16  
E
F
BYTE  
DQ10  
DQ11  
DQ3  
DQ12  
DQ15  
A–1  
G
V
G
H
CC  
V
DQ4  
V
SS  
SS  
AI08084  
9/56  
Summary description  
Figure 4. Block Addresses (x8)  
M29W320DT, M29W320DB  
M29W320DT  
Top Boot Block Addresses (x8)  
M29W320DB  
Bottom Boot Block Addresses (x8)  
3FFFFFh  
3FFFFFh  
16 KByte  
8 KByte  
8 KByte  
32 KByte  
64 KByte  
64 KByte  
64 KByte  
3FC000h  
3FBFFFh  
3F0000h  
3EFFFFh  
3FA000h  
3F9FFFh  
3E0000h  
Total of 63  
64 KByte Blocks  
3F8000h  
3F7FFFh  
3F0000h  
3EFFFFh  
01FFFFh  
64 KByte  
32 KByte  
8 KByte  
8 KByte  
16 KByte  
3E0000h  
010000h  
00FFFFh  
008000h  
007FFFh  
Total of 63  
64 KByte Blocks  
006000h  
005FFFh  
01FFFFh  
64 KByte  
64 KByte  
010000h  
00FFFFh  
004000h  
003FFFh  
000000h  
000000h  
AI90192  
1. Also see Appendix A: Block Addresses, Table 19 and Table 20 for a full listing of the Block Addresses.  
10/56  
M29W320DT, M29W320DB  
Figure 5. Block Addresses (x16)  
Summary description  
M29W320DT  
Top Boot Block Addresses (x16)  
M29W320DB  
Bottom Boot Block Addresses (x16)  
1FFFFFh  
1FFFFFh  
8 KWord  
4 KWord  
4 KWord  
16 KWord  
32 KWord  
32 KWord  
32 KWord  
1FE000h  
1FDFFFh  
1F8000h  
1F7FFFh  
1FD000h  
1FCFFFh  
1F0000h  
Total of 63  
32 KWord Blocks  
1FC000h  
1FBFFFh  
1F8000h  
1F7FFFh  
00FFFFh  
32 KWord  
16 KWord  
4 KWord  
4 KWord  
8 KWord  
1F0000h  
008000h  
007FFFh  
004000h  
003FFFh  
Total of 63  
32 KWord Blocks  
003000h  
002FFFh  
00FFFFh  
32 KWord  
32 KWord  
008000h  
007FFFh  
002000h  
001FFFh  
000000h  
000000h  
AI90193  
1. Also see Appendix Appendix A: Block Addresses, Table 19 and Table 20 for a full listing of the Block Addresses.  
11/56  
Signal descriptions  
M29W320DT, M29W320DB  
2
Signal descriptions  
See Figure 1: Logic Diagram, and Table 1: Signal Names, for a brief overview of the signals  
connected to this device.  
2.1  
2.2  
2.3  
Address Inputs (A0-A20)  
The Address Inputs select the cells in the memory array to access during Bus Read  
operations. During Bus Write operations they control the commands sent to the Command  
Interface of the internal state machine.  
Data Inputs/Outputs (DQ0-DQ7)  
The Data I/O outputs the data stored at the selected address during a Bus Read operation.  
During Bus Write operations they represent the commands sent to the Command Interface  
of the internal state machine.  
Data Inputs/Outputs (DQ8-DQ14)  
The Data I/O outputs the data stored at the selected address during a Bus Read operation  
when BYTE is High, V . When BYTE is Low, V , these pins are not used and are high  
IH  
IL  
impedance. During Bus Write operations the Command Register does not use these bits.  
When reading the Status Register these bits should be ignored.  
2.4  
Data Input/Output or Address Input (DQ15A–1)  
When BYTE is High, V , this pin behaves as a Data Input/Output pin (as DQ8-DQ14).  
IH  
When BYTE is Low, V , this pin behaves as an address pin; DQ15A–1 Low will select the  
IL  
LSB of the Word on the other addresses, DQ15A–1 High will select the MSB. Throughout  
the text consider references to the Data Input/Output to include this pin when BYTE is High  
and references to the Address Inputs to include this pin when BYTE is Low except when  
stated explicitly otherwise.  
2.5  
2.6  
Chip Enable (E)  
The Chip Enable, E, activates the memory, allowing Bus Read and Bus Write operations to  
be performed. When Chip Enable is High, V , all other pins are ignored.  
IH  
Output Enable (G)  
The Output Enable, G, controls the Bus Read operation of the memory.  
12/56  
M29W320DT, M29W320DB  
Signal descriptions  
2.7  
2.8  
Write Enable (W)  
The Write Enable, W, controls the Bus Write operation of the memory’s Command Interface.  
VPP/Write Protect (VPP/WP)  
The V /Write Protect pin provides two functions. The V function allows the memory to  
PP  
PP  
use an external high voltage power supply to reduce the time required for Unlock Bypass  
Program operations. The Write Protect function provides a hardware method of protecting  
the 16 Kbyte Boot Block. The V /Write Protect pin must not be left floating or unconnected.  
PP  
When V /Write Protect is Low, V , the memory protects the 16 Kbyte Boot Block; Program  
PP  
IL  
and Erase operations in this block are ignored while V /Write Protect is Low.  
PP  
When V /Write Protect is High, V , the memory reverts to the previous protection status  
PP  
IH  
of the 16 Kbyte boot block. Program and Erase operations can now modify the data in the 16  
Kbyte Boot Block unless the block is protected using Block Protection.  
When V /Write Protect is raised to V the memory automatically enters the Unlock  
PP  
PP  
Bypass mode. When V /Write Protect returns to V or V normal operation resumes.  
PP  
IH  
IL  
During Unlock Bypass Program operations the memory draws I from the pin to supply the  
PP  
programming circuits. See the description of the Unlock Bypass command in the Command  
Interface section. The transitions from V to V and from V to V must be slower than  
IH  
PP  
PP  
IH  
t
, see Figure 13.  
VHVPP  
Never raise V /Write Protect to V from any mode except Read mode, otherwise the  
PP  
PP  
memory may be left in an indeterminate state.  
A 0.1µF capacitor should be connected between the V /Write Protect pin and the V  
PP  
SS  
Ground pin to decouple the current surges from the power supply. The PCB track widths  
must be sufficient to carry the currents required during Unlock Bypass Program, I .  
PP  
2.9  
Reset/Block Temporary Unprotect (RP)  
The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the  
memory or to temporarily unprotect all Blocks that have been protected.  
Note that if V /WP is at V , then the 16 KByte outermost boot block will remain protect  
PP  
IL  
even if RP is at V .  
ID  
A Hardware Reset is achieved by holding Reset/Block Temporary Unprotect Low, V , for at  
IL  
least t  
. After Reset/Block Temporary Unprotect goes High, V , the memory will be  
PLPX  
IH  
ready for Bus Read and Bus Write operations after t  
or t  
, whichever occurs last.  
RHEL  
PHEL  
See the Ready/Busy Output section, Table 15 and Figure 12, for more details.  
Holding RP at V will temporarily unprotect the protected Blocks in the memory. Program  
ID  
and Erase operations on all blocks will be possible. The transition from V to V must be  
IH  
ID  
slower than t  
.
PHPHH  
13/56  
Signal descriptions  
M29W320DT, M29W320DB  
2.10  
Ready/Busy Output (RB)  
The Ready/Busy pin is an open-drain output that can be used to identify when the device is  
performing a Program or Erase operation. During Program or Erase operations Ready/Busy  
is Low, V . Ready/Busy is high-impedance during Read mode, Auto Select mode and  
OL  
Erase Suspend mode.  
Note that if V /WP is at V , then the 16 KByte outermost boot block will remain protect  
PP  
IL  
even if RP is at V .  
ID  
After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy  
becomes high-impedance. See Table 15 and Figure 12.  
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the  
memories is busy.  
2.11  
2.12  
Byte/Word Organization Select (BYTE)  
The Byte/Word Organization Select pin is used to switch between the x8 and x16 Bus  
modes of the memory. When Byte/Word Organization Select is Low, V , the memory is in  
IL  
x8 mode, when it is High, V , the memory is in x16 mode.  
IH  
VCC Supply Voltage  
V
provides the power supply for all operations (Read, Program and Erase).  
CC  
The Command Interface is disabled when the V Supply Voltage is less than the Lockout  
CC  
Voltage, V  
. This prevents Bus Write operations from accidentally damaging the data  
LKO  
during power up, power down and power surges. If the Program/Erase Controller is  
programming or erasing during this time then the operation aborts and the memory contents  
being altered will be invalid.  
A 0.1µF capacitor should be connected between the V Supply Voltage pin and the V  
CC  
SS  
Ground pin to decouple the current surges from the power supply. The PCB track widths  
must be sufficient to carry the currents required during Program and Erase operations, I  
.
CC3  
2.13  
VSS Ground  
V
is the reference for all voltage measurements.  
SS  
14/56  
M29W320DT, M29W320DB  
Bus operations  
3
Bus operations  
There are five standard bus operations that control the device. These are Bus Read, Bus  
Write, Output Disable, Standby and Automatic Standby. See Table 2 and Table 3, Bus  
operations, for a summary. Typically glitches of less than 5ns on Chip Enable or Write  
Enable are ignored by the memory and do not affect bus operations.  
3.1  
Bus Read  
Bus Read operations read from the memory cells, or specific registers in the Command  
Interface. A valid Bus Read operation involves setting the desired address on the Address  
Inputs, applying a Low signal, V , to Chip Enable and Output Enable and keeping Write  
IL  
Enable High, V . The Data Inputs/Outputs will output the value, see Figure 9: Read Mode  
IH  
AC Waveforms, and Table 12: Read AC Characteristics, for details of when the output  
becomes valid.  
3.2  
Bus Write  
Bus Write operations write to the Command Interface. A valid Bus Write operation begins by  
setting the desired address on the Address Inputs. The Address Inputs are latched by the  
Command Interface on the falling edge of Chip Enable or Write Enable, whichever occurs  
last. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of  
Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V ,  
IH  
during the whole Bus Write operation. See Figure 10 and Figure 11, Write AC waveforms,  
and Table 13 and Table 14, Write AC Characteristics, for details of the timing requirements.  
3.3  
3.4  
Output Disable  
The Data Inputs/Outputs are in the high impedance state when Output Enable is High, V .  
IH  
Standby  
When Chip Enable is High, V , the memory enters Standby mode and the Data  
IH  
Inputs/Outputs pins are placed in the high-impedance state. To reduce the Supply Current to  
the Standby Supply Current, I  
, Chip Enable should be held within V  
0.2V. For the  
CC2  
CC  
Standby current level see Table 11: DC Characteristics.  
During program or erase operations the memory will continue to use the Program/Erase  
Supply Current, I , for Program or Erase operations until the operation completes.  
CC3  
3.5  
Automatic Standby  
If CMOS levels (V  
0.2V) are used to drive the bus and the bus is inactive for 300ns or  
more the memory enters Automatic Standby where the internal Supply Current is reduced to  
the Standby Supply Current, I . The Data Inputs/Outputs will still output data if a Bus  
CC  
CC2  
Read operation is in progress.  
15/56  
Bus operations  
M29W320DT, M29W320DB  
3.6  
Special bus operations  
Additional bus operations can be performed to read the Electronic Signature and also to  
apply and remove Block Protection. These bus operations are intended for use by  
programming equipment and are not usually used in applications. They require V to be  
ID  
applied to some pins.  
3.6.1  
3.6.2  
Electronic Signature  
The memory has two codes, the manufacturer code and the device code, that can be read  
to identify the memory. These codes can be read by applying the signals listed in Table 2  
and Table 3, Bus Operations.  
Block Protect and Chip Unprotect  
Each block can be separately protected against accidental Program or Erase. The whole  
chip can be unprotected to allow the data inside the blocks to be changed.  
Block Protect and Chip Unprotect operations are described in Appendix C: Block Protection.  
(1)  
Table 2.  
Bus Operations, BYTE = V  
IL  
Data Inputs/Outputs  
Address Inputs  
DQ15A–1, A0-A20  
Operation  
E
G
W
DQ14-DQ8  
DQ7-DQ0  
Bus Read  
Bus Write  
Output Disable  
Standby  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH Cell Address  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Data Output  
Data Input  
Hi-Z  
VIL Command Address  
VIH  
X
X
X
VIH  
Hi-Z  
Read Manufacturer  
Code  
A0 = VIL, A1 = VIL, A9 = VID,  
Others VIL or VIH  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
Hi-Z  
Hi-Z  
20h  
CAh (M29W320DT)  
CBh (M29W320DB)  
A0 = VIH, A1 = VIL,  
A9 = VID, Others VIL or VIH  
Read Device Code  
1. X = VIL or VIH  
.
(1)  
Table 3.  
Bus Operations, BYTE = V  
IH  
Address Inputs  
A0-A20  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
Bus Read  
Bus Write  
Output Disable  
Standby  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH Cell Address  
Data Output  
Data Input  
Hi-Z  
VIL Command Address  
VIH  
X
X
X
VIH  
Hi-Z  
Read Manufacturer  
Code  
A0 = VIL, A1 = VIL, A9 = VID,  
Others VIL or VIH  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
0020h  
22CAh (M29W320DT)  
22CBh (M29W320DB)  
A0 = VIH, A1 = VIL, A9 = VID,  
Others VIL or VIH  
Read Device Code  
1. X = VIL or VIH  
.
16/56  
M29W320DT, M29W320DB  
Command Interface  
4
Command Interface  
All Bus Write operations to the memory are interpreted by the Command Interface.  
Commands consist of one or more sequential Bus Write operations. Failure to observe a  
valid sequence of Bus Write operations will result in the memory returning to Read mode.  
The long command sequences are imposed to maximize data security.  
The address used for the commands changes depending on whether the memory is in 16-  
bit or 8-bit mode. See either Table 4, or Table 5, depending on the configuration that is being  
used, for a summary of the commands.  
4.1  
4.2  
Read/Reset command  
The Read/Reset command returns the memory to its Read mode where it behaves like a  
ROM or EPROM, unless otherwise stated. It also resets the errors in the Status Register.  
Either one or three Bus Write operations can be used to issue the Read/Reset command.  
The Read/Reset Command can be issued, between Bus Write cycles before the start of a  
program or erase operation, to return the device to read mode. Once the program or erase  
operation has started the Read/Reset command is no longer accepted. The Read/Reset  
command will not abort an Erase operation when issued while in Erase Suspend.  
Auto Select command  
The Auto Select command is used to read the Manufacturer Code, the Device Code and the  
Block Protection Status. Three consecutive Bus Write operations are required to issue the  
Auto Select command. Once the Auto Select command is issued the memory remains in  
Auto Select mode until a Read/Reset command is issued. Read CFI Query and Read/Reset  
commands are accepted in Auto Select mode, all other commands are ignored.  
From the Auto Select mode the Manufacturer Code can be read using a Bus Read operation  
with A0 = V and A1 = V . The other address bits may be set to either V or V . The  
IL  
IL  
IL  
IH  
Manufacturer Code for Numonyx is 0020h.  
The Device Code can be read using a Bus Read operation with A0 = V and A1 = V . The  
IH  
IL  
other address bits may be set to either V or V . The Device Code for the M29W320DT is  
IL  
IH  
22CAh and for the M29W320DB is 22CBh.  
The Block Protection Status of each block can be read using a Bus Read operation with A0  
= V , A1 = V , and A12-A20 specifying the address of the block. The other address bits  
IL  
IH  
may be set to either V or V . If the addressed block is protected then 01h is output on  
IL  
IH  
Data Inputs/Outputs DQ0-DQ7, otherwise 00h is output.  
17/56  
Command Interface  
M29W320DT, M29W320DB  
4.3  
Read CFI Query command  
The Read CFI Query Command is used to read data from the Common Flash Interface  
(CFI) Memory Area. This command is valid when the device is in the Read Array mode, or  
when the device is in Autoselected mode.  
One Bus Write cycle is required to issue the Read CFI Query Command. Once the  
command is issued subsequent Bus Read operations read from the Common Flash  
Interface Memory Area.  
The Read/Reset command must be issued to return the device to the previous mode (the  
Read Array mode or Autoselected mode). A second Read/Reset command would be  
needed if the device is to be put in the Read Array mode from Autoselected mode.  
See Appendix B: Common Flash Interface (CFI), Table 21, Table 22, Table 23, Table 24,  
Table 25 and Table 26 for details on the information contained in the Common Flash  
Interface (CFI) memory area.  
4.4  
Program command  
The Program command can be used to program a value to one address in the memory array  
at a time. The command requires four Bus Write operations, the final write operation latches  
the address and data in the internal state machine and starts the Program/Erase Controller.  
If the address falls in a protected block then the Program command is ignored, the data  
remains unchanged. The Status Register is never read and no error condition is given.  
During the program operation the memory will ignore all commands. It is not possible to  
issue any command to abort or pause the operation. Typical program times are given in  
Table 6. Bus Read operations during the program operation will output the Status Register  
on the Data Inputs/Outputs. See the section on the Status Register for more details.  
After the program operation has completed the memory will return to the Read mode, unless  
an error has occurred. When an error occurs the memory will continue to output the Status  
Register. A Read/Reset command must be issued to reset the error condition and return to  
Read mode.  
Note that the Program command cannot change a bit set at ’0’ back to ’1’. One of the Erase  
Commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.  
4.5  
Unlock Bypass command  
The Unlock Bypass command is used in conjunction with the Unlock Bypass Program  
command to program the memory. When the cycle time to the device is long (as with some  
EPROM programmers) considerable time saving can be made by using these commands.  
Three Bus Write operations are required to issue the Unlock Bypass command.  
Once the Unlock Bypass command has been issued the memory will only accept the Unlock  
Bypass Program command and the Unlock Bypass Reset command. The memory can be  
read as if in Read mode.  
The memory offers accelerated program operations through the V /Write Protect pin.  
PP  
When the system asserts V on the V /Write Protect pin, the memory automatically  
PP  
PP  
enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass  
18/56  
M29W320DT, M29W320DB  
Command Interface  
program command sequence. The memory uses the higher voltage on the V /Write  
PP  
Protect pin, to accelerate the Unlock Bypass Program operation.  
Never raise V /Write Protect to V from any mode except Read mode, otherwise the  
PP  
PP  
memory may be left in an indeterminate state.  
4.6  
Unlock Bypass Program command  
The Unlock Bypass Program command can be used to program one address in the memory  
array at a time. The command requires two Bus Write operations, the final write operation  
latches the address and data in the internal state machine and starts the Program/Erase  
Controller.  
The Program operation using the Unlock Bypass Program command behaves identically to  
the Program operation using the Program command. The operation cannot be aborted, the  
Status Register is read and protected blocks cannot be programmed. Errors must be reset  
using the Read/Reset command, which leaves the device in Unlock Bypass Mode. See the  
Program command for details on the behavior.  
4.7  
4.8  
Unlock Bypass Reset command  
The Unlock Bypass Reset command can be used to return to Read/Reset mode from  
Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass  
Reset command. Read/Reset command does not exit from Unlock Bypass Mode.  
Chip Erase command  
The Chip Erase command can be used to erase the entire chip. Six Bus Write operations  
are required to issue the Chip Erase Command and start the Program/Erase Controller.  
If any blocks are protected then these are ignored and all the other blocks are erased. If all  
of the blocks are protected the Chip Erase operation appears to start but will terminate  
within about 100µs, leaving the data unchanged. No error condition is given when protected  
blocks are ignored.  
During the erase operation the memory will ignore all commands, including the Erase  
Suspend command. It is not possible to issue any command to abort the operation. Typical  
chip erase times are given in Table 6. All Bus Read operations during the Chip Erase  
operation will output the Status Register on the Data Inputs/Outputs. See the section on the  
Status Register for more details.  
After the Chip Erase operation has completed the memory will return to the Read Mode,  
unless an error has occurred. When an error occurs the memory will continue to output the  
Status Register. A Read/Reset command must be issued to reset the error condition and  
return to Read Mode.  
The Chip Erase Command sets all of the bits in unprotected blocks of the memory to ’1’. All  
previous data is lost.  
19/56  
Command Interface  
M29W320DT, M29W320DB  
4.9  
Block Erase command  
The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write  
operations are required to select the first block in the list. Each additional block in the list can  
be selected by repeating the sixth Bus Write operation using the address of the additional  
block. The Block Erase operation starts the Program/Erase Controller about 50µs after the  
last Bus Write operation. Once the Program/Erase Controller starts it is not possible to  
select any more blocks. Each additional block must therefore be selected within 50µs of the  
last block. The 50µs timer restarts when an additional block is selected. The Status Register  
can be read after the sixth Bus Write operation. See the Status Register section for details  
on how to identify if the Program/Erase Controller has started the Block Erase operation.  
If any selected blocks are protected then these are ignored and all the other selected blocks  
are erased. If all of the selected blocks are protected the Block Erase operation appears to  
start but will terminate within about 100µs, leaving the data unchanged. No error condition is  
given when protected blocks are ignored.  
During the Block Erase operation the memory will ignore all commands except the Erase  
Suspend command. Typical block erase times are given in Table 6. All Bus Read operations  
during the Block Erase operation will output the Status Register on the Data Inputs/Outputs.  
See the section on the Status Register for more details.  
After the Block Erase operation has completed the memory will return to the Read Mode,  
unless an error has occurred. When an error occurs the memory will continue to output the  
Status Register. A Read/Reset command must be issued to reset the error condition and  
return to Read mode.  
The Block Erase Command sets all of the bits in the unprotected selected blocks to ’1’. All  
previous data in the selected blocks is lost.  
4.10  
Erase Suspend command  
The Erase Suspend Command may be used to temporarily suspend a Block Erase  
operation and return the memory to Read mode. The command requires one Bus Write  
operation.  
The Program/Erase Controller will suspend within the Erase Suspend Latency Time (refer to  
Table 6 for value) of the Erase Suspend Command being issued. Once the Program/Erase  
Controller has stopped the memory will be set to Read mode and the Erase will be  
suspended. If the Erase Suspend command is issued during the period when the memory is  
waiting for an additional block (before the Program/Erase Controller starts) then the Erase is  
suspended immediately and will start immediately when the Erase Resume Command is  
issued. It is not possible to select any further blocks to erase after the Erase Resume.  
During Erase Suspend it is possible to Read and Program cells in blocks that are not being  
erased; both Read and Program operations behave as normal on these blocks. If any  
attempt is made to program in a protected block or in the suspended block then the Program  
command is ignored and the data remains unchanged. The Status Register is not read and  
no error condition is given. Reading from blocks that are being erased will output the Status  
Register.  
It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands  
during an Erase Suspend. The Read/Reset command must be issued to return the device to  
Read Array mode before the Resume command will be accepted.  
20/56  
M29W320DT, M29W320DB  
Command Interface  
4.11  
Erase Resume command  
The Erase Resume command must be used to restart the Program/Erase Controller after an  
Erase Suspend. The device must be in Read Array mode before the Resume command will  
be accepted. An erase can be suspended and resumed more than once.  
4.12  
Block Protect and Chip Unprotect commands  
Each block can be separately protected against accidental Program or Erase. The whole  
chip can be unprotected to allow the data inside the blocks to be changed.  
Block Protect and Chip Unprotect operations are described in Appendix C: Block Protection.  
21/56  
Command Interface  
M29W320DT, M29W320DB  
(1)(2)  
Table 4.  
Commands, 16-bit mode, BYTE = V  
IH  
Bus Write Operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
AA  
Read/Reset(3)  
555  
555  
555  
555  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
X
F0  
90  
A0  
20  
Auto Select(4)  
Program(5)  
555  
555  
555  
PA  
PD  
Unlock Bypass(6)  
Unlock Bypass  
Program(5)  
2
X
A0  
90  
PA  
X
PD  
00  
Unlock Bypass  
Reset(7)  
2
6
X
Chip Erase(5)  
555  
AA  
AA  
B0  
30  
98  
2AA  
2AA  
55  
55  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
BA  
10  
30  
Block Erase(5)  
6+ 555  
Erase Suspend(8)  
Erase Resume(9)  
Read CFI Query(10)  
1
1
1
X
X
55  
1. X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in  
hexadecimal.  
2. The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15  
are Don’t Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH  
.
3. After a Read/Reset command, read the memory as normal until another command is issued. Read/Reset command is  
ignored during algorithm execution.  
4. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.  
5. After Program, Unlock Bypass Program, Chip Erase, Block Erase commands read the Status Register until the  
Program/Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase  
Command with additional Bus Write Operations until Timeout Bit is set.  
6. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.  
7. After the Unlock Bypass Reset command read the memory as normal until another command is issued.  
8. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program  
commands on non-erasing blocks as normal.  
9. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the  
Program/Erase Controller completes and the memory returns to Read Mode.  
10. CFI Query command is valid when device is ready to read array data or when device is in autoselected mode.  
22/56  
M29W320DT, M29W320DB  
Command Interface  
(1)(2)  
Table 5.  
Commands, 8-bit mode, BYTE = V  
IL  
Bus Write Operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
AA  
Read/Reset(3)  
AAA  
AAA  
AAA  
AAA  
555  
555  
555  
555  
55  
55  
55  
55  
X
F0  
90  
A0  
20  
Auto Select(4)  
Program(5)  
AAA  
AAA  
AAA  
PA  
PD  
Unlock Bypass(6)  
Unlock Bypass  
Program(5)  
2
X
A0  
90  
PA  
X
PD  
00  
Unlock Bypass  
Reset(7)  
2
6
X
Chip Erase(5)  
AAA  
AA  
AA  
B0  
30  
555  
555  
55  
55  
AAA  
AAA  
80  
80  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
BA  
10  
30  
Block Erase(5)  
6+ AAA  
Erase Suspend(8)  
Erase Resume(9)  
Read CFI Query(10)  
1
1
1
X
X
AA  
98  
1. X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in  
hexadecimal.  
2. The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15  
are Don’t Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH  
.
3. After a Read/Reset command, read the memory as normal until another command is issued. Read/Reset command is  
ignored during algorithm execution.  
4. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.  
5. After a Program, Unlock Bypass Program, Chip Erase, Block Erase command read the Status Register until the  
Program/Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase  
Command with additional Bus Write Operations until Timeout Bit is set.  
6. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.  
7. After the Unlock Bypass Reset command read the memory as normal until another command is issued.  
8. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program  
commands on non-erasing blocks as normal.  
9. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the  
Program/Erase Controller completes and the memory returns to Read Mode.  
10. The CFI Query command is valid when device is ready to read array data or when device is in autoselected mode.  
23/56  
Command Interface  
M29W320DT, M29W320DB  
Table 6.  
Program, Erase Times and Program, Erase Endurance Cycles  
Parameter  
Min  
Typ(1)(2)  
Max(2)  
Unit  
Chip Erase  
40  
0.8  
15  
10  
8
200(3)  
6(4)  
s
s
Block Erase (64 KBytes)  
Erase Suspend Latency Time  
Program (Byte or Word)  
25(4)  
µs  
200(3)  
150(3)  
200(3)  
100(3)  
µs  
Accelerated Program (Byte or Word)  
Chip Program (Byte by Byte)  
Chip Program (Word by Word)  
Program/Erase Cycles (per Block)  
Data Retention  
µs  
40  
20  
s
s
100,000  
20  
cycles  
years  
1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Maximum value measured at worst case conditions for both temperature and VCC after 100,00 program/erase cycles.  
4. Maximum value measured at worst case conditions for both temperature and VCC  
.
24/56  
M29W320DT, M29W320DB  
Status Register  
5
Status Register  
Bus Read operations from any address always read the Status Register during Program and  
Erase operations. It is also read during Erase Suspend when an address within a block  
being erased is accessed.  
The bits in the Status Register are summarized in Table 7: Status Register Bits.  
5.1  
Data Polling Bit (DQ7)  
The Data Polling Bit can be used to identify whether the Program/Erase Controller has  
successfully completed its operation or if it has responded to an Erase Suspend. The Data  
Polling Bit is output on DQ7 when the Status Register is read.  
During Program operations the Data Polling Bit outputs the complement of the bit being  
programmed to DQ7. After successful completion of the Program operation the memory  
returns to Read mode and Bus Read operations from the address just programmed output  
DQ7, not its complement.  
During Erase operations the Data Polling Bit outputs ’0’, the complement of the erased state  
of DQ7. After successful completion of the Erase operation the memory returns to Read  
Mode.  
In Erase Suspend mode the Data Polling Bit will output a ’1’ during a Bus Read operation  
within a block being erased. The Data Polling Bit will change from a ’0’ to a ’1’ when the  
Program/Erase Controller has suspended the Erase operation.  
Figure 6: Data Polling Flowchart, gives an example of how to use the Data Polling Bit. A  
Valid Address is the address being programmed or an address within the block being  
erased.  
5.2  
Toggle Bit (DQ6)  
The Toggle Bit can be used to identify whether the Program/Erase Controller has  
successfully completed its operation or if it has responded to an Erase Suspend. The Toggle  
Bit is output on DQ6 when the Status Register is read.  
During Program and Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with  
successive Bus Read operations at any address. After successful completion of the  
operation the memory returns to Read mode.  
During Erase Suspend mode the Toggle Bit will output when addressing a cell within a block  
being erased. The Toggle Bit will stop toggling when the Program/Erase Controller has  
suspended the Erase operation.  
If any attempt is made to erase a protected block, the operation is aborted, no error is  
signalled and DQ6 toggles for approximately 100µs. If any attempt is made to program a  
protected block or a suspended block, the operation is aborted, no error is signalled and  
DQ6 toggles for approximately 1µs.  
Figure 7: Data Toggle Flowchart, gives an example of how to use the Data Toggle Bit.  
25/56  
Status Register  
M29W320DT, M29W320DB  
5.3  
Error Bit (DQ5)  
The Error Bit can be used to identify errors detected by the Program/Erase Controller. The  
Error Bit is set to ’1’ when a Program, Block Erase or Chip Erase operation fails to write the  
correct data to the memory. If the Error Bit is set a Read/Reset command must be issued  
before other commands are issued. The Error bit is output on DQ5 when the Status Register  
is read.  
Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to  
do so will set DQ5 to ‘1’. A Bus Read operation to that address will show the bit is still ‘0’.  
One of the Erase commands must be used to set all the bits in a block or in the whole  
memory from ’0’ to ’1’.  
5.4  
5.5  
Erase Timer Bit (DQ3)  
The Erase Timer Bit can be used to identify the start of Program/Erase Controller operation  
during a Block Erase command. Once the Program/Erase Controller starts erasing the  
Erase Timer Bit is set to ’1’. Before the Program/Erase Controller starts the Erase Timer Bit  
is set to ’0’ and additional blocks to be erased may be written to the Command Interface.  
The Erase Timer Bit is output on DQ3 when the Status Register is read.  
Alternative Toggle Bit (DQ2)  
The Alternative Toggle Bit can be used to monitor the Program/Erase controller during  
Erase operations. The Alternative Toggle Bit is output on DQ2 when the Status Register is  
read.  
During Chip Erase and Block Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’,  
etc., with successive Bus Read operations from addresses within the blocks being erased. A  
protected block is treated the same as a block not being erased. Once the operation  
completes the memory returns to Read mode.  
During Erase Suspend the Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with  
successive Bus Read operations from addresses within the blocks being erased. Bus Read  
operations to addresses within blocks not being erased will output the memory cell data as if  
in Read mode.  
After an Erase operation that causes the Error Bit to be set the Alternative Toggle Bit can be  
used to identify which block or blocks have caused the error. The Alternative Toggle Bit  
changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read Operations from addresses  
within blocks that have not erased correctly. The Alternative Toggle Bit does not change if  
the addressed block has erased correctly.  
26/56  
M29W320DT, M29W320DB  
Status Register  
(1)  
Table 7.  
Status Register Bits  
Operation  
Address  
DQ7  
DQ6  
DQ5  
DQ3  
DQ2  
RB  
Program  
Any Address  
DQ7  
Toggle  
0
0
Program During Erase  
Suspend  
Any Address  
DQ7  
Toggle  
0
0
Program Error  
Chip Erase  
Any Address  
Any Address  
DQ7  
Toggle  
Toggle  
1
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
Toggle  
Erasing Block  
Toggle  
Toggle  
Block Erase before  
timeout  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
Toggle  
Block Erase  
Erase Suspend  
Erase Error  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
No Toggle  
Non-Erasing Block  
Good Block Address  
Faulty Block Address  
Data read as normal  
0
0
Toggle  
Toggle  
1
1
1
No Toggle  
Toggle  
1
1. Unspecified data bits should be ignored.  
Figure 6.  
Data Polling Flowchart  
START  
READ DQ5 & DQ7  
at VALID ADDRESS  
DQ7  
=
YES  
DATA  
NO  
NO  
DQ5  
= 1  
YES  
READ DQ7  
at VALID ADDRESS  
DQ7  
=
YES  
DATA  
NO  
FAIL  
PASS  
AI90194  
27/56  
Status Register  
Figure 7.  
M29W320DT, M29W320DB  
Data Toggle Flowchart  
START  
READ DQ6  
READ  
DQ5 & DQ6  
DQ6  
=
NO  
TOGGLE  
YES  
NO  
DQ5  
= 1  
YES  
READ DQ6  
TWICE  
DQ6  
=
NO  
TOGGLE  
YES  
FAIL  
PASS  
AI01370C  
28/56  
M29W320DT, M29W320DB  
Maximum rating  
6
Maximum rating  
Stressing the device above the rating listed in the Absolute Maximum Ratings table may  
cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions  
for extended periods may affect device reliability. These are stress ratings only and  
operation of the device at these or any other conditions above those indicated in the  
Operating sections of this specification is not implied. Refer also to the Numonyx SURE  
Program and other relevant quality documents.  
Table 8.  
Symbol  
Absolute Maximum Ratings  
Parameter  
Min  
Max  
Unit  
TBIAS  
TSTG  
VIO  
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage(1)(2)  
Supply Voltage  
–50  
–65  
125  
150  
°C  
°C  
V
–0.6  
–0.6  
–0.6  
–0.6  
VCC +0.6  
4
VCC  
VID  
V
Identification Voltage  
Program Voltage  
13.5  
V
VPP  
13.5  
V
1. Minimum voltage may undershoot to –2V during transition and for less than 20ns during transitions.  
2. Maximum voltage may overshoot to VCC +2V during transition and for less than 20ns during transitions.  
29/56  
DC and AC parameters  
M29W320DT, M29W320DB  
7
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 9: Operating and AC Measurement Conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 9.  
Operating and AC Measurement Conditions  
M29W320D  
70  
90  
Parameter  
Unit  
Min  
Max  
Min  
Max  
VCC Supply Voltage  
3.0  
3.6  
85  
2.7  
3.6  
85  
V
°C  
pF  
ns  
V
Ambient Operating Temperature  
Load Capacitance (CL)  
–40  
–40  
30  
30  
Input Rise and Fall Times  
Input Pulse Voltages  
10  
10  
0 to VCC  
VCC/2  
0 to VCC  
VCC/2  
Input and Output Timing Ref. Voltages  
V
Figure 8.  
AC Measurement I/O Waveform  
V
CC  
V
/2  
CC  
0V  
AI90196  
30/56  
M29W320DT, M29W320DB  
DC and AC parameters  
Figure 1. AC Measurement Load Circuit  
V
V
V
CC  
PP  
CC  
25kΩ  
DEVICE  
UNDER  
TEST  
25kΩ  
C
L
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI90197  
(1)  
Table 10. Device Capacitance  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 0V  
6
pF  
pF  
COUT  
VOUT = 0V  
12  
1. Sampled only, not 100% tested.  
31/56  
DC and AC parameters  
M29W320DT, M29W320DB  
Table 11. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Typ.  
Max  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
0V VIN VCC  
1
1
µA  
µA  
ILO  
0V VOUT VCC  
E = VIL, G = VIH,  
f = 6MHz  
ICC1  
Supply Current (Read)  
5
10  
mA  
E = VCC 0.2V,  
RP = VCC 0.2V  
ICC2  
Supply Current (Standby)  
35  
100  
20  
µA  
mA  
mA  
V
PP/WP =  
Program/Eras  
e
VIL or VIH  
Supply Current  
(Program/Erase)  
(1)  
ICC3  
Controller  
active  
VPP/WP =  
VPP  
20  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
V
V
0.7VCC  
VCC +0.3  
Voltage for VPP/WP  
Program Acceleration  
VPP  
IPP  
VCC = 3.0V 10%  
11.5  
12.5  
V
Current for VPP/WP  
Program Acceleration  
VCC = 3.0V 10%  
10  
mA  
VOL  
VOH  
VID  
IID  
Output Low Voltage  
Output High Voltage  
Identification Voltage  
Identification Current  
IOL = 1.8mA  
0.45  
V
V
IOH = –100µA  
VCC –0.4  
11.5  
12.5  
100  
V
A9 = VID  
µA  
Program/Erase Lockout  
Supply Voltage  
VLKO  
1.8  
2.3  
V
1. Sampled only, not 100% tested.  
32/56  
M29W320DT, M29W320DB  
DC and AC parameters  
Figure 9.  
Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A20/  
A–1  
tAVQV  
tAXQX  
E
tELQV  
tELQX  
tEHQX  
tEHQZ  
G
tGLQX  
tGLQV  
tGHQX  
tGHQZ  
DQ0-DQ7/  
DQ8-DQ15  
VALID  
tBHQV  
BYTE  
tELBL/tELBH  
tBLQZ  
AI90198  
Table 12. Read AC Characteristics  
M29W320D  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
70  
90  
E = VIL,  
Min  
tAVAV  
tAVQV  
tRC  
Address Valid to Next Address Valid  
Address Valid to Output Valid  
70  
70  
90  
ns  
ns  
G = VIL  
E = VIL,  
Max  
tACC  
90  
G = VIL  
(1)  
tELQX  
tLZ  
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
G = VIL  
G = VIL  
Min  
0
0
ns  
ns  
tELQV  
tCE  
Max  
70  
90  
Output Enable Low to Output  
Transition  
(1)  
tGLQX  
tOLZ  
E = VIL  
Min  
0
0
ns  
tGLQV  
tOE  
tHZ  
tDF  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
E = VIL  
G = VIL  
E = VIL  
Max  
Max  
Max  
30  
25  
25  
35  
30  
30  
ns  
ns  
ns  
(1)  
tEHQZ  
(1)  
tGHQZ  
tEHQX  
tGHQX  
Chip Enable, Output Enable or  
Address Transition to Output Transition  
tOH  
Min  
0
5
0
5
ns  
ns  
tAXQX  
tELBL  
tELBH  
tBLQZ  
tBHQV  
tELFL  
tELFH  
Chip Enable to BYTE Low or High  
BYTE Low to Output Hi-Z  
Max  
tFLQZ  
Max  
Max  
25  
30  
30  
40  
ns  
ns  
tFHQV BYTE High to Output Valid  
1. Sampled only, not 100% tested.  
33/56  
DC and AC parameters  
M29W320DT, M29W320DB  
Figure 10. Write AC Waveforms, Write Enable Controlled  
tAVAV  
A0-A20/  
VALID  
A–1  
tWLAX  
tAVWL  
tWHEH  
E
tELWL  
tWHGL  
G
tGHWL  
tWLWH  
W
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHEL  
RB  
tWHRL  
AI90199  
Table 13. Write AC Characteristics, Write Enable Controlled  
M29W320D  
Symbol  
Alt  
Parameter  
Unit  
70  
90  
tAVAV  
tELWL  
tWC  
tCS  
tWP  
tDS  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
70  
0
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tWLWH  
tDVWH  
tWHDX  
tWHEH  
tWHWL  
tAVWL  
tWLAX  
tGHWL  
tWHGL  
45  
45  
0
50  
50  
0
tDH  
tCH  
tWPH  
tAS  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
0
0
30  
0
30  
0
tAH  
45  
0
50  
0
tOEH  
tBUSY  
tVCS  
0
0
(1)  
tWHRL  
30  
50  
35  
50  
tVCHEL  
VCC High to Chip Enable Low  
1. Sampled only, not 100% tested.  
34/56  
M29W320DT, M29W320DB  
DC and AC parameters  
Figure 11. Write AC Waveforms, Chip Enable Controlled  
tAVAV  
A0-A20/  
VALID  
A–1  
tELAX  
tAVEL  
tEHWH  
W
tWLEL  
tEHGL  
G
tGHEL  
tELEH  
E
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHWL  
RB  
tEHRL  
AI90200  
Table 14. Write AC Characteristics, Chip Enable Controlled  
M29W320D  
Symbol  
Alt  
Parameter  
Unit  
70  
90  
tAVAV  
tWLEL  
tELEH  
tDVEH  
tEHDX  
tEHWH  
tEHEL  
tAVEL  
tELAX  
tGHEL  
tEHGL  
tWC  
tWS  
tCP  
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
Min  
70  
0
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
45  
45  
0
50  
50  
0
tDS  
tDH  
tWH  
tCPH  
tAS  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
Chip Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
0
0
30  
0
30  
0
tAH  
45  
0
50  
0
tOEH  
tBUSY  
tVCS  
0
0
(1)  
tEHRL  
30  
50  
35  
50  
tVCHWL  
VCC High to Write Enable Low  
1. Sampled only, not 100% tested.  
35/56  
DC and AC parameters  
M29W320DT, M29W320DB  
Figure 12. Reset/Block Temporary Unprotect AC Waveforms  
W, E, G  
tPHWL, tPHEL, tPHGL  
RB  
tRHWL, tRHEL, tRHGL  
tPLPX  
RP  
tPHPHH  
tPLYH  
AI02931c  
Table 15. Reset/Block Temporary Unprotect AC Characteristics  
M29W320D  
Symbol  
Alt  
Parameter  
Unit  
ns  
70  
90  
(1)  
tPHWL  
RP High to Write Enable Low, Chip Enable  
Low, Output Enable Low  
tPHEL  
tRH  
Min  
Min  
50  
50  
(1)  
tPHGL  
(1)  
tRHWL  
RB High to Write Enable Low, Chip Enable  
Low, Output Enable Low  
(1)  
tRHEL  
tRB  
0
0
ns  
(1)  
tRHGL  
tPLPX  
tRP  
RP Pulse Width  
Min  
Max  
Min  
Min  
500  
25  
500  
25  
ns  
µs  
ns  
ns  
(1)  
tPLYH  
tREADY RP Low to Read Mode  
(1)  
tPHPHH  
tVIDR  
RP Rise Time to VID  
500  
250  
500  
250  
(1)  
tVHVPP  
VPP Rise and Fall Time  
1. Sampled only, not 100% tested.  
Figure 13. Accelerated Program Timing Waveforms  
V
PP  
V
/WP  
PP  
V
or V  
IH  
IL  
tVHVPP  
tVHVPP  
AI90202  
36/56  
M29W320DT, M29W320DB  
Package mechanical  
8
Package mechanical  
Figure 14. TSOP48 Lead Plastic Thin Small Outline, 12x20 Mm, Top View Package Outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing not to scale.  
Table 16. TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
L1  
a
0
5
0
5
37/56  
Package mechanical  
M29W320DT, M29W320DB  
Figure 15. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Bottom View Package Outline  
D
D1  
FD  
FE  
SD  
SE  
BALL "A1"  
E
E1  
ddd  
e
e
b
A
A2  
A1  
BGA-Z32  
1. Drawing not to scale.  
Table 17. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.200  
0.0472  
0.260  
0.0102  
0.900  
0.0354  
0.350  
5.900  
0.450  
0.0138  
0.2323  
0.0177  
D
6.000  
4.000  
6.100  
0.2362  
0.1575  
0.2402  
D1  
ddd  
E
0.100  
0.0039  
8.000  
5.600  
0.800  
1.000  
1.200  
0.400  
0.400  
7.900  
8.100  
0.3150  
0.2205  
0.0315  
0.0394  
0.0472  
0.0157  
0.0157  
0.3110  
0.3189  
E1  
e
FD  
FE  
SD  
SE  
38/56  
M29W320DT, M29W320DB  
Part numbering  
9
Part numbering  
Table 18. Ordering Information Scheme  
Example:  
M29W320DB  
90  
N
1
T
Device Type  
M29  
Operating Voltage  
W = VCC = 2.7 to 3.6V  
Device Function  
320D = 32 Mbit (x8/x16), Non-Uniform Parameter Blocks,  
Boot Block  
Array Matrix  
T = Top Boot  
B = Bottom Boot  
Speed  
70 = 70 ns  
90 = 90 ns  
Package  
N = TSOP48: 12 x 20 mm  
ZE = TFBGA48: 6 x 8mm, 0.8mm pitch  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing  
E = ECOPACK Package, Standard Packing  
F = ECOPACK Package, Tape & Reel Packing  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any  
aspect of this device, please contact the Numonyx Sales Office nearest to you.  
39/56  
Block Addresses  
M29W320DT, M29W320DB  
Appendix A Block Addresses  
Table 19. Top Boot Block Addresses, M29W320DT  
Size  
(KByte/KWor  
d)  
Address Range  
Address Range  
(x16)  
#
(x8)  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
16/8  
8/4  
3FC000h-3FFFFFh  
3FA000h-3FBFFFh  
3F8000h-3F9FFFh  
3F0000h-3F7FFFh  
3E0000h-3EFFFFh  
3D0000h-3DFFFFh  
3C0000h-3CFFFFh  
3B0000h-3BFFFFh  
3A0000h-3AFFFFh  
390000h-39FFFFh  
380000h-18FFFFh  
370000h-37FFFFh  
360000h-36FFFFh  
350000h-35FFFFh  
340000h-34FFFFh  
330000h-33FFFFh  
320000h-32FFFFh  
310000h-31FFFFh  
300000h-30FFFFh  
2F0000h-2FFFFFh  
2E0000h-2EFFFFh  
2D0000h-2DFFFFh  
2C0000h-2CFFFFh  
2B0000h-2BFFFFh  
2A0000h-2AFFFFh  
290000h-29FFFFh  
280000h-28FFFFh  
270000h-27FFFFh  
260000h-26FFFFh  
250000h-25FFFFh  
240000h-24FFFFh  
1FE000h-1FFFFFh  
1FD000h-1FDFFFh  
1FC000h-1FCFFFh  
1F8000h-1FBFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
8/4  
32/16  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
40/56  
M29W320DT, M29W320DB  
Block Addresses  
Table 19. Top Boot Block Addresses, M29W320DT (continued)  
118000h-11FFFFh  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
230000h-23FFFFh  
220000h-22FFFFh  
210000h-21FFFFh  
200000h-20FFFFh  
1F0000h-1FFFFFh  
1E0000h-1EFFFFh  
1D0000h-1DFFFFh  
1C0000h-1CFFFFh  
1B0000h-1BFFFFh  
1A0000h-1AFFFFh  
190000h-19FFFFh  
180000h-18FFFFh  
170000h-17FFFFh  
160000h-16FFFFh  
150000h-15FFFFh  
140000h-14FFFFh  
130000h-13FFFFh  
120000h-12FFFFh  
110000h-11FFFFh  
100000h-10FFFFh  
0F0000h-0FFFFFh  
0E0000h-0EFFFFh  
0D0000h-0DFFFFh  
0C0000h-0CFFFFh  
0B0000h-0BFFFFh  
0A0000h-0AFFFFh  
090000h-09FFFFh  
080000h-08FFFFh  
070000h-07FFFFh  
060000h-06FFFFh  
050000h-05FFFFh  
040000h-04FFFFh  
030000h-03FFFFh  
020000h-02FFFFh  
010000h-01FFFFh  
000000h-00FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0F8000h-0FBFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
000000h-007FFFh  
8
7
6
5
4
3
2
1
0
41/56  
Block Addresses  
M29W320DT, M29W320DB  
Table 20. Bottom Boot Block Addresses, M29W320DB  
Size  
(KByte/KWord)  
Address Range  
(x8)  
Address Range  
(x16)  
#
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
3F0000h-3FFFFFh  
3E0000h-3EFFFFh  
3D0000h-3DFFFFh  
3C0000h-3CFFFFh  
3B0000h-3BFFFFh  
3A0000h-3AFFFFh  
390000h-39FFFFh  
380000h-18FFFFh  
370000h-37FFFFh  
360000h-36FFFFh  
350000h-35FFFFh  
340000h-34FFFFh  
330000h-33FFFFh  
320000h-32FFFFh  
310000h-31FFFFh  
300000h-30FFFFh  
2F0000h-2FFFFFh  
2E0000h-2EFFFFh  
2D0000h-2DFFFFh  
2C0000h-2CFFFFh  
2B0000h-2BFFFFh  
2A0000h-2AFFFFh  
290000h-29FFFFh  
280000h-28FFFFh  
270000h-27FFFFh  
260000h-26FFFFh  
250000h-25FFFFh  
240000h-24FFFFh  
230000h-23FFFFh  
220000h-22FFFFh  
210000h-21FFFFh  
200000h-20FFFFh  
1F0000h-1FFFFFh  
1E0000h-1EFFFFh  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0F8000h-0FBFFFh  
0F0000h-0F7FFFh  
42/56  
M29W320DT, M29W320DB  
Block Addresses  
Table 20. Bottom Boot Block Addresses, M29W320DB (continued)  
0E8000h-0EFFFFh  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
32/16  
8/4  
1D0000h-1DFFFFh  
1C0000h-1CFFFFh  
1B0000h-1BFFFFh  
1A0000h-1AFFFFh  
190000h-19FFFFh  
180000h-18FFFFh  
170000h-17FFFFh  
160000h-16FFFFh  
150000h-15FFFFh  
140000h-14FFFFh  
130000h-13FFFFh  
120000h-12FFFFh  
110000h-11FFFFh  
100000h-10FFFFh  
0F0000h-0FFFFFh  
0E0000h-0EFFFFh  
0D0000h-0DFFFFh  
0C0000h-0CFFFFh  
0B0000h-0BFFFFh  
0A0000h-0AFFFFh  
090000h-09FFFFh  
080000h-08FFFFh  
070000h-07FFFFh  
060000h-06FFFFh  
050000h-05FFFFh  
040000h-04FFFFh  
030000h-03FFFFh  
020000h-02FFFFh  
010000h-01FFFFh  
008000h-00FFFFh  
006000h-007FFFh  
004000h-005FFFh  
000000h-003FFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
004000h-007FFFh  
003000h-003FFFh  
002000h-002FFFh  
000000h-001FFFh  
8
7
6
5
4
3
2
1
8/4  
0
16/8  
43/56  
Common Flash Interface (CFI)  
M29W320DT, M29W320DB  
Appendix B Common Flash Interface (CFI)  
The Common Flash Interface is a JEDEC approved, standardized data structure that can be  
read from the Flash memory device. It allows a system software to query the device to  
determine various electrical and timing parameters, density information and functions  
supported by the memory. The system can interface easily with the device, enabling the  
software to upgrade itself when necessary.  
When the CFI Query Command is issued the device enters CFI Query mode and the data  
structure is read from the memory. Table 21, Table 22, Table 23, Table 24, Table 25 and  
Table 26 show the addresses used to retrieve the data. The CFI data structure also contains  
a security area where a 64 bit unique security number is written (see Table 26, Security  
Code area). This area can be accessed only in Read mode by the final user. It is impossible  
to change the security number after it has been written by Numonyx. Issue a Read  
command to return to Read mode.  
(1)  
Table 21. Query Structure Overview  
Address  
Sub-section Name  
Description  
x16  
x8  
10h  
1Bh  
27h  
20h CFI Query Identification String  
36h System Interface Information  
4Eh Device Geometry Definition  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Additional information specific to the Primary  
Algorithm (optional)  
40h  
61h  
80h Primary Algorithm-specific Extended Query table  
C2h Security Code Area  
64 bit unique device number  
1. Query data are always presented on the lowest order data outputs.  
(1)  
Table 22. CFI Query Identification String  
Address  
Data  
Description  
Value  
x16  
x8  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
0051h  
“Q”  
"R"  
"Y"  
0052h Query Unique ASCII String "QRY"  
0059h  
0002h  
Primary Algorithm Command Set and Control Interface ID code 16 bit  
ID code defining a specific algorithm  
AMD Compatible  
0000h  
0040h  
Address for Primary Algorithm extended Query table (see Table 24)  
P = 40h  
NA  
0000h  
0000h  
Alternate Vendor Command Set and Control Interface ID Code  
second vendor - specified algorithm supported  
0000h  
0000h  
Address for Alternate Algorithm extended Query table  
0000h  
NA  
1. Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.  
44/56  
M29W320DT, M29W320DB  
Common Flash Interface (CFI)  
Table 23. CFI Query System Interface Information  
Address  
Data  
0027h  
0036h  
00B5h  
00C5h  
Description  
Value  
x16  
x8  
VCC Logic Supply Minimum Program/Erase voltage  
1Bh  
36h  
bit 7 to 4BCD value in volts  
2.7V  
3.6V  
bit 3 to 0BCD value in 100 mV  
V
CC Logic Supply Maximum Program/Erase voltage  
1Ch  
1Dh  
1Eh  
38h  
3Ah  
3Ch  
bit 7 to 4BCD value in volts  
bit 3 to 0BCD value in 100 mV  
VPP [Programming] Supply Minimum Program/Erase voltage  
bit 7 to 4HEX value in volts  
11.5V  
12.5V  
bit 3 to 0BCD value in 100 mV  
VPP [Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0004h  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
Typical timeout per single byte/word program = 2n µs  
Typical timeout for minimum size write buffer program = 2n µs  
Typical timeout per individual block erase = 2n ms  
Typical timeout for full chip erase = 2n ms  
16µs  
NA  
1s  
NA  
Maximum timeout for byte/word program = 2n times typical  
Maximum timeout for write buffer program = 2n times typical  
Maximum timeout per individual block erase = 2n times typical  
Maximum timeout for chip erase = 2n times typical  
512µs  
NA  
16s  
NA  
Table 24.  
Device Geometry Definition  
Address  
Data  
Description  
Device Size = 2n in number of bytes  
Value  
x16  
x8  
27h  
4Eh  
0016h  
4 MByte  
28h  
29h  
50h  
52h  
0002h  
0000h  
x8, x16  
Async.  
Flash Device Interface Code description  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Maximum number of bytes in multi-byte program or page = 2n  
Number of Erase Block Regions within the device.  
NA  
4
2Ch  
58h  
0004h  
It specifies the number of regions within the device containing  
contiguous Erase Blocks of the same size.  
2Dh  
2Eh  
5Ah  
5Ch  
0000h  
0000h  
Region 1 Information  
1
Number of identical size erase block = 0000h+1  
2Fh  
30h  
5Eh  
60h  
0040h  
0000h  
Region 1 Information  
16 Kbyte  
Block size in Region 1 = 0040h * 256 byte  
45/56  
Common Flash Interface (CFI)  
M29W320DT, M29W320DB  
Table 24.  
Device Geometry Definition (continued)  
Address  
Data  
Description  
Value  
x16  
x8  
31h  
32h  
62h  
64h  
0001h  
0000h  
Region 2 Information  
2
Number of identical size erase block = 0001h+1  
33h  
34h  
66h  
68h  
0020h  
0000h  
Region 2 Information  
8 Kbyte  
1
Block size in Region 2 = 0020h * 256 byte  
35h  
36h  
6Ah  
6Ch  
0000h  
0000h  
Region 3 Information  
Number of identical size erase block = 0000h+1  
37h  
38h  
6Eh  
70h  
0080h  
0000h  
Region 3 Information  
32 Kbyte  
63  
Block size in Region 3 = 0080h * 256 byte  
39h  
3Ah  
72h  
74h  
003Eh  
0000h  
Region 4 Information  
Number of identical-size erase block = 003Eh+1  
3Bh  
3Ch  
76h  
78h  
0000h  
0001h  
Region 4 Information  
64 Kbyte  
Block size in Region 4 = 0100h * 256 byte  
Table 25. Primary Algorithm-Specific Extended Query Table  
Address  
Data  
Description  
Value  
x16  
x8  
40h  
41h  
42h  
43h  
44h  
80h  
82h  
84h  
86h  
88h  
0050h  
"P"  
0052h Primary Algorithm extended Query table unique ASCII string “PRI”  
0049h  
"R"  
"I"  
0031h Major version number, ASCII  
0030h Minor version number, ASCII  
"1"  
"0"  
Address Sensitive Unlock (bits 1 to 0)  
0000h 00 = required, 01= not required  
Silicon Revision Number (bits 7 to 2)  
45h  
8Ah  
Yes  
Erase Suspend  
46h  
47h  
48h  
49h  
8Ch  
8Eh  
90h  
92h  
0002h  
2
1
00 = not supported, 01 = Read only, 02 = Read and Write  
Block Protection  
0001h  
00 = not supported, x = number of blocks in per group  
Temporary Block Unprotect  
0001h  
Yes  
4
00 = not supported, 01 = supported  
Block Protect /Unprotect  
0004h  
04 = M29W400B  
4Ah  
4Bh  
94h  
96h  
0000h Simultaneous Operations, 00 = not supported  
0000h Burst Mode, 00 = not supported, 01 = supported  
No  
No  
Page Mode, 00 = not supported, 01 = 4 page word, 02 = 8 page  
4Ch  
98h  
0000h  
word  
No  
46/56  
M29W320DT, M29W320DB  
Common Flash Interface (CFI)  
Table 25. Primary Algorithm-Specific Extended Query Table (continued)  
Address  
Data  
Description  
Value  
x16  
x8  
VPP Supply Minimum Program/Erase voltage  
4Dh  
9Ah  
00B5h bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
11.5V  
VPP Supply Minimum Program/Erase voltage  
00C5h bit 7 to 4 HEX value in volts  
4Eh  
4Fh  
9Ch  
9Eh  
12.5V  
bit 3 to 0 BCD value in 100 mV  
Top/Bottom Boot Block Flag  
000xh  
02h = Bottom Boot device, 03h = Top Boot device  
Table 26. Security Code Area  
Address  
Data  
Description  
x16  
x8  
61h  
62h  
63h  
64h  
C3h, C2h  
C5h, C4h  
C7h, C6h  
C9h, C8h  
XXXX  
XXXX  
XXXX  
XXXX  
64 bit: unique device number  
47/56  
Block Protection  
M29W320DT, M29W320DB  
Appendix C Block Protection  
Block protection can be used to prevent any operation from modifying the data stored in the  
Flash. Each Block can be protected individually. Once protected, Program and Erase  
operations on the block fail to change the data.  
There are three techniques that can be used to control Block Protection, these are the  
Programmer technique, the In-System technique and Temporary Unprotection. Temporary  
Unprotection is controlled by the Reset/Block Temporary Unprotection pin, RP; this is  
described in the Signal Descriptions section.  
Unlike the Command Interface of the Program/Erase Controller, the techniques for  
protecting and unprotecting blocks change between different Flash memory suppliers. For  
example, the techniques for AMD parts will not work on Numonyx parts. Care should be  
taken when changing drivers for one part to work on another.  
C.1  
Programmer Technique  
The Programmer technique uses high (V ) voltage levels on some of the bus pins. These  
ID  
cannot be achieved using a standard microprocessor bus, therefore the technique is  
recommended only for use in Programming Equipment.  
To protect a block follow the flowchart in Figure 16: Programmer Equipment Block Protect  
Flowchart. To unprotect the whole chip it is necessary to protect all of the blocks first, then  
all blocks can be unprotected at the same time. To unprotect the chip follow Figure 17:  
Programmer Equipment Chip Unprotect Flowchart. Table 27: Programmer Technique Bus  
Operations, BYTE = V or V , gives a summary of each operation.  
IH  
IL  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not abort the procedure before  
reaching the end. Chip Unprotect can take several seconds and a user message should be  
provided to show that the operation is progressing.  
C.2  
In-System Technique  
The In-System technique requires a high voltage level on the Reset/Blocks Temporary  
Unprotect pin, RP. This can be achieved without violating the maximum ratings of the  
components on the microprocessor bus, therefore this technique is suitable for use after the  
Flash has been fitted to the system.  
To protect a block follow the flowchart in Figure 18: In-System Equipment Block Protect  
Flowchart. To unprotect the whole chip it is necessary to protect all of the blocks first, then  
all the blocks can be unprotected at the same time. To unprotect the chip follow Figure  
Figure 19: In-System Equipment Chip Unprotect Flowchart.  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not allow the microprocessor to  
service interrupts that will upset the timing and do not abort the procedure before reaching  
the end. Chip Unprotect can take several seconds and a user message should be provided  
to show that the operation is progressing.  
48/56  
M29W320DT, M29W320DB  
Block Protection  
Table 27. Programmer Technique Bus Operations, BYTE = V or V  
IH  
IL  
Address Inputs  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
A0-A20  
A9 = VID, A12-A20 Block Address  
Others = X  
Block Protect  
VIL  
VID VIL Pulse  
X
X
A9 = VID, A12 = VIH, A15 = VIH  
Others = X  
Chip Unprotect  
VID VID VIL Pulse  
A0 = VIL, A1 = VIH, A6 = VIL, A9 = VID,  
A12-A20 Block Address  
Pass = XX01h  
Retry = XX00h  
Block Protection  
Verify  
VIL  
VIL  
VIL  
VIL  
VIH  
Others = X  
A0 = VIL, A1 = VIH, A6 = VIH,  
A9 = VID, A12-A20 Block Address  
Retry = XX01h  
Pass = XX00h  
Block Unprotection  
Verify  
VIH  
Others = X  
49/56  
Block Protection  
M29W320DT, M29W320DB  
Figure 16. Programmer Equipment Block Protect Flowchart  
START  
ADDRESS = BLOCK ADDRESS  
W = V  
IH  
n = 0  
G, A9 = V  
E = V  
,
ID  
IL  
Wait 4µs  
W = V  
IL  
Wait 100µs  
W = V  
IH  
E, G = V  
,
IH  
A0, A6 = V  
A1 = V  
,
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
Wait 60ns  
Read DATA  
DATA  
=
01h  
NO  
YES  
++n  
= 25  
NO  
A9 = V  
IH  
E, G = V  
IH  
YES  
PASS  
A9 = V  
E, G = V  
IH  
IH  
AI03469  
FAIL  
50/56  
M29W320DT, M29W320DB  
Block Protection  
Figure 17. Programmer Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
(1)  
A6, A12, A15 = V  
IH  
E, G, A9 = V  
ID  
Wait 4µs  
W = V  
IL  
Wait 10ms  
W = V  
IH  
E, G = V  
IH  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1, A6 = V  
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
INCREMENT  
CURRENT BLOCK  
Wait 60ns  
Read DATA  
NO  
YES  
DATA  
=
00h  
LAST  
BLOCK  
NO  
NO  
++n  
= 1000  
YES  
YES  
A9 = V  
A9 = V  
E, G = V  
IH  
IH  
E, G = V  
IH  
IH  
FAIL  
PASS  
AI03470  
51/56  
Block Protection  
M29W320DT, M29W320DB  
Figure 18. In-System Equipment Block Protect Flowchart  
START  
n = 0  
RP = V  
ID  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 100µs  
WRITE 40h  
IL  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
Wait 4µs  
READ DATA  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
DATA  
NO  
=
01h  
YES  
RP = V  
++n  
= 25  
NO  
IH  
YES  
RP = V  
ISSUE READ/RESET  
COMMAND  
IH  
PASS  
ISSUE READ/RESET  
COMMAND  
FAIL  
AI03471  
52/56  
M29W320DT, M29W320DB  
Block Protection  
Figure 19. In-System Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
RP = V  
ID  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
IH  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 10ms  
WRITE 40h  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 4µs  
INCREMENT  
CURRENT BLOCK  
READ DATA  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
DATA  
NO  
YES  
=
00h  
++n  
= 1000  
NO  
NO  
LAST  
BLOCK  
YES  
RP = V  
YES  
RP = V  
IH  
IH  
ISSUE READ/RESET  
COMMAND  
ISSUE READ/RESET  
COMMAND  
PASS  
FAIL  
AI03472  
53/56  
Revision history  
M29W320DT, M29W320DB  
10  
Revision history  
Table 28. Document revision history  
Date  
Revision  
Changes  
March-2001  
08-Jun-2001  
-01  
-02  
First Issue (Brief Data)  
Document expanded to full Product Preview  
Minor text corrections to Read/Reset and Read CFI commands and  
Status Register Error and Toggle Bits.  
22-Jun-2001  
-03  
Document type: from Product Preview to Preliminary Data  
TFBGA connections and Block Addresses (x16) diagrams  
clarification  
27-Jul-2001  
-04  
Write Protect and Block Unprotect clarification  
CFI Primary Algorithm table, Block Protection change  
Added Block Protection Appendix  
“Write Protect/VPP” pin renamed to “VPP/Write Protect” to be  
consistent with abbreviation. Changes to the VPP/WP pin description,  
Figure 13 and Table 15. IPP added to Table 11 and ICC3 clarified.  
Modified description of VPP/WP operation in Unlock Bypass  
Command section. Added VPP/WP decoupling capacitor to Figure  
Figure 1.  
05-Oct-2001  
-05  
Clarified Read/Reset operation during Erase Suspend.  
07-Feb-2002  
05-Apr-2002  
-06  
-07  
TFBGA package changed from 48 ball to 63 ball  
Description of Ready/Busy signal clarified (and Figure 12 modified)  
Clarified allowable commands during block erase  
Clarified the mode the device returns to in the CFI Read Query  
command section  
Erase Suspend Latency Time (typical and maximum) added to  
Program, Erase Times and Program, Erase Endurance Cycles table.  
Typical values added for Icc1 and Icc2 in DC characteristics table.  
Logic Diagram and Data Toggle Flowchart corrected.  
19-Nov-2002  
7.1  
Revision numbering modified: a minor revision will be indicated by  
incrementing the digit after the dot, and a major revision, by  
incrementing the digit before the dot (revision version 07 equals 7.0).  
Document promoted to full datasheet.  
Data Retention added to Table 6: Program, Erase Times and  
Program, Erase Endurance Cycles, and Typical after 100k W/E  
Cycles column removed. TSOP48 package mechanical updated.  
Lead-free package options E and F added to Table 18: Ordering  
Information Scheme.  
26-May-2003  
16-Aug-2005  
7.2  
8.0  
TFBGA48 package added throughout document.  
54/56  
M29W320DT, M29W320DB  
Table 28. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Document title modified.  
TFBGA63 package removed. ECOPACK text added.  
RB signal updated in Figure 12: Reset/Block Temporary Unprotect  
AC Waveforms. tPLYH updated in Table 15: Reset/Block Temporary  
Unprotect AC Characteristics.  
13-Jun-2006  
26-Mar-2008  
9
In Table 7: Status Register Bits, DQ7 changed to DQ7 for Program,  
Program during Erase Suspend and Program Error.  
10  
Applied Numonyx branding.  
55/56  
M29W320DT, M29W320DB  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
56/56  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY